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Abstract

In the context of higher gauge theory, we construct a flat and fake flat 2-connection, in the configuration

space of n particles in the complex plane, categorifying the Knizhnik-Zamolodchikov connection. To

this end, we define the differential crossed module of horizontal 2-chord diagrams, categorifying the Lie

algebra of horizontal chord diagrams in a set of n parallel copies of the interval. This therefore yields

a categorification of the 4-term relation. We carefully discuss the representation theory of differential

crossed modules in chain-complexes of vector spaces, which makes it possible to formulate the notion of

an infinitesimal 2-R matrix in a differential crossed module.

keyword: higher gauge theory, braided surface, two-dimensional holonomy, chord diagrams, infinitesimal
braiding, 4-term relation, differential crossed module, Knizhnik-Zamolodchikov equations, categorical repre-
sentation.
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1 Introduction, Motivation and Background

Let I = [0, 1]. Given a positive integer n, a braid [12, 13, 34] with n-strands b = {xi(t)}ni=1 is, by definition,
a (piecewise smooth, neat) embedding of the manifold I ⊔ · · · ⊔ I = I⊔n into C × I, such that for any i
the projection of xi(t) in the last variable is monotone. In addition we suppose that for every i we have
xi(0) ∈ {1, . . . , n} × {0} and xi(1) ∈ {1, . . . , n} × {1}. Braids are considered equivalent if they differ by a
boundary preserving ambient isotopy. Two braids b and b′ with n-strands can be multiplied by placing b on
top of b′ in the obvious way. This defines a group Bn called the Artin braid group [3] with n-strands. This
is the group with generators Xi, where i ∈ {1, . . . , n− 1} and relations

XiXi+iXi = Xi+1XiXi+1, if i ∈ {1, . . . , n− 2} (1)

XiXj = XjXi, if |i− j| ≥ 2 and i, j ∈ {1, . . . , n− 1}. (2)

The braid in figure 1 is given by X1X2X1 in terms of these generators.

∗Current address: Mathematics Research Unit, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359
Luxembourg, Luxembourg. Email: lucio.cirio@uni.lu
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Figure 1: A braid with three strands.

There is an obvious group morphism p : Bn → Sn from Bn onto the symmetric group Sn of symmetries of
the set {1, . . . , n}. The pure braid group Pn is by definition the kernel of this map.

Let n be a positive integer. The space C(n) of n distinguishable particles in the complex plane C is by
definition the manifold on n-tuples (z1, . . . , zn) ∈ Cn such that zi 6= zj if i 6= j. This is an aspherical manifold.
There exists an obvious action of Sn on C(n) by permuting coordinates. The space of n indistinguishable
particles in the complex plane is defined as C(n)/Sn. Since C(n) is aspherical then so is C(n)/Sn.

It is well known, and not difficult to see, that the pure braid group Pn is isomorphic to the fundamental
group of C(n), and that the braid group Bn is isomorphic to the fundamental group of C(n)/Sn. Proofs are
in [12, 34].

Let us be given a Lie algebra g with a C-valued g-invariant non-degenerate symmetric bilinear form 〈−,−〉.
Let r =

∑

i ti ⊗ si ∈ g ⊗ g be the associated tensor; that is 〈X,Y 〉 =
∑

i〈X, si〉〈Y, ti〉, for each X,Y ∈ g.
Choose a representation of g on a vector space V , with action denoted by x ⊲ v, with x ∈ g and v ∈ V .
Denote the tensor product V ⊗ . . .⊗ V of V with itself n times as V ⊗n, and the Lie algebra of linear maps
V ⊗n → V ⊗n by Hom(V ⊗n). Consider the trivial vector bundle C(n) × V ⊗n. The Knizhnik-Zamolodchikov
connection (KZ-connection) is given by the following Hom(V ⊗n)-valued form in the configuration space C(n)

A =
h

2πi

∑

a<b

ωabφab(r),

where a, b ∈ {1, . . . , n}, ωab =
dza−dzb
za−zb

and φab(r) : V
⊗n → V ⊗n is the linear map (we call it insertion map)

such that

φab(r)(v1 ⊗ . . .⊗ va ⊗ . . .⊗ vb ⊗ . . .⊗ vn) =
∑

i

v1 ⊗ . . .⊗ si ⊲ va ⊗ . . .⊗ ti ⊲ vb ⊗ . . .⊗ vn.

This connection appeared originally in the context of conformal field theory [35], being also natural in the
context of the quantization of the Chern-Simons action [47]; see also the books [32, 38].

We have actions of Sn on C(n) and of Sn on V ⊗n, and therefore the product action of Sn in C(n)×V ⊗n

is an action by vector bundle maps. Consider the quotient vector bundle (C(n) × V ⊗n)/Sn, over C(n)/Sn.
Since, clearly, the KZ-connection is invariant under this action, we also have a quotient connection A on the
vector bundle (C(n) × V ⊗n)/Sn. This connection will also be called the KZ-connection.

The KZ-connectionA, both in C(n) and in C(n)/Sn is flat, in other words the curvature 2-form dA+ 1
2A∧A

vanishes. This follows from the g-invariance of the (symmetric and non-degenerate) bilinear form 〈−,−〉,
which implies the relation

[r12 + r13, r23] = 0, in g⊗ g⊗ g ⊂ U(g)⊗ U(g)⊗ U(g), (3)

where U(g) is the universal enveloping algebra of g. For r =
∑

i si ⊗ ti, we have put

r12 =
∑

i

si ⊗ ti ⊗ 1 r13 =
∑

i

si ⊗ 1⊗ ti r23 =
∑

i

1⊗ si ⊗ ti. (4)

Relation (3) is called the 4-term relation, [11]. At the level of insertion maps it implies that:

φab(r)φbc(r) + φac(r)φbc(r) = φbc(r)φab(r) + φbc(r)φac(r), (5)
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for each a, b, c ∈ {1, . . . , n}. We also have rather obviously:

[φab(r), φa′b′(r)] = 0, if {a, b} ∩ {a′, b′} = ∅. (6)

Relations (5) and (6) are called infinitesimal braid relations, being an infinitesimal counterpart of the braid
group relations (1) and (2).

We therefore define an infinitesimal R-matrix in an arbitrary Lie algebra g as being an arbitrary symmetric
tensor r ∈ g⊗ g satisfying the 4-term relation (3). Any infinitesimal R-matrix in g yields a flat connection
A = h

2πi

∑

a<b ωabφab(r) in C(n), for any representation V of g.
The flatness of A, and the fact that A is invariant under the action of the symmetric group Sn, implies

in particular that the holonomy of A descends to a group morphism Bn = π1(C(n)/Sn) → GL(V ⊗n), where
GL(V ⊗n) is the group of invertible linear maps V ⊗n → V ⊗n. If g is semisimple, 〈−,−〉 is the Cartan-Killing
form and r is the infinitesimal R-matrix associated to 〈−,−〉, then this representation of the braid group with
n-strands is equivalent to the representation of the braid group derived from the R-matrix of the quantum
group Uq(g), for q = eh, a beautiful fact known as Kohno’s Theorem, [37]; see also [22, 34].

The holonomy of the KZ-connection cannot immediately be extended to links in S3. This is because the
forms ωab explode at minimal and maximal points, when two particle trajectories zi : I → C and zi+1 : I → C

collide. Nevertheless, the KZ-connection holonomy can be regularized at maximal and minimal points, as a
power series in h [1, 40]. After adding an anomaly correction term, this leads to knot invariants [1, 11, 36, 40],
coinciding with the usual quantum group knot invariants [22, 34].

For a positive integer n, we can also consider the Lie algebra chn, formally generated by the symbols rab,
where 1 ≤ a < b ≤ n, satisfying the infinitesimal braid group relations as in (5) and (6). Call it the Lie algebra
of horizontal chord diagrams (in the 1-manifold consisting of n parallel strands). Consider the connection
form A =

∑

1≤a<b≤n ωabrab taking values in chn. By using Chen integrals [20], as in [37, 36, 11, 34], we
can define the holonomy of this connection, living in the space of formal power series over the universal
enveloping algebra U(chn) of chn. As before this holonomy can be regularized at maximal and minimal
points of embedded links [1, 40], defining a knot invariant with values in the space of formal power series in
the Hopf algebra of chord diagrams in the circle. This invariant is called the Kontsevich integral, and can
be proven to be a universal Vassiliev invariants of knots; [34, 36, 11]..

In this article we present a categorification of the Lie algebra chn of horizontal chord diagrams. We do not
address the seemingly related categorification of the important case of the Hopf algebra of chord diagrams
in the circle (using the framework of this article), which we intend to postpone to a future publication.

The context we will use to categorify chn is the context of categorical group 2-connections on a manifold
M [8, 14, 42, 31]. It is well known [18] that a Lie categorical group can be equivalently described by a
crossed module G = (∂ : H → G, ⊲); see also [7]. Here ∂ : H → G is a Lie group morphism and ⊲ is a left
action of G on H by automorphisms. The Lie algebras of these can be arranged into a differential crossed
module G = (∂ : h → g, ⊲). For details see [16, 7, 5], and also [26]. Locally a (fake-flat) 2-connection looks
like a pair (A,B), where A is a 1-form in M with values in g and B is a 2-form in M with values in h, such
that ∂(B) = dA + 1

2A ∧ A, the curvature of A. A 2-connection is said to be flat if the curvature 3-form
dB +A ∧⊲ B vanishes.

As principal G-bundles over M with connection have a G-valued holonomy assigned to closed paths
γ : [0, 1] = D1 →M , 2-bundles with a 2-connection taking values in G = (∂ : h → g, ⊲) have a 2-dimensional
holonomy, assigned to maps Γ: D2 = [0, 1]2 → M , and taking values in H , as well as an underlying 1-
dimensional holonomy assigned to paths, living in G. For details see [8, 6, 44, 45, 26, 27, 28].

This 2-dimensional holonomy of a 2-connection is invariant under homotopy of maps Γ: [0, 1]2 → M ,
stable in the boundary of the square, and factoring through a 2-dimensional submanifold, a consequence
of the invariance of the 2-dimensional holonomy under thin homotopy [8, 44, 26, 27]. If the underlying
2-connection is flat, then the 2-dimensional holonomy depends only on the homotopy class (relative to the
boundary) of the map Γ: [0, 1]2 → M , a fact which we will explore in this article in the context of braided
surfaces.

Let s be a non-negative integer. A (simple) braided surface b1
S
−→ b2 [19] (called a braid cobordism in

[39]), of branching number s, connecting the braids b1 and b2, seen as embedded 1-manifolds in D3 = [0, 1]3,
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Figure 2: Braided surfaces with branching numbers 1 and 0. In the first case, two strands move to meet
each-other and then recombine the other way, in the second case we simply have a Reidemeister-II move,
followed by its inverse.

is an embedded 2-manifold S in [0, 1]4 = [0, 1]3 × [0, 1], defining an embedded cobordism between b1 and b2.
We further suppose that the projection of S onto {(0, 0)} ×D2 is a simple branched cover with s branching
points, and moreover that the intersection of S with [0, 1]2 × {±1} × [0, 1] does not depend on the last
variable. See figure 2 for two examples of braided surfaces, described by their intersections with D3 × {t},
with t ∈ [0, 1].

