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LINK INVARIANTS FROM FINITE CATEGORICAL GROUPS

JOÃO FARIA MARTINS and ROGER PICKEN

(communicated by Bill Murray)

Abstract
We define an invariant of tangles and framed tangles given

a finite crossed module and a pair of functions, called a Rei-
demeister pair, satisfying natural properties. We give several
examples of Reidemeister pairs derived from racks, quandles,
rack and quandle cocycles, and central extensions of groups.
We prove that our construction includes all rack and quandle
cohomology (framed) link invariants, as well as the Eisermann
invariant of knots. We construct a class of Reidemeister pairs
which constitute a lifting of the Eisermann invariant, and show
through an example that this class is strictly stronger than the
Eisermann invariant itself.

1. Introduction

In knot theory, for a knot K, the fundamental group π1(CK) of the knot comple-
ment CK , also known as the knot group, is an important invariant, which however
depends only on the homotopy type of the complement ofK (for which it is a complete
invariant), and therefore, for example, it fails to distinguish between the square knot
and the granny knot, which have homotopic, but non-diffeomorphic complements.
Nevertheless, a powerful knot invariant IG can be defined from any finite group G, by
counting the number of morphisms from the knot group into G. In a recent advance,
Eisermann [13] constructed, from any finite group G and any x ∈ G, an invariant
E(K) that is closely associated to a complete invariant [29], known as the peripheral
system, consisting of the knot group π1(CK) and the homotopy classes of a merid-
ian m and a longitude l. Eisermann gives examples showing that his invariant is
capable of distinguishing mutant knots as well as detecting chiral (non-obversible),
non-inversible and non-reversible knots (using the terminology for knot symmetries
employed in [13]). Explicitly the Eisermann invariant for a knot K is:

E(K) =
∑

{f : π1(CK)→G|f(m)=x}

f(l),

and takes values in the group algebra Z[G] of G.
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Eisermann’s invariant has in common with many other invariants that it can be
calculated by summing over all the different ways of colouring knot diagrams with
algebraic data. Another well-known example of such an invariant is the invariant
IG defined above, which can be calculated by counting the number of colourings of
the arcs of a diagram with elements of the group G, subject to certain (Wirtinger)
[8] relations at each crossing. Another familiar construction is to use elements of
a finite quandle to colour the arcs of a diagram, satisfying suitable rules at each
crossing [17, 10]. Note that the fundamental quandle of the knot complement is a
powerful invariant that distinguishes all knots, up to simultaneous orientation reversal
of S3 and of the knot (knot inversion); see [19]. Other invariants refine the notion
of colouring diagrams by assigning additional algebraic data to the crossings - a
significant example is quandle cohomology [10]. Eisermann’s invariant can be viewed
in several different ways, but for our purpose the most useful way is to see it as
a quandle colouring invariant using a special quandle (the “Eisermann quandle”)
associated topologically with the longitude and so-called partial longitudes coming
from the diagram.

A diagram D of a knot or link K naturally gives rise to a particular presentation
of the knot group, known as the Wirtinger presentation. Our first observation is
that there is also a natural crossed module of groups associated to a knot diagram
[4, 2, 15], namely Π2(XD, YD) =

(
∂ : π2(XD, YD) → π1(YD)

)
- see the next section

for the definition of a crossed module of groups and the description of Π2(XD, YD).
This crossed module is a totally free crossed module [4], where π1(YD) is the free
group on the arcs of D and Π2(XD, YD) is the free crossed module on the crossings of
D. The crossed module Π2(XD, YD) is not itself a knot invariant, although it can be
related to the knot group since π1(CK) = coker(∂). However, up to crossed module
homotopy [4], Π2(XD, YD) is a knot invariant, depending only on the homotopy
type of the complement CK . Therefore, given a finite crossed module G = (∂ : E →
G), one can define a knot invariant IG by counting all possible colourings of the
arcs and crossings of a diagram D with elements of G and E respectively, satisfying
some natural compatibility relations (so that colourings correspond to crossed module
morphisms Π2(XD, YD) → G), and then normalising [14, 15].

This invariant IG(K) depends only on the homotopy type of the complement CK
[15, 16], thus it is a function of the knot group alone. Our main insight is that
imposing a suitable restriction on the type of such colourings, and then counting the
possibilities, gives a finer invariant. The restriction is to colour the arcs and crossings
in a manner that is a) compatible with the crossed module structure, and b) such that
the assignment at each crossing is given in terms of the assignments to two incoming
arcs by two functions (one for each type of crossing), termed a Reidemeister pair.
Since we are choosing particular free generators of Π2(XD, YD) this takes away the
homotopy invariance of the invariant.

The two functions making up the Reidemeister pair must satisfy some conditions,
and depending on the conditions imposed, our main theorem (Theorem 3.19) states
that one obtains in this way an invariant either of knots or of framed knots (knotted
ribbons). In fact our statement extends to tangles and framed tangles.

This invariant turns out to have rich properties, which are described in the remain-
der of the paper (Section 4). It includes as special cases the invariants coming from
rack and quandle colourings, from rack and quandle cohomology and the Eisermann
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Figure 1: The action of an element g ∈ π1(Y ) on an e ∈ π2(X,Y ).

invariant (subsections 4.1. and 4.2). In section 4.3 we introduce the notion of an Eis-
ermann lifting, namely a Reidemeister pair derived from a central extension of groups
which reproduces the arc colourings of the Eisermann quandle, combined with addi-
tional information on the crossings. We give a simple example of an Eisermann lifting
that is strictly stronger than the Eisermann invariant it comes from. Finally, in sub-
section 4.4, we give a homotopy interpretation of the Eisermann liftings, by using
the notion of non-abelian tensor product and non-abelian wedge product of groups,
defined by Brown and Loday [6, 7].

2. Crossed modules of groups and categorical groups

2.1. Definition of crossed modules and first examples
Definition 2.1 (Crossed module of groups). A crossed module of groups, G = (∂ : E → G, ⊲),
is given by a group morphism ∂ : E → G together with a left action ⊲ of G on E by
automorphisms, such that the following conditions (called Peiffer equations) hold:

1. ∂(g ⊲ e) = g∂(e)g−1; ∀g ∈ G, ∀e ∈ E, 2. ∂(e) ⊲ f = efe−1; ∀e, f ∈ E.

The crossed module of groups is said to be finite, if both groups G and E are finite.
Morphisms of crossed modules are defined in the obvious way.

Example 2.2. Any pair of finite groups G and E, with E abelian, gives a finite crossed
module of groups with trivial ∂, ⊲ (i.e. ∂(E) = 1, g ⊲ e = e, ∀g ∈ G, ∀e ∈ E). More gen-
erally we can choose any action of G on E by automorphisms, with trivial boundary
map ∂ : E → G.

Example 2.3. Let G be any finite group. Let Ad denote the adjoint action of G on G.
Then (id : G→ G,Ad) is a finite crossed module of groups.

Example 2.4. There is a well-known construction of a crossed module of groups in
algebraic topology, namely the fundamental crossed module associated to a pointed
pair (X,Y ) of path-connected topological spaces (X,Y ), thus Y ⊂ X, namely the
crossed module: Π2(X,Y ) = (∂ : π2(X,Y ) → π1(Y ), ⊲), with the obvious boundary
map ∂ : π2(X,Y ) → π1(Y ), and the usual action of π1(Y ) on π2(X,Y ); see figure 1,
and [4] for a complete definition. This is an old result of Whitehead [30, 31].

Example 2.5. We may construct a topological pair (XD, YD) from a link diagram D
of a link K in S3, and thus obtain a crossed module Π2(XD, YD), associated to the
diagram. Regard the diagram as the orthogonal projection onto the z = 0 plane in
S3 = R3 ∪ {∞} of a linkKD, isotopic toK, lying entirely in the plane z = 1, except in
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Figure 2: A generator of π1(YD) and a generator of π2(XD, YD).

the vicinity of each crossing point, where the undercrossing part of the link descends
to height z = −1. Then we take XD (an excised link complement) to be the link
complement CK of KD minus an open ball, and YD to be the z > 0 subset of XD, i.e.

XD :=
(
S3 \ n(KD))∩{(x, y, z)|z > −2}, YD := XD ∩ {(x, y, z)|z > 0},

where n(KD) is an open regular neighbourhood of KD in S3. Note that the space
XD depends only on K itself, so we can write it as XK . The same is not true for YD.

