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Abstract—Cloud Computing allows users to control 
substantial computing power for complex data processing, 
generating huge and complex data. However, the virtual 
resources requested by users are rarely utilized to their full 
capacities. To mitigate this, providers often perform over-
commitment to maximize profit, which can result in node 
overloading and consequent task eviction. This paper 
presents a novel framework that mines the huge and growing 
historical usage data generated by Cloud data centers to 
identify the causes of overloads. Provenance modelling is 
applied to add contextual meaning to the data, and the 
PROV-TE diagnostic framework provides algorithms to 
efficiently identify the causality of task eviction. Using 
simulation to reflect real world scenarios, our results 
demonstrate a precision and recall of the diagnostic 
algorithms of 83% and 90% respectively. This demonstrates 
a high level of accuracy of the identification of causes. 

Keywords—Big Data; Data Centers; Cyberinfrastructure; 
Cloud Computing; Overcommitment; Overload; Provenance; 
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I.  INTRODUCTION 

Infrastructure as a Service (IaaS) in Cloud Computing 
has introduced many new opportunities for businesses and 
individuals for extending accessibility and minimizing 
costs by providing users with access to remote resources 
[1]. However, as the Cloud Computing paradigm rapidly 
evolves, effective management of resource allocation to 
maintain a high level of overall system utilization becomes 
increasing important. Such management is typically 
addressed through the use of virtualization and over-
commitment of resources to users; this requires data 
mining to be performed to quickly analyse the historical 
and current state of the relevant Cloud data centre. The 
cloud data centers that support IaaS process millions of 
tasks, and generate huge amounts of historical trace-log 
data. Mining this large, growing, and complex data is very 
challenging. This paper investigates the negative impact on 
users due to over-commitment resulting in task eviction, 
through a provenance-based big data analysis. 

Cloud Computing is defined by the National Institute 
of Standards and Technology's (NIST) as “a model for 
enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, 
and services) that can be rapidly provisioned and released 

with minimal management effort or service provider 
interaction” [2]. It delivers virtualized, scalable and elastic 
resources (e.g. CPU, memory) over a network from data 
centers to enable users, including individuals, enterprises, 
and governments, to run complex operations requiring 
significant computational power. 

Resource management in data centers is achieved 
through virtualization or containerization whereby tasks 
are executed within virtual machines (VM) which are 
scheduled on physical servers. In this way Cloud providers 
utilize over-commitment of physical resources in order to 
leverage unused capacity within their data centers and 
therefore maximize profits [3]. The over-commitment of 
resources often leads to an overload on the actual physical 
machines [3], which can lower the performance or lead to 
the failure of tasks due to lack of resources, i.e. CPU or 
RAM, and consequently lead to SLA violations. Over-
commitment in IaaS is the practice of allocating more 
virtual resources on a physical machine than the actual 
physical capacities based on a predefined over-
commitment ratio [4]–[6]. 

Currently, there are a number of different approaches 
to mitigate the overload, one of which is Task Eviction 
(TE) [7]. A provenance-driven diagnostic framework [8] 
has been developed, and is presented in this paper, using 
Google Cloud 29-Day dataset for learning [7], [9]. Its goal 
is to utilize provenance modelling to efficiently mine 
large-scale cloud trace-log data to identify the causes for 
task evictions. The framework extends the W3C PROV 
model [10] into PROV-TE which underpins a number of 
diagnostic algorithms for identifying evicted tasks due to 
specific causes. The records of an activity that led to a 
piece of data is the provenance of that of data [11]. 
Provenance describes the flow of data and processes across 
several heterogeneous layers and systems. 

To verify the PROV-TE framework, a simulation of a 
generic over-committed data center - reflecting the 
configurations of Amazon EC2 and Google - is used. The 
Simulation EnvironmEnt Distributor (SEED) tool [12] has 
been used to systematically generate different Cloud 
datasets similar to real datasets, each with a different task 
eviction behavior. This generates large-scale simulated 
data consisting of several thousand servers. 

This paper is organized in the following order. Section 
II  presents the related work. Section III presents the 
development of the Provenance-Driven Diagnostic 



Framework and its underpinning concepts and 
components. Section IV presents the process of using the 
simulation to generate test datasets that capture eviction 
behavior. Section V shows the framework’s application 
and implementation on the simulated datasets. Section VI 
presents the analysis of the results and discussion on the 
framework’s precision and recall and limitations. Finally, 
Section VII gives the overall conclusion and future work. 

II. RELATED WORK 

There have been attempts in solving the problem of 
resource over-commitment which is machines overload 
[3], [6], [7], [13]–[15] by introducing six different 
approaches (strategies) to mitigate the overload, which are 
Resource Stealing, VM Quiescing, Live Migration, 
Streaming Disks, Network Memory, and Task Eviction 
(TE). These studies look at mitigating the overload 
reactively but none have looked at approaches for solving 
the overload problem proactively. Overloads cause a 
deteriorating effect on the performance and availability of 
cloud services. Even though 88% of memory overloads are 
transient and last for less than 2 minutes [13], it is 
considered a massive drawback and can still violate the 
Service Level Agreements (SLAs) and Quality of Service 
(QoS), for which providers need to compensate the client. 