Any braided surface b1
S
−→ b2 with branching number 0 defines a map S′ : D2 → C(n)/Sn, restricting to

b1 : D
1 → C(n)/Sn and to b2 : D

1 → C(n)/Sn on the top and bottom of D2, with S′ being constant on the
left and right sides of D2; see [19, 1.6]. If S has branching number s then S′ is defined on D2 minus a set
with s points, on which S′ has a very particular type of singularities, see subsection 3.3.

We therefore aim to define flat 2-connections in the configuration spaces C(n) and C(n)/Sn, since these
naturally assign a 2-dimensional holonomy to a braided surface with no branch points. Namely, choose a flat
2-connection (A,B) in a (for the sake of simplicity trivial) 2-bundle over C(n). Then if we have a braided

surface b1
S
−→ b2, without branch points, connecting the braids b1 and b2, there will exist one-dimensional

holonomies H(b1) and H(b2) of b1 and b2 (which will now not necessarily be invariant under braid isotopy),

related by the 2-dimensional holonomyH(S′) of S: 2-categorically we have a 2-morphismH(b1)
H(S′)
−−−−→ H(b2).

This two-dimensional holonomy will be invariant under braided surface isotopy, since the 2-connection has
vanishing curvature. Moreover it is functorial with respect to the two obvious, horizontal and vertical,
compositions of braided surfaces (without branch points). An open problem is whether this two-dimensional
holonomy can be regularized in the case when S has branch points and therefore the map S′ : D2 → C(n)/Sn
has (a very particular type of) singularities.

As Lie algebras act on vector spaces, differential crossed modules (categorically) act on chain complexes
of vectors spaces, see subsection 4.1 (we will carefully address this kind of categorical representations). This
is because given a chain complex V of vector spaces we can define a differential crossed module gl(V) of
chain maps V → V and homotopies (up to 2-fold homotopies) of V, see subsection 2.2. This appeared in
[25], borrowing ideas from [33, 7, 5, 29]. Categorical representations of crossed modules are also treated in
[10, 23]. Defined like this, categorical representations of differential crossed modules have a natural tensor
product, acting in the usual tensor product ⊗ of chain complexes.

Given a chain complex V, a positive integer n, and chain maps rab : V
⊗n → V⊗n, where 1 ≤ a < b ≤ n,

as well as chain homotopies (up to 2-fold homotopy) Kabc and Kbac, where 1 ≤ a < b < c ≤ n, of V⊗n, we
find necessary and sufficient conditions for a local 2-connection (A,B) in C(n) of the form

A =
∑

a<b

ωabrab (7)

B =
∑

a<b<c

Kbac ωab ∧ ωac +Kabc ωab ∧ ωbc (8)
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to be flat, see Theorem 10. We also give sufficient conditions for the 2-dimensional holonomy of it to descend
to a 2-dimensional holonomy in C(n)/Sn, namely so that the pair (A,B) is invariant under the action of the
symmetric group (this is called the totally symmetric case). This is contained in Theorem 13.

The relations we get for the chain maps rab as well as the homotopies Kabc and Kbac lead to the definition
of the differential crossed module of totally symmetric horizontal 2-chord diagrams 2chn = (∂ : 2chn → ch

+
n ).

This differential crossed module is defined by generators and relations in Section 3.7, Theorem 21, as the
quotient of a free differential crossed module.

Given a differential crossed module (∂ : h → g) acting on a chain complex V, one would like to find the
conditions that the tensors r ∈ g⊗ g and P ∈ Ū(3), which is a quotient of g⊗ g⊗ h⊕ g⊗ h⊗ g⊕ h⊗ g⊗ g,
provided with a natural map ∂̂ onto g ⊗ g ⊗ g, should satisfy in order that, by considering the associated
chain maps φ̄ab(r) and chain homotopies φ̄abc(P ) in V⊗n, the 2-connection (A,B) with

A =
∑

a<b

ωab φ̄ab(r) . (9)

B =
∑

a<b<c

ωab ∧ ωac φ̄bac(P ) + ωab ∧ ωbc φ̄abc(P ) (10)

is flat and totally symmetric. These conditions are below and define what we call a totally symmetric
infinitesimal 2-R-matrix:

r12 = r21

∂̂(P ) = [r12 + r13, r23]

r14 ⊲ (P213 + P234) + (r12 + r23 + r24) ⊲ P314 − (r13 + r34) ⊲ P214 = 0

r23 ⊲ (P214 + P314)− r14 ⊲ (P423 + P123) = 0

P123 + P231 + P312 = 0

P123 = P132

(11)

All of this is explained in Section 4.3.

Open Problems

Several open problems come out of this article.
First of all, it is well known [15] that crossed modules of groups (∂ : H → G) are classified, up to weak

equivalence, by group cohomology classes k3 in H3(coker(∂), ker(∂)), a result that appeared originally in
[41]. Similarly [30] differential crossed modules are classified, up to weak equivalence (or what is the same by
equivalence in the larger category of Lie 2-algebras [7, 5]), by a Lie algebra cohomology class k3 ∈ H3(k,M).
Here a differential crossed module ∂ : h → g sits inside the exact sequence of Lie algebras

{0} →M → h
∂
−→ g

proj
−−→ k → {0},

with M abelian, and k has an obvious induced action on M , well defined by the differential crossed module
axioms. Given a differential crossed module (h → g), the associated cohomology class (the k-invariant) is
denoted by k3(h → g), and we say that (h → g) geometrically realizes k3.

Problem 1 Describe the kernel Mn of the boundary map ∂ : 2chn → ch
+
n in the differential crossed module

2chn = (∂ : 2chn → ch
+
n ) of totally symmetric horizontal 2-chord diagrams. (The cokernel is the Lie algebra

chn of horizontal chord diagrams, generated by rab, where 1 ≤ a < b ≤ n, subject to the infinitesimal braid
relations (5) and (6).) Address whether the associated cohomology class k3(2chn) ∈ H3(chn,Mn) is trivial
or not.
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Any simple Lie algebra k comes [9] with a cohomology class k3 ∈ H3(k,C), namely k(X,Y, Z) =< X, [Y, Z] >,
where 〈−,−〉 is the Cartan-Killing form. Explicit constructions (defined up to weak equivalence) of differen-
tial crossed module geometrically realizing this cohomology class appear in [9, 46], leading to the definition
of the String Lie-2-algebra.

Problem 2 Given a simple Lie algebra k, address whether there exist totally symmetric infinitesimal 2-R-
matrices (r, P ) in the crossed modules associated to the cohomology class k3 ∈ H3(k,C). It is important that
the projection map proj : g → k maps r to the infinitesimal R-matrix in k coming from the Cartan-Killing
form in k, so that we would be obtaining a categorification of the braid group representation coming from the
quantum group Uq(k).

By considering Chen integrals as in [11, 34], we can define given a braided surface b1
S
−→ b2, without

branch points, with associated map S′ : D2 → C(n)/Sn, a holonomy H(b1)
H(S′)
−−−−→ H(b2), where H(b1) and

H(b2) take values in the algebra of formal power series in the universal enveloping algebra U(ch+n ), a Hopf
algebra, and H(S′) takes values in the algebra of formal power series in U(2chn).

Problem 3 Extend this holonomy to the case when S has branch points. This will require some form of
regularization since, in the general case, the associated map S′ : D2 \ {branch points} → C(n)/Sn will not
be defined in all of D2, see subsection 3.3, however having a very particular type of singularities. It would
be very important to analyze whether the first braided surface of figure 2 has a non-trivial 2-dimensional
holonomy or not.

Problem 4 Is it possible to define a Hopf algebra crossed module of 2-chord diagrams in the 2-sphere from
the relations defining chn?

Problem 5 As infinitesimal R-matrices in a Lie algebra come naturally from invariant non-degenerate
symmetric bilinear forms, it would be important to find a simple geometric way to construct infinitesimal
2-R-matrices.

2 Differential crossed modules

2.1 Crossed modules of Lie groups and algebras

For details on (Lie) crossed modules see, for example, [4, 7, 16, 17, 24, 26], and references therein.

Definition 1 (Lie crossed module) A crossed module G = (∂ : H → G, ⊲) is given by a group morphism
∂ : H → G together with a left action ⊲ of G on H by automorphisms, such that:

1. ∂(g ⊲ h) = g∂(h)g−1; for each g ∈ G and h ∈ H,

2. ∂(h) ⊲ h′ = hh′h−1; for each h, h′ ∈ H.

If both G and H are Lie groups, ∂ : H → G is a smooth morphism, and the left action of G on H is smooth
then G will be called a Lie crossed module. A pre-crossed module is defined analogously, however skipping
the second condition.

A morphism G → G′ from the crossed module G = (∂ : H → G, ⊲) to the crossed module G′ = (∂′ : H ′ →
G′, ⊲′) is given by a pair of maps φ : G→ G′ and ψ : H → H ′ which make the following diagram commutative,

H
∂

−−−−→ G

ψ





y





y

φ

H ′ ∂′

−−−−→ G′

and such that ψ(g ⊲ e) = φ(g) ⊲′ ψ(e) for each e ∈ H and each g ∈ G.
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Example 2 Let G be a Lie group and V a vector space carrying a representation ρ of G. Then we can

define a crossed module (V
v 7→1G−−−−→ G, ρ).

Example 3 Let G be a connected Lie group and Aut(G) be the Lie group of all automorphisms of G. We
have a left action of Aut(G) on G by automorphisms, where f ⊲ g = f(g), for f ∈ Aut(G) and g ∈ G.
Together with the map g ∈ G 7→ Adg which sends g ∈ G to the automorphism h 7→ ghg−1 this defines a
crossed module.

Given a Lie crossed module G = (∂ : H → G, ⊲), we have an induced Lie algebra map ∂ : h → g, and a
derived action of g on h (also denoted by ⊲). This forms a differential crossed module, in the sense of the
following definition - see [4, 5, 8, 26, 27].

Definition 4 (Differential crossed module) A differential crossed module G = (∂ : h → g, ⊲) is given by
a Lie algebra morphism ∂ : h → g together with a left action of g on the underlying vector space of h, such
that:

1. For any X ∈ g the map ξ ∈ h 7→ X ⊲ ξ ∈ h is a derivation of h, in other words

X ⊲ [ξ, ν] = [X ⊲ ξ, ν] + [ξ,X ⊲ ν]; for each X ∈ g, and each ξ, ν ∈ h. (12)

2. The map g → Der(h) from g into the derivation algebra of h induced by the action of g on h is a Lie
algebra morphism, in other words:

[X,Y ] ⊲ ξ = X ⊲ (Y ⊲ ξ)− Y ⊲ (X ⊲ ξ); for each X,Y ∈ g and ξ ∈ h , (13)

3.
∂(X ⊲ ξ) = [X, ∂(ξ)]; for each X ∈ g, and each ξ ∈ h , (14)

4.
∂(ξ) ⊲ ν = [ξ, ν]; for each ξ, ν ∈ h . (15)

As before, a differential pre-crossed module is defined analogously, but skipping the fourth condition.

