UNIVERSITY OF LEEDS

This is a repository copy of PROV-TE: A Provenance-Driven Diagnostic Framework for
Task Eviction in Data Centers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/112765/

Version: Accepted Version

Proceedings Paper:

Albatli, A, McKee, D orcid.org/0000-0002-9047-7990, Townend, P et al. (2 more authors)
(2017) PROV-TE: A Provenance-Driven Diagnostic Framework for Task Eviction in Data
Centers. In: 2017 IEEE Third International Conference on Big Data Computing Service
and Applications (IEEE BigDataService 2017). IEEE BigDataService 2017, 06-10 Apr
2017, South San Francisco, California, USA. IEEE , pp. 233-242. ISBN
978-1-5090-6318-5

https://doi.org/10.1109/BigDataService.2017.34

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

PROV-TE: A Provenance-Driven Diagnostic
Framework for Task Eviction in Data Centers

Abdulaziz Albatlt? David McKe€', Paul TownenY Lydia Lau, Jie Xut

! Distributed Systems and Services Research Group
School of Computing, University of Leedsseds, UK
{sclla2a, d.w.mckee, p.m.townend, I.m.s.lau, j.xu}@Ileeds.ac.uk

2 Huraymila College of Science and Humanities
Computer Science Department, Shaqgra UniverBityadh, Saudi Arabia
{albatlia}@su.edu.sa

Abstract—Cloud Computing allows users to control
substantial computing power for complex data processing,
generating huge and complex data. However, the virtual
resour ces requested by users are rarely utilized to their full
capacities. To mitigate this, providers often perform over-
commitment to maximize profit, which can result in node
overloading and consequent task eviction. This paper
presents a novel framework that minesthe huge and growing
historical usage data generated by Cloud data centers to
identify the causes of overloads. Provenance modelling is
applied to add contextual meaning to the data, and the
PROV-TE diagnostic framework provides algorithms to
efficiently identify the causality of task eviction. Using
simulation to reflect real world scenarios, our results
demonstrate a precison and recall of the diagnostic
algorithms of 83% and 90% respectively. This demonstrates
a high level of accuracy of the identification of causes.

Keywords—Big Data; Data Centers, Cyberinfrastructure;
Cloud Computing; Overcommitment; Overload; Provenance;
PROV; Simulation; Distributed Systems;

I. INTRODUCTION

with minimal management effort or service provider
interaction” [2]. It delivers virtualized, scalable and elastic
resources (e.g. CPU, memory) over a network from data
centers to enable users, including individuals, enterprises,
and governments, to run complex operations requiring
significant computatioal power.

Resource management in data centers is achieved
through virtualization or containerization whereby tasks
are executed within virtual machines (VM) which are
scheduled on physical servers. In this way Cloud providers
utilize over-commitment of physical resources in order to
leverage unused capacity within their data centers and
therefore maximize profits [3]. The over-commitment of
resources often leads to an overlaexthe actual physical
machines [3], whicltanlower the performance or lead to
the failure of tasks due to lack of resources, i.e. CPU or
RAM, and consequently lead to SLA violations. Over-
commitment in laaS is the practice of allocating more
virtual resources on a physical machine than the actual
physical capacities based om predefined over-
commitment ratio [4}[6].

Currently, there are a number of different approaches

Infrastructure as a Service (IaaS) in Cloud Computingo mitigate the overload, one of which is Task Eviction
has introduced many new opportunities for businesses af@iE) [7]. A provenance-driven diagnostic framework [8]
individuals for extending accessibility and minimizing has been developed, and is presented in this paper, using
costs by providing users with access to remote resourc&oogle Cloud 29-Day dataset for learning [7], [9]. Its goal
[1]. However, as the Cloud Computing paradigm rapidlyis to utilize provenance modelling to efficiently mine
evolves, effective management of resource allocation ttarge-scale cloud trace-log ddtaidentify the causes for
maintain a high level of overall system utilization becomegask evictions. The framework extends the W3C PROV

increasing important.

Such management is typicallymodel [10] into PROV-TE which underpins a number of

addressed through the use of virtualization and overiagnostic algorithms for identifying evicted tasks due to
commitment of resources to users; this requiresa datspecific causes. The records af activity that led to a
mining to be performed to quickly analyse the historicalpiece of data is the provenance of that of data [11].
and current state of the relevant Cloud data centre. THerovenance describes the flow of data and processes across
cloud data centers that support laaS process millions skveral heterogeneous layers and systems.

tasks, and generate huge amounts of historical trace-log To verify the PROV-TE framework, a simulation of a
data. Mining this large, growing, and complex data is venygeneric over-committed data center - reflecting the
challenging This paper investigates the negative impact orconfigurations of Amazon EC2 and Googles used. The
users due to over-commitment resulting in task evigtionSimulation EnvironmEnt Distributor (SEED) tool [12] has

througha provenance-based big data analysis.

been used to systematically generate different Cloud

Cloud Computing is defined by the National Institute datasets similar to real datasets, each with a different task

of Standards and Technology's (NISds) “a model for
enabling ubiquitous, convenient,

eviction behavior. This generates large-scale simulated

on-demand networldata consisting of several thousand servers.

access to a shared pool of configurable computing This paper is organized in the following order. Section
resources (e.g., networks, servers, storage, applications$, presents the related work. Section Il presents the

and services) that can be rapidly provisioned and releaseévelopment of

the Provenance-Driven Diagnostic

components. Section IV presents the process of using tt
simulation to generate test datasets that capture evictic

behavior Section V shows the framework’s application
and implementation on the simulated datasets. Section \ on, Prov:Entity @
presents the analysis of the results and discussion on tl °"s:,«,% N

framework’s precision and recall and limitatianSinally,
Section VI gives the overall conclusion and future work.

prov:wasDerivedFrom

Framework and its underpinning concepts and 0

I RELATED WORK prov:wasGeneratedBy, rov:wasAttributedTo
rov:used
There have been attempts in solving the problem o ’
resource over-commitment which is machines overloac Prov:Activity L ProviAgent
[3], [6], [7], [13]-[15] by introducing six different o,
approaches (strategies) to mitigate the overload, which ai %%
Resource Stealing, VM Quiescing, Live Migration, O p‘)%(O
Streaming Disks, Network Memory, and Task Eviction oy,
“ prov:actedOnBehalfOf