Each arc of the diagram D corresponds to a generator of π1(YD) and there are
no relations between generators. Each crossing of the diagram D corresponds to a
generator of π2(XD, YD), namely ǫ : [0, 1]2 → XD, where the image under ǫ of the
interior of [0, 1]2 lies entirely in the region z < 0 and the image of the boundary of
[0, 1]2, a loop contained in YD, encircles the crossing as in Figure 2. This boundary
loop is the product of four arc loops in π1(YD). Again there are no (crossed module)
relations between the generators of π2(XD, YD) associated to the crossings. (This can
be justified by Whitehead’s theorem [30, 31, 4]: for path-connected spaces X, Y , if
X is obtained from Y by attaching 2-cells, then Π2(X,Y ) is the free crossed module
on the attaching maps of the 2-cells. Note that XD is homotopy equivalent to the
CW-complex obtained from YD by attaching a 2-cell for each crossing).

We observe that the quotient π1(YD)/im ∂ is isomorphic to the fundamental group
of the link complement CK = π1(S

3 \ n(K)) for any diagram D, since quotienting
π1(YD) by im ∂ corresponds to imposing the Wirtinger relations [8], which produces
the Wirtinger presentation of π1(CK), coming from the particular choice of diagram.
Thus Π2(XD, YD), whilst not being itself a link invariant (unless [15, 16] consid-
ered up to crossed module homotopy), contains an important link invariant, namely
π1(CK), by taking the above quotient. The guiding principle in the construction to
follow is to extract additional Reidemeister invariant information from the crossed
module Π2(XD, YD).

2.2. A monoidal category C(G) defined from a categorical group G
It is well-known that a crossed module of groups G gives rise to a categorical group,

denoted C(G), a monoidal groupoid where all objects and arrows are invertible, with
respect to the tensor product operation; see [2, 4, 1, 14, 21]. We recall the essential
details. Given a crossed module of groups G = (∂ : E → G, ⊲), the monoidal category
C(G) has G as its set of objects, and the morphisms from U ∈ G to V ∈ G are given
by all pairs (U, e) with e ∈ E such that ∂(e) = V U−1. It is convenient to think of
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these morphisms as downward pointing arrows and / or to represent them as squares
- see (1).

U

(U,e)

��
V

or

U

e

V

, with ∂(e)U = V.

(1)

The composition of morphisms U
e
→ V and V

f
→W is defined to be U

fe
−→W , and

the monoidal structure ⊗ is expressed as U ⊗ V = UV on objects, and, on morphisms,
as: 



U

(U,e)

y

V


⊗




W

(W,f)

y

X


 =

UW
y
(
UW,(V ⊲f) e

)

WX

.

These algebraic operations are shown using squares in (2) and (3).

U

e

V

f

W

=

U

fe

W

(2)

U

e

V

⊗

U ′

e′

V ′

=

UU ′

(V ⊲e′) e

V V ′

(3)

The (strict) associativity of the composition and of the tensor product are trivial
to check. The functoriality of the tensor product (also known as the interchange
law) follows from the 2nd Peiffer equation. This calculation is done for example in
[2, 4, 26].

Let κ be any commutative ring. The monoidal category C(G) has a κ-linear version
Cκ(G), whose objects are the same as the objects of C(G), but such that the set
of morphisms U → V in Cκ(G) is given by the set of all κ linear combinations of
morphisms U → V in C(G). The composition and tensor product of morphisms in
Cκ(G) are the obvious linear extensions of the ones in C(G). It is easy to see that
Cκ(G) is a monoidal category. The categorical group formalism is very well matched
to the category of tangles to be used in the next section.

3. Reidemeister G colourings of oriented tangle diagrams

3.1. Categories of tangles
Tangles are a simultaneous generalization of braids and links. We follow [24, 20]

very closely, to which we refer for more details. Recall that an embedding of a manifold
T in a manifold M is said to be neat if ∂(T ) = T ∩ ∂(M).
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Figure 3: A tangle with source + +−− with with target +−.

Figure 4: Elementary generators of tangle diagrams.

Definition 3.1. An oriented tangle [20, 28, 24] is a 1-dimensional smooth oriented
manifold neatly embedded in R× R× [−1, 1], such that ∂(T ) ⊂ N× {0} × {±1}. A
framed oriented tangle is a tangle together with a choice of a framing in each of its
components [20, 24]. Alternatively we can see a framed tangle as an embedding of a
ribbon into R× R× [−1, 1], [27, 28, 11].

Definition 3.2. Two oriented tangles (framed oriented tangles) are said to be equiv-
alent if they are related by an isotopy of R× R× [0, 1], relative to the boundary.

Definition 3.3. A tangle diagram is a diagram of a tangle in R× [−1, 1], obtained
from a tangle by projecting it onto R× {0} × [−1, 1]. Any tangle diagram unambigu-
ously gives rise to a tangle, up to equivalence.

We have monoidal categories of oriented tangles and of framed oriented tangles
[20, 28], where composition is the obvious vertical juxtaposition of tangles and the
tensor product T ⊗ T ′ is obtained by placing T ′ on the right hand side of T . The
objects of the categories of oriented tangles and of framed oriented tangles are words
in the symbols {+,−}; see figure 3 for conventions.

An oriented tangle diagram is a union of the tangle diagrams of figure 4, with
some vertical lines connecting them. This is a redundant set if we consider oriented
tangles up to isotopy.

Definition 3.4. A sliced oriented tangle diagram is an oriented tangle diagram, sub-
divided into thin horizontal strips, inside which we have only vertical lines and pos-
sibly one of the morphisms in figure 5.

A theorem appearing in [20] (Theorem XII.2.2) and also in [18, 27, 28, 24] states
that the category of oriented tangles may be presented in terms of generators and
relations as follows:
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X+ X− ∪
←
∪ ∩

←
∩

Figure 5: Generators for the categories of oriented tangles and of framed oriented
tangles.

Theorem 3.5. The monoidal category of oriented tangles is equivalent to the monoidal
category presented by the six oriented tangle diagram generators :

X+, X−, ∪,
←
∪, ∩,

←
∩, (4)

shown in Figure 5, subject to the 15 tangle diagram relations R0A−D, R1, R2A− C,
R3 of Figure 6. The category of framed oriented tangles has the same set (4) as
generators, subject to the 15 relations R0A−D, R1′, R2A− C, R3 of Figure 6.

Remark 3.6. We have replaced the R3 relation of Kassel’s theorem with its inverse,
since this is slightly more convenient algebraically. The two forms of R3 are equivalent
because of the R2A relations. The six other types of oriented crossing in figure 4, with
one or both arcs pointing upwards, can be expressed in terms of the generators (4)
and are therefore not independent generators - see [20], Lemma XII.3.1.

The previous theorem gives generators and relations at the level of tensor cate-
gories. If we want to express not-necessarily-functorial invariants of tangles it is more
useful to work with sliced tangle diagrams. The following appears for example in [24]:

Theorem 3.7. Two sliced oriented tangle diagrams represent the same oriented tan-
gle (framed oriented tangle) if, and only if, they are related by

1. Level preserving isotopies of tangle diagrams.

2. The moves R0A−R0D, R1, R2A−R2C, R3 of Figure 6 (in the case of tan-
gles), performed locally in a diagram, or the moves R0A−R0D, R1′, R2A−
R2C, R3 of Figure 6, in the case of framed tangles.

3. The “identity” and “interchange” moves of figure 7. (Here T and S can be any
tangle diagrams and a trivial tangle diagram is a diagram made only of vertical
lines.)

Definition 3.8 (Enhanced tangle). Let X be a set (normally X will be either a
group or a quandle / rack). An X-enhanced (framed) oriented tangle is a (framed)
oriented tangle T together with an assignment of an element of X to each point of
the boundary of T . We will consider X-enhanced (framed) tangles up to isotopy of
R× R× [−1, 1], fixing the end-points.

Given a set X, there exist monoidal categories having as morphisms the set of X-
enhanced oriented tangles and of X-enhanced framed oriented tangles, up to isotopy.
These categories have as objects the set of all formal words ω in the symbols a and
a∗ where a ∈ X. See figure 8 for conventions.
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∼= ∼= ∼= ∼=

∼=
∼=

∼= ∼=
∼=

∼=

∼=

∼= ∼=

∼= ∼= ∼= ∼=

R0A R0B

R0C R0D

R1
R1′

R2A

R3

R2B R2C

Figure 6: Relations for the categories of oriented tangles and of framed oriented
tangles.

trivial tangle diagram

trivial tangle diagram

trivial tangle diagram

trivial tangle diagram

trivial tangle diagram

trivial tangle diagram

T

T

T

S T

S

∼=

∼=

Figure 7: The identity move and the interchange move.
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a b c d

e f

Figure 8: An X-enhanced tangle with source a.b.c∗.d∗ and target e.f∗.

Definition 3.9. Let G be a group. There exists an evaluation map ω 7→ e(ω), which
associates to a word ω inG ⊔G∗ an element ofG, obtained by multiplying all elements
of ω in the same order, by putting g∗

.
= g−1 (and e(∅) = 1G for the empty word ∅).