In any differential crossed module we have:

∂(ξ) ⊲ ν = [ξ, ν] = −[ν, ξ] = ∂(ν) ⊲ ξ, for each ξ, ν ∈ h. (16)

We have a functor which sends a Lie crossed module to its associated differential crossed module. On the
other hand, given a differential crossed module G = (∂ : h → g, ⊲) there exists a unique (up to isomorphism)
crossed module of simply connected Lie groups G = (∂ : H → G, ⊲) whose differential form is G.

2.2 Differential crossed modules from complexes of vector spaces

2.2.1 Short complexes

Let V = (V
∂
−→ U) be a short complex of (finite dimensional) vector spaces. In other words V and U are

vector spaces and ∂ : V → U is a linear map. Let us define a differential crossed module gl(V) =
(

β : gl1(V) →

gl0(V), ⊲
)

. This is a well known construction; see for example [5, 7, 29]. For details on the construction of

the associated Lie crossed module GL(V) =
(

β : GL1(V) → GL0(V), ⊲
)

see [25].

Consider the algebra Hom0(V) chain maps f : V → V, with composition as product. The Lie algebra
gl0(V) is identical to Hom0(V) as a vector space, with bracket given by the commutator in Hom0(V); in other
words [F, F ′] = F ◦ F ′ − F ′ ◦ F , for any two chain maps F, F ′ : V → V.

7



The Lie algebra gl1(V) is given by the vector space Hom1(V) of all maps s : U → V , with bracket given
by

[s, t] = s∂t− t∂s .

The map β : gl1(V) → gl0(V) such that
β(s) = (s∂, ∂s)

is a morphism of Lie algebras. A left action of gl0(V) on gl1(V), by derivations, can be defined as

(fV , fU ) ⊲ s = fV s− sfU .

Simple calculations prove that this indeed defines a differential crossed module.

2.2.2 Long complexes

By slightly modifying the previous construction in Section 2.2.1, we can construct a differential crossed
module

gl(V) =
(

β : gl1(V) → gl0(V), ⊲
)

from any complex of vector spaces V = (. . .
∂
−→ Vn

∂
−→ Vn−1

∂
−→ . . . ); this appeared in [25, 28], with

ideas borrowed from [33]. We can also analogously construct an associated Lie crossed module GL(V) =
(

β : GL1(V) → GL0(V), ⊲
)

; see [25].

First of all define a Lie algebra gl0(V ), given by all chain maps f : V → V, with the usual commutator of
chain maps giving the Lie algebra structure.

A degree n map h : V → V is given by a sequence of linear maps hi : Vi → Vi+n, without any compatibility
relations with ∂. We denote the vector space of degree-n maps by Homn(V). We can define a Lie algebra
structure on the vector space Hom1(V) of degree 1 maps where:

[s, t] = s∂t− t∂s+ st∂ − ts∂.

The bilinearity and antisymmetry of this bracket are immediate, whereas Jacobi identity follows from an
explicit calculation. Moreover, the usual chain-complex boundary map β : Hom1(V) → gl0(V) such that

β(s) = ∂s+ s∂

is a Lie algebra morphism. There exists an action of gl0(V) on Hom1(V) such that:

f ⊲ s = fs− sf.

An explicit calculation shows that this in an action by derivations. Moreover we have

β(f ⊲ s) = [f, β(s)], for each f ∈ gl0(V) and s ∈ Hom1(V).

We do not always have a differential crossed module since the second Peiffer identity [s, t] = β(s) ⊲ t may
fail in general, unless we are considering a complex of length two. Consider the map β′ : Hom2(V) → Hom1(V)
such that

β′(h) = h∂ − ∂h.

Then β′(Hom2(V)) is a gl0(V)-invariant Lie algebra ideal of Hom1(V), contained in ker(β). In fact for
h ∈ Hom2(V) and f ∈ gl0(V) we have:

f ⊲ β′(h) = β′(fh− hf),

and also
[s, β′(h)] = β′(h∂s− ∂hs).
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We can therefore define a Lie algebra

gl1(V) =
Hom1(V)

β′(Hom2(V))
,

provided with a (quotient) map
β : gl1(V) → gl0(V)

and a quotient action ⊲ by derivations of gl0(V) on gl1(V). To prove this is a crossed module of Lie algebras
we must check β(s) ⊲ t = [s, t], in the quotient. This follows from

β(s) ⊲ t− [s, t] = β′(st), for each s, t ∈ Hom1(V). (17)

3 A 2-connection categorifying the Knizhnik-Zamolodchikov con-

nection and the differential crossed module of (totally symmet-
ric) horizontal 2-chord diagrams

3.1 Local 2-connections

Fix a manifold M . Given a vector space U , we denote the vector space of U -valued differential n-forms in
M as Ωn(M,U). Let V and W be vector spaces. Suppose we have a bilinear map L : U ×V →W . If we are
given U and V valued forms µ ∈ Ωa(M,U) and ν ∈ Ωb(M,V ) we define the W -valued (a + b)-form µ ∧L ν
in M as:

µ ∧L ν =
(a+ b)!

a!b!
Alt(µ⊗L ν) ∈ Ωa+b(M,W ).

Here µ⊗L ν is the covariant tensor L ◦ (µ× ν) and Alt denotes the natural projection from the vector space
of W -valued covariant tensor fields in M onto the vector space of W -valued differential forms in M .

Given a Lie crossed module G = (∂ : H → G, ⊲) with associated differential crossed module G = (∂ : h →
g, ⊲), a G-valued (and fake-flat) local 2-connection pair (A,B) in M is given by a g-valued 1-form A ∈
Ω1(M, g) and a h-valued 2-form B ∈ Ω2(M, h) such that

∂(B) = FA
.
= dA+

1

2
A ∧[−,−] A . (18)

(Here the bilinear map used to define the exterior product is given by the Lie bracket [−,−]). This means
that for vector fields X and Y in M we have:

∂(B(X,Y )) = dA(X,Y ) + [A(X), A(Y )]. (19)

Note that FA = dA + 1
2A ∧[−,−] A is the usual curvature 2-form of the connection form A. The curvature

3-form of a local 2-connection pair (A,B) is given by

M(A,B) = dB +A ∧⊲ B. (20)

(In this case the bilinear map appearing in the exterior product is (X, v) ∈ g × h 7→ X ⊲ v ∈ h.) For any
vector fields X,Y and Z in M we therefore must have:

M(A,B)(X,Y, Z) = dB(X,Y, Z) +A(X) ⊲ B(Y, Z) +A(Y ) ⊲ B(Z,X) +A(Z) ⊲ B(X,Y ). (21)

A local 2-connection is said to be flat if its curvature 3-form vanishes.

3.2 The 2-dimensional holonomy of a local 2-connection

Consider a Lie crossed module G = (∂ : H → G, ⊲) with associated differential crossed module G = (∂ : h →
g, ⊲). A local 2-connection in a manifold determines a 2-dimensional holonomy, in the sense we now present.
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3.2.1 Paths and 2-paths in M

A path is by definition a piecewise smooth map γ : D1 = [0, 1] →M . Paths γ, γ′ in M can be concatenated
to give a path γγ′ in M if the end-point ∂+1 (γ)

.
= γ(1) of γ coincides with the initial point γ′(0) = ∂−1 (γ′) of

γ′. As usual

γγ′(s) =

{

γ(2s), s ∈ [0, 1/2]

γ′(2s− 1), s ∈ [1/2, 1]

A 2-path is by definition a map Γ: D2 = [0, 1]2 → M , piecewise smooth for some paving of the square
D2 by polygons. We also assume that ∂+1 (Γ) = Γ(1, s) and ∂−1 (Γ) = Γ(0, s) are each constant paths. Define
also (not necessarily constant) 2-paths ∂±2 (Γ) as being the restrictions Γ(t, 1) and Γ(t, 0) of Γ.

Note that we have horizontal and vertical concatenations of 2-paths Γ and Γ′, defined as long as they
coincide on the relevant side of the square.

3.2.2 Edges and disks in a crossed module G.

Let G = (∂ : H → G, ⊲) be a crossed module. An edge in G is by definition an arrow colored with an element
g ∈ G, in other words a diagram of the form:

∗
g
−→ ∗, where g ∈ G.

Edges in G can be composed in the obvious way:

∗
g
−→ ∗

g′

−→ ∗ = ∗
gg′

−−→ ∗.

Analogously, disks in G are diagrams of the form:

∗

g′

&&

g

88e ∗ (22)

where g, g′ ∈ G and e ∈ H is such that ∂(e)−1g = g′. Disks in G can be composed horizontally and vertically.
The horizontal composition of disks in G is always defined for any two disks and has the form:

∗

g′1

&&

g1

88e ∗

g′2

&&

g2

88e′ ∗ = ∗

g′1g
′

2

((

g1g2

66(g1 ⊲ e
′)e ∗ .

The vertical composition of two disks in G is only well defined if the edge in G assigned to the bottom of the
first disk coincides with the edge assigned to the top of the second disk, and it has the form:

∗

g′′

&&

g′

88e′ ∗

= ∗

g′′

&&

g

88ee′ ∗

∗

g′

&&

g

88e ∗

These horizontal and vertical compositions of disks in G are associative and further they satisfy the inter-
change condition [17], familiar in two-dimensional category theory.
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3.2.3 The form of a 2-dimensional holonomy

Let M be a manifold, and let G be a Lie group with Lie algebra g. Let γ : [0, 1] →M be a piecewise smooth
map. Let A ∈ Ω1(M, g) be a g-valued 1-form in M . We can integrate A with respect to γ in the usual way,

by defining
A
gγ(t) ∈ G as the solution of the differential equation in G:

d

dt

A
gγ(t) =

A
gγ(t) A

(

d

dt
γ(t)

)

,

with initial condition
A
gγ(0) = 1G. Put

A
gγ

.
=

A
gγ(1). If γ1 and γ2 are piecewise smooth maps with γ1(1) =

γ2(0), we have that
A
gγ1γ2 =

A
gγ1

A
gγ2 .

Let G = (∂ : H → G, ⊲) be a Lie crossed module and let G = (∂ : h → g, ⊲) be the associated differential
crossed module. If we have B ∈ Ω2(M, h) with ∂(B) = FA

.
= dA + 1

2A ∧[ , ] A, which therefore means that

(A,B) is a local 2-connection, we define
(A,B)
eΓ (t, s) ∈ H as being the solution of the differential equation

(where we put γs(t) = Γ(t, s))

∂

∂s

(A,B)
eΓ (t, s) =

(A,B)
eΓ (t, s)

∫ t

0

A
gγs(t′) ⊲B

(

∂

∂t′
γs(t

′),
∂

∂s
γs(t

′)

)

dt′

with initial conditions
(A,B)
eΓ (t, 0) = 1H , ∀t ∈ [0, 1].