(TE). These studies look at mitigating the overload
reactively but none have looked at approaches for solvin
the overload problem proactively. Overloads cause Figure 1. PROV Abstract Model [10]
deteriorating effect on the performance and availability ot

cloud services. Even though 88% of memory overloads a . ;
d Y 4 Iso, they have used the simulation tool CPNTools to act

transient and last for less than 2 minutes [13], it i h g ¢ hei IVSi h
considered a massive drawback and can still violate th@S the diagnoser for their analysis. CPN used as the

Service Level Agreements (SLAs) and Quality of Service?Pstract model underpinning the diagnosis component
(Q0S), for which providers need to compensate the client. Which identifies the correct and faulty behaviors of the

Because data in cloud datacenters is widely used afforkflow, starting from the symptoms (faulty data or
shared, provenance plays an important role for bot ctivities), and backward detecting the possible causes of

providers and users to audit the validity [IBfovenance tN€ Symptoms.
describes the flow of data and processes across several ll. PROVENANCEDRIVEN DIAGNOSTIC FRAMEWORK
heterogeneous layers and systems. The process thatledtoa
piece of data is the provenance of that data [10]. In [17] The purpose of t_h|s_ framework is for the identification
the authors have categorized the challenges of adoptif)j causesof task evictions from the log data of a cloud
provenance in cloud contexts into two categories. Firsgervice provider. The process will help understand the
provenance-known issues such as object identificatiof:omponents contributed to the overload, hence assist in
Second, cloud related issues such as scalabiliyprevention for the future.
performance, and availability. For example, clouds arg Underpinning Concepts of the Framework
dynamically scalable, thus capturing and defining a . . ' .
provenance service is a complex task. A number of studies The reason for using provenance is because, firs, it
have considered using provenance in the clouds foProvides traqeab|llty of results. .S.econd, reprodumpnny is
different purposes [18], [19], [16], [2dR3]. However, e_nsured. Thirdthe schema facmtates the integration qf
there were no attempts of using PROV model, which is glversg data sources. Analysis of provenance information
World Wide Web Consortium (W3C) standard that enablej’f a given task would pave the way to extract knowledge
the exchange of the provenance information [24], folfOm usage data that was not identified using the standard
provenance but instead these studies have developtPding system. .
bespoke models as the PROV model was still being PROV is W3C standard for provenance. As defined by
developed. Using standard models can help WorSN3_C, “provenance is a record that describes the people,
undertaken by both research and industry communities {pstitutions, entities, a_nd activities involved in [,)’roducmg,
be easily understood and extended by builcinghem. influencing, or delivering a piece of data othing” [28].
PROV model has recently started to gain attention i ith regards to distributed systems, Moreau and Groth in
the cloud computing community. In [25], researcher 28] stated that_provgna_mce can relate to data, documents
applied PROV model in the cloud for security and©' resources since it is a record that computers _h_ave
trustworthiness purposes. One algorithm has beeRroduced, processed, and ~exchanged. In —addition,
developed based on PROV model for controlling access tfovenance is one essential dimension of process
cloud data. It ensures the completeness of the causéfification, reproducibility, reliability and trust in
dependencies between the data. Another study used PRENpUbuted systems [17]. PROV, shown in figure 1, is a
model as a basis for a provenance framework for gatherifg©del represents all types of tangible and untangle objects
and storing cloud workflow provenance data for laterSUch as data, and allows the expression of links of causal
analysis [26]. Even though these studies are notable, théff/@tionships and dependencies between them through
aim and objectives are different than the ones of this papdi©des and edges. The dependencies define the link
They do not look into the overload problem of physicalbetween the effects and the cause in a backwards manner.
machines. Li and Boucelma [27] used the open provenan& The PROV-TE Model
model (OPM) and Colored Petri Net (CPN) for monitoring In order to extend PROV to address a specific overload
workflow and data provenance in the cloud. Theirproblem- Task Eviction (TE), the PROV-TE model was

prov:wasInformedBy

proach is similar to the approach conducted in paper.

TE_eventtype r'y

TE_time Prov:wasDerivedFrom
o ME_time Add/Remove
stamp Machine
P> i

TE_eventtype

,
A

ME_capacityCPU

|
\

TE_schedulingclass

TE_differentmachine

»
Prov:wasGeneratedFrom

Prov:Used
Prov:Used
<

TE_taskindex

<

i

Prov:WasGeneratedBy
Prov:WasGeneratedBy

Prov:Used

TE_resource_requeshy

Prov:Used

TE_resource_reques

A
Submit Task t

ry
>
.§

Group Tasks
into Jobs

Prov:WasAsso

m —

. ME_eventtype
ME_capacityRAM

Prov:wasDerivedFrom
Prov:Used

Prov:wasDerivedFrom

Prov:wasDerivedFrom
Prov:wasGeneratedFrom

Prov:WasAssociatedWith
Prov:wasDerivedFrom

Prov:wasGen
eratedFrom

TE_resource_requesty
CPU
Prov:wasGen

Prov:Used

- i Update
Update eratedFrom Prov:Used Evict Task
Running i TE_resource_requesty .
Tasks RAM < JE_eventtype
Prov:wasGen
eratedFrom A Prov:wasDerivedFrom
Prov:Used < TE_eventtype

Legend:

Figure2. PROV-TE, aPROV Model for Task Eviction in Google Cloud.

developed and tested using the Google Cloud 29-Dastated by Google [7]. These causes are: Higher priority
Dataset [7], [29] for learning and exploratidiigure 2. tasks take over the lower priority ones, Increase in request
In PROV-TE, nodes can be one of the following: of resources per task, Actual demand exceeds the machine
Entity: a digital, conceptual or physical thing of which we capacity, Decrease in machine physical capacity, and
need to keep the provenance, such as TE_PrioritypMissing machines (failure or offline). PROV-TE underpin
Activity: a process that occurs over a duration of time that number of diagnostic algorithms specific for each cause.
act upon entities, such as Evict Task; and Agent; . . .
something/someone to which entities and activities arg' Diagnostic Algorithms
attributed or associated, such as Scheduler. Each cause is investigated by a number of diagnostic
The relationships provided by the PROV model (i.e.algorithms that are implemented using SQLFer the
the edges) are retained. These edges represent tgope of this paper, only three causes have been examined.
dependencies between the nodes; for instance, : : -
pr(?v:WasGeneratedBy, prov:WasDerivedFrom,(i) Arrival of Higher Priority Task o]
prov:WasAssociatedWith, and prov:WasAttributedTo One of the causes of task eviction is due to higher
PROV-TE, shown in figure 2, is the second version oferiority tasks taking over the space of the lower priority
the extension [8]. The only difference between the twd®Nnes. This trigger is due to thels’ limited resources.
versions is that a correction and more entities were
included in the second version. To illustrate, Agent: Usel Algorithm 1b: Cause 1 Eviction Identifier. Identifying the
is linked to Activity: UpdateRunningTasks and entities number of evicted tasks from PET table within one-
TE_username, TE_differentmachine, TE_schedulingclas mtervziln\;rom higher priority tasks being scheduled in
were included. PROV-TE model guides the investigations same V.