Because data in cloud datacenters is widely used and 
shared, provenance plays an important role for both 
providers and users to audit the validity [16]. Provenance 
describes the flow of data and processes across several 
heterogeneous layers and systems. The process that led to a 
piece of data is the provenance of that data [10].  In [17], 
the authors have categorized the challenges of adopting 
provenance in cloud contexts into two categories. First, 
provenance-known issues such as object identification. 
Second, cloud related issues such as scalability, 
performance, and availability. For example, clouds are 
dynamically scalable, thus capturing and defining a 
provenance service is a complex task. A number of studies 
have considered using provenance in the clouds for 
different purposes [18], [19], [16], [20]–[23]. However, 
there were no attempts of using PROV model, which is a 
World Wide Web Consortium (W3C) standard that enables 
the exchange of the provenance information [24], for 
provenance but instead these studies have developed 
bespoke models as the PROV model was still being 
developed. Using standard models can help work 
undertaken by both research and industry communities to 
be easily understood and extended by building on them.  

PROV model has recently started to gain attention in 
the cloud computing community. In [25], researchers 
applied PROV model in the cloud for security and 
trustworthiness purposes. One algorithm has been 
developed based on PROV model for controlling access to 
cloud data. It ensures the completeness of the causal 
dependencies between the data. Another study used PROV 
model as a basis for a provenance framework for gathering 
and storing cloud workflow provenance data for later 
analysis [26]. Even though these studies are notable, their 
aim and objectives are different than the ones of this paper. 
They do not look into the overload problem of physical 
machines. Li and Boucelma [27] used the open provenance 
model (OPM) and Colored Petri Net (CPN) for monitoring 
workflow and data provenance in the cloud. Their 

approach is similar to the approach conducted in paper. 
Also, they have used the simulation tool CPNTools to act 
as the diagnoser for their analysis. CPN used as the 
abstract model underpinning the diagnosis component 
which identifies the correct and faulty behaviors of the 
workflow, starting from the symptoms (faulty data or 
activities), and backward detecting the possible causes of 
the symptoms. 

III.  PROVENANCE-DRIVEN DIAGNOSTIC FRAMEWORK 

The purpose of this framework is for the identification 
of causes of task evictions from the log data of a cloud 
service provider. The process will help understand the 
components contributed to the overload, hence assist in 
prevention for the future. 

A. Underpinning Concepts of the Framework 

The reason for using provenance is because, first, it 
provides traceability of results. Second, reproducibility is 
ensured. Third, the schema facilitates the integration of 
diverse data sources. Analysis of provenance information 
of a given task would pave the way to extract knowledge 
from usage data that was not identified using the standard 
logging system. 

PROV is W3C standard for provenance. As defined by 
W3C, “provenance is a record that describes the people, 
institutions, entities, and activities involved in producing, 
influencing, or delivering a piece of data or a thing” [28]. 
With regards to distributed systems, Moreau and Groth in 
[28] stated that provenance can relate to data, documents 
or resources since it is a record that computers have 
produced, processed, and exchanged. In addition, 
provenance is one essential dimension of process 
verification, reproducibility, reliability and trust in 
distributed systems [17]. PROV, shown in figure 1, is a 
model represents all types of tangible and untangle objects 
such as data, and allows the expression of links of causal 
relationships and dependencies between them through 
nodes and edges. The dependencies define the link 
between the effects and the cause in a backwards manner.  
B. The PROV-TE Model 

In order to extend PROV to address a specific overload 
problem – Task Eviction (TE), the PROV-TE model was 

 

Figure 1. PROV Abstract Model [10] 
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developed and tested using the Google Cloud 29-Day 
Dataset [7], [29] for learning and exploration, Figure 2. 

In PROV-TE, nodes can be one of the following: 
Entity: a digital, conceptual or physical thing of which we 
need to keep the provenance, such as TE_Priority; 
Activity: a process that occurs over a duration of time that 
act upon entities, such as Evict Task; and Agent: 
something/someone to which entities and activities are 
attributed or associated, such as Scheduler. 

The relationships provided by the PROV model (i.e. 
the edges) are retained. These edges represent the 
dependencies between the nodes; for instance, 
prov:WasGeneratedBy, prov:WasDerivedFrom, 
prov:WasAssociatedWith, and prov:WasAttributedTo.  