Put
(A,B)
eΓ =

(A,B)
eΓ (1, 1). The following result is proven in [8, 45, 26, 27, 28].

Theorem 5 Let M be a smooth manifold with a local 2-connection pair (A,B), taking values in the diffe-
rential crossed module G = (∂ : h → g, ⊲), associated to the Lie crossed module G = (∂ : H → G, ⊲). The
assignment Γ 7→ Hol(Γ), which to a 2-path Γ associates

Hol(Γ) = ∗

gA
∂
+
2

(Γ)

  

gA
∂
−

2 (Γ)

>>e
(A,B)
Γ ∗

preserves horizontal and vertical composites. In other words

Hol(ΓΓ′) = Hol(Γ)Hol(Γ′)

and
Hol

(

Γ
Γ′

)

=
Hol(Γ)
Hol(Γ′) .

As is the case of 1-dimensional holonomy, the variation of the holonomy when we vary the 2-paths is
ruled by the curvature 3-form [8, 44, 45]. It is proven in [26, 27] that:

Theorem 6 Suppose (A,B) is flat and that Γ and Γ′ are homotopic, relative to the boundary of D2. Then
Hol(Γ) = Hol(Γ′).
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3.3 Configuration spaces and braided surfaces

Definition 7 Let n be a positive integer. The configuration space C(n) of n distinguishable particles in the
complex plane C is the set of tuples (x1, . . . , xn) in Cn such that xi 6= xj if i 6= j. This space has an obvious
properly discontinuous action of the symmetric group Sn by permutation of coordinates. We thus define the
space of n indistinguishable particles as C(n)/Sn, a manifold of dimension 2n.

The pure braid group Pn is isomorphic to the fundamental group of C(n), whereas the braid group Bn
is isomorphic to the fundamental group of C(n)/Sn.

A particular set of maps we would like to consider are the branching maps m± : B2 → C(2)/S2 from the
unit ball of C (minus the origin) to the configuration space C(2)/S2, defined as (in polar coordinates):

m+(θ, r) =
(

− exp(iθ/2), exp(iθ/2)
)

r

and
m−(θ, r) =

(

− exp(−iθ/2), exp(−iθ/2)
)

r.

These correspond to the type of catastrophe that happens when we try to interpret the first braided surface
of figure 2 as a map D2 → C(2). If we restrict to the boundary S1 of the 2-ball we thus obtain the standard
generators of the braid group B2. These branching maps can be generalized to maps m±

i : B2 → C(n)/Sn
creating a branch point connecting the i-th and (i+ 1)-strands of a braided surface.

The following is a slightly non-standard definition of braided surfaces, however well adapted to address
their two-dimensional holonomy. For a detailed description of the concept of a braided surface we refer for
example to [19].

Definition 8 (Braided surface) Let s be a non-negative integer. A braided surface S (of branching number
s, and degree n) is given by a map S′ : D2 \ σ(S) → C(n)/Sn (where as usual D2 = [0, 1]2), such that:

1. The set σ(S) is a set with s points, contained in the interior of D2. Each element of σ(S) corresponds
therefore to some branch point of S.

2. The map S′ is smooth.

3. There exists a disk around each element of σ(S) where S′ is isotopic to some branching map m±
i .

4. The restrictions ∂±1 (S′) : [0, 1] → C(n)/Sn of S′ to the left and right sides of D2 are each constant
paths.

5. The restrictions b1 = ∂+2 (S′) : [0, 1] → C(n)/Sn and b2 = ∂−2 (S′) : [0, 1] → C(n)/Sn of S′ to the top and
bottom sides of D2 each define braids.

Definition 9 Two braided surfaces are equivalent if there exists a smooth homotopy between them which at
each point is a braided surface.

3.4 Arnold Lemma and Arnold basis

The basis (defined by Arnold) of the cohomology ring of the configuration space C(n) described in this
subsection will be crucial later, essentially leading to Theorem 10 below, and the definition of the differential
crossed module of horizontal 2-chord diagrams in Section 3.7.

In [2], Arnold addressed the cohomology ring (over the ring Z of integers) of the configuration space C(n)
of n-particles in C (from which the results below can be inferred). Consider the following closed 1-forms:

ωab =
dza − dzb
za − zb

.

These satisfy the following relation (which is easy to prove), usually called Arnold’s Lemma:

ωab ∧ ωbc + ωbc ∧ ωca + ωca ∧ ωab = 0. (23)
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Consider the graded commutative algebra of differential forms in C(n), with wedge product. Let An be
the subalgebra of it generated by the 1-forms ωab. Then An is isomorphic to the (De Rham) cohomology
ring of C(n), and in particular a differential form in An is zero if and only if it is cohomologous to zero.

Basis for the degree 2 and 3 components of An are, respectively:

{ωiaja ∧ ωibjb s.t. ik < jk and jk < jk′ for k < k′}. (24)

and
{ωiaja ∧ ωibjb ∧ ωicjc s.t. ik < jk and jk < jk′ for k < k′}, (25)

where all indices run in {1, . . . , n}.
From this we can see that if n = 3 and n = 4 (respectively) then the following differential forms in C(n)

are linearly independent (which can easily be proved directly):

ω12 ∧ ω13, ω12 ∧ ω23

and

ω12 ∧ ω13 ∧ ω14, ω12 ∧ ω23 ∧ ω14, ω12 ∧ ω13 ∧ ω24, ω12 ∧ ω23 ∧ ω24 ω12 ∧ ω13 ∧ ω34, ω12 ∧ ω23 ∧ ω34.

3.5 Flatness conditions for gl(V)-valued 2-connections

Let V be a chain complex of vector spaces. Recall the construction of the differential crossed module
gl(V) =

(

β : gl1(V) → gl0(V), ⊲
)

defined from V, subsection 2.2. Consider a positive integer n. Suppose we
have a representation σ ∈ Sn 7→ ρσ ∈ Aut(V) of the symmetric group Sn on V by (necessarily invertible)
chain maps. (The main example for this paper is the case when V is the tensor product of n copies of a chain
complex W, with the obvious action of Sn). Then ρσ(f) = ρσfρ

−1
σ and ρσ(s) = ρσsρ

−1
s , for f ∈ gl0(V) and

s ∈ gl1(V), define a representation of Sn by differential crossed module maps gl(V) → gl(V).
We are interested in flat local 2-connection pairs (A,B) in C(n) with values in the differential crossed

module gl(V), such that the associated two-dimensional holonomy descends to a two-dimensional holonomy
in C(n)/Sn. Any map γ : [0, 1] → C(n)/Sn can be lifted to C(n), and all liftings are related by the action
of Sn on C(n). So does any homotopy Γ connecting paths γ and γ′ in C(n)/Sn. Therefore defining a 2-
dimensional holonomy in C(n)/Sn directly from (A,B) can be achieved if the local 2-connection pair (A,B)
is invariant under the symmetric group Sn, in the sense that for each σ ∈ Sn

ρ−1
σ

(

σ∗(A)
)

= A and ρ−1
σ

(

σ∗(B)
)

= B (26)

where σ : C(n) → C(n) denotes the obvious diffeomorphism given by σ.1

In light of this discussion, let us start by addressing flat gl(V)-valued local 2-connection pairs in C(n).
Consider a family of chain maps {rab} ∈ gl0(V) (a, b ∈ {1, . . . , n}, a 6= b) such that

rab = rba, [rab, rcd] = 0 for {a, b} ∩ {c, d} = ∅ (27)

and the closed differential forms

ωab =
dza − dzb
za − zb

on C(n). We define a gl0(V)-valued 1-form A over C(n) as:

A =
∑

a<b

ωabrab. (28)

The curvature FA = dA+ 1
2A ∧[−,−] A of A is then (since the forms ωab are closed):

FA =
1

2
A ∧[−,−] A =

1

2

∑

i<j ;k<l

[rij , rkl]ωij ∧ ωkl

1There may be some space for relaxing the Sn invariance of (A,B) by considering non-trivial 2-vector bundles over C(n)/Sn.
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and only the terms with one repeated index among (i, j, k, l) contribute; by equation (27). Considering the
various cases we can write (these calculations appear in [11, 34, 36]):

FA =
1

2

(

∑

i<j<l

+
∑

i<l<j

)

[rij , ril]ωij ∧ ωil +
1

2

∑

k<i<j

[rij , rki]ωlj ∧ ωkl

+
1

2

∑

i<j<l

[rij , rjl]ωij ∧ ωjl +
1

2

(

∑

i<k<j

+
∑

k<i<j

)

[rij , rkj ]ωij ∧ ωkj

=
∑

a<b<c

[rab, rac]ωab ∧ ωac + [rab, rbc]ωab ∧ ωbc + [rac, rbc]ωac ∧ ωbc .

We express FA along the Arnold basis of 2-forms

{ωiaja ∧ ωibjb s.t. ik < jk and jk < jk′ for k < k′}

where all indices run in {1, . . . , n}. By Arnold’s lemma ωac ∧ ωbc = ωab ∧ ωbc − ωab ∧ ωac; therefore

FA =
∑

a<b<c

(

[rab, rac]− [rac, rbc]
)

ωab ∧ ωac +
(

[rab, rbc] + [rac, rbc]
)

ωab ∧ ωbc

and defining

Vabc = [rab, rbc] = rabrbc − rbcrab

Rabc = Vabc − Vbca = [rab + rac, rbc]
(29)

we eventually have

FA =
∑

a<b<c

Rbac ωab ∧ ωac +Rabc ωab ∧ ωbc . (30)

Note that for the usual KZ-connection Vabc = Vbca = Vcab, which ensures flatness (FA = 0).
We then need a gl1(V)-valued 2-form B such that β(B) = FA. We also want (A,B) to be a flat 2-

connection, so we impose the vanishing of the 2-curvature 3-form M(A,B), see subsection 3.1. To match the

the condition β(B) = FA, we define B ∈ Ω2(C(n), gl1(V)) as having the form:

B =
∑

a<b<c

Kbac ωab ∧ ωac +Kabc ωab ∧ ωbc (31)

for some Kabc,Kbac ∈ gl1(V) (where 1 ≤ a < b < c ≤ n), such that

β(Kabc) = Rabc and β(Kbac) = Rbac. (32)

We also suppose that:
rab ⊲ Kijk = 0 if {a, b} ∩ {i, j, k} = ∅. (33)

Given that dB = 0, the curvature of (A,B) is M(A,B) = A∧⊲ B. We compute the components of the 3-form
A ∧⊲ B along the Arnold basis

{ωiaja ∧ ωibjb ∧ ωicjc s.t. ik < jk and jk < jk′ for k < k′} (34)

where all indices run in {1, . . . , n}. The vanishing of these components is equivalent to 2-flatness M(A,B) = 0.
By (33), only the terms where #{ia, ja, ib, jb, ic, jc} = 4 will affect the calculations.
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Theorem 10 Given a gl(V)-valued 2-connection (A,B) on C(n) with A as in (28) and B as in (31), the
2-curvature 3-form M(A,B) vanishes, i.e. the 2-connection is flat, if and only if the following conditions are
satisfied:

rad ⊲ (Kbac +Kbcd) + (rab + rbc + rbd) ⊲ Kcad − (rac + rcd) ⊲ Kbad = 0

rbd ⊲ (Kabc +Kacd) + (rab + rad + rac) ⊲ Kcbd − (rbc + rcd) ⊲ Kabd = 0

rbc ⊲ (Kbad +Kcad) + rad ⊲ (Kcbd +Kbcd −Kabc) = 0

rac ⊲ (Kabd +Kcbd) + rbd ⊲ (Kcad +Kacd −Kbac) = 0

rcd ⊲ (Kbac +Kbad) + (rab + rbc + rbd) ⊲ Kacd − (rac + rad) ⊲ Kbcd = 0

rcd ⊲ (Kabc +Kabd) + (rab + rac + rad) ⊲ Kbcd − (rbd + rbc) ⊲ Kacd = 0

(35)

with a < b < c < d ∈ {1, . . . , n}.