3.2. Colourings of tangle diagrams

Let G = (∂ : E → G, ⊲) be a crossed module of groups. We wish to define the notion
of a G-colouring of an oriented tangle diagram, by assigning elements of G to the arcs
and elements of E to the crossings in a suitable way.

For a link diagram D realized as a tangle diagram, a G-colouring may be regarded
as a morphism of crossed modules from the fundamental crossed module Π2(XD, YD)
of Example 2.5, to G. This idea extends in a natural way to general tangle diagrams.

Definition 3.10. Given a finite crossed module G = (∂ : E → G, ⊲) and an oriented
tangle diagram D, a G-colouring of D is an assignment of an element of G to each arc
of the diagram, and of an element of E to each crossing of the diagram, such that,
at each crossing of type X+ or X− with colourings as in (7), the following relations
hold:

X+ : ∂(e) = XYX−1Z−1 (5)

X− : ∂(e) = Y XZ−1X−1 (6)

Z

##G
GG

GG
GG

GG
X

{{wwwwwwwwwwwwwwwwwwww

e

##G
GG

GG
GG

GG

X Y

X

##G
GGGGGGGGGGGGGGGGGGG Z

{{ww
ww

ww
ww

w

e

{{ww
ww

ww
ww

w

Y X

(7)

Thus we are assigning to each type of coloured crossing a morphism of C(G) and
of Cκ(G), and in a similar way we may associate morphisms of C(G) to all elementary
G-coloured tangles, as summarised in figure 9. With the duality where the dual of the

morphism X
e
−→ ∂(e)X is X−1∂(e)−1

X−1⊲e
−−−−→ X−1, and the morphisms associated to

the cups and caps are the ones in figure 9, we can easily see [14] that the monoidal
category C(G) is a compact category [27], and in fact a pivotal category [3], which
however is not spherical in general. Therefore planar graphs coloured in C(G) can be
evaluated to give morphisms in C(G), and this evaluation is invariant under planar
isotopy.
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Z

##G
GG

GG
GG

GG
X

{{wwwwwwwwwwwwwwwwwwww

e

##G
GG

GG
GG

GG

X Y

ZX

e

XY

X

##G
GGGGGGGGGGGGGGGGGGG Z

{{ww
ww

ww
ww

w

e

{{ww
ww

ww
ww

w

Y X

XZ

e

Y X

X

JJ XX̄

1E

1G

X

TT X̄X

1E

1G

X

��

1G

1E

X̄X

X





1G

1E

XX̄

X

��

X

1E

X

X

OO X̄

1E

X̄

Figure 9: Turning G-coloured tangles into morphisms of C(G) The symbol X̄ stands
for X−1.

Thus we can assign to the complete G-coloured oriented tangle diagram a morphism
of C(G), by using the monoidal product horizontally and composition vertically. This
leads to the following definition:

Definition 3.11. Given a G-colouring F of a tangle diagram D (we say F ∈ CG(D),
the set of G colourings of D), the evaluation of F , denoted e(F ), is the morphism in
C(G) obtained by multiplying horizontally and composing vertically the morphisms
of C(G) associated to the elementary tangles which make up D.

Remark 3.12. For a link diagram the evaluation of F takes values in A, the automor-
phism subgroup of 1G, i.e. A = ker ∂ ⊂ E.

For a tangle diagram without open ends at the top and bottom, i.e. a link diagram,
one can conjecture that the number of G-colourings of the diagram can be normalized
to a link invariant, by analogy with the familiar link invariant which is the number of
Wirtinger colourings of the diagram using a finite group G (a Wirtinger colouring in
the present context would be a G-colouring where the group E is trivial). Indeed it
was proven in [14] that the number of colourings of a link diagram evaluating to the
identity of E can be normalised to give an invariant of knots. However this invariant
depends only on the homotopy type of the complement of the knot [15], thus it is a
function of the knot group only.

Therefore we are led to consider the possibility of imposing more refined constraints
on the G-colourings of a tangle diagram in such a way that the number of constrained
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G-colourings does respect the Reidemeister moves. Intuitively we are looking at the
simple homotopy type, rather than the homotopy type of a link complement. Our
idea is to restrict ourselves to G-colourings of diagrams where, at each crossing, the
colouring of the crossing with an element of E is determined by the G-colouring of
two arcs, namely the overcrossing arc and the lower undercrossing arc. To this end
we introduce two functions:

ψ : G×G→ E, φ : G×G→ E,

which determine the E-colouring of the two types of crossing, as in (8):

Z

  @
@@

@@
@@

ψ(X,Y )