into job/task behavior leading to the causes T& as FOR each task in PET (E), until end of period
2. FOR each task in Sc1Dataset (S) table, until end
Algorithm la: Cause 1 Priority Identifier. Finding the period
priority of evicted tasks and isolating the tasks in a sepz 3. IF (S.timestamp < E.timestamp <=
table called PriorityofEvictedTasks (PET) table. (S.timestamp+ next time interval))
1. FOR each task in Sc1Dataset table, until end of perio 4, AND (E.priority < S_priority)
2. | F Status = Killed 5. AND (E_machinelD = S_machinelD)
3. STORE priority, timestamp of every distinct 6. STORE distinctE.Task in
task inPETtable CauselEvictedTasks (C1ET) table
4. END IF 7. END FOR

®

END FOR

o

END FOR

Algorithm 2a: Cause 2 Request Comparer. Comparing
the resources’ request of both CPU and MEM at the task’s

scheduling time with the newmsources’ request at running
time, then identify the tasks with the increased updat

Algorithm 3a: Cause 3 Overload Calculator. Comparing
the total physical capacities with the resources usage. ¢
the usage reaches threshold (80%), store physical mas
ID with timestamp of overload in Overloaded Table (OT

resources’ request and isolate them in Updated table (UT 1. _FOR each physical machine in Sc3dataset table, ur
1. FOR each task in Sc2dataset table, until end of peric end of period

2. | F (Status = scheduled (S) 2. Find total CPU/RAM usage in every interval

3. AND updated_while_running (U) = true) 3. IF CPU/RAM usage > threshold level

4, AND (TE_resource_request_CPU of U > 4 THEN Store PM ID, timestamp in

TE_resource_request_CPU of S) Overloaded table (OT)

5. OR (TE_resource_request_Mem of U > 5 END IF
TE_resource_request_Mem of S)) 6. END FOR
6. THEN STORE Task_timestamp, Task ID,
machinelD inUT - — —

7. END IF Algorithm 3b: Cause 3 Eviction ldentifier. Per every
overloaded physical machine in OT, find all evicted ta

8. END FOR e - ; ;
within one interval of overload in the same machine.

. - - ”) 1. FOR each physical machine in OT, until end of peric
Algorithm 2b: Cause 2 Eviction Identifier. Looking 2. FOR each task in Sc3dataset table (ST) hosted i

within the lowest granularity interval of the tracamestep
interval, from the time of the task resources’ request
update in Updated Table (UT) to identify the tasks t

an overloaded a physical machine that is in
Overloaded table, until end of period

have been evicted due to the increase in the update. i }AFN(ST'-DSI\;NPS = evict) ek
1. FOR each task in UT table, until end of period ' (_timestamp < [as ‘_tlmestamp:
5 FOR h task in Sc2dataset table (ST) with (PM_timestamp + next time interval))
- ea‘t: tha; In Sccdatase f‘ et'(l)d""'f an 5. AND Task IDNOT IN C1ET table
1ncr.ease 0 thelr resources” request, until €nd o 6. THEN dlsplay ST.Task_timestamp,
period
. ST.Task ID
3. IF (ST.Status = evict) 7 END IE
4. AND (Task_timestampT) < Task_timestamp '
N . . 8. END FOR
(ST) <= (Task_timestampJT) + next time
interval)) 9. ENDFOR
5. AND Task priority (JT) > Task priorit e .
6. AND Task FD (STy),ﬁJO)T IN ClEpT tablyeen been reached, an overload mitigating strategy, i.e. Task
7 THEN display ST.Task_timestamp, Eviction, is then triggered [13] (see Algorithms 3a-
g END ”S:T-TaSk ID Following is an illustration of how the PROV-TE,
o END FOR Figure 2, model can be used to trace the workflow of a task
. eviction due to the need to schedule a task with a higher
10. END FOR

priority. Normally, a user submits a task and specifies its
Sscheduling priority. After a task is submitted (Activity:

Two Algorithms have been used to investigate thi) . .
scenario. First, all evicted tasks in the log is captured anguPMit Task), a number of Entities are generated, i.e. TE

their priorities are ordered and stored (Algorithm 1a). Thg;’ent type, TE priority, TE resource CPU/RAM, and all

aim is to precisely identify the tasks the have been evictej2Ve @ time stamp. Those entities are used by the Activity

only by Higher Priority Tasks being scheduled in the sam&=rOUP Tasks into Job). Then a number of Entities are
Host (VM) and within one interval of higher priority task generated according to the grouping activity, i.e. JE jobID,
arrival timestamp (Algorithnib). JE event type, JE job name, TE task index, and a time

stamp is recorded. The Activity: Schedule Job will use
2) Increase in Resource Request those entities and other entities related to the designated

Another cause of task eviction is when users ask foMachine, i.e. ~ ME_MachinelD, ME_eventtype,
more resources than they have initially requested whilE_capacity CPU/RAM) so that the taskfob can be
their tasks are running. Each task is scheduled in a specifi¢heduled and hosted. One of the causes of TE is the
VM with specific virtual resources (assigned resource§ubmission of a new task with a higher prigrity
according to their request). In case of over-commitment?lgorithms 1ab, to a VM that lacks resources, so the Evict
when users request more resources, the scheduler neitdéiSk Activity will react accordingly and processes the
can allocate more resources nor find an available virtugfviction of a task with the lowest priority (i.e. Entity: TE
machine. A physical machine with fixed resource capacity!iority).

would no longer be capable of hosting those tasks becaugg |nstantiation of the FrameworkThe Auditor

the sum 6 the tasks’ virtual resources’ request is higher

than the actual machine’s capacity. So, lower priority tasks The aUd_Itor’ shown in Figure 3, consists of three

get evicted to avoid an overload in the machine (Seﬁﬂomponents. Mapper, Database, and Query Handler. The