Note that exchanging a↔ b in the first, third and fifth condition we get respectively the second, fourth and
sixth. Exchanging a↔ c in the first yields the fifth, if we also impose the condition Kbca = Kbac.

Remark 11 As we will see in the proof of Theorem 21, the relations appearing in Theorem 10 are satisfied
if we put Kabc = [rab + rac, rbc] ∈ gl0(V), where ⊲ is the adjoint action of gl0(V) on gl0(V). This turns out
to be equivalent to Bianchi identity dFA+A∧FA = 0, as read in the Arnold basis of the cohomology ring of
the configuration space C(n), equation (25).

Proof. (Of Theorem 10) Writing explicitly A ∧⊲ B (which we want to set to zero) we have

∑

i<j ; a<b<c

(rij ⊲ Kbac)ωij ∧ ωab ∧ ωac + (rij ⊲ Kabc)ωij ∧ ωab ∧ ωbc .

The terms without repeated indices between (i, j) and (a, b, c) are zero because in that case the action of
rij on Kabc vanishes, while the terms with {i, j} ⊂ {a, b, c} are zero by antisymmetry of differential forms.
Hence we only consider one repeated index: i = a, i = b, i = c or the analogue three cases for j. Once we
fix the repeated index, say i = a, we have a contribution along ωaj ∧ ωab ∧ ωac for the first term and along
ωai ∧ ωab ∧ ωbc for the second term. Next, we distinguish among the different relative orderings of j with
respect to a, b, c: we can have a < j < b < c, or a < b < j < c, or a < b < c < j. After we have made
explicit all the possible cases for all the possible different repeated indices, we write everything along the
Arnold basis of 3-forms (34). We have contributions only along elements with one repeated index, which
correspond to the following linearly independent differential forms:

ωab ∧ ωac ∧ ωad; ωab ∧ ωbc ∧ ωbd; ωab ∧ ωbc ∧ ωad; ωab ∧ ωac ∧ ωbd; ωab ∧ ωac ∧ wcd; ωab ∧ ωbc ∧ ωcd.

This leads therefore to six relations (35), which appear in the same order as these basis elements. We
compute in detail only the first relation, the others being similar. (To simplify the notation in the rest of the
proof we drop the wedge symbol among differential forms). Along ωabωacωad we have contributions from:

(i) i = a, first term and all possible intermediate positions of j:

∑

a<j ; a<b<c

(raj ⊲ Kbac)ωajωabωac =
(

∑

a<j<b<c

+
∑

a<b<j<c

+
∑

a<b<c<j

)

(raj ⊲ Kbac)ωajωabωac

=
∑

a<b<c<d

(rab ⊲ Kcad − rac ⊲ Kbad + rad ⊲ Kbac)ωabωacωad

(ii) j = b, first term and a < i < b:

∑

a<i<b<c

(rib ⊲ Kbac)ωaiωabωac =
∑

a<b<c<d

(rbc ⊲ Kcad)ωabωacωad
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(iii) j = c, first term and a < i:

∑

a<i ; a<b<c

(ric ⊲ Kbac)ωaiωabωac =
(

∑

a<i<b<c

+
∑

a<b<i<c

)

(ric ⊲ Kbac)ωaiωabωac

=
∑

a<b<c<d

(rbd ⊲ Kcad − rcd ⊲ Kbad)ωabωacωad

(iv) j = c, second term and i < a:

∑

i<a<b<c

(ric ⊲ Kabc)ωiaωibωic =
∑

a<b<c<d

(rad ⊲ Kbcd)ωabωacωad

The sum of these contributions along ωabωacωad is the first relation in (35).

In light of the discussion in the beginning of this subsection, let now us impose relations (26). These
imply that for any permutation σ ∈ Sn we must have:

ρσ
(

rab
)

= rσ(a)σ(b).

Let τab ∈ Sn be the transposition that exchanges a and b. By imposing that τ∗ab(B) = ρτab
(B), we obtain

the following conditions, by direct calculations in the Arnold basis (25):

ρτab
(Kabc) = Kbac ρτbc(Kbac) = −Kbac −Kabc ρτbc(Kabc) = Kabc

ρτac
(Kabc) = −Kabc −Kbac ρτac

(Kbac) = Kbac (36)

Indeed, fix a < b < c. For the case of the transposition τbc, note that (we use Arnold’s Lemma (23)):

τ∗bc (Kbac ωab ∧ ωac +Kabc ωab ∧ ωbc) = Kbac ωac ∧ ωab +Kabc ωac ∧ ωcb

= −(Kbac +Kabc)ωab ∧ ωac +Kabc ωab ∧ ωbc.

This is just the projection of τ∗bc(B) along the basis elements ωab ∧ ωac and ωab ∧ ωbc. The projection of
ρτbc(B) along these is:

ρτbc(Kbac)ωab ∧ ωac + ρτbc(Kabc)ωab ∧ ωbc.

Conditions (36) permit us to say what Kijk should be when we do not have i, j < k. If a < b < c we put,
in function of the given Kabc and Kbac:

Kcab = −Kbac −Kabc Kacb = Kabc (37)

Kcba = −Kabc −Kbac Kbca = Kbac (38)

Note that for each distinct i, j, k we have:

Kijk +Kjki +Kkij = 0 and also Rijk = Rikj .

Also for each distinct i, j, k and permutation σ of {i, j, k} we have

Kσ(i)σ(j)σ(k) = ρσ(Kijk).

By looking at the coefficients, in the Arnold basis, of both sides of the equation ρ−1
σ

(

σ∗(B)
)

= B it is

easy to see, given any transposition σ of {1, . . . , n}, that the condition ρ−1
σ

(

σ∗(B)
)

= B implies that we
must have Kσ(i)σ(j)σ(k) = ρσ(Kijk).
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Now note:

B =
∑

a<b<c

Kcba ωbc ∧ ωba +Kbca ωbc ∧ ωca (39)

=
∑

a<b<c

Kacb ωca ∧ ωcb +Kcab ωca ∧ ωab. (40)

By considering these expressions of B together with (31), putting Ωabc = ωab ∧ ωbc we have that:

B =
1

3

∑

a,b,c

KabcΩabc. (41)

From (41) it is clear that if we have ρσ
(

Kabc

)

= Kσ(a)σ(b)σ(c), now for any permutation σ ∈ Sn, then it

follows the desired invariance ρ−1
σ

(

σ∗(B)
)

= B.
We have proven:

Lemma 12 Let V be a chain complex. Consider a representation σ 7→ ρσ of Sn on V by chain-complex
isomorphisms. Choose chain complex maps rab ∈ gl0(V), where a, b ∈ {1, . . . , n}, with rab = rba and
a 6= b, and also chain-homotopies (up to 2-fold homotopy) Kijk ∈ gl1(V), where i, j, k are distinct indices in
{1, . . . , n}. There are to satisfy (27), (32) and (33). The gl(V)-valued 2-connection (A,B), where

A =
∑

a<b

ωabrab and B =
∑

a<b<c

Kbac ωab ∧ ωac +Kabc ωab ∧ ωbc

has zero curvature 3-form, being, further, invariant under the action of the symmetric group Sn if and only
if conditions (35) are satisfied (with a < b < c < d) and, moreover, for each distinct i, j, k we have:

Kijk +Kjki +Kkij = 0, Kijk = Kikj , (42)

and for each permutation σ of {1, . . . , n} we have

rσ(i)σ(j) = ρσ(rij) and also Kσ(i)σ(j)σ(k) = ρσ(Kijk). (43)

Now note that given that the maps ρσ : V → V are chain complex maps, they induce morphisms of crossed
modules gl(V) → gl(V). Therefore, if we suppose that equation (43) holds, then if one of the equations of
(35) is true then so is any equation obtained from it by permuting indices. By using the comments just after
Theorem 10 it follows:

Theorem 13 In the conditions of the previous lemma (A,B) is flat and invariant under the action of Sn if
and only if for any a < b < c < d ∈ {1, . . . , n} we have

rad ⊲ (Kbac +Kbcd) + (rab + rbc + rbd) ⊲ Kcad − (rac + rcd) ⊲ Kbad = 0

rbc ⊲ (Kbad +Kcad)− rad ⊲ (Kdbc +Kabc) = 0,
(44)

also
Kabc +Kbca +Kcab = 0, Kbca = Kbac , (45)

and for each permutation σ ∈ Sn:

rσ(a)σ(b) = ρσ(rab) and Kσ(a)σ(b)σ(c) = ρσ(Kabc). (46)

Moreover in this case equations (44) hold for any permutation of the indices.

The interpretation of these conditions (for 2-flatness and Sn-invariance) in terms of (a categorified version
of) chord diagrams will be the subject of the following sections.
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3.6 Free differential crossed modules

Consider a Lie algebra g, a set S and a map ∂0 : S → g. The aim of this section is to define the free
differential (pre)crossed module over this data. As usual it will be defined by a universal property, and a
model for it will be presented. For details on the construction of free crossed modules of groups see [17, 16].
For the incorporation of additional relations see [24].

The first step is the notion of free g-Lie algebra, where a g-Lie algebra is a Lie algebra with a g-action
by derivations. Recall that, given a vector space V , the free Lie algebra F (V ) over V is a Lie algebra
F (V ), together with a linear inclusion map i : V → F (V ), such that for any Lie algebra L, any linear map
g : V → L extends uniquely to a lie algebra map g′ : F (V ) → L. The Lie algebra F (V ) can be constructed
from the tensor algebra T (V ) of V (with the usual commutator of an associative algebra) by considering
the Lie subalgebra F (V ) of it generated by V . Note that any linear map f : V → V extends uniquely to an
algebra derivation of the tensor algebra T (V ), and therefore to a Lie algebra derivation of F (V ).

Definition 14 Let g be a Lie algebra, S a set. The free g-Lie algebra over S is a g-Lie algebra Fg(S)
together with a set map i : S → Fg(S) with the following universal property: for any g-Lie algebra M and
any map f : S →M there exists a unique g-Lie algebra morphism f ′ : Fg(S) →M such that f ′i = f .