PROV-TE, shown in figure 2, is the second version of 
the extension [8]. The only difference between the two 
versions is that a correction and more entities were 
included in the second version. To illustrate, Agent: User 
is linked to Activity: UpdateRunningTasks and entities 
TE_username, TE_differentmachine, TE_schedulingclass 
were included. PROV-TE model guides the investigations 
into job/task behavior leading to the causes for TE as 

stated by Google [7]. These causes are: Higher priority 
tasks take over the lower priority ones, Increase in request 
of resources per task, Actual demand exceeds the machine 
capacity, Decrease in machine physical capacity, and 
Missing machines (failure or offline). PROV-TE underpin 
a number of diagnostic algorithms specific for each cause. 

C. Diagnostic Algorithms 

Each cause is investigated by a number of diagnostic 
algorithms that are implemented using SQLite. For the 
scope of this paper, only three causes have been examined. 

1) Arrival of Higher Priority Task 

One of the causes of task eviction is due to higher 
priority tasks taking over the space of the lower priority 
ones. This trigger is due to the VMs’ limited resources.  
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Figure 2. PROV-TE, a PROV Model for Task Eviction in Google Cloud. 

Algorithm 1a: Cause 1 Priority Identifier. Finding the 
priority of evicted tasks and isolating the tasks in a separate 
table called PriorityofEvictedTasks (PET) table. 

1. FOR each task in Sc1Dataset table, until end of period 
2. IF Status = Killed 
3. STORE priority, timestamp of every distinct 

task in PET table. 
4. END IF 
5. END FOR 

 

Algorithm 1b: Cause 1 Eviction Identifier. Identifying the 
number of evicted tasks from PET table within one-step 
interval from higher priority tasks being scheduled in the 
same VM. 

1. FOR each task in PET (E), until end of period 
2. FOR each task in Sc1Dataset (S) table, until end of 

period 
3. IF (S.timestamp < E.timestamp <= 

(S.timestamp+ next time interval))  
4. AND (E.priority < S_priority) 
5. AND (E_machineID = S_machineID) 
6. STORE distinct E.Task in 

Cause1EvictedTasks (C1ET) table 
7. END FOR 
8. END FOR 
 



Two Algorithms have been used to investigate this 
scenario. First, all evicted tasks in the log is captured and 
their priorities are ordered and stored (Algorithm 1a). The 
aim is to precisely identify the tasks the have been evicted 
only by Higher Priority Tasks being scheduled in the same 
Host (VM) and within one interval of higher priority task 
arrival timestamp (Algorithm 1b). 

2) Increase in Resource Request 

Another cause of task eviction is when users ask for 
more resources than they have initially requested while 
their tasks are running. Each task is scheduled in a specific 
VM with specific virtual resources (assigned resources 
according to their request). In case of over-commitment, 
when users request more resources, the scheduler neither 
can allocate more resources nor find an available virtual 
machine. A physical machine with fixed resource capacity 
would no longer be capable of hosting those tasks because 
the sum of the tasks’ virtual resources’ request is higher 
than the actual machine’s capacity. So, lower priority tasks 
get evicted to avoid an overload in the machine (see 
Algorithms 2a-b). 

3) Physical Overload 

Resources over-commitment causes overload [13], [3]. 
Providers set a usage threshold level where once it has 

been reached, an overload mitigating strategy, i.e. Task 
Eviction, is then triggered [13] (see Algorithms 3a-b). 

Following is an illustration of how the PROV-TE, 
Figure 2, model can be used to trace the workflow of a task 
eviction due to the need to schedule a task with a higher 
priority. Normally, a user submits a task and specifies its 
scheduling priority. After a task is submitted (Activity: 
Submit Task), a number of Entities are generated, i.e. TE 
event type, TE priority, TE resource CPU/RAM, and all 
have a time stamp. Those entities are used by the Activity 
(Group Tasks into Job). Then a number of Entities are 
generated according to the grouping activity, i.e. JE jobID, 
JE event type, JE job name, TE task index, and a time 
stamp is recorded. The Activity: Schedule Job will use 
those entities and other entities related to the designated 
Machine, i.e. ME_MachineID, ME_eventtype, 
ME_capacity CPU/RAM) so that the task/job can be 
scheduled and hosted. One of the causes of TE is the 
submission of a new task with a higher priority, 
Algorithms 1a-b, to a VM that lacks resources, so the Evict 
Task Activity will react accordingly and processes the 
eviction of a task with the lowest priority (i.e. Entity: TE 
priority). 

D. Instantiation of the Framework – The Auditor 

The auditor, shown in Figure 3, consists of three 
components: Mapper, Database, and Query Handler. The 
Mapper takes the raw data from the log data as input and 
maps it to the PROV-TE model structure which then stored 
in the database. The Query Handler is the implementation 
of the diagnostic algorithms discussed earlier. It gets the 
structured dataset from the database as input and then runs 

Algorithm 2a: Cause 2 Request Comparer. Comparing 
the resources’ request of both CPU and MEM at the task’s 
scheduling time with the new resources’ request at running 
time, then identify the tasks with the increased update of 
resources’ request and isolate them in Updated table (UT). 

