
This is a repository copy of PROV-TE: A Provenance-Driven Diagnostic Framework for
Task Eviction in Data Centers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/112765/

Version: Accepted Version

Proceedings Paper:
Albatli, A, McKee, D orcid.org/0000-0002-9047-7990, Townend, P et al. (2 more authors)
(2017) PROV-TE: A Provenance-Driven Diagnostic Framework for Task Eviction in Data
Centers. In: 2017 IEEE Third International Conference on Big Data Computing Service
and Applications (IEEE BigDataService 2017). IEEE BigDataService 2017, 06-10 Apr
2017, South San Francisco, California, USA. IEEE , pp. 233-242. ISBN
978-1-5090-6318-5

https://doi.org/10.1109/BigDataService.2017.34

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

PROV-TE: A Provenance-Driven Diagnostic
Framework for Task Eviction in Data Centers

Abdulaziz Albatli1,2, David McKee1, Paul Townend1, Lydia Lau1, Jie Xu1

1 Distributed Systems and Services Research Group
School of Computing, University of Leeds, Leeds, UK

{sc11a2a, d.w.mckee, p.m.townend, l.m.s.lau, j.xu}@leeds.ac.uk

2 Huraymila College of Science and Humanities
Computer Science Department, Shaqra University, Riyadh, Saudi Arabia

{albatlia}@su.edu.sa

Abstract—Cloud Computing allows users to control
substantial computing power for complex data processing,
generating huge and complex data. However, the virtual
resources requested by users are rarely utilized to their full
capacities. To mitigate this, providers often perform over-
commitment to maximize profit, which can result in node
overloading and consequent task eviction. This paper
presents a novel framework that mines the huge and growing
historical usage data generated by Cloud data centers to
identify the causes of overloads. Provenance modelling is
applied to add contextual meaning to the data, and the
PROV-TE diagnostic framework provides algorithms to
efficiently identify the causality of task eviction. Using
simulation to reflect real world scenarios, our results
demonstrate a precision and recall of the diagnostic
algorithms of 83% and 90% respectively. This demonstrates
a high level of accuracy of the identification of causes.

Keywords—Big Data; Data Centers; Cyberinfrastructure;
Cloud Computing; Overcommitment; Overload; Provenance;
PROV; Simulation; Distributed Systems;

I. INTRODUCTION

Infrastructure as a Service (IaaS) in Cloud Computing
has introduced many new opportunities for businesses and
individuals for extending accessibility and minimizing
costs by providing users with access to remote resources
[1]. However, as the Cloud Computing paradigm rapidly
evolves, effective management of resource allocation to
maintain a high level of overall system utilization becomes
increasing important. Such management is typically
addressed through the use of virtualization and over-
commitment of resources to users; this requires data
mining to be performed to quickly analyse the historical
and current state of the relevant Cloud data centre. The
cloud data centers that support IaaS process millions of
tasks, and generate huge amounts of historical trace-log
data. Mining this large, growing, and complex data is very
challenging. This paper investigates the negative impact on
users due to over-commitment resulting in task eviction,
through a provenance-based big data analysis.

Cloud Computing is defined by the National Institute
of Standards and Technology's (NIST) as “a model for
enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released

with minimal management effort or service provider
interaction” [2]. It delivers virtualized, scalable and elastic
resources (e.g. CPU, memory) over a network from data
centers to enable users, including individuals, enterprises,
and governments, to run complex operations requiring
significant computational power.

Resource management in data centers is achieved
through virtualization or containerization whereby tasks
are executed within virtual machines (VM) which are
scheduled on physical servers. In this way Cloud providers
utilize over-commitment of physical resources in order to
leverage unused capacity within their data centers and
therefore maximize profits [3]. The over-commitment of
resources often leads to an overload on the actual physical
machines [3], which can lower the performance or lead to
the failure of tasks due to lack of resources, i.e. CPU or
RAM, and consequently lead to SLA violations. Over-
commitment in IaaS is the practice of allocating more
virtual resources on a physical machine than the actual
physical capacities based on a predefined over-
commitment ratio [4]–[6].