To exhibit a model for Fg(S) we use the universal enveloping algebra U(g), remember that on every
g-module is induced a unique U(g)-module structure. Consider the free Lie algebra Fg(S) on the vector
space U(g) · S := ⊕s∈SU(g). Denote the elements of U(g) · S as (u, a), u ∈ U(g) and a ∈ S, and define
i(a) = (1, a) ∈ U(g) · S ⊂ Fg(S), where a ∈ S. Define the g-action as X ⊲ (u, a) := (Xu, a), and extend it as
a Lie algebra derivation.

Proposition 15 Given any g-Lie algebra M together with a map f : S → M there exists a unique g-Lie
algebra morphism f ′ : Fg(S) →M such that f ′i = f .

Proof. Since (by PBW Theorem) U(g) · S is generated by the g action on i(S), a map with such properties
is clearly unique. For existence, consider the Lie algebra map f ′ : Fg(S) → M , given by the linear map
f ′′ : U(g) · S →M such that f ′′(u, a) = u ⊲ f(a). This completes the proof.

From the previous definition and proposition, it is clear that looking at g itself as a g-Lie algebra (with g

action given by Lie bracket), for every map ∂0 : S → g we have a differential pre-crossed module ∂ : Fg(S) →
g. It satisfies the following universal property, and for this reason it is referred to as the free differential
pre-crossed module over set map ∂0 : S → g.

Proposition 16 Given a Lie algebra g, a set S and a set map ∂0 : S → g, the differential pre-crossed
module ∂ : Fg(S) → g has the following universal property: for any differential pre-crossed module ∂′ : h → g

and any map t : S → h such that ∂0 = ∂′ t there exists a unique g-Lie algebra morphism α : Fg(S) → h,
extending t, and such that ∂ = ∂′ α.

Proof. Uniqueness is trivial. For existence, consider the unique g-Lie algebra map α : Fg(S) → h extending
t. It is trivial that ∂ = ∂′ α since this is true for the set S generating Fg(S) as a g-Lie algebra.

We project to differential crossed modules by adding the (differential) Peiffer relation (15). Given a
differential pre-crossed module ∂ : h → g this amounts to quotient h by the Peiffer ideal Pf ⊂ h generated
by elements of the form pf(ξ, ν) = ∂(ξ) ⊲ ν − [ξ, ν] for all possible ξ, ν ∈ h.

Proposition 17 Given a differential pre-crossed module ∂ : h → g and denoting hPf := h/Pf, the induced
g-action and ∂ map on the quotient make ∂ : hPf → g a differential crossed module.

Proof. We need to prove is that Pf is stable for the g-action, i.e. g ⊲ Pf ⊂ Pf, and that ∂(Pf) = 0. It is
sufficient to check both properties on generators; for any X ∈ g and ξ, µ ∈ h we have

X ⊲ pf(ξ, ν) = X ⊲
(

(∂ξ) ⊲ ν − [ξ, ν]
)

= [X, ∂(ξ)] ⊲ ν + ∂(ξ) ⊲ (X ⊲ ν)− [X ⊲ ξ, ν]− [ξ,X ⊲ ν]

= (∂(X ⊲ ξ)) ⊲ ν − [X ⊲ ξ, ν] + ∂(ξ) ⊲ (X ⊲ ν)− [ξ,X ⊲ ν] = pf(X ⊲ ξ, ν) + pf(ξ,X ⊲ ν)

∂(pf(ξ, ν)) = ∂
(

(∂ξ) ⊲ ν − [ξ, ν]
)

= [∂(ξ), ∂(ν)]− [∂(ξ), ∂(ν)] = 0 .
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This completes the proof.

It is natural to adapt the notion of free differential pre-crossed module to the differential crossed module
case.

Definition 18 (Free differential crossed module) Given a Lie algebra g, a set S and a map ∂0 : S → g

the free differential crossed module over (S, ∂0) is a differential crossed module ∂ : FdX(S, ∂0) → g together
with a set map i : S → FdX(S, ∂0) such that ∂0 = ∂i, satisfying the following universal property: for every
differential crossed module ∂′ : h → g and map t : S → h such that ∂0 = ∂′ t there exists a unique morphism
α : FdX(S, ∂0) → h of g-Lie algebras, extending t, such that ∂ = ∂′α.

A model for FdX(S, ∂0) can be obtained from the free differential pre-crossed module ∂ : Fg(S) → g

by considering the quotient Fg(S)/Pf. By the results of Propositions 16 and 17 it is easy to verify that
∂ : Fg(S)/Pf → g satisfies the universal property of Definition 18.

3.7 The differential crossed module of 2-chord diagrams

We start from the usual Lie algebra of horizontal chord diagrams chn considered in the introduction (see
also below), and remove the 4-term relations (49), obtaining a larger algebra ch

+
n . The Lie algebra f2chn

generated by the 4-term relations (divided by the crossed module relations) is lifted to appear in a differential
crossed module ∂ : f2chn → ch

+
n . We then consider the quotient of f2chn by a set of higher order relations

(implying 2-flatness) obtaining a new differential crossed module

2chn = (∂ : 2chn → ch
+
n ) . (47)

The geometrical interpretation of 2chn, coming from the discussion in subsection 3.5, justifies the name
differential crossed module of totally symmetric horizontal 2-chord diagrams for (47).

Definition 19 (Algebra of horizontal chord diagrams) Fix n ∈ N. The Lie algebra of horizontal chord
diagrams chn = L(rab)/J is the Lie algebra freely generated by the symbols rab, a 6= b, a, b ∈ {1, . . . , n},
modulo the ideal J generated by the following relations:

rab = rba, [rab, rcd] = 0 for {a, b} ∩ {c, d} = ∅ , (48)

[rab + rac, rbc] = Rabc = 0 . (49)

The relation (49) will be called the 4-term relation [11, 34, 36].
The differential form

A =
∑

1≤a<b≤n

ωabrab (50)

defines a flat connection in the trivial vector bundle C(n) × chn, in other words dA + 1
2A ∧ A = 0. This is

well known and follows from the calculation in the beginning of subsection 3.5. Consider the action of the
symmetric group Sn on the Lie algebra chn defined on generators as ρσ(rab) = rσ(a)σ(b) (clearly this is a
Lie algebra morphism.) Consider the product action of Sn on C(n) × chn. Then A is invariant under this
action, and therefore defines a connection (also denoted with A) on the vector bundle

(

C(n)× chn

)

/Sn, over
C(n)/Sn.

Given a positive integer n, we now want to find a differential crossed module 2chn, the differential 2-
crossed module of (totally symmetric) horizontal 2-chord diagrams, together with a flat local 2-connection
pair (A,B) in C(n) with values in 2chn. To deal with 2-connections and 2-flatness, we are interested in
weakening condition (49). We denote J0 the ideal generated by (48) alone, and consider the larger algebra
ch

+
n := L(rab)/J0. In particular, we use the ‘removed’ relations Rabc = 0 to construct a differential crossed

module over ch+n . Note that rab = rba implies Rabc = Racb.
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Definition 20 Fix n ∈ N. Let K be the set

K = {Kabc, a, b, c ∈ {1, . . . , n}, a 6= b, a 6= c, b 6= c}

and consider the map ∂0 : K → ch
+
n sending Kabc into Rabc. The differential crossed module of free horizontal

2-chord diagrams is the free differential crossed module over (K, ∂0). It will be denoted as ∂ : f2chn → ch
+
n .

The geometrical meaning of this construction is that when the connection 1-form (50) takes values in ch
+
n

instead of chn, it is no longer flat. We can however recover flatness at the level of a 2-connection, proceeding
as follows.

Theorem 21 ((Totally symmetric) horizontal 2-chord diagrams) Define J2 ⊂ f2chn to be the ch
+
n -

module generated by the relations:

rad ⊲ (Kbac +Kbcd) + (rab + rbc + rbd) ⊲ Kcad − (rac + rcd) ⊲ Kbad = 0

rbc ⊲ (Kbad +Kcad)− rad ⊲ (Kdbc +Kabc) = 0,
(51)

also
Kabc +Kbca +Kcab = 0 Kbca = Kbac , (52)

and of course

rab ⊲ Ka′b′c′ = 0 if {a, b} ∩ {a′, b′, c′} = ∅. (53)

Then ∂(J2) = 0, so that J2 is an ideal in f2chn, ∂ is well defined on the quotient 2chn = f2chn/J2 and
∂ : 2chn → ch

+
n is a differential crossed module, referred to as the differential crossed module of (totally

symmetric) horizontal 2-chord diagrams 2chn.

Note that ρσ(Kabc) = Kσ(a)σ(b)σ(c) and ρσ(rab) = Kσ(a)σ(b) defines an action of Sn on 2chn by differential
crossed module maps. From relation (53) and the definition of a differential crossed module it also follows
that:

[Kabc,Ka′b′c′ ] = 0 if {a, b, c} ∩ {a′, b′, c′} = ∅. (54)

Proof. It is enough to compute ∂ on the generators of J2. We start with the first relation:

[rad,Rbac +Rbcd] + [rab + rbc + rbd, Rcad]− [rac + rcd, Rbad]

= [rad, [rab + rbc, rac] + [rbc + rbd, rcd]] + [rab + rbc + rbd, [rac + rcd, rad]]− [rac + rcd, [rbd + rab, rad]]

= [rad, [rab, rac]] + [rad, [rbc, rac]] + [rad, [rbc, rcd]] + [rad, [rbd, rcd]] + [rab, [rac, rad]] + [rab, [rcd, rad]]

+ [rbc, [rac, rad]] + [rbc, [rcd, rad]] + [rbd, [rac, rad]] + [rbd, [rcd, rad]]− [rac, [rbd, rad]]− [rac, [rab, rad]]

− [rcd, [rbd, rad]]− [rcd, [rab, rad]] .

Now we look separately at the terms which contain the same three pairs of indices:

- indices (ab)(ac)(ad): zero by Jacobi

- indices (ac)(ad)(bc): by Jacobi the sum is [[rad, rbc], rac] = 0

- indices (ad)(bc)(cd): by Jacobi the sum is [[rad, rbc], rcd] = 0

- indices (ad)(bd)(cd): zero by Jacobi

- indices (ab)(ad)(cd): by Jacobi the sum is [[rab, rcd], rad] = 0

- indices (ac)(ad)(bd): by Jacobi the sum is [[rbd, rac], rad] = 0
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For the second relation the computation is similar: once the R terms are made explicit, we simplify by using
Jacobi identity. The remaining relations follow immediately.

By the definition of a differential crossed module, this implies that J2 is in the center of f2ch, hence an
ideal:

[j, x] = ∂(j) ⊲ x = 0 ∀j ∈ J2, x ∈ f2ch .

The rest of the statement now easily follows.