1. FOR each task in Sc2dataset table, until end of period 
2. IF (Status = scheduled (S)  
3. AND updated_while_running (U) = true)  
4. AND (TE_resource_request_CPU of U > 

TE_resource_request_CPU of S)  
5. OR (TE_resource_request_Mem of U > 

TE_resource_request_Mem of S)) 
6. THEN STORE Task_timestamp, Task ID, 

machineID in UT 
7. END IF 
8. END FOR 

Algorithm 2b: Cause 2 Eviction Identifier. Looking 
within the lowest granularity interval of the trace, one-step 
interval, from the time of the task resources’ request 
update in Updated Table (UT) to identify the tasks that 
have been evicted due to the increase in the update. 

1. FOR each task in UT table, until end of period 
2. FOR each task in Sc2dataset table (ST) with an 

increase to their resources’ request, until end of 
period 

3. IF (ST.Status = evict)  
4. AND (Task_timestamp (UT) < Task_timestamp 

(ST) <= (Task_timestamp (UT) + next time 
interval))  

5. AND Task priority (UT) > Task priority (ST) 
6. AND Task ID (ST) NOT IN C1ET table 
7. THEN display ST.Task_timestamp, 

ST.Task ID 
8. END IF 
9. END FOR 
10. END FOR 

 

Algorithm 3a: Cause 3 Overload Calculator. Comparing 
the total physical capacities with the resources usage. Once 
the usage reaches threshold (80%), store physical machine 
ID with timestamp of overload in Overloaded Table (OT). 

1. FOR each physical machine in Sc3dataset table, until 
end of period 

2. Find total CPU/RAM usage in every interval  
3. IF CPU/RAM usage >  threshold level 
4. THEN Store PM ID, timestamp in 

Overloaded table (OT) 
5. END IF 
6. END FOR 

Algorithm 3b: Cause 3 Eviction Identifier. Per every 
overloaded physical machine in OT, find all evicted tasks 
within one interval of overload in the same machine. 

1. FOR each physical machine in OT, until end of period 
2. FOR each task in Sc3dataset table (ST) hosted in 

an overloaded a physical machine that is in 
Overloaded table, until end of period 

3. IF (ST.Status = evict)  
4. AND (PM_timestamp < Task_timestamp  <= 

(PM_timestamp + next time interval))  
5. AND Task ID NOT IN C1ET table 
6. THEN display ST.Task_timestamp, 

ST.Task ID 
7. END IF 
8. END FOR 
9. END FOR 
 



the algorithms using SQLite then informs the Virtual 
Infrastructure Manager with the causes of TE.  

The potential use of the proposed framework is that 
following the process of framework development, the 
other five mitigating strategies could be modelled based on 
PROV and the relevant diagnostic algorithms could be 
developed. As a result, each mitigating strategy could have 
its own Auditor; e.g. Auditor for Live Migration causes, 
Auditor for VM Quiescing causes and so on. 

IV.  USING SIMULATION FOR FRAMEWORK 

EVALUATION  

Both the model and the algorithms have gone through 
two iterations of development using Google 29-day 
dataset. Evicted tasks have been identified as well as the 
relevant causes based on metrics such as timestamp and 
shared physical machine. Due to the limited access to real 
Cloud datasets and in order to evaluate and assess the 
diagnostic framework, a simulation tool, SEED [12], has 
been used to generate test datasets according to three 
known Task Eviction behaviors. 

Simulation in computer science domain is a vital 
systematic method for auditing and validating complex 
behaviors. There are a number of simulation tools that 
could have been used, such as CloudSim, GreenCloud, and 
MDCSim [30]–[32]. However they struggle to handle 
large-scale systems and require understanding of both the 
model domain as well as aspects relating to simulation 
synchronization. SEED facilitates the modelling of the 
domain based on graph notation and was designed 
specifically for modelling large-scale data centers with 
minimal user intervention and assumptions [12]. 

A. Purpose 

The hypothesis of the research is that provenance adds 
value to the raw data by connecting the data in a way that 
provides additional meaning for further interpretation and 
analysis. Specifically, the analysis will provide the reasons 
and causes of an overload. 

The aim of this evaluation is to test and evaluate the 
reasoning power of the proposed diagnostic algorithms and 
the underpinning PROV-TE model for the different 
overload scenarios. The simulation tool has been set up 
with a general data center configuration and has been used 
to generate 15 different datasets. Each data set comes with 
a log which includes details of the physical and virtual 
machines such as Host ID and CPU/MEM units, and tasks 
such as requested units of CPU/MEM and priority. Most 
importantly, it includes details about eviction of tasks such 
as relevant eviction cause and timestamp. These details 
will be used to validate the results of our framework by 
calculating the precision and recall of every algorithm.  