X

~~~~
~~

~~
~~

~~
~~

~~
~~

  @
@@

@@
@@

X Y

X

  @
@@

@@
@@

@@
@@

@@
@@

@

φ(X,Y )

Z

~~~~
~~

~~
~

~~~~
~~

~~
~

Y X

(8)

Since this is a G-colouring, these functions determine theG-assignment for the remain-
ing arc:

X+ : Z = ∂ψ(X,Y )−1XYX−1 (9)

X− : Z = X−1∂φ(X,Y )−1Y X (10)

We now come to our main definition.

Definition 3.13 (unframed Reidemeister pair). The pair Φ = (ψ, φ) is said to be an
unframed Reidemeister pair if ψ : G×G→ E and φ : G×G→ E satisfy the following
three relations for each X, Y, T ∈ G:

ψ(X,X)
R1
= 1E (11)

φ(X,Y )ψ(X,Z)
R2
= 1E (12)

φ(Y,X).Y ⊲ φ(T,Z).φ(T, Y )
R3
= X ⊲ φ(T, Y ).φ(T,X).T ⊲ φ(V,W ) (13)

where, in R2, Z = X−1∂φ(X,Y )−1Y X, and in R3:

Z = Y −1∂φ(Y,X)−1XY , V = T−1∂φ(T, Y )−1Y T , W = T−1∂φ(T,X)−1XT

Remark 3.14. The equations above relate to the Reidemeister 1-3 moves, as we will
see shortly in the proof of Theorem 3.19. If equation (12) holds we can substitute
(13) by the equivalent:

ψ(X,Y ) . A ⊲ ψ(X,Z) . ψ(A,B) = X ⊲ ψ(Y,Z) . ψ(X,C) . D ⊲ ψ(X,Y ) (14)

where:

A = ∂(ψ(X,Y ))−1XYX−1 , B = ∂(ψ(X,Z))−1XZX−1 ,

C = ∂(ψ(Y,Z))−1Y ZY −1 , D = ∂(ψ(X,C))−1XCX−1 .

Definition 3.15 (Framed Reidemeister pair). The pair Φ = (ψ, φ) is said to be a
framed Reidemeister pair if relations R2 and R3 of Definition 3.13 hold and moreover:



12 JOÃO FARIA MARTINS and ROGER PICKEN

Z

f(Z)

f(Z)

f(Z)

φ(f(Z),Z)

A

A

A

g(A)

ψ(A,A)

Figure 10: Definition of f, g : G→ G.

1. Given Z in G, the equation (c.f. left of figure 10) ∂(φ(A,Z))A = Z has a unique
solution f(Z) ∈ G.

2. Defining g(A) = ∂(ψ(A,A))−1A (c.f. right of figure 10) it holds that f ◦ g =
g ◦ f = id. In particular both f and g are bijective.

Definition 3.16. Given a crossed module G = (∂ : E → G, ⊲), with G finite, pro-
vided with a (framed or unframed) Reidemeister pair Φ = (ψ, φ), and an oriented
G-enhanced tangle diagram D, a Reidemeister G-colouring of D is a G-colouring of D
(which extends the colourings at the end-points of D, in the sense that an arc coloured
by g corresponds to endpoints coloured by g or g∗, depending on the orientation -
see Figure 8) determined by the functions ψ : G×G→ E, φ : G×G→ E, which fix
the colourings at each crossing as in (8), (9) and (10).

We are now in a position to define a state-sum coming from the Reidemeister
G-colourings of a link diagram D. Recall Definitions 3.9 and 3.11.

Definition 3.17. Consider a crossed module G = (∂ : E → G, ⊲), with G finite, pro-
vided with a (framed or unframed) Reidemeister pair Φ = (ψ, φ). Consider an oriented
G-enhanced tangle diagram D, connecting the words ω and ω′ in G ⊔G∗. We denote
the corresponding set of Reidemeister G-colourings of D by CΦ(D,ω, ω

′). Then we
define the state sum:

IΦ(D) = 〈ω|IΦ(D)|ω′〉
.
=

∑

F∈CΦ(D,ω,ω′)

e(F ) (15)

taking values in N
[
HomC(G)

(
e(ω), e(ω′)

)]
⊂ HomCZ(G)

(
e(ω), e(ω′)

)
. (Here the set of

morphisms x→ y in a category C is denoted by HomC(x, y).)

Remark 3.18. If D is a link diagram then IΦ(D) takes values in Z[A], the group
algebra of A = ker ∂.

Theorem 3.19. The state sum IΦ defines an invariant of G-enhanced tangles if Φ
is an unframed Reidemeister pair and an invariant of framed G-enhanced tangles if
Φ is a framed Reidemeister pair.

Proof. To prove this result, we need to show that IΦ respects the relations of Theorem
3.7. Invariance under level preserving isotopy is obvious. Let us now address, for the
unframed case, the moves R0A−D, R1, R2A− C, R3 of Figure 6. For each relation
we fix matching colours on the maximum number of arcs connecting to the exterior,
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R1′

R2A
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R2B R2C

X X X X X X
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X Y

Z X
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X X

Y

X

Y

Z

Z W

V

Z
W X

Y

Z

X

Y X Y U

T

Y X

T V U

Y
Z

X Y T

T V Z

W

X Y T

X Y

Z

X W

X Y U Y

T

X Y

X W

Y

X Z

X Z X Z

T

U Z

Figure 11: Tangle relations with G-assignments to the arcs.

and then show that the corresponding morphisms of C(G) are equal (and in some cases,
that the remaining arcs connecting to the exterior are also coloured compatibly). Thus
for a pair of diagrams related by one of the relations, each term in the expression for
IΦ for one diagram has a corresponding term in the expression for IΦ for the other
diagram, and the evaluations are equal term by term.

R0A and R0B: Fix X ∈ G. The corresponding equation in E is 1E = 1E in each
case.

R0C: Fix X,Y ∈ G. The corresponding equation in E:

(X−1Z−1) ⊲ ψ(X,Y ) = (Y −1X−1) ⊲ ψ(X,Y )

is an identity which follows from:

ψ(X,Y ) = (∂ψ(X,Y )) ⊲ ψ(X,Y ) = (XYX−1Z−1) ⊲ ψ(X,Y ).

R0D: Fix X,Y ∈ G. The corresponding equation in E:

(Z−1X−1) ⊲ φ(X,Y ) = (X−1Y −1) ⊲ φ(X,Y )

is an identity which follows from:

φ(X,Y ) = (∂φ(X,Y )) ⊲ φ(X,Y ) = (Y XZ−1X−1) ⊲ φ(X,Y ).

R2A: Fix X,Y ∈ G. The corresponding equation in E is:

φ(X,Y )ψ(X,Z) = 1E = ψ(Y,X)φ(Y, T ) (16)
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where Z = X−1∂φ(X,Y )−1Y X and T = ∂ψ(Y,X)−1Y XY −1. The 1st equality is
(12), and the 2nd equality follows from the 1st: ψ(X,Z)φ(X,Y ) = 1E with Z =
X−1∂φ(Y,X)−1XY , i.e.

Y = ∂φ(X,Y )XZX−1 = ∂ψ(X,Z)−1XZX−1,

then substitute variables X 7→ Y, Z 7→ X, Y 7→ T . Applying ∂ to (16), it follows that
W = Y and U = X.

R1: Fix X ∈ G. The corresponding equation in E is:

ψ(X,X) = 1E = φ(X,Y ), ∂φ(X,Y ) = Y X−1

The 1st equality is (11), implying W = X, and the 2nd equality follows from (11)
and (16), see just below, which also implies Y = X.

φ(X,Y ) = φ(X,Y )ψ(X,X)φ(X,X) = φ(X,X) = 1E .

R2B: Fix X,Y ∈ G. The corresponding equation in E for the left move is:

X−1 ⊲ φ(X,Y ) . X−1 ⊲ ψ(X,Z) = 1E

with Z = X−1∂φ(X,Y )−1Y X, which is the 1st equality in (16). Applying ∂, it follows
that W = Y . The equation in E for the move on the right:

U−1 ⊲ ψ(Y, T ) . X−1 ⊲ φ(Y,X) = 1E

with T = Y −1∂φ(Y,X)−1XY and U = ∂ψ(Y, T )−1Y TY −1, follows from the 2nd
equality of (16) for X = ∂ψ(Y, T )−1Y TY −1, and therefore T = Y −1∂ψ(Y, T )XY , or
T = Y −1∂φ(Y,X)−1XY , by acting with X−1 = U−1.

R2C: Fix X,Z ∈ G. The corresponding equation in E:

Y −1 ⊲ φ(X,Y ) . Y −1 ⊲ ψ(X,Z) = 1E = Z−1 ⊲ ψ(Z,X) . Z−1 ⊲ φ(Z, T ) (17)

with Y = ∂ψ(X,Z)−1XZX−1 and T = ∂ψ(Z,X)−1ZXZ−1, is equivalent to (16)
with Y substituted by Z in the 2nd equality. Applying ∂ to (17), it follows that
W = Z and U = X.

R3: Fix X,Y, T ∈ G. The corresponding equation in E is the Reidemeister 3 equa-
tion (13), which also implies the equality U = Z, by applying ∂.

Invariance under the identity and interchange moves of Figure 7 is immediate - to
show the latter we use the interchange law for the operations of Figures 2 and 3.

For framed tangles we need to show invariance of IΦ under the R1′ move using the
properties (i) and (ii) of Definition 3.15, which replace the Reidemeister 1 condition
(11).

Fix Z ∈ G. For the move on the left, at the lower crossing we have, from (i), the
relation Y = g(Z), and at the upper crossing we have the relation X = f(g(Z)) = Z,
by (ii). The equation for the move, which is ψ(Z,Z)φ(Z, Y ) = 1E , follows from the
2nd equality in (16). For the move on the right, at the lower crossing we have, from (i),
the relation V = f(Z), and at the upper crossing we have the relationW = g(f(Z)) =
Z, by (ii). The equation for the move, namely φ(V,Z)ψ(V, V ) = 1E follows from the
1st equality in (16).

We close this section by stating a TQFT property of the invariant IΦ, which follows
easily from the definition.
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y ⊲ x y

y x

y x ⊳ y

x y

Figure 12: A rack colouring of a link diagram in the vicinity of a vertex.