By construction and the calculations in subsection 3.5, we have the following theorem, which is the main
result of this paper:

Theorem 22 The pair of forms with values in 2chn = (∂ : 2chn → ch
+
n )

A =
∑

a<b

rab ωab, B =
∑

a<b<c

Kbac ωab ∧ ωac +Kabc ωab ∧ ωbc (55)

defines a flat 2-connection pair in C(n), i.e. ∂(B) = FA and dB+A∧⊲B = 0. Moreover, (A,B) is invariant
under the natural action of Sn.

The 2-connection (A,B) defined in the previous theorem is our proposal for a categorified version of the
Knizhnik-Zamolodchikov connection.

Corollary 23 Let G = (∂ : H → G, ⊲) be a Lie crossed module, with associated differential crossed module
G = (∂ : h → g, ⊲). Suppose that G is provided with an action of the symmetric group Sn by differential
crossed module maps. For any morphism of crossed modules ρ : 2chn → G, preserving the action of the
symmetric group, the G-valued 2-connection (A,B) over the configuration space of n points C(n) defined as

A =
∑

a<b

ρ(rab)ωab, B =
∑

a<b<c

ρ(Kbac)ωab ∧ ωac + ρ(Kabc)ωab ∧ ωbc

where ωab =
dza−dzb
za−zb

, is flat. Moreover, its two-dimensional holonomy descends to a two-dimensional holon-

omy over C(n)/Sn, taking values in G.

4 Categorical representations of differential crossed modules and
infinitesimal 2-R-matrices

In this section, we present a Lie algebra framework in which flat 2-connections constructed in the realm of
Corollary 23 naturally fit. We intend to define the concept of an infinitesimal 2-R-matrix (categorifying the
notion of an infinitesimal R-matrix r ∈ g′ ⊗ g′, for a Lie algebra g′, see the Introduction), in a differential
crossed module G′ = (∂ : h′ → g′, ⊲), to be a pair of tensors P and r, living in a quotient of the tensor algebra
of the underlying chain complex of G′, which satisfy analogous relations to the ones of Theorem 21.

Given a chain complex V of vector spaces, the Lie crossed module G appearing in Corollary 23 will be
of the form GL(V⊗n) =

(

β : GL1(V⊗n) → GL0(V⊗n), ⊲
)

, see Section 2.2.2, where V⊗n denotes the tensor
product of V with itself n times.

Passing from elements in the differential crossed module G′ to elements in the differential crossed module
gl(V⊗n) makes heavy use of the notion of a representation of a differential crossed module in a chain complex
of vector spaces, and the fact that these representations can be tensored.

4.1 Chain complexes and categorical representations of differential crossed mod-
ules

Recall the construction of the differential crossed module gl(V) =
(

β : gl1(V) → gl0(V), ⊲
)

defined from a
chain complex V of vector spaces, subsection 2.2.
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Definition 24 Let G be a differential crossed module. Let also V be a complex of vector spaces. A categorical
representation ρ of G on V is a crossed module morphism ρ = (ρ1, ρ0) : G → gl(V).

For the case of length two chain complexes, this appeared for example in [43, 29]. The following natural
example appears in [48].

Example 25 (Adjoint representation) Let (∂ : h → g, ⊲) be a differential crossed module. The adjoint
representation of G on its underlying chain complex is given by the pair ρ = (ρ1, ρ2), where:

• If X ∈ g the chain map ρX0 : G → G is such that

ρX0 (Y ) = [X,Y ]

and
ρX0 (ζ) = X ⊲ ζ

where Y ∈ g and ζ ∈ h.

• If ζ ∈ h the homotopy ρζ1 : g → h is such that

ρζ1(X) = −X ⊲ ζ.

It is an instructive exercise to prove this; clearly ρ
[X,Y ]
0 = [ρX0 , ρ

Y
0 ], and by the crossed module rules

ρ
∂(ξ)
0 = β

(

ρξ1
)

.

Also

[ρξ1, ρ
ζ
1](X) = ∂(X ⊲ ζ) ⊲ ξ − ∂(X ⊲ ξ) ⊲ ζ = [X, ∂(ζ)] ⊲ ξ − [X, ∂(ξ)] ⊲ ζ

= X ⊲
(

∂(ζ) ⊲ ξ
)

− ∂(ζ) ⊲
(

X ⊲ ξ
)

−X ⊲
(

∂(ξ) ⊲ ζ
)

+ ∂(ξ) ⊲
(

X ⊲ ζ
)

= X ⊲ [ζ, ξ]− [ζ,X ⊲ ξ]−X ⊲ [ξ, ζ] + [ξ,X ⊲ ζ] = X ⊲ [ζ, ξ] = ρ
[ξ,ζ]
1 (X)

where the penultimate equation follows since g acts on h by derivations, which makes the last three terms
cancel out.

4.2 Tensoring categorical representations

4.2.1 Tensor product of chain complexes

For details on the tensor product of chain complexes see [21]. Recall again the construction of the differential
crossed module gl(V) =

(

β : gl1(V) → gl0(V), ⊲
)

defined from a chain complex V of vector spaces, subsection
2.2. Given chain complexes V = (Vi, ∂) and W = (Wi, ∂), the degree n part of the tensor product U = V⊗W

is:
Un =

⊕

i+j=n

Vi ⊗Wj .

Given xi ∈ Vi and yj ∈Wj we put

∂(xi ⊗ yj) = ∂(xi)⊗ yj + (−1)ixi ⊗ ∂(yj).

The complexes V⊗W and W⊗V are isomorphic, the isomorphism having the form xi⊗ yj 7→ (−1)ijyj ⊗ xi.
Given f ∈ Homm(V) and g ∈ Homn(W) then f ⊗ g ∈ Homm+n(V⊗W), which has degree m + n, is

defined as (for xi ∈ Vi and yj ∈Wj)

(f ⊗ g)(xi ⊗ yj) = (−1)nif(xi)⊗ g(yj).

Therefore, if f ′ and g′ have degrees m′ and n′ we have:

(f ⊗ g)(f ′ ⊗ g′) = (−1)m
′n(ff ′⊗ gg′).
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Lemma 26 If f : V → V and g : W → W are chain maps (of degree 0) and s ∈ Hom1(V), t ∈ Hom1(W) are
homotopies we have:

β(f ⊗ t) = f ⊗β(t)

and
β(s⊗ g) = β(s)⊗ g .

This result fails to hold if f or g are solely degree-0 maps (without being, further, chain maps).

Lemma 27 If s ∈ Hom1(V) and t ∈ Hom1(W) are homotopies:

β′(s⊗ t) = s⊗β(t) − β(s)⊗ t.

(Note ββ′(s⊗ t) = 0, as it should.)

Corollary 28 If s ∈ Hom1(V) and t ∈ Hom1(W) are homotopies, then as elements of

gl1(V⊗W)
.
= Hom1(V⊗W)/β′(Hom2(V⊗W))

the homotopies β(s)⊗ t and s⊗β(t) coincide (in other words they are the same up to 2-fold homotopy).

Lemma 29 Let k ∈ Hom2(V) and h ∈ Hom2(W). Let f : V → V and g : W → W be chain maps. We have:

β′(k⊗ g) = β′(k)⊗ g ,

β′(f ⊗h) = f ⊗ β′(h).

We therefore have, for example, if s, t ∈ Hom1(V):

β′(ts⊗ 1) = β′(ts)⊗ 1.

We also have (where commutators are taken in the differential crossed module gl(V⊗W), constructed in
subsection 2.2).

Lemma 30 If s and t are degree-1 maps of V or W (according to the context) we have:

[(s⊗ 1), (t⊗ 1)] = ([s, t])⊗ 1,

[(1⊗ s), (1⊗ t)] = 1⊗ ([s, t]),

[t⊗ 1, 1⊗ s] = t⊗β(s)− β(t)⊗ s = β′(t⊗ s) .

And of course if f and g are chain maps [f ⊗ 1, 1⊗ g] = 0.

4.2.2 Tensor products of categorical representations.

Given representations ρ and σ of the differential crossed module (∂ : h → g, ⊲) in the chain complexes V and
W, the tensor product representation ρ⊗σ is the representation in V⊗W such that:

(ρ⊗σ)X0 = ρX0 ⊗ 1 + 1⊗ ρX0 ,

and also (up to 2-homotopy)

(ρ⊗σ)ξ1 = ρξ1 ⊗ 1 + 1⊗σξ1

Let us see that we have indeed defined a categorical representations. Given Lemma 26, the only compli-
cated identity to check is:

[ρξ1 ⊗ 1 + 1⊗σξ1 , ρ
ζ
1 ⊗ 1 + 1⊗σζ1 ] = ρ

[ξ,ζ]
1 ⊗ 1 + 1⊗σ

[ξ,ζ]
1 ,
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up to 2-homotopy. This follows directly from Lemma 30.
We can iterate the construction of the tensor product of chain complexes, which yields the following

construction: Let Vk = (V ki , ∂), where k = 1, 2, . . . , n be chain complexes. We define a chain complex
V1 ⊗V2 ⊗ . . . ⊗Vn = (Ki, ∂), where Ki is the tensor product

Ki =
⊕

i1+i2+...in=i

V 1
i1
⊗ V 2

i2
⊗ . . .⊗ V nin ,

with

∂
(

v1i1 ⊗ v2i2 ⊗ . . .⊗ vnin
)

= ∂
(

v1i1
)

⊗ v2i2 ⊗ . . .⊗ vnin + (−1)i1v1i1 ⊗ ∂
(

v2i2
)

⊗ . . .⊗ vnin+

+ . . .+ (−1)(i1+i2+···+in−1)v1i1 ⊗ v2i2 ⊗ . . .⊗ ∂
(

vnin
)

(56)

Given any parenthesization
(

V1 ⊗V2 ⊗ . . . ⊗Vn
)P

of V1 ⊗V2 ⊗ . . . ⊗Vn, making it the iteration of (n− 1)
two-fold tensor products of chain complexes, the obvious map

IP :
(

V1 ⊗V2 ⊗ . . . ⊗Vn
)P

→ V1 ⊗V2 ⊗ . . . ⊗Vn

is an isomorphism of chain-complexes (on the nose). It is an instructive exercise to prove this for n = 3,
where the only possible parenthesizations of V1 ⊗V2 ⊗V3 are (V1 ⊗V2)⊗V3 and V1 ⊗ (V2 ⊗V3).

If fk : Vk → Vk are maps of degree mk (k = 1, . . . , n), the tensor product f1 ⊗ f2 ⊗ . . . ⊗ fn is

(f1 ⊗ f2 ⊗ . . . ⊗ fn)(x1i1 ⊗ x2i2 ⊗ · · · ⊗ xnin) = χ({mk}, {ik})f
1(x1i1 )⊗ f2(x2i2 )⊗ · · · ⊗ fn(xnin) (57)

where
χ({mk}, {ik}) = i1(m2 + · · ·+mn) + i2(m3 + · · ·+mn) + · · ·+ in−1mn .