B. Scope of Evalution 

We focus on the following causes (behaviors): 

Cause (C1). Arrival of higher priority tasks - higher 
priority tasks will always be scheduled no matter of 
how full the machines are; hence in a full capacity 
situation, lower priority tasks will be automatically 
evicted to make space. 
Cause (C2). Request for increasing resources for 
current tasks - the machine has a fixed capacity, so at a 
specific point the lower priority tasks will be evicted to 
make space for the new requests of the higher priority 
tasks. 
Cause (C3). The actual demand exceeds the machine 
capacity - once the maximum physical usage reached 
the threshold of the machine’s capacity, the scheduler 
will automatically evict low priority tasks to avoid 
memory halts or breaching SLA’s agreement, i.e. 
performance metrics. 

These three causes will cover a reasonable range of 
typical patterns of behavior in resource management at the 
IaaS level of Cloud Computing. 

C. Design of Evaluation 

Three scenarios have been developed in SEED. 
Scenario 1 includes the behavior of C1. Scenario 2 
includes the behavior of C1 and C2. Lastly, Scenario 3 
includes the behavior of C1 and C3. Each scenario is run 5 
times, resulting in a dataset similar to the log data from a 
data center. Having a dataset with more than one cause 
helps validate the accuracy of the diagnostic algorithms. 

D. General Setup for the Simulation 

The simulation environment has been configured to 
reflect a general data center setup and is shown in Figure 4. 
For every run, the tool creates 20 physical machines (PM) 
and 40 virtual machines (VM). Each PM has two VMs 
(1:2). The PMs’ CPU and RAM sizes are fixed at 8 units 
and 15 GB, respectively. VM sizes are chosen randomly 
from a specified size list. Number of VM CPU can be 2, 4, 
or 8 units. VM RAM size can be 4, 6, or 8 GB. The sizes 

Figure 3. PROV-TE system model comprised of an Auditor, 
Infrastructure Manager, and Infrastructure Monitor 

TABLE I.  DESIGN OF SCENARIOS 

 Scenario 1 Scenario 2 Scenario 3 

Cause (C1)       

Cause (C2)     

Cause (C3)     

 



are a reflection of Amazon EC2 c3.2xlarge instance [33]. 
This particular instance allows over-commitment of 
resources. This hybrid configuration ensures that simulated 
data is similar to real data. The scale of the simulation can 
be generalized to larger environments with more PMs and 
VMs, generating huge volumes of data. This aims to 
demonstrate the feasibility of massive-scale simulation for 
implementing provenance-based techniques. 

Tasks are then generated according to a random task 
submission rate (TSR). TSR is randomly chosen from 100-
300 per hour. The simulation length is 24 hours. The 
method of task distribution is: send one task to one VM at 
a time, in equal distribution, then loop back again until all 
tasks are sent to be queued in every VM. 

There are 4 variables assigned to each task. Firstly, a 
task’s length is measured in steps. The task length is 
randomly chosen from 2 to 10. The length of the task is the 
number of steps needed to finish execution. Events are 
logged in a one-step interval. A step is a predefined 
interval of 30 seconds. Second, a priority is randomly 
assigned to each task. It is a number to define the privilege 
of a task - 0 (lowest), 1 and 2 (highest). Finally, requested 
resources, CPU and RAM, are assigned to the tasks. The 
resources are also chosen randomly from a predefined list 
(1, 2, 3, 4, 5, 6, 7, 8).  

For every VM, there are three queues for tasks to be 
scheduled, once for each priority which ensures that every 
task get its fair time of waiting in the queue. In the 
scheduling method, there is a loop that goes around the 
three queues and dequeues one task from each queue at a 
time to be scheduled. 

E. Scenario Specific Configration 

Each scenario has additional configuration in order to 
generate the needed behavior in the dataset. Three 
algorithms are developed to mimic the behavior led by the 
three causes, namely – Task Evictor, Request Handler and 
Overload Manager. A brief description of these is detailed 
below. 

1)  Arrival of Higher Priority Tasks 

For every VM, whenever there is a lack of RAM or 
CPU and there is a task waiting in the queue with higher 

priority than the ones running, lower priority tasks get 
evicted so the VM to be ready for the next task.  

Algorithm 4: Task Evictor: Whenever a task is to be 
scheduled, the scheduler has been configured to first 
check the available VM capacity, CPU and RAM. If there 
is enough space, then the task gets scheduled. Otherwise, 
if there lower priority tasks running in the VM, a list is 
then created to include all lower priority tasks ordered 
ascendingly by priority. From the top of the list, tasks get 
evicted until enough space becomes available. Then the 
task in question gets scheduled. In case there are no lower 
priority tasks, the to-be-scheduled task is to wait in the 
queue until free space becomes available.     

2) Increase in Resourse Request 

Scheduling a task on a specific VM depends on the 
task’s requested capacities, in terms of CPU and RAM. 
Once hosted, a task can request a change in the requested 
resources. In case there is no free resource to accommodate 
this request and there are lower priority tasks on the same 
VM, the task eviction mechanism will be executed until 
the desired requested capacities become available. 