Algorithms 2ab). apper takes the raw data from the log Qata as input and
maps it to the PROM-E model structure which then stored

3) Physical Overload in the database. The Query Handler is the implementation

Providers set a usage threshold level where once it ha&uctured dataset from the database as input and then runs

s TABLE I. DESIGN OFSCENARIOS
aas

‘ Applications | Scenario 1 Scenario 2 Scenario 3
PaaS) Cause (C1) . . .
’ Platforms I Cause (C2) .
|aasS Cause (C3) .
Virtual Infrastructure Manager
The aim of this evaluation is to test and evaluate the

[virtuel Machine(s) | reasoning power of the proposed diagnostic algorithms and

the underpinning PROV-TE model for the different
overload scenariosThe simulation tool has been set up
with a general data center configuration and has been used
to generate 15 different datasets. Each data set comes with
a log which includes details of the physical and virtual
machines such as Host ID and CPU/MEM units, and tasks
such as requested units of CPU/MEM and priority. Most
importantly, it includes details about eviction of tasks such
as relevant eviction cause and timestamp. These details
will be used to validate the results of our framework by
calculating the precision and recall of every algorithm.

—
Root Causes for ‘

Task Eviction Hypervisor 1

‘ Physical Machine(s) } Usage &

Infrastructure Data

Auditor

Diagnostic
Algorithms Structured

Dataset

————

v
Cleansed Data

Infrastructure
Monitor

Figure 3. PROV-TE system model comprised of an Auditor,
Infrastructure Manager, and Infrastructure Monitor

Mapper
PP Raw Data

B. Scope of Evalution
the algorithms using SQLite then informs the VirtU&'Wefocus on the following causes (behaviors):
Infrastructure Manager with the causes of TE.

The potential use of the proposed framework is that
following the process of framework development, the
other five mitigating strategies could be modelled based on
PROV and the relevant diagnostic algorithms could be
developed. As a result, each mitigating strategy could have
its own Auditor; e.g. Auditor for Live Migration causes,
Auditor for VM Quiescing causes and so on.

Cause (C1). Arrival of higher priority tasks - higher
priority tasks will always be scheduled no matter of
how full the machines are; hence in a full capacity
situation, lower priority tasks will be automatically
evicted to make space.

Cause(C2). Request for increasing resources for
current tasks - the machine has a fixed capacity, so at a
specific point the lower priority tasks will be evicted to
make space for the new requests of the higher priority
tasks.

Cause (C3). The actual demand exceeds the machine

IV. USING SIMULATION FOR FRAMEWORK
EVALUATION

Both the model and the algorithms have gone through

two iterations of development using Google 29-day
dataset. Evicted tasks have been identified as well as the
relevant causes based on metrics such as timestamp and
shared physical machinBue to the limited access to real
Cloud datasets and in order to evaluate and assess the
diagnostic framework, a simulation tool, SEED [1B4%s

capacity - once the maximum physical usage reached
the threshold of the machine’s capacity, the scheduler

will automatically evict low priority tasks to avoid
memory halts or breaching SLA’s agreement, i.e.
performance metrics.

These three causes will cover a reasonable range of

been used to generate test datasets according to thmgpical patterns of behavior in resource management at the
known Task Eviction behaviors. laaS level of Cloud Computing.

Simulation in computer science domain is a vital) i
systematic method for auditing and validating complexC- Design of Evaluation
behaviors. There are a number of simulation tools that Three scenarios have been developed SEED
could have been used, such as CloudSim, GreenCloud, afdenario 1 includes the behavior of Cl. Scenario 2
MDCSim [30]-[32]. However they struggle to handle includes the behavior of C1 and C2. Lastly, Scenario 3
large-scale systems and require understanding of both tlcludes the behavior of C1 and.@hach scenarics run 5
model domain as well as aspects relating to simulatiotimes, resulting in a dataset similar to the log data from a
synchronization. SEED facilitates the modelling of thedata center. Having a taet with more than one cause
domain based on graph notation and was designelielps validate the accuracy of the diagnostic algorithms.
specifically for modelling large-scale data centers with

minimal user intervention and assumptions [12]. D. General Setup for the Simulation

The simulation environment has been configured to
A Purpose reflect a general data center setup and is shown in Figure 4
The hypothesis of the research is that provenance adéer every run, the tool creat8 physical machines (PM)
value to the raw data by connecting the data in a way thatnd 40 virtual machines (VM). Each PM has two VMs
provides additional meaning for further interpretation and1:2). The PMs’ CPU and RAM sizes are fixed at 8 units
analysis. Specifically, the analysis will provide the reasonand 15 GB, respectively. VM sizes are chosen randomly
and causes of an overload. from a specified size list. Number of VM CPU can be 2, 4,
or 8 units. VM RAM size can be 4, 6, orGB. The sizes

. CPU:8
Process [VCPU] VRAM [Length] [Priorit

* RAM: 15GB
40x Virtual Machines

Scenario 1 Scenario 2 Scenario 3

20x Physical Machines [Task] TABLE Il. OUTPUT OFSIMULATION

.« VCPU:{2,4,8

" Va6 868 Virtual Machine Total | 0@ | ot | TO® | qorg | TOW

T ” Evicted Evicted Evicted
asks Scheduler Tasks ask Tasks ey Tasks a5k

« Submssion: 100-300/hr Tasks Tasks Tasks

- Length: 60-300

. Piir;g;ty:o-z ’ VePUJ [VRAM @ Run Cl | C2 Cl| C3

+ CPU/RAM: {1-8} 1 4208 259 3735 904 | 20 3131 226 | 54

Configuraiton

Server

* Duration: 24hrs

* Interval: 305 R;” s530 | 266 | 4076 || 21 pgar [2L
967 | 20 16 | 187
\/ CPU | |RAM | | VMs
Dota c1 | c2 c1| cs3
Output

3 4501 421 4328 2687
1041 | 45 1 | 176

Experiment Manager Model Elements

. Run Cl | C2 Cl | C3
SEED Simulator 4653 | 297 | 4035 3077
; 4 1012 | 37 177| 76
Automated execution management m
. Run Cl1 | Cc2 Cl1| C3
Figure 4. Configuration of the simulation environment using the 4538 319 4049 2596
SEED simulator 5 994 | 43 9 | 157

are a reflection of Amazon EC2 c3.2xlarge instance [33,.
This particular instance allows over-commitment ofpriority than the ones running, lower priority tasks get
resources. This hybrid configuration ensures that simulateevicted so the VM to be ready for the next task.