Theorem 3.20. Let D1 and D2 be tangle diagrams, so that the vertical composition
D1

D2
is well defined. For any enhancements ω and ω′′ of the top of D1 and the bottom

of D2 we have:
〈
ω

∣∣∣∣IΦ
(

D1

D2

)∣∣∣∣ω
′′

〉
=

∑

ω′

〈ω|IΦ(D1)|ω
′〉

〈ω′|IΦ(D2)|ω
′′〉

,

where the sum extends over all possible enhancements ω′ of the intersection of D1

with D2.

4. Examples

4.1. Examples derived from racks and quandles
4.1.1. Rack and quandle invariants of links
Recall that a rack R is given by a set R together with two (by the axioms not
independent) operations (x, y) ∈ R×R 7→ x ⊲ y ∈ R and (x, y) ∈ R×R 7→ x ⊳ y ∈ R,
such that for each x, y, z ∈ R:

1. x ⊲ (y ⊳ x) = y,

2. (x ⊲ y) ⊳ x = y,

3. x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z),

4. (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z).

A quandle Q is a rack satisfying the extra condition: x ⊳ x = x = x ⊲ x, ∀x ∈ Q.
There is a more economical definition of a rack: it is a set R with an operation

(x, y) 7→ x ⊳ y, such that condition (4) above holds and such that for each y ∈ R the
map x 7→ x ⊳ y is bijective. Its inverse will give us the map x 7→ y ⊲ x. The following
result and proof appeared in [23].

Lemma 4.1 (Nelson Lemma). Given a rack R, the maps x 7→ x ⊲ x and x 7→ x ⊳ x
are injective (thus bijective if the rack is finite.)

Proof. Let x and y belong to R. Then

(x ⊲ x) ⊲ y = (x ⊲ x) ⊲ (x ⊲ (y ⊳ x)) = x ⊲ (x ⊲ (y ⊳ x)) = x ⊲ y.

If x ⊲ x = y ⊲ y then x ⊲ x = (x ⊲ x) ⊲ x = (y ⊲ y) ⊲ x = y ⊲ x. Since y ⊲ y = x ⊲ x then
y ⊲ y = y ⊲ x. This implies x = y, since the map x 7→ y ⊲ x is bijective, its inverse being
x 7→ x ⊳ y. The proof for x 7→ x ⊳ x is analogous.

Given a knot diagram D, and a rack R, a rack colouring of D is an assignment of
an element of R to each arc of D, which at each crossing of the projection has the
form shown in figure 12.

The following is well known.
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Theorem 4.2. Let R be a finite rack. Then the number IR(D) of rack colourings
of a link diagram D is invariant under the Reidemeister moves 1’, 2 and 3, and is
therefore an invariant of framed links, also called IR. Moreover if R is a quandle then
the number of rack colourings is invariant under the Reidemeister 1 move, therefore
defining a link invariant.

For a proof see [23] or [17]. (Invariance under the Reidemeister moves 2 and 3
is immediate. Invariance under the Reidemeister 1’ move, which is less trivial, is a
consequence of the Nelson Lemma.)

4.1.2. Reidemeister pairs derived from racks and quandles
Let us see that rack and quandle invariants can be written in the framework of this
article. Let R be a rack, which we suppose to be finite. Consider an arbitrary group
structure on R. Call the group G. We do not impose any compatibility relation with
the rack operations, we just assume that the underlying set of R coincides with the
underlying set of G. Consider the crossed module G = (id: G→ G, ad), where ad
denotes the adjoint action of G on G. Put:

ψ(b, a) = b a b−1(b ⊲ a)−1 , φ(b, a) = a b (a ⊳ b)−1 b−1. (18)

Theorem 4.3. The pair Φ = (ψ, φ) is a framed Reidemeister pair. Moreover Φ is an
unframed Reidemeister pair if R is a quandle.

Proof. In this case relation R2 reads, φ(b, a)ψ(b, a ⊳ b) = 1 which follows tautologi-
cally. The relation R3 reads in this case:

φ(b, a) . bφ(c, a ⊳ b)b−1 . φ(c, b) = aφ(c, b)a−1 . φ(c, a) . cφ(b ⊳ c, a ⊳ c)c−1,

and follows easily, from relation (3) of the definition of a rack.
Let us now prove relations (i) and (ii) of Definition 3.15. Let a ∈ G. The equation

z = ∂(φ(a, z)) a means z = z a (z ⊳ a)−1, or z ⊳ a = a, that is z = a ⊲ a. By the Nelson
Lemma 4.1, for each z the equation z = a ⊲ a has a unique solution f(z) ∈ R. In this
case g(a) = ∂(ψ(a, a))−1a = a ⊲ a. Thus trivially f ◦ g = g ◦ f = idR.

Finally if R is a quandle then ψ(x, x) = x (x ⊲ x)−1 = xx−1 = 1E .

Since there is clearly, by (8), (9) and (10), a one-to-one correspondence between
G-colourings of a link diagram D and rack colourings (with respect to R) of D, we
have:

Theorem 4.4. Given a link diagram D, we have IΦ(D) = IR(D)1G, where 1G is the
identity of G. Therefore the class of invariants defined in this paper is at least as
strong as the class of rack link invariants.

There is a spin-off of the rack invariant in order to handle tangles. Given a rack
R, recall that an R-enhanced tangle, Definition 3.8, is a tangle together with a map
from the boundary of T into (the underlying set of) R. There is a category whose
objects are the words ω in R ⊔R∗ and whose morphisms are R-enhanced tangles
connecting them. Thus if the word ω is the source of T then ω is a word having i
elements, where i is the number of intersections of the tangle with R2 × {1}. Moreover
the nth element of ω is either the colour a ∈ R given to the n-th intersection, or it
is a∗, the former happening if the strand is pointing downwards and the latter if the
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associated strand is pointing upwards. These conventions were explained in figure 8.
Given an R-enhanced tangle T let ω(T ) and ω′(T ) be the source and target of T , both
words in R ⊔R∗. Define 〈ω(T )|IR(T )|ω

′(T )〉 as being the number of arc-colourings of
a diagram of T extending the enhancement of T . This defines an invariant of tangles,
for any choice of colourings on the top and bottom of T (in other words, for any
R-enhancement of T ). Clearly

Theorem 4.5. For any R-enhanced tangle T , putting ω = ω(T ) and ω′ = ω′(T ) we
have (see definitions 3.9 and 3.11 for notation):

〈ω(T )|IΦ(T )|ω
′(T )〉 = 〈ω|IR(T )|ω

′〉

e(ω)
ye(ω′)e(ω)−1

e(ω′)

.

4.1.3. Reidemeister pairs derived from rack and quandle cocycles
We can extend the statement of Theorem 4.4 for the case of rack cohomology invari-
ants of knots. Let R be a rack. Let V be an abelian group. We say that a map
w : R×R→ V is a rack 2-cocyle if:

w(x, y) + w(x ⊳ y, z) = w(x, z) + w(x ⊳ z, y ⊳ z), for eachx, y, z ∈ R.

If R is a quandle, such a w is said to be a quandle cocycle if moroever w(x, x) = 0V ,
for each x ∈ R. For details see [10, 9, 23, 12, 13].

Consider any group structure G on the set R, which may be completely inde-
pendent of the rack operations. Consider the crossed module (∂ : G× V → G, •),
where g • (h, v) = (ghg−1, v), for each g, h ∈ G and v ∈ V, which is a left action of G
on G× V by automorphisms, and ∂(g, v) = g, for each (g, v) ∈ G× V . Given a rack
2-cocycle w : R×R→ V , set:

ψ(b, a) =
(
b a b−1(b ⊲ a)−1, w(b ⊲ a, b)

)
, φ(b, a) =

(
a b (a ⊳ b)−1 b−1, w(a, b)−1

)
.

Theorem 4.6. The pair Φ = (ψ, φ) is a framed Reidemeister pair. Its associated
framed link invariant coincides with the usual rack cohomology invariant of framed
links. Morever if R is a quandle and w a quandle 2-cocycle then Φ = (ψ, φ) is an
unframed Reidemeister pair and its associated invariant of links coincides with the
usual quandle cocycle link invariants [10].

Proof. Analogous to the proof of Theorems 4.3 and 4.4.

Therefore the class of invariants defined in this paper is at least as strong as the class
of invariants of links derived from quandle cohomology classes.

4.2. Relation with the Eisermann knot invariant
4.2.1. String knots, long knots, knot meridians and knot longitudes
Recall that an (oriented) long knot is an embedding f of R into R3. such that, for
sufficiently large (in absolute value) t, we have f(t) = (0, 0,−t). These are considered
up to isotopy with compact support. Clearly long knots (up to isotopy) are in one-
to-one correspondence with isotopy classes of tangles whose underlying 1-manifold is