Algorithm 5: Request Handler: While a task is running, 
the simulation tool has been configured to generte a new 
random request from a predefined list (1, 2, 3, 4, 5, 6, 7, 
8). The request will get approved only if there is available 
space in the VM. Otherwise, the same lower priority task 
eviction method of Algorithm 4: Task Evictor is run until the 
requested space becomes available. 

3) Physical Machine Overload 

Over-commitment is a policy that is widely adopted in 
data canters to maximize resources’ usage. Physical and 
virtual usage are managed by overload threshold levels 
[34]. The simulation tool has been configured with an 80% 
physical threshold level. Once physical usage exceeds it, 
eviction process is executed. Unlike the other scenarios, 
two policies are enforced when evicting tasks, lower 
priority task first and Last-In-First-Out (LIFO). It is more 
sensible to evict tasks that have just started than those near 
to finish.  

 
Figure 4. Configuration of the simulation environment using the 

SEED simulator 
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TABLE II.  OUTPUT OF SIMULATION  

 Scenario 1 Scenario 2 Scenario 3 

 Total 
Tasks 

Total 
Evicted 
Tasks 

Total 
Tasks 

Total 
Evicted 
Tasks 

Total 
Tasks 

Total 
Evicted 
Tasks 

Run 
1 

4208 259 3735 
C1 C2 

3131 
C1 C3 

904 20 326 54 

Run 
2 

4530 266 4076 
C1 C2 

2341 
C1 C3 

967 20 16 187 

Run 
3 

4501 421 4328 
C1 C2 

2687 
C1 C3 

1041 45 1 176 

Run 
4 

4653 297 4035 
C1 C2 

3077 
C1 C3 

1012 37 177 76 

Run 
5 

4538 319 4049 
C1 C2 

2596 
C1 C3 

994 43 96 157 

 



Algorithm 6: Overload Manager: For every physical 
machine, the total physical usage is calculated every one-
step interval (30 seconds). If the total physical usage 
exceeds the predifented usage thresold limit, tasks get 
evicted following the same lower priority task eviction 
method of Algorithm 4: Task Evictor until normal usage 
behavior is restored. The list is ordered ascending by tasks 
priority and descending by time of hosting in the VM. The 
normal usage behavior means the total physical usage is 
less than the usage thresold limit. 

F. Simulation Output 

To show the randomness, variances and differences of 
the resulting generated behavior, each scenario has 5 
simulation runs (i.e. 15 simulated datasets in total).  

Table II summarizes the overall output of the 15 runs 
of the three scenarios. For each run, the total number of 
tasks as well as the total number of evicted tasks are 
shown. Also, because Scenario 2 and 3 have two causes 
each, the total number of evicted tasks related to each 
cause is also shown.  

The aim for table II is that it will be used after applying 
the algorithms of the framework to calculate the precision 
and recall of the results, which will be explained in the 
next section. 

Figure 5 shows the execution time of every run for 
every scenario. Table III illustrates the mean of the 
execution time of the five runs for every scenario and the 
standard deviation. Due to the small number of tasks of 
Scenario 3 which depends on the random TSR, the mean 
of Scenario 3 execution times is smaller compared to the 
means of Scenarios 1 and 2. Also, Scenario 2 execution 
times are relatively higher is because of the complexity of 
Algorithm: Request Handler. While tasks are running, their 
resources request are constantly and randomly changed. In 
order for every request to be approved or not, capacities 
comparison is undertaken. Every request in RAM or CPU 
must be less or equal the size of the VM. Also, if  there is 
no VM space and there are lower priority tasks, the 
eviction process is triggered. Only then the request is 
approved. 

V. TESTING THE DIAGNOSTIC FRAMEWORK 

The following shows the results of the implementation 
of the framework, the Auditor component shown figure 3. 
For scenario 1, the auditor will only trigger C1 related 
algorithms. For scenario 2, the auditor will trigger C1 and 
C2 related algorithms. For scenario 3, the auditor will 
trigger C1 and C3 related algorithms, illustrated in table I.  

The input to the Auditor is the 15 simulated test 
datasets. Then, the diagnostic algorithms are applied to 
find the causes of all eviction. The output of the Auditor is 
the identification of causes and relevant evicted tasks. 

A. Output from the Auditor 

Table IV summarizes the output of all diagnostic 
algorithms. In section VI, precision and recall statistical 
measures will be applied to evaluate the results. 

VI.  ANALYSIS AND DISCUSSION 

The simulation facilitated the generation of 15 cloud 
test datasets that captured specific behaviors for task 
eviction. The developed diagnostic algorithms make use of 
PROV-TE. This has proved to be helpful by both the 
ability of auditing the datasets and identifying evicted tasks 
and also distinguishing the relevant causes.  

In order to evaluate the accuracy of the diagnostic 
algorithms, precision and recall statistical measures have 
been applied. Precision is a measure of the capability of 
the framework to only identify the relevant evicted task for 
each cause. It is a statistical measure of reliability of the 
framework. Recall is a measure of the capability of the 
framework to retrieve and identify the highest possible 
number of relevant evicted tasks for a specific cause. It is a 
statistical measure of the sensitivity of the framework. 