data is similar to real data. The scale of the simulation can

be generalized to larger environments with more PMs andchgi%cljgéhmﬂ?é T;;':Eg:ﬁg)rr: h\glsheg evr?r a ;?}Skr's dtc,)[b ?ir t
VMs, generating huge volumes of data. This aims te ’ een conngured 1o 1rs

demonstrate the feasibility of massive-scale simulation foi:heck the available VM capacity, CPU and RAM. If the“?
implementing provenance-based techniques. is enough space, then the task gets _scheduled. Ot_her_vwse,

Tasks are then generated according to a random tadkthere lower priority tasks running in the VM, a list is
submission rate (TSR). TSR is randomly chosen from 10dhen created to include all lower priority tasks ordered
300 per hour. The simulation length is 24 hours. Thedscendingly by priority. From the top of the list, tasks get
method of task distribution is: send one task to one VM agvicted until enough space becomes available. Then the
a time, in equal distribution, then loop back again until altask in question gets scheduled. In case there are no lower
tasks are sent to be queued in every VM. priority tasks, the tdescheduled task is to wait in the

There are 4 variables assigned to each tasklyfiest queue until free space becomes available.
task’s length is measured in steps. The task length is)
randomly chosen from 2 to 10. The length of the task is the 2) Increase in Resourse Request
number of steps needed to finish exemutiEvents are Scheduling a task on a specific VM depends on the
logged in a one-step interval. A step is a predefinedask’s requested capacities, in terms of CPU and RAM.
interval of 30 seconds. Second, a priority is randomlyOnce hosted, a task can request a change in the requested
assigned to each task. It is a number to define the privilegesources. In case there is no free resource to accommodate
of a task - O (lowest), 1 and 2 (highe&tnally, requestd this request and there are lower priority tasks on the same
resources, CPU and RAM, are assigned to the tasks. TMM, the task eviction mechanism will be executed until
resources are also chosen randomly from a predefined lite desired requested capacities become available.
(1,2,3,4,5,6,7,8). Algorithm 5: Request HandlenVhile a task is running,

For every VM, there are three queues for tasks to bthe simulation tool has been configured to generte a new
scheduled, once for each priority which ensures that evemandom request from a predefined list (1, 2, 3, 4, 5, 6, 7,
task get its fair time of waiting in the queue. In the8). The request will get approved only if there is available
scheduling method, there is a loop that goes around trepace in the VM. Otherwise, the same lower priority task
three queues and dequeues one task from each queue &viction method oAlgorithm 4: TaskEvictor is run until the
time to be scheduled. requested space becomes available.

E. Scenario Specific Configration 3) Physical Machine Overload

Each scenario has additional configuration in order to Over-commitment is a policy that is widely adopted in
generate the needed behavior in the dataset. Threlata anters to maximize resources’ usage. Physical and
algorithms are developed to mimic the behavior led by theirtual usage are managed by overload threshold levels
three causes, namelyTask Evictor, Request Handler and [34]. The simulation tool has been configured with an 80%
Overload Manager. A brief description of these is detailegbhysical threshold level. Once physical usage exceeds it,

below. eviction process is executed. Unlike the other scenarios
. . . two policies are enforced when evicting tasks, lower
1) Arrival of Higher Priority Tasks priority task first and Laska-First-Out (LIFO). It is more

For every VM, whenever there is a lack of RAM or sensible to evict tasks that have just started than those near
CPU and there is a task waiting in the queue with higheto finish.

s TABLE IV. OUTPUT OFFRAMEWORK
3 Scenario 1 Scenario 2 Scenario 3
g Total | Evicted | Total | Evicted | Total | Evicted
2 2 Tasks | Tasks | Tasks Tasks Tasks Tasks
< 1s Found | Found | Found Found Found Found
£
T Run c1L | c2 c1]|c3
4208 259 3735 3131
05 1 900 | 13 307 | 58
0
R:n R;n R:n R:n R;n Rtlm R;n Rt3m R:n RLSm R:n thm R;n Rzn R;n Rgn 4530 266 4076 C1 c2 2341 Cl c3
960 | 15 91 | 60
Scenario 1 Scenario 2 Scenario 3
Figure 5. Execution time for every simulation run. Run 4501 421 4328 el s 2687 €L|cs
3 1048 | 20 75 | 55
TABLE lll. MEAN AND STANDARD DEVIATION OF EXECUTION TIMES RuUn Cl | C2 Cl|C3
4 4653 297 4035 3077
Scenario 1 Scenario 2 Scenario 3 1012 | 22 182 | 36
Mean 1.292 2.53 0.43 RUN Cl | C2 Cl|C3
dard 5 4538 319 4049 2596
Standar +0.1 +0.73 +0.065 997 | 23 159 | 55
Deviation
Algorithm 6: Overload Manager For every physical V. TESTING THEDIAGNOSTIC FRAMEWORK

machine, the total physical usage is calculated every one- The following shows the results of the implementation
step interval (30 seconds). If the total physical usaggf the framework, the Auditor component shown figure 3.
exceeds the predifented usage thresold limit, tasks g@lor scenario 1, the auditor will only trigger C1 related
evicted following the same lower priority task eviction gigorithms. For scenario 2, the auditor will trigger C1 and
method ofAlgorithm 4: TaskEvictor until normal usage c2 related algorithms. For scenario 3, the auditor will
behavior is restored he list is ordeed ascending by tasks trijgger C1 and C3 related algorithms, illustrated in table I.

priority and descending by time of hosting in the Ve “The inputto the Auditor is the 15 simulated test
normal usage behavior means the total physical usage igtasets. Then, the diagnostic algorithms are applied to
less than the usage thresold limit. find the causes of all eviction. The output of the Auditor is
F. Simulation Output the identification of causes and relevant evicted tasks.