Given any parenthesization
(

V1 ⊗V2 ⊗ . . . ⊗Vn
)P

of V1 ⊗V2 ⊗ . . . ⊗Vn, we can perform the iterated
tensor product (f1 ⊗ . . . ⊗ fn)P . If follows easily that

IP ◦ (f1 ⊗ . . . ⊗ fn)P = (f1 ⊗ . . . ⊗ fn) ◦ IP .

Easy calculations show that given categorical representations ρi in Vi, i = (1, . . . , n), of G = (∂ : h → g, ⊲)
there is a tensor product categorical representation ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn in V1 ⊗V2 ⊗ . . . ⊗Vn:

(ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn)
X
0 = (ρ1)

X
0 ⊗ 1⊗ . . . ⊗ 1 + 1⊗ (ρX2 )0 ⊗ 1⊗ . . . ⊗ 1 + · · ·+ 1⊗ . . . ⊗ 1⊗ (ρn)

X
0

and also (up to 2-homotopy)

(ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn)
ξ
1 = (ρ1)

ξ
1 ⊗ 1⊗ . . . ⊗ 1 + 1⊗ (ρ2)

ξ
1 ⊗ 1⊗ . . . ⊗ 1 + · · ·+ 1⊗ . . . ⊗ 1⊗ (ρn)

ξ
1 .

Given any parenthesization of V1 ⊗V2 ⊗ . . . ⊗Vn the map

IP : (V1 ⊗V2 ⊗ . . . ⊗Vn)P → V 1 ⊗V2 ⊗ . . . ⊗Vn

is an isomorphism of categorical representations.

4.3 Infinitesimal 2-R-matrices

Note that given a chain complex V and a positive integer n there exists a representation of Sn by chain maps
V⊗n → V⊗n. For a transposition τa(a+1) the associated map has the form:

x1 ⊗ . . .⊗ xa ⊗ xa+1 ⊗ . . .⊗ xn 7→ (−1)[xa][xa+1]x1 ⊗ . . .⊗ xa+1 ⊗ xa ⊗ . . .⊗ xn,
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where [xa] and [xa+1] denote the degrees of xa and xa+1. In this section we will always consider V⊗n to be
provided with this action; recall the construction in subsection 3.5.

Let G = (∂ : h → g, ⊲) be a differential crossed module. Let also V be a long chain complex where G has

a categorical representation ρ. Let us address gl(V⊗n)-valued 2-connection (A,B), of the type mentioned in
Corollary 23. This can be done universally in the differential crossed module G, as we explain now, thanks
to the results presented in subsections 4.1 and 4.2 on (tensor products of) categorical representations.

The following g-modules will be useful for such universal description. For a generic k ≤ n consider

U(k) = (h⊗ g⊗ . . .⊗ g)⊕ (g⊗ h⊗ g . . .⊗ g)⊕ . . .⊕ (g⊗ . . .⊗ g⊗ h) (58)

where each tensor product has k factors. The vector space U(k) corresponds to the penultimate vector space
in the k-fold tensor product ⊗ k

i=1 (∂ : h → g). We have natural maps

∂̂ : U(k) → g⊗k (59)

defined, according to the decomposition (58), as

∂̂ = ∂ ⊗ id⊗ . . .⊗ id + cyclic

that is, on each summand we act with ∂ on the h copy and we leave unchanged the other factors.
Next, we use the categorical representation ρ = (ρ1, ρ0) : G → gl(V) to associate to elements of U(k)

(resp. g⊗k) homotopies in gl1(V⊗n) (resp. chain maps in gl0(V⊗n)), whenever k ≤ n. For simplicity, we
denote all these maps - we call them insertion maps - with the same symbol φ. For every

k
⊕

i=1

ui1 ⊗ . . .⊗ uik ∈ U(k)

and {a1, . . . , ak} ⊂ {1, . . . , n} we define

φa1...ak : U(k) → gl1(V⊗n)

as

φa1...ak(

k
⊕

i=1

ui1 ⊗ . . .⊗ uik) =

k
∑

i=1

id⊗ . . . ⊗ ρ(ui1)⊗ . . . ⊗ ρ(uik)⊗ . . . ⊗ id (60)

where in every summand we inserted the ρ image of uir in the athr factor of the tensor product as the only
non-trivial entries. The definition of

φa1...ak : g⊗k → gl0(V⊗n)

is similar.

Lemma 31 The insertion maps

φa1...ak : U(k) → gl1(V⊗n) , φa1...ak : g⊗k → gl0(V⊗n)

are g-module maps.

Proof. This easily follows from the definition of φ and the fact that ρ intertwines the g action.

Lemma 32 We have the following commutative diagram of g-modules:

U(k)

∂̂

��

φa1...ak // gl1(V⊗n)

β

��

g⊗k
φa1...ak // gl0(V⊗n)

(61)
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Proof. Also this property is easily verified from the definition of φ and the intertwining property βρ1 = ρ0∂
of ρ = (ρ1, ρ0).

Insertion maps explicitly depend on the categorical representation ρ, but the ones mapping into gl1(V⊗ n)
have a fixed contribution to their kernel due to the equivalence relation between homotopies, see Corollary
28. For this reason we prefer to remove from the beginning elements in U(k) which are systematically mapped
into homotopies equivalent to zero. This is achieved introducing the following subspaces: for a fixed pair of
distinct indices (r, s) ⊂ (1, . . . , k) and generic elements Xi1 . . . Xik−2

∈ g and w,w′ ∈ h we define

T
(k)
(r,s) = span

{

Xi1 ⊗ . . .⊗ ∂w ⊗ . . .⊗ w′ ⊗ . . .⊗Xik−2
−Xi1 ⊗ . . .⊗ w ⊗ . . .⊗ ∂w′ ⊗ . . .⊗Xik−2

}

⊂ U(k)

where w and w′ are respectively in the rth and sth factor of the tensor product. We then sum over all
possible pairs of distinct indices (r, s) ∈ (1, . . . , k) to obtain the sub-vector space

T(k) :=
∑

(r,s)

T
(k)
(r,s) ⊂ U(k) .

It is clear that the φ image of T(k) in gl1(V⊗ n) is 2-homotopic to the zero morphism by Corollary 28.

Lemma 33 The quotients Ū(k) := U(k)/T(k) are g-modules.

Proof. The g-module structure induced from U(k) is well defined since T(k) is stable for g-action. We prove

it explicitly only for the first generator of T
(3)
(1,2): for every X,Y ∈ g and w,w′ ∈ h we have

Y ⊲ (∂w ⊗ w′ ⊗X − w ⊗ ∂w′ ⊗X) = ∂(Y ⊲ w)⊗ w′ ⊗X − Y ⊲ w ⊗ ∂w′ ⊗X + ∂w ⊗ Y ⊲ w′ ⊗X

− w ⊗ ∂(Y ⊲ w′) + ∂w ⊗ w′ ⊗ [Y,X ]− w ⊗ ∂w′ ⊗ [Y,X ] ,

where we used that ∂ is a g-module map.

We denote with φ̄ the insertion maps induced on the quotients Ū(k). They are g-module maps thanks
to Lemma 33, and they satisfy the intertwining property of diagram (61) since ∂̂(T(k)) = 0. Note also that

∂̂ : U(k) → g⊗k descends to Ū(k).

Definition 34 (Infinitesimal 2-R-matrix) A (non-symmetric) infinitesimal 2-R-matrix is given by a
symmetric tensor r ∈ g⊗ g and P,Q ∈ Ū(3) such that:

∂̂(P ) = [r12 + r13, r23] and ∂̂(Q) = [r12 + r13, r23] (62)

(in g⊗ g⊗ g) and also:

r14 ⊲ (Q213 + P234) + (r12 + r23 + r24) ⊲ Q314 − (r13 + r34) ⊲ Q214 = 0

r24 ⊲ (P123 + P134) + (r12 + r14 + r13) ⊲ Q324 − (r23 + r34) ⊲ P124 = 0

r23 ⊲ (Q214 +Q314) + r14 ⊲ (Q324 + P234 − P123) = 0

r13 ⊲ (P124 +Q324) + r24 ⊲ (Q314 + P134 −Q213) = 0

r34 ⊲ (Q213 +Q214) + (r12 + r23 + r24) ⊲ P134 − (r13 + r14) ⊲ P234 = 0

r34 ⊲ (P123 + P124) + (r12 + r13 + r14) ⊲ P234 − (r24 + r23) ⊲ P134 = 0

(63)

These last relations are to hold in Ū(4).

Note that if r =
∑

i si⊗ti, then r12, r13 and r23 are elements of U(g)⊗U(g)⊗U(g) defined as in (4). Therefore
for example [r12, r23] =

∑

i,j si ⊗ [ti, sj ]⊗ tj ∈ g⊗ g⊗ g. On the other hand, if P =
∑

j Aj ⊗Bj ⊗Cj , then:

r14 ⊲ P234 =
∑

i,j

si ⊗Aj ⊗Bj ⊗ ti ⊲ Cj ∈ Ū(4),

where ⊲ can either be, depending on j, the adjoint action of g on g or the given action of g on h.
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Definition 35 (Totally symmetric infinitesimal 2-R-matrix) A totally symmetric infinitesimal 2-R-
matrix is an infinitesimal 2-R-matrix where

P = Q P123 + P231 + P312 = 0, P123 = P132 . (64)

Therefore, by the calculations in subsection 3.5, a totally symmetric infinitesimal 2-R-matrix is given by a
symmetric tensor r ∈ g⊗g, an element P ∈ Ū(3), with ∂̂(P ) = [r12+r13, r23], such that the two last equations
of (64) are satisfied, and moreover (these relations are to hold in Ū(4)):

r14 ⊲ (P213 + P234) + (r12 + r23 + r24) ⊲ P314 − (r13 + r34) ⊲ P214 = 0

r23 ⊲ (P214 + P314)− r14 ⊲ (P423 + P123) = 0 .
(65)

In other words, adding conditions (64) one can show that (63) reduce to (65).

Example 36 Choose a Lie algebra g and a tensor r ∈ g ⊗ g. Consider the crossed module given by the

identity map g
id
→ g and the adjoint action of g on g. Then Ū(n) = g⊗n. Therefore by the discussion above

(r, [r12 + r13, r23]) is a totally symmetric infinitesimal 2-R-matrix.

From the discussion in subsections 3.5 and 3.7 we have the following result.

Theorem 37 Let (r, P,Q) be an infinitesimal 2-R-matrix on the differential crossed module G = (∂ : h →

g, ⊲). Consider a categorical representation of G on a long complex of vector spaces V. Consider the gl(V⊗n)-
valued 2-connection (A,B) on the configuration space C(n) defined as

A =
∑

a<b

ωab φ̄ab(r) . (66)

B =
∑

a<b<c

ωab ∧ ωac φ̄bac(Q) + ωab ∧ ωbc φ̄abc(P ) (67)

Then (A,B) is a flat 2-connection. Moreover if (r, P,Q) is totally symmetric the 2-connection is invariant
under the action of the symmetric group Sn and its two-dimensional holonomy descends to a two-dimensional
holonomy in C(n)/Sn with values in the associated Lie crossed module GL(V⊗n).
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