 Precision ൌ  ୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣ ሺ୘୔ሻ୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣ ሺ୘୔ሻା୊ୟ୪ୱୣ ୔୭ୱ୧୲୧୴ୣሺ୊୔ሻ ൈ ͳͲͲ  (1) 

Recall ൌ  ୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣ ሺ୘୔ሻ୘୰୳ୣ ୔୭ୱ୧୲୧୴ୣ ሺ୘୔ሻା୊ୟ୪ୱୣ ୒ୣ୥ୣ୲୧୴ୣ ሺ୊୒ሻ ൈ ͳͲͲ  (2) 

Figure 5. Execution time for every simulation run. 
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TABLE III.  MEAN AND STANDARD DEVIATION OF EXECUTION TIMES 

 Scenario 1 Scenario 2 Scenario 3 

Mean 1.292 2.53 0.43 

Standard 
Deviation 

± 0.1 ± 0.73 ± 0.065 

 

TABLE IV.  OUTPUT OF FRAMEWORK 

 Scenario 1 Scenario 2 Scenario 3 

 
Total 
Tasks 
Found 

Evicted 
Tasks 
Found 

Total 
Tasks 
Found 

Evicted 
Tasks 
Found 

Total 
Tasks 
Found 

Evicted 
Tasks 
Found 

Run 
1 

4208 259 3735 
C1 C2 

3131 
C1 C3 

900 13 307 58 

Run 
2 

4530 266 4076 
C1 C2 

2341 
C1 C3 

960 15 91 60 

Run 
3 

4501 421 4328 
C1 C2 

2687 
C1 C3 

1048 20 75 55 

Run 
4 

4653 297 4035 
C1 C2 

3077 
C1 C3 

1012 22 182 36 

Run 
5 

4538 319 4049 
C1 C2 

2596 
C1 C3 

997 23 159 55 

 



TABLE VI.   SCENARIO 2: MEAN PRECISION AND RECALL 

C1 Algorithms Relevant Tasks 
(Simulated) 

Irrelevant Tasks 
(Simulated) 

Relevant Tasks 
(Framework) 

TP = 981.4 
Std Dev = ± 54 

FP = 2 
Std Dev = ± 3 

Irrelevant Tasks 
(Framework) 

FN = 2.2 
Std Dev = ± 3.1 

TN = 0 
Std Dev = ± 0 

Precision 99% 

Recall 99% 

C2 Algorithms Relevant Tasks 
(Simulated) 

Irrelevant Tasks 
(Simulated) 

Relevant Tasks 
(Framework) 

TP = 18.6 
Std Dev = ± 4.3 

FP = 0 
Std Dev = ± 0 

Irrelevant Tasks 
(Framework) 

FN = 14.4 
Std Dev = ± 8.4 

TN = 0 
Std Dev = ± 0 

Precision 100% 

Recall 56% 

 

TP, FP, and TN have been calculated by comparing the 
output of the simulation, Table II, with the output of the 
auditor, Table IV. For example, looking at the Tables II 
and IV, in Run 1 of Scenario 2, the Auditor has been able 
to identify all tasks, 3735, and also has been able to 
classify the evicted tasks based on the specific causes, C1 
and C2. For C1, 900 (TP) evicted tasks out of 904 have 
been identified (FN = 4), so the precision is 100% and the 
recall is 99%. For C2, 13 evicted tasks out of 20 have been 
identified which makes precision 100% and recall 65%.  

Since the output is overwhelming, the precision and 
recall have been calculated based on the mean TP, FP, and 
TN of the five runs for every cause in the three scenarios. 
The precision and recall of C1 related algorithms have 
been calculated in every scenario because all datasets 
capture C1 task eviction behavior whereas C2 task eviction 
behavior is captured in only Scenario 2 and C3 task 
eviction behavior is captured in only Scenario 3. 

In table V, because the simulated datasets of scenario 1 
have one behavior, the precision and recall are 100%. 
There is only one cause and the algorithms have identified 

all evicted tasks due to this cause, whereas the other 
scenarios have 2 behaviors so the algorithms precision and 
recall are not as high. 

Table VI summarizes the mean precision and recall of 
scenario 2 across all runs. It can be seen that the diagnostic 
algorithms of C1 are quite promising with 99% in both 
precision and recall, as seen in figures 6a and 7a. C2 
diagnostic algorithms have returned precisely the relevant 
evicted tasks but failed to pick up 44% of the evicted tasks 
because of C2, as seen in figures 6b and 7b. 

In table VII, C1 diagnostic algorithms of scenario 
3 are able to identify relevant evicted tasks. 