To show the randomness, variances and differences éf Output from the Auditor
the resulting generated behavior, each scenario has 5 Taple |V summarizes the output of all diagnostic

simulation runs (i.e. 15 simulated datasets in total). algorithms. In section VI, precision and recall statistical
Table Il summarizes the overall output of the 15 runsyeasures will be applied to evaluate the results.
of the three scenarios. For each run, the total number of

tasks as well as the total number of evicted tasks are
shown. Also, because Scenario 2 and 3 have two causes)) - _
each, the total number of evicted tasks related to each The simulation facilitated the generation of 15 cloud
cause is also shown. test datasets that captured specific behaviors for task
The aim for table Il is that it will be used after applying €viction. The dgveloped diagnostic algorithms make use of
the algorithms of the framework to calculate the precisio®ROV-TE. This has proved to be helpful by both the
and recall of the results, which will be explained in theability of auditing the datasets and identifying evicted tasks

VI. ANALYSIS AND DISCUSSION

next section. and also distinguishing the relevant causes.
Figure 5 shows the execution time of every run for In order to evaluate the accuracy of the diagnostic
every scenario. Table Il illustrates the mean of thedlgorithms, precision and recall statistical measures have

execution time of the five runs for every scenario and th&een applied. Precision is a measure of the capability of
standard deviationDue to the small number of tasks of the framework to Only |dent|fy the relevant evicted task for
Scenario 3 which depends on the random TSR, the me&&ch cause. It is a statistical measure of reliability of the
of Scenario 3 execution times is smaller compared to thEamework. Recall is a measure of the capability of the
means of Scenarios 1 and 2. Also, Scenario 2 executidi@mework to retrieve and identify the highest possible
times are relatively higher is because of the complexity ofumber of relevant evicted tasks for a specific cause. It is a
Algorithm: Request Handler. While tasks are running, theistatistical measure of the sensitivity of the framéwor
resources request are constantly and randomly changed. In

order fo_r every request to be approved or not, CapaCitiasrecision _ True Positive (TP) _ %100 (@)
comparison is undertaken. Every request in RAM or CP True Positive (TP)+False Positive(FP)

must be less or equal the size of the VM. Ai§dhereis

no VM space and there are lower priority tasks, the Recall =
eviction process is triggered. Only then the request is
approved.

True Positive (TP)
True Positive (TP)+False Negetive (FN)

x100 (2

o || J‘l] ERRN
e NN AR | 5 NUHARL AN
I YIT I | B N

20 1 3 5 7 9 11 13 15 17 19 21 23
1 3 5 7 9 11 13 15 17 19 21 23 Hour
Hour Scenario 2 Cause 2 - Ave Actual
Scenario 2 C1 - Ave Actual «eeee- Scenario 2 C1 - Ave Identified | | ... Scenario 2 Cause 2 - Ave Identified
(@) Cause 1: Evictions due to higher priority tasks (b) Cause 2: Evictions due to increased resource request
higher priority tasks

Figure 6. Average of actual and identified evicted tasks per hour, showing the variance acrossall smulation runs.

60 e 100% 3 100%
2 e 90% P 90%
2 R T | S 80% § 38 25 80% §
S 40 s 70% 3 5, 70% S
e 17 60% o k] .. 60% &
L‘>:' 30 Mt so% = S | o] e so% &
S 20 A1 0% 2 s | e 0% 2
5 L 30% g g 1 S TSRS 30% g
E 10 . 20% 3 € os I | L 20% 3
=, & o = -'i"l'i I | IR o

0 0% o it 1 1 0%

1234567 89101112131415161718192021222324 12345678 9101112131415161718192021222324
Hour Hour
Actual mm |dentified Actual mm |dentified

Actual Cumilative Frequence =~ esseee Identified Cumilative Frequence Actual Cumilative Frequence sssses Identified Cumaltive Frequence

(b) Cause 2

(a) Causel

Figure 7. Cumulative aver age task evictionsover all simulations of Scenario 2.

TP, FP, and TN have been calculated by comparing thall evicted tasks due to this cause, whereas the other
output of the simulation, Table I, with the output of the scenarios have 2 behaviors so the algorithms precision and
auditor, Table IV. For example, looking at the Tables llrecall are not as high.
and IV, in Run 1 of Scenario 2, the Auditor has been able Table VI summarizes the mean precision and recall of
to identify all tasks, 3735, and also has been able tecenario 2 across all runs. It can be seen that the diagnostic
classify the evicted tasks based on the specific causes, @lgorithms of C1 are quite promising with 99% in both
and C2. For C1, 900 (TP) evicted tasks out of 904 havprecision and recall, as seen in figures 6a and Za. C
been identified (FN = 4), so the precisisrl00% and the diagnostic algorithms have returned precisely the relevant
recall is 99%. For C2, 13 evicted tasks out of 20 have beesvicted tasks but failed to pick up 44% of the evicted tasks
identified which makes precision 100% and re68%o. because of C2, as seen in figures 6b dnd 7

Since the output is overwhelming, the precision and In table VI, C1 diagnostic algorithms of scenario
recall have been calculated based on the mean TP, FP, éhd are able to identify relevant evicted tasks.
TN of the five runs for every cause in the three scenarios

The precision and recall of C1 related algorithms have TABLE VI SCENARIO 2: MEAN PRECISION ANDRECALL

been calculated in every scenario because all datasets. : Relevant Tasks Irrelevant Tasks
. - O 1 Algorithms Simulated Simulated
capture C1 task eviction behavior whereas C2 task eviction (Simulated) (Simulated)
behavior is captured in only Scenario 2 and C3 task Relevant Tasks TP =981.4 FP=2
eviction behavior is captured in only Scenario 3. (Framework) Std Dev =154 StdDev=%3
In table V, because the simulated datasets of scenarip lrreevant Tasks FN=2.2 TN=0
have one behavior, the precision and recall are 100%. (Framework) Std Dev=+3.1 Std Dev=20
There is only one cause and the algorithms have identified precision 99%
Recall 99%
TABLE V. SCENARIO 1: MEAN PRECISION ANDRECALL
; Relevant Tasks Irrelevant Tasks
. Relevant Tasks Irrelevant Tasks C2 Algorithms " .
Simulated Simulated
C1 Algorithms (Smulated) (Smulated) (Smu) (Simulated)
Relevant Tasks TP =18.6 FP=0
Relevant Tasks TP =312.4 FP=0 Std Dev =+ 4.3 Std Dev=+0
(Framework) Std Dev = + 65 Std Dev=+0 (Framework) Vo Vo
Irrelevant Tasks FN=0 TN=0 Irrelevant Tasks FN =144 TN=0
= = Std Dev = + 8.4 Std Dev=+0
(Framework) Std Dev =0 Std Dev =0 (Framework) v v
Precision 100% Precision 100%
Recall 100% Recall 56%

w
o

N
0]

e 5
o o
—

Number of Tasks
BN
an o
Number of Tasks
w
o

|

20
1° W) | [T [
% % }[}L I*{ IT l l{ {T ° L } l l T l I} F g dregeedeted

™ y B e B O S T A S A 5

\MHMIM i ° ‘
1 3 5 7 9 11 13 15 17 19 21 23
1 3 5 9 11 13 15 17 19 21 23 Hour
Hour Scenario 3 Cause 3 - Ave Actual
Scenario 3 C1 - Ave Actual ++se++Scenario 3 C1 - Ave Identified | | ... Scenario 3 Cause 3 - Ave Identified

(a) Cause 1: Evictions due to higher priority tasks (b) Cause 3: Evictions due to machine overload

Figure 8. Average of actual and identified evicted tasks per hour, showing the variance acrossall smulation runs.