the interval, and whose boundary is {0} × {0} × {±1}, being, furthermore, oriented
downwards. These are usually called string knots.
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K LK′LK K ′

Figure 13: Turning an oriented knot into a string knot in two different cases.

There exists an obvious closing map, cl, sending a string knot L to a closed knot
cl(L). It is well known that this defines a one-to-one correspondence between isotopy
classes of string knots and isotopy classes of oriented knots. To see this, note that
a map sending a closed knot K to a long knot LK can be obtained by choosing a
base point p ∈ K. Then there exists an (essentially unique) orientation (of S3 and
of K) preserving diffeomorphism (S3 \ {p},K \ {p}) → (R3, LpK), where LpK is a long
knot with cl(LpK) = K. Note that LpK depends only on the orientation preserving
diffeomorphism class of the triple (S3,K, p), thus since all pairs (K, p), with fixed K,
but arbitrary p, are isotopic we can see that LpK depends only on K, thus we can
write it as LK .

Let D be a knot diagram of the knot K. Consider the Wirtinger generators of the
fundamental group π1(CK) of the complement CK = S3 \ n(K) of K (here n(K) is
an open regular neighbourhood of K); we thus have a meridian for any arc of the
diagram D. Let a be an arc of D and p a base point of K in a. Then there is a
meridian mp = m of K encircling the arc a at p, whose direction is determined by
the right hand rule. Let D2 = {z ∈ C : |z| 6 1} and S1 = ∂D2. Choose an embedding
f : S1 ×D2 → S3 such that

• f(S1 × {0}) = K, preserving orientations, with f(1, 0) = p.

• f({1} × S1) = m

• f(S1 × {1}) has zero linking number with K.

If we take f(1, 1) to be the base point of S3, then the homotopy class lp = l ∈
π1(CK) of f(S1 × {1}) is called a longitude of K [8]. It is well known that the triple
(π1(CK),m, l), considered up to isomorphism, is a complete invariant of the knot K
[29]. Note that if we choose another base point p′ of K then mp′ and lp′ can be
obtained from mp and lp by conjugating by a single element of π1(CK).

The longitude lp, being an element of the fundamental group of the complement
CK of K, can certainly be expressed in terms of the Wirtinger generators. This can
be done in the following way; for details see [12, 13]. Let a0 = a be the arc of the
diagram D of K containing the base point of K. Then go around the knot in the
direction of its orientation. This makes it possible to order the arcs of K, say as
a1, a2, . . . , an; we would have an = a1, except that we prefer to see K as being split
at the base point p, separating the arc a in two. We can also order the crossings of
D.

The longitude lp ofK is expressed as a product of all elements of π1(CK), associated
to the arcs we undercross as we travel from p to p, making sure that the linking number
of lp with K is zero. Therefore any arc ai has also assigned a partial longitude li (the
product of the elements of π1(CK), associated to the arcs we undercross, as we travel
from p to ai). We thus have ln = l. Given an arc a of D denote the corresponding
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ajai

ai+1

aj ai

ai+1

li = ga1 li+1l
−1
j g−1al lj = ga1 li+1g

−1
aj

li+1 = lig
−1
ai
gaj

li = g−1a1 li+1l
−1
j gal lj = g−1a1 li+1gaj

li+1 = ligaig
−1
aj

or or

Figure 14: Rules for partial longitudes at crossings.

element of the fundamental group of the complement by ga. Then clearly we have that
gai = l−1i ga1 li. The way to pass from li to li+1 appears in figure 14 for the positive
and negative crossing.

Given i, let ji be the number of the arc splitting ai and ai+1. Let θi be the sign of
the i-th crossing. Then:

l =
n−1∏

i=1

g−θiai
gθiaji

=
n−1∏

i=1

l−1i g−θia1
lil
−1
ji
gθia1 lji =

n−1∏

i=1

[l−1i , g−θia1
] [g−θia1

, l−1ji ]; (19)

more generally, if k ∈ {2, . . . , n}:

lk =

k−1∏

i=1

g−θiai
gθiaji

=

k−1∏

i=1

l−1i g−θia1
lil
−1
ji
gθia1 lji =

k−1∏

i=1

[l−1i , g−θia1
] [g−θia1

, l−1ji ]. (20)

Thus both the longitude l and any partial longitude lk belong to the commutator sub-
group of the fundamental group of the complement ofK. Also li+1 = li[l

−1
i , g−θia1

] [g−θia1
, l−1ji ].

In remark 4.13 we will present another formula for a knot longitude.

4.2.2. The Eisermann invariant of knots
Let K be a knot in S3. Consider the fundamental group of the complement CK =
S3 \ n(K) of the knot K. Here n(K) is an open regular neighbourhood of K. Choose
a base point p of K. Let the associated meridian and longitude of K in π1(CK) be
denoted by mp and lp, respectively. Note that [mp, lp] = 1.

Let f : π1(CK) → G be a group morphism. Therefore f(lp) ∈ G′
.
= [G,G], the

derived (commutator) group of G, generated by the commutators [g, h]
.
= ghg−1h−1.

Moreover [f(lp), f(mp)] = 1G. Then

f(lp) ∈ Λ
.
= [G,G] ∩ C(x),

where x = f(mp) and C(x) is the set of elements of G commuting with x.
Let G be a finite group. Let x be an element of G. The Eisermann invariant [13]

(also called Eisermann polynomial) is:

E(K) =
∑

{f : π1(CK)→G | f(mp)=x}

f(lp) ∈ N(Λ).

Note that if we choose a different base point p′ of K then E(K) stays invariant since
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mp′ = hmp h
−1 and lp′ = h lp h

−1, for some common h ∈ π1(CK). The Eisermann
invariant can be used to detect chiral and non invertible knots [13].

Clearly E(K) is given by a map fKE : G′ → N, where

E(K) =
∑

g∈G′

fKE (g)g.

Note that fKE (g) = 0 if g 6∈ Λ.
Let us see that the Eisermann invariant can be addressed using Reidemeister pairs.

This is a consequence of the previous subsections and the discussion in [13, 12], which
we closely follow, having discussed and completed the most relevant issues in 4.2.1.

Let G be a group. Choose x ∈ G and consider from now on the pair (G, x). We
will use the notation hg = g−1hg, where g, h ∈ G. Let

Q =
{
xg, g ∈ G′

}
⊂ G, Q =

{
xg, g ∈ G

}
⊂ G.

Lemma 4.7. Both sets Q and Q are self conjugation invariant:

a, b ∈ Q =⇒ a−1ba ∈ Q and a, b ∈ Q =⇒ a−1ba ∈ Q

Therefore Q and Q are both quandles, with quandle operation h ⊳ g = hg.

Proof. Given g, h ∈ G′ we have (g−1xg)−1(h−1xh)(g−1xg) = xx
−1hg−1xg, and x−1hg−1xg =

x−1hg−1xgh−1h = [x−1, hg−1]h ∈ G′. The proof for Q is analogous.

It is easy to see that:

Lemma 4.8 (Eisermann). Let G be a group. Given arbitrary x ∈ G, both G′ and G
are quandles, with quandle operation:

h ⊳ g = x−1hg−1xg , g ⊲ h′ = xh′g−1x−1g. (21)

There are also quandle maps p : G′ → Q and p : Q→ G with p(g) = xg.

Recall the rack invariant of tangles, defined just before Theorem 4.5.

Theorem 4.9 (Eisermann). For any knot K and any g in G′ it holds that:

〈1G|IG′(DK)|g〉 = fKE (g),

where DK is any string knot diagram associated to K. Of course we regard DK as
a G-enhanced tangle diagram coloured with 1G = 1G′ at the top and with g at the
bottom.

Proof. Follows from the discussion in 4.2.1 and especially figure 14.

Remark 4.10. The previous theorem is also valid for the quandle structure in G,
Lemma 4.8. Given the form of the quandle is easy to see that if g, h ∈ G′:

〈g|IG′(DK)|h〉 = 〈g|IG(DK)|h〉.

By using subsection 4.1 we will show that the Eisermann invariant can be addressed
in our framework, by passing to string knots. Suppose we are given a finite group G
and x ∈ G (it may be that x ∈ G \G′). We can choose any group operation structure
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in the underlying set of G′. We take the most obvious one, given by the inclusion G′ ⊂

G. The associated crossed module is G′
id
→ G′, with G′ acting on itself by conjugation.

Define, given g, h ∈ G′, the pair Φx = (ψx, φx), as:

φx(g, h) = hg(xg)−1xhh−1g−1 = hx−1gh−1xg−1 = [hx−1, gx−1]