TABLE V.  SCENARIO 1: MEAN PRECISION AND RECALL 

C1 Algorithms Relevant Tasks 
(Simulated) 

Irrelevant Tasks 
(Simulated) 

Relevant Tasks 
(Framework) 

TP = 312.4 
Std Dev = ± 65 

FP = 0 
Std Dev = ± 0 

Irrelevant Tasks 
(Framework) 

FN = 0 
Std Dev = ± 0 

TN = 0 
Std Dev = ± 0 

Precision 100% 

Recall 100% 

 

 
(a) Cause 1: Evictions due to higher priority tasks 

 
(b) Cause 2: Evictions due to increased resource request by 

higher priority tasks 
Figure 6. Average of actual and identified evicted tasks per hour, showing the variance across all simulation runs. 

 

 

(a) Cause 1 

 
(b) Cause 2 

Figure 7. Cumulative average task evictions over all simulations of Scenario 2. 
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However, as shown in figures 8a and 9a there is 
probably an overlap in terms of the identified causes 
as 40% of which are irrelevant. The recall percentage 
of C3 diagnostic algorithms is high, 90%, which 
means it is capable of identifying the relevant evicted 
tasks. However, its precision measure is 40%, as 
seen in figure 9b. The precision and recall of C1 
diagnostic algorithms are relatively high across all 
scenarios. 

Figure 10 shows the power of C1 and C3 diagnostic 
algorithms combined. Almost 90% of all evicted tasks due 
to C1 and C3 have been identified. This could suggest that 
running a hybrid algorithm of two or more causes could 
return better results with higher precision and recall instead 

of auditing each cause separately. 
For every run of every scenario, the Auditor can 

generate files for each cause which include the IDs of the 
evicted tasks and their physical and virtual host IDs which 
can be further investigated. Also, the Auditor can order the 
causes in terms of level of impact on the system. From 
tables IV, the most dominant cause is C1 which is the 
Arrival of Higher Priority Tasks and the least dominant 
cause is C2 which is Increase in Resource Request. 

VII.  CONCLUSION AND FUTURE WORK 

In this paper we have discussed how cloud providers 
use resource over-commitment to leverage under-utilized 
capacity yet with a trade-off of introducing the problem of 
overload. A Provenance-Driven Diagnostic Framework 
has been presented and evaluated. The framework’s aim is 
to efficiently mine big and growing data to find the causes 
of Task Eviction in a data center. Our main contribution of 

 
(a) Cause 1: Evictions due to higher priority tasks 

 
(b) Cause 3: Evictions due to machine overload 

Figure 8. Average of actual and identified evicted tasks per hour, showing the variance across all simulation runs. 
 

 
(a) Cause 1 

 
(b) Cause 3 

Figure 9. Cumulative average task evictions over all simulations of Scenario 3 
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TABLE VII.  SCENARIO 3: MEAN PRECISION AND RECALL 

C1 Algorithms Relevant Tasks 
(Simulated) 

Irrelevant Tasks 
(Simulated) 

Relevant Tasks 
(Framework) 

TP = 119.4 
Std Dev = ± 126.2 

FP = 43.4 
Std Dev = ± 37.6 

Irrelevant Tasks 
(Framework) 

FN = 3.8 
Std Dev = ± 8.4 

TN = 0 
Std Dev = ± 0 

Precision 73% 

Recall 97% 

C3 Algorithms Relevant Tasks 
(Simulated) 

Irrelevant Tasks 
(Simulated) 

Relevant Tasks 
(Framework) 

TP = 52 
Std Dev = ± 9.2 

FP = 78 
Std Dev = ± 55.5 

Irrelevant Tasks 
(Framework) 

FN = 0.8 
Std Dev = ± 1.7 

TN = 0 
Std Dev = ± 0 

Precision 40% 

Recall 98% 

 

 
Figure 10. Cumulative average task evictions over all simulations of 

Scenario 3, combining C1 and C3. 
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this paper is the evaluation of the framework using a 
massive-scale simulation tool, SEED. SEED has been used 
to generate 15 different cloud test datasets with different 
task eviction behaviors. The Framework, PROV-TE and 
Diagnostic Algorithms, have been applied on these 
datasets and the found results have been compared with the 
simulation results. Finally, the results have been 
statistically analyzed using precision and recall measures 
to find the levels of sensitivity and reliability. The average 
precision and recall of the diagnostic algorithms are 83% 
and 90%, respectively. Although the diagnostic algorithms 
identify the causes of task eviction fairly precisely, there 
are limitations relating to the overlapping of identified 
causes for evicted tasks. This could explain the precision 
levels of Scenario 3 diagnostic algorithms. 

For future work, we intend to run a more extensive 
simulation experiment with a larger environment. It will be 
of interest to apply the framework on a dataset that 
encompasses all task eviction behaviors. Also, this work is 
a first step for research that looks into mitigating TE in 
data centers, which is assumed to lead to a decrease in the 
number of overload instances. In addition, we will further 
improve the diagnostic algorithms and the approach of 
identifying Task Eviction root causes in order to increase 
the level of accuracy in terms of precision and recall. 
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