- 140% 40 100%
..... 5 90%
Lot 120%
200 e ° 30 80%
e 100% 70%
s e 20% 25 60%
...... 20 50%

60% = | | Boyg | 7 eessssssese 40%
o TP TTTIL LA 30%

20%

L}

1l ||I|I|I|||I||||2°% ;
0% o ||.||II||..||_._|.|.._.0%

7

1 3 5 7 9 1 13 15 17 19 21 23

15

40%

Number of Evicted Tasks
Cumaltive Frequence

Number of Evicted Tasks
Cumaltive Frequence

.
w o
———
W ——
—

I
il
5

Hour Hour
Actual mmmm |dentified Actual = |dentified
Actual Cumilative Frequence = sseese Identified Cumilative Frequence Actual Cumilative Frequence eesecee Identified Cumaltive Frequence
(@) Causel (b) Cause 3

Figure 9. Cumulative average task evictionsover all smulations of Scenario 3

However, as shown in figures 8a and 9a there i®fauditing each cause separately.

probably an overlap in terms of the identified causes For every run of every scenario, the Auditor can
as 40% of which are irrelevant. The recall percentaggenerate files for each cause which include the IDeof

of C3 diagnostic algorithms is high, 90%, which evicted tasks and their physical and virtual host IDs which
means it is capable of identifying the relevant evicteccan be further investigated. Also, the Auditor can order the
tasks. However, its precision measure is 40%, asauses in terms of level of impact on the system. From
seen in figure 9b The precision and recall of C1 tableslV, the most dominant cause is C1 which is the
diagnostic algorithms are relatively high across allArrival of Higher Priority Tasks and the least dominant

scenarios. cause is C2 which is Increase in Resource Request.
Figure 10 shows the power of C1 and C3 diagnostic
algorithms combined. Almost 90% of all evicted tasks due VII. . CONCLUSION AND FUTURE WORK

to C1 and C3 have been identified. This could suggest that |n this paper we have discussed how cloud providers
running a hybrid algorithm of two or more causes coulduse resource over-commitment to leverage under-utilized
return better results with higher precision and recall insteagapacity yet with a trade-off of introducing the problem of
overload. A Provenance-Driven Diagnostic Framework

TABLE VII. SCENARIO 3: MEAN PRECISION ANDRECALL e
has been presented and evaludidd framework’s aim is

C1 Algorithms Relevant Tasks Irrelevant Tasks to efficiently mine big and growing data to find the causes
(Simulated) (Simulated) J . X X . .
of Task Eviction in a data cent&ur main contribution of
Relevant Tasks TP =119.4 FP =43.4
(Framework) Std Dev = +126.2 Std Dev =+ 37.6
45 100%
Irrelevant Tasks FN=3.8 TN=0 PR 90%
(Framework) Std Dev =+ 8.4 Std Dev=%0 B35 et 80% 9
5 70% ©
Precision 73% 2 zg 60% 3
2 9% =
Recall 97% £ 20 ol
Relevant Task Irrelevant Task g o % g
Algorith evan s rrelevan s Ew LAty 20% S
s . e R TR T T
Relevant Tasks TP =52 FP =178 0 0%
(Framework) Std Dev = + 9.2 Std Dev = + 55.5 123456 7 8 9101112131415161718192021222324
Hour
Irrelevant Tasks FN=0.8 TN=0
(Framework) Std Dev=+1.7 Std Dev=+0 Actual = |dentified
Precision 40% Actual Cumilative Frequence eesse« |dentified Cumilative Frequence
Recall 98% Figure 10. Cumulative aver age task evictionsover all simulations of

Scenario 3, combining C1 and C3.

this paper is the evaluation of the framework using a
massive-scale simulation tool, SEED. SEED has been uséf!

to generatel5 different cloud test datasets with different

task eviction behaviors. The Framework, PROV-TE and
Diagnostic Algorithms, have been applied on thesgi4)
datasets and the found results have been compared with the

simulation

results. Finally, the

results have been
statistically analyzed using precision and recall measur
to find the levels of sensitivity and reliability. The averag

NEG)

precision and recall of the diagnostic algorithms are 83%
and 90%, respectively. Although the diagnostic algorithms
identify the causes of task eviction fairly precisely, therd16]
are limitations relatingto the overlapping of identified

causes for evicted tasks. This could explain the precisio

levels of Scenario 3 diagnostic algorithms.

A7

For future work, we intend to run a more extensive

simulation experiment with a larger environment. It will be[18]
of interest to apply the framework on a dataset that

encompasses all task eviction behaviors. Also, this work i
a first step for research that looks into mitigating TE in

data centers, which is assumed to lead decrease in the
number of overload instances. In addition, we will further{20]
improve the diagnostic algorithms and the approach of

identifying Task Eviction root causes in order to increas

the level of accuracy in terms of precision and recall.

The authors

ACKNOWLEDGMENT
thank Slingshot

Simulations Ltd.

fo]

To1

[22]

(http://www.slingshotsimulations.co.uk) for providing the 23]
use of the SEED simulator for this work.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

9]

(20]

(11]

(12]

REFERENCES
Y. Amanatullah, C. Lim, H. P. Ipung, and A. Juliandri, “Toward
cloud computing reference architecture: Cloud semieeagement

perspective,” in International Conference on ICT for Smart [24]

Society, 2013, pp.-4.