ψx(g, h) = [g, h][hg−1, x] = [xhg−1x−1gx−1, gx−1]−1
(22)

Theorem 4.11. The pair Φx = (ψx, φx) is an unframed Reidemeister pair for the

crossed module G′
id
→ G′, with G′ acting on itself by conjugation. Let K be an oriented

knot and LK be the associated string knot. Given g ∈ G′ then

〈1G′ |IΦx(LK)|g〉 = fKE (g). (23)

Proof. The expressions for Φx = (ψx, φx) guarantee that the colourings of the arcs
at a crossing are those given by the Eisermann quandle operation and its inverse
(Lemma 4.8). Thus equation (23) holds, and it is enough to check that Φ does
indeed satisfy the conditions to be a unframed Reidemeister pair. Clearly the Rei-
demeister 1 condition (11) holds: ψx(l, l) = 1. The Reidemeister 2 equation (12) is:
φx(l,m)ψx(l, x−1ml−1xl) = 1, i.e.

[mx−1, lx−1] [l, x−1ml−1xl] [x−1ml−1x, x] = 1.

Writing this out in full, one obtains:

mx−1lx−1xm−1xl−1 . l(x−1ml−1xl)l−1(l−1x−1lm−1x) . (x−1ml−1x)x(x−1lm−1x)x−1

= mx−1lm−1xl−1 . lx−1ml−1x l−1x−1lm−1x . x−1ml−1xlm−1 = 1.

In the above computation, the underlined factors are equal to 1.
To avoid confusion with the quandle operation ⊲, the left action of G′ on G′

by conjugation will be denoted by g • h, thus g • h = ghg−1 for each g, h ∈ G′. The
Reidemeister 3 equation (13) for this case reads:

φx(l,m) . l • φx(n, p) . φx(n, l) = m • φx(n, l) . φx(n,m) . n • φx(r, q),

where p = x−1ml−1xl, r = x−1ln−1xn, q = x−1mn−1xn. The left-hand side of
the above equation, written out in full, is:

mx−1lm−1xl−1 . l(px−1np−1xn−1)l−1 . (lx−1nl−1xn−1)

= mx−1lm−1x . x−1ml−1x lx−1n(l−1x−1lm−1x)xn−1 . x−1nl−1xn−1

= mln(n−1x−1nl−1x−1lm−1x2)(n−1x−1nl−1x)n−1,

and the right-hand side leads to the same expression:

m(lx−1nl−1xn−1)m−1 .mx−1nm−1xn−1 . n(qx−1rq−1xr−1)n−1

= mlx−1nl−1 xn−1x−1nm−1x(x−1mn−1xn) . x−1 (x−1l n−1xn)(n−1x−1nm−1x)x(n−1x−1nl−1x)n−1

= mln(n−1x−1nl−1x−1lm−1x2)(n−1x−1nl−1x)n−1.

In both derivations we insert the definitions of p, r and q in the 1st equality, and
regroup the factors after eliminating the underlined expressions in the 2nd equality.
Note that both sides equal mlnu−1r−1n−1, which is the product of the colourings
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Figure 15: Two sides of the Reidemeister-III move in the proof of Theorem 4.11.

of the 6 external arcs in Figure 15 for Reidemeister 3, taken in anticlockwise order
starting with m, where u is the colouring assigned to the rightmost upper arc, i.e.
u = x−1pn−1xn = x−1qr−1xr.

Consider the quandle structure in G, Lemma 4.8, given by the same formulae as
the one of G′. Consider the crossed module given by the identity map G→ G and
the adjoint action of G on G. Given x ∈ G we have an unframed Reidemeister pair
Φ̄x = (ψ̄x, φ̄x), with the same formulae as (22), namely:

φ̄x(g, h) = hg(xg)−1xhh−1g−1 = hx−1gh−1xg−1 = [hx−1, gx−1] ,

ψ̄x(g, h) = [g, h][hg−1, x] = [xhg−1x−1gx−1, gx−1]−1
(24)

for g, h ∈ G. It is easy to see that:

Proposition 4.12. Let a, b ∈ G′. For each x ∈ G, and each string knot LK :

〈a|IΦx(LK)|b〉 = 〈a|IΦ̄x(LK)|b〉

Remark 4.13 (Formula for a knot longitude). Our approach for defining Eisermann
invariants, and the proof of Theorem 4.11, provides a different formula to (19) for the
longitude lp = l of a knot K, if K is presented as the closure of a string knot L. It
is assumed that the base point p ∈ K of the closed knot K lives in the top end of L.
Let G = π1(CK). Consider the crossed module (id : G→ G, ad). Let x be the element
of G given by the top strand a of L. Let b be the bottom strand of L. Consider the
Reidemeister pair Φ̄x in (24), thus

φ̄x(g, h) = [hx−1, gx−1] and ψ̄x(g, h) = [g, h][hg−1, x] = [xhg−1x−1gx−1, gx−1]−1.
(25)

Consider a diagramD of L. Colour each arc c of the diagramD with the corresponding
partial longitude lc, as defined in 4.2.1. Therefore la = 1 and lb = l. Then by the proof
of Theorem 4.11 one has a Reidemeister colouring F . If we evaluate F (definitions 3.9

and 3.11), we have a morphism la
e(F )
−−−→ lb, hence e(F ) = l = lp. The form of e(F ) thus

yields an alternative formula for the knot longitude, which will be crucial for giving
a homotopy interpretation of the lifting (Theorem 4.17) of the Eisermann invariant.

4.2.3. One example of Eisermann invariants
Let G be a group with a base point x. The explicit calculation of the invariant
〈a|IΦ̄x(K+)|b〉 and 〈a|IΦ̄x(K−)|b〉 for the trefoil knot K+ and its mirror image K−
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h

g

xhg−1x−1g

x2gh−1x−1hg−1x−1g

x3hg−1x−1gh−1x−1hg−1x−1g

h

g

x−1hg−1xg

x−2g h−1xhg−1xg

x−3hg−1xg h−1xhg−1xg

Figure 16: The Eisermann polynomial for the positive and negative trefoil knots K+

and K−

x id (12) (12)(34) (123) (123)(45) (1234) (12345)
K− id 7id 5id 7id id id + 4(13)(24) id + 5(12345)
K+ id 7id 5id 7id id id + 4(13)(24) id + 5(15432)

Table 1: The Eisermann invariant for the negative and positive trefoils for G = S5.

(the positive and negative trefoils), converted to string knots, appears in figure 16.
In particular, given a, g, h ∈ G, we have:

〈a|IΦ̄x(K+)|g〉 = #
{
h ∈ G : x3hg−1x−1gh−1x−1hg−1x−1g = a ; x2gh−1x−1hg−1x−1g = h

}
,

〈a|IΦ̄x(K−)|h〉 = #
{
g ∈ G : x−3hg−1xgh−1xhg−1xg = g ; x−2gh−1xhg−1xg = a

}
.

Consider from now onG = S5. We refer to table 1, displaying the values of 〈1|IΦ̄x(K−)|a〉
and 〈1|IΦ̄x(K+)|a〉 for some choices of x ∈ S5, representing all possible conjugacy
classes in S5. In each 2nd and 3rd row entry of table 1, we put:

∑

h∈S5

〈1|IΦ̄x(K−)|h〉 and
∑

g∈S5

〈1|IΦ̄x(K+)|g〉,

both elements of the group algebra of S5. Therefore the invariant L 7→ 〈1|IΦ̄x(L)|b〉,
where we identify a knot with its associated string knot, separates the trefoils, for
x = (12345). This is due to Eisermann [13].

4.3. Reidemeister pairings derived from central extensions of groups -
lifting the Eisermann invariant

Recall the construction of the Eisermann invariant in our framework (subsection
4.2). The quandle underlying the Eisermann invariant corresponds to the Reidemeis-
ter pair given in equation (22).

Definition 4.14 (Unframed Eisermann lifting ). Let G be a finite group and x ∈ G.
An unframed Eisermann lifting is given by a crossed module (∂ : E → G, ⊲), and an
unframed Reidemeister pair Φx = (φx, ψx), where φx, ψx : G×G→ E, such that,
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given L,M ∈ G:

∂(φx(L,M)) = [Mx−1, Lx−1] , ∂(ψx(L,M)) =[L,M ][ML−1, x].

The colourings of the arcs of any tangle diagram will correspond to those given
by the Eisermann quandle, but there may be additional information contained in the
assignments of elements of E to the crossings of the diagram, i.e. an Eisermann lifting
is a refinement of the Eisermann invariant.

In this subsection we will construct an unframed Eisermann lifting from each
central extension of groups:

{0} → A→ E
∂
−→ G→ {1}.

Here G is a finite group and ∂ : E → G is a surjective group map, such that the
kernel A of ∂ is central in E.

Choose an arbitrary section s : G→ E of ∂, meaning ∂(s(g)) = g, for each g ∈ G.
Therefore s(gh) = s(g) s(h)λ(g, h), where λ(g, h) is in the centre of E, for each g, h ∈
G. Moreover given e ∈ E then s(∂(e)) = e c(e), where c(e) is in the centre of E. This
is because ∂(s(∂(e)) = ∂(e). Clearly:

Lemma 4.15. The map (g, e) ∈ G× E 7→ g ⊲ e = s(g) e s(g)−1 ∈ E is a left action
of G on E by automorphisms, and with this action ∂ : E → G is a crossed module.
Moreover, the action ⊲ does not depend on the section s.

Given a section s : G→ E of ∂ : E → G, define, for each g, h ∈ G:

{g, h} = [s(g), s(h)]. (26)

(This does not depend on the chosen section s of ∂ since ker(∂) is central in E.)

Lemma 4.16. For each a, b ∈ E we have [a, b] = {∂(a), ∂(b)}.

Proof. Given a, b ∈ E we have {∂(a), ∂(b)} = [s(∂(a)), s(∂(b)] = [a c(a), b c(b)] = [a, b].

Theorem 4.17. Let G be a finite group and x ∈ G. Let ∂ : E → G be a surjective
group morphism such that the kernel A of ∂ is central in E. The pair Φx = (φx, ψx),
given by:

φx(g, h) = {hx−1, gx−1} ψx(g, h) = {g, h}{hg−1, x};

is an unframed Eisermann lifting for the crossed module (∂ : E → G, ⊲), of Lemma
4.15.

Proof. Given L,M ∈ G, then ∂({L,M}) = ∂([s(L), s(M)]) = [∂(s(L)), ∂(s(M))] = [L,M ].
Since ∂ is surjective we can find l ∈ E such that L = ∂(l), and likewise M = ∂(m)
and x = ∂(y). The Reidemeister 2 condition (12), which is:

{Mx−1, Lx−1} {L, x−1ML−1xL} {x−1ML−1x, x} = 1,

becomes

{∂(my−1), ∂(ly−1)} {∂(l), ∂(y−1ml−1yl)} {∂(y−1ml−1y), ∂(y)} = 1,

or, what is the same (by using lemma 4.16):

[my−1, ly−1] [l, y−1ml−1yl] [y−1ml−1y, y] = 1.

This is an algebraic identity which was shown to hold in the proof of Theorem 4.11.
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x
˜(

1 0
0 1

) ˜(

1 3
4 4

) ˜(

0 1
1 0

) ˜(

4 1
4 0

) ˜(

3 1
4 4

) ˜(

2 0
0 1

) ˜(

3 0
3 3

)

K+

(

1 0
0 1

)

7

(

1 0
0 1

)

5

(

1 0
0 1

) (

1 0
0 1

)

+ 6

(

4 0
0 4

) (

1 0
0 1

) (

1 0
0 1

)

+ 4

(

3 0
0 2

) (

1 0
0 1

)

+ 5

(

4 0
1 4

)

K−

(

1 0
0 1

)

7

(

1 0
0 1

)

5

(

1 0
0 1

) (

1 0
0 1

)

+ 6

(

4 0
0 4

) (

1 0
0 1

) (

1 0
0 1

)

+ 4

(

2 0
0 3

) (

1 0
0 1

)

+ 5

(

4 4
4 0

)

Table 2: The lifted Eisermann invariant for the positive and negative trefoils in 4.3.1

An analogous argument shows that the Reidemeister 3 equation (13) is satisfied, since
∂(l) ⊲ m = lml−1, so that we can use the algebraic identity for Reidemeister 3 from
the same proof. For the Reidemeister 1 move this follows from

ψx(M,M) = {Mx−1,Mx−1} = {∂(my−1), ∂(my−1)} = [my−1,my−1] = 1E .

Remark 4.18. By the proof of the previous theorem, we can see that an alternative
expression for ψx is:

ψx(L,M) = {xML−1x−1Lx−1, Lx−1}−1.

Note that for each L,M, x ∈ E we have (since these are identities between usual
commutators) that {xML−1x−1Lx−1, Lx−1}−1 = {L,M}{ML−1, x}.

4.3.1. A non-trivial example of an unframed Eisermann lifting

In the context of Theorem 4.17, let us find a lifting of the Eisermann invariant for
the case of G = S5, for which we gave detailed calculations in subsection 4.2. It is
well known that S5 is isomorphic to PGL(2, 5), the group of invertible two-by-two
matrices in the field Z5, modulo the central subgroup Z∗5 of diagonal matrices which
are multiples of the identity. We thus have a central extension:

{0} → Z∗5
i
−→ GL(2, 5)

p
−→ PGL(2, 5)) ∼= S5 → {1}.

Here GL(2, 5) is the group of invertible two-by-two matrices in the field Z5.

Let K+ and K− be the right and left handed trefoils. In table 2 we display
〈a|IΦx(K+)|1〉 and 〈a|IΦx(K−)|1〉 for some choices of x ∈ PGL(2, 5) ∼= S5, represent-
ing all possible conjugacy classes in S5

∼= PGL(2, 5), in the same order as in table 1.
In the 2nd and 3rd rows of the table, we put:

∑

s∈PGL(2,5)

〈s|IΦx(K+)|1〉 and
∑

s∈PGL(2,5)

〈s|IΦx(K−)|1〉,

respectively, both elements of the group algebra of GL(2, 5). If A ∈ GL(2, 5), its pro-

jection to PGL(2, 5) is denoted by Ã.

Comparing with table 3, which shows the unlifted Eisermann invariant IΦx
0
for

G = PGL(2, 5), we can see that this lifting of the Eisermann invariant is strictly
stronger than the Eisermann invariant itself. Specifically, looking at the penultimate

column of tables 2 and 3, thus x =

(̃
2 0
0 1

)
, we can see that the lifting distinguishes
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x
˜(

1 0
0 1

) ˜(

1 3
4 4

) ˜(

0 1
1 0

) ˜(

4 1
4 0

) ˜(

3 1
4 4

) ˜(

2 0
0 1

) ˜(

3 0
3 3

)

K+

˜(

1 0
0 1

)

7
˜(

1 0
0 1

)

5
˜(

1 0
0 1

)

7
˜(

1 0
0 1

) ˜(

1 0
0 1

) ˜(

1 0
0 1

)

+ 4
˜(

4 0
0 1

) ˜(

1 0
0 1

)

+ 5
˜(

3 0
3 3

)

K−

˜(

1 0
0 1

)

7
˜(

1 0
0 1

)

5
˜(

1 0
0 1

)

7
˜(

1 0
0 1

) ˜(

1 0
0 1

) ˜(

1 0
0 1

)

+ 4
˜(

4 0
0 1

) ˜(

1 0
0 1

)

+ 5
˜(

2 0
3 2

)

Table 3: The unlifted Eisermann invariant for the positive and negative trefoils in
4.3.1

the trefoil from its mirror image. Namely, for the lifted Eisermann invariant, noting:

(̃
3 0
0 2

)
=

(̃
2 0
0 3

)
=

˜(
4 0
0 1

)
,

we have:
〈(̃

3 0
0 2

)∣∣∣IΦx(K+)
∣∣∣
(̃
1 0
0 1

)〉
= 4

(
3 0
0 2

)
6= 4

(
2 0
0 3

)
=

〈(̃
3 0
0 2

)∣∣∣IΦx(K−)
∣∣∣
(̃
1 0
0 1

)〉
,

whereas for the unlifted Eisermann invariant IΦx
0
:

〈(̃
3 0
0 2

)∣∣∣IΦx
0
(K+)

∣∣∣
(̃
1 0
0 1

)〉
= 4

(̃
3 0
0 2

)
=

〈(̃
3 0
0 2

)∣∣∣IΦx
0
(K−)

∣∣∣
(̃
1 0
0 1

)〉
.

Table 3 should be compared with table 1.

4.4. Homotopy interpretation of the liftings of the Eisermann Invariant
To give a homotopy interpretation of the lifting of the Eisermann invariant, The-

orem 4.17, we recall the notion of non-abelian tensor product and wedge product of
groups, due to Brown and Loday [6, 7]; see also [5]. Let G be a group. We define
the group G⊗G (a special case of the tensor product of two groups G⊗H) as being
the group generated by the symbols g ⊗ h, where g, h ∈ G, subject to the relations,
∀g, h, k ∈ G:

gh⊗ k = (ghg−1 ⊗ gkg−1) (g ⊗ k), (27)

g ⊗ hk = (g ⊗ h) (hgh−1 ⊗ hkh−1). (28)

The key fact about the non-abelian tensor product of groups is that there is a
homomorphism of groups δ : G⊗G→ G′ = [G,G], defined on generators by g ⊗ h 7→
[g, h], which is clearly surjective. Surjectivity also holds if we replace G⊗G by the
group G ∧G, obtained from G⊗G by imposing the additional relations:

g ⊗ g = 1, ∀g ∈ G.

We denote the image of g ⊗ h in G ∧G by g ∧ h. Finally [5], there is a left action •
by automorphisms of G on G⊗G and G ∧G, given by:

g • (h⊗ k) = (ghg−1)⊗ (gkg−1) and g • (h ∧ k) = (ghg−1) ∧ (gkg−1),

and we have two crossed modules of groups: (δ : G⊗G→ G′, •) and (δ : G ∧G→
G′, •). This fact (which is not immediate) is Proposition 2.5 of [7].
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The following theorem is fully proved in [7] and [22]. Group homology is taken
with coefficients in Z.

Theorem 4.19 (Brown-Loday / Miller). Let G be a group. One has an exact sequence:

{0} → H2(G) → G ∧G
δ
−→ G′ → {1}.

Consider a central extension of groups {0} → A→ E
∂
−→ G→ {1}, where G is

finite. Let K be a knot. Let CK be its complement. Then it is well known, and follows
from the asphericity of the knot complement CK [25] (which is therefore an Eilenberg-
MacLane space), combined with the fact that knot complements are homology circles
[8], that H2(π1(CK)) = {0}. Therefore, by the Brown-Loday / Miller Theorem we
have:

π1(CK) ∧ π1(CK) ∼= [π1(CK), π1(CK)] = π1(CK)′,

canonically. Let now f : π1(CK) → G be a group morphism. Define

f̂ = π1(CK) ∧ π1(CK) → E,

as acting on the generators x ∧ y of π1(CK) ∧ π1(CK) ∼= [π1(CK), π1(CK)] by f̂(x ∧

y) = {f(y), f(x)}−1; see Lemma 4.16. That the map f̂ respects the defining relations
for the non-abelian wedge product, follows from the fact that ker(∂) is central in E,
as in the proof of Theorem 4.17.

Going back to the knot K, choose a base point p ∈ K. Let mp ∈ π1(CK) and
lp ∈ π1(CK) be the associated meridian and longitude. Then

lp ∈ [π1(CK), π1(CK)] ∼= π1(CK) ∧ π1(CK).

Given an element x ∈ G, we thus have a knot invariant of the form:
∑

f : π1(CK)→G with f(mp)=x

f̂(lp) ∈ Z[E].

Theorem 4.20. Given x ∈ G, a finite group, let Φx be the unframed Reidemeister

pair derived from the central extension of groups {0} → A→ E
∂
−→ G→ {1}; Theorem

4.17. Let K be a knot, with a base point p. Let LK be the associated string knot. Then:
∑

a∈G

〈1G |IΦx(LK)| a〉 =
∑

f : π1(CK)→G with f(mp)=x

f̂(lp).

Proof. The proof is exactly the same as for the unlifted case. Note Remark 4.13.
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