P. Mell and T. Grance,
Computing,” 2011.

S. Baset, L. Wang, and C. Tang, “Towards an Understanding of
Oversubscription in Cloud,” in USENIX Hot/CE'12, 2012.

Y. Liu, “A Consolidation Strategy Supporting Resources
Oversubscription in Cloud Computing,” in IEEE 3rd International
Conference on Cyber Security and Cloud Computin§Qicud)
2016, pp. 154162.

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient
datacenter resource utilization through cloud
overcommitment,” in |EEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2015.

T. Wo, Q. Sun, B. Li, and C. Hu, “Overbooking-Based Resource
Allocation in Virtualized Data Center,” in 2012 |IEEE 15th
International Symposium on Object/Component/Ser@ceented
Real-Time Distributed Computing Workshops, 2012, 1z2-149.

C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage
traces : format + schema V2.1,” pp. 1-14, 2014.

A. Albatli, L. Lau, and J. Xu, “Application of PROV Model for
Modeling a VM Overload Migating Strategy: Task Eviction,” in
Provenance Analytics Workshop, 2014.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, &hdA.
Kozuch, “Heterogeneity and dynamicity of clouds at scale,” in
Proceedings of the Third ACM Symposium on Cloud Cating,
2012, pp. $13.

L. Moreau and P. Groth, “Provenance: An Introduction to PROV,”
Synth. Lect. Semant. Web Theory Technol., vol.3,4) Sep. 2013.
P. Townend, P. Groth, and J. Xu, “A provenance-aware weighted
fault tolerance scheme for serviceséal applications,” in
Proceedings - Eighth IEEE International Symposium one@bj
Oriented Real-Time Distributed Computing, 2005, 2:8-266.

P. Garraghan, D. McKee, X. Ouyang, D. Webstard J. Xu,
“SEED: A Scalable Approach for Cyber-Physical System

“The NIST Definition of Cloud

[25]

[26]

[27]

resourc [28]

[29]

(30]

[31]

(32]

(33]

[34]

Simulation,” IEEE Trans. Serv. Comput., vol. 9, ng2P16.

D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weathersppon
“Overdriver: Handling Memory Overload in an Oversubscribed
Cloud,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution eoniments, 2011.
A. Stage and T. Setzer, “Network-aware migration control and
scheduling of differentiated virtual machine workloads,” in ICSE
Workshop on Software Engineering Challenges of Cloud
Computing, 2009.

M. Andreolini, S. Casolari, M. Colajanni, and . MVessori,
“Dynamic load management of virtual machines in cloud
architectures,” in Cloud Computing, vol. 34, Springer Berlin
Heidelberg, 2010, pp. 26214.

K. MuniswamyReddy, P. Macko, and M. Seltzer, “Provenance for
the Cloud,” in Proceedings of the 8th USENIX Conference on File
and Storage Technologies, 2010.

M. A. Sakka, B. Defude, and J. Tellez, Documerdvenance in
the cloud: constraints and challenges, vol. 6164.rliBe
Heidelberg: Springer Berlin Heidelberg, 2010.

I. Abbadi and J. Lyle, “Challenges for Provenance in Cloud
Computing,” in 3rd USENIX Workshop on the Theory and Practice
of Provenance (TaPP’11), 2011.

M. Imran and H. Hlavacs, “Provenance in the cloud: Why and
how?,” Third Int. Conf. Cloud Comput. GRIDs, Virtualizationp.p
106-112, 2012.

K.-K. MuniswamyReddy, M. Peter, and S. Margo, “Making a
Cloud Provenancésware,” in 1st Workshop on the Theory and
Practice of Provenance (TaPP’09), 2009.

S. M. S. Da Cruz, M. Manhaes, J. Zavaleta, andMRCosta,
“Cirrus: Towards Business Provenance As-a-Service in the Cloud,”
IEEE 19th Int. Conf. Web Serv., no. i, pp. 6689, Jun. 2012.

P. Macko, M. Chiarini, and M. Seltzer, “Collecting provenance via
the Xen hypervier,” in Proceedings of 3rd USENIX Workshop on
the Theory and Practice of Provenance (TaPP ’11), 2011.

S. Townend, P; Venters, CC; Lau, L; Djemame, K; Diovia, V;
Marshall, A; Xu, J; Dibsdale, C; Taylor, N; Austin,McAvoy, J;
Fletcher, M; Hobson,‘Trusted Digital Spaces through Timely
Reliable and Personalised Provenance,” in 15th IEEE International
Symposium on Object/Component/Service-Oriented -Reag
Distributed Computing Workshops, 2012, pp.-1B61.

P. Groth and L. Moreau, “PROV-Overview: An Overview of the
PROV Family of Documents,” 2013.

J. Lacroix and O. Boucelma, “Trusting the cloud: A PROV +
RBAC approach,” in IEEE International Conference on Cloud
Computing, CLOUD, 2014, pp. 65@58.

P. L. Rupasinghe, H. H. Weerasena, &nilurray, “Trustworthy
provenance framework for document workflow provenance,” in
International Conference on Computational Techrsqui
Information and Communication Technologies, 2016,168-175.

Y. Li and O. Boucelma, “Provenance Monitoring in the Cloud,” in
IEEE Sixth International Conference on Cloud Compyt@il3.

L. Moreau and P. Groth, “PROV-Overview: An Overview of the
PROV Family of Documents,” W3C Note, no. April, pp.49, 2013.

1. Solis Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,
Modeling and Simulation of Workload Patterns in ageaScale
Utility Cloud,” IEEE Trans. Cloud Comput., vol. PP, no. c, 2014.
R. N. Calheiros, R. Ranjan, A. Beloglazov, C.FA.De Rose, and
R. Buyya, “CloudSim : A Toolkit for the Modeling and Simulation

of Cloud Resource Management and Application Provisgn
Techniques,” Softw. Pract. Exp., vol. 41, no. 1, pp-88, 2011.

S. Malekzai, D. Yildiz, and S. Karagol, “GreenCloud simulation
QoSbox in cloud computing,” in 24th Signal Processing and
Communication Application Conference (SIU), 2016.

S-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das,
“MDCSim: A multi-tier data center simulation, platform,” in 2009
IEEE International Conference on Cluster Computing and
Workshops, 2009, pp-—2.

Amazon Web Services Inc, “EC2 Instance Types — Amazon Web
Services (AWS),” 2016. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/. [Accessed: 1224-Oc

20186].

R. Birke and L. Y. Chen, “Managing Data Center Tickets:
Prediction and Active Sizing,” 46th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Networks, Jun. 2016.