Currently, there are a number of different approaches
to mitigate the overload, one of which is Task Eviction
(TE) [7]. A provenance-driven diagnostic framework [8]
has been developed, and is presented in this paper, using
Google Cloud 29-Day dataset for learning [7], [9]. Its goal
is to utilize provenance modelling to efficiently mine
large-scale cloud trace-log data to identify the causes for
task evictions. The framework extends the W3C PROV
model [10] into PROV-TE which underpins a number of
diagnostic algorithms for identifying evicted tasks due to
specific causes. The records of an activity that led to a
piece of data is the provenance of that of data [11].
Provenance describes the flow of data and processes across
several heterogeneous layers and systems.

To verify the PROV-TE framework, a simulation of a
generic over-committed data center - reflecting the
configurations of Amazon EC2 and Google - is used. The
Simulation EnvironmEnt Distributor (SEED) tool [12] has
been used to systematically generate different Cloud
datasets similar to real datasets, each with a different task
eviction behavior. This generates large-scale simulated
data consisting of several thousand servers.

This paper is organized in the following order. Section
II presents the related work. Section III presents the
development of the Provenance-Driven Diagnostic

Framework and its underpinning concepts and
components. Section IV presents the process of using the
simulation to generate test datasets that capture eviction
behavior. Section V shows the framework’s application
and implementation on the simulated datasets. Section VI
presents the analysis of the results and discussion on the
framework’s precision and recall and limitations. Finally,
Section VII gives the overall conclusion and future work.

II. RELATED WORK

There have been attempts in solving the problem of
resource over-commitment which is machines overload
[3], [6], [7], [13]–[15] by introducing six different
approaches (strategies) to mitigate the overload, which are
Resource Stealing, VM Quiescing, Live Migration,
Streaming Disks, Network Memory, and Task Eviction
(TE). These studies look at mitigating the overload
reactively but none have looked at approaches for solving
the overload problem proactively. Overloads cause a
deteriorating effect on the performance and availability of
cloud services. Even though 88% of memory overloads are
transient and last for less than 2 minutes [13], it is
considered a massive drawback and can still violate the
Service Level Agreements (SLAs) and Quality of Service
(QoS), for which providers need to compensate the client.

Because data in cloud datacenters is widely used and
shared, provenance plays an important role for both
providers and users to audit the validity [16]. Provenance
describes the flow of data and processes across several
heterogeneous layers and systems. The process that led to a
piece of data is the provenance of that data [10]. In [17],
the authors have categorized the challenges of adopting
provenance in cloud contexts into two categories. First,
provenance-known issues such as object identification.
Second, cloud related issues such as scalability,
performance, and availability. For example, clouds are
dynamically scalable, thus capturing and defining a
provenance service is a complex task. A number of studies
have considered using provenance in the clouds for
different purposes [18], [19], [16], [20]–[23]. However,
there were no attempts of using PROV model, which is a
World Wide Web Consortium (W3C) standard that enables
the exchange of the provenance information [24], for
provenance but instead these studies have developed
bespoke models as the PROV model was still being
developed. Using standard models can help work
undertaken by both research and industry communities to
be easily understood and extended by building on them.

PROV model has recently started to gain attention in
the cloud computing community. In [25], researchers
applied PROV model in the cloud for security and
trustworthiness purposes. One algorithm has been
developed based on PROV model for controlling access to
cloud data. It ensures the completeness of the causal
dependencies between the data. Another study used PROV
model as a basis for a provenance framework for gathering
and storing cloud workflow provenance data for later
analysis [26]. Even though these studies are notable, their
aim and objectives are different than the ones of this paper.
They do not look into the overload problem of physical
machines. Li and Boucelma [27] used the open provenance
model (OPM) and Colored Petri Net (CPN) for monitoring
workflow and data provenance in the cloud. Their

approach is similar to the approach conducted in paper.
Also, they have used the simulation tool CPNTools to act
as the diagnoser for their analysis. CPN used as the
abstract model underpinning the diagnosis component
which identifies the correct and faulty behaviors of the
workflow, starting from the symptoms (faulty data or
activities), and backward detecting the possible causes of
the symptoms.

III. PROVENANCE-DRIVEN DIAGNOSTIC FRAMEWORK

The purpose of this framework is for the identification
of causes of task evictions from the log data of a cloud
service provider. The process will help understand the
components contributed to the overload, hence assist in
prevention for the future.

A. Underpinning Concepts of the Framework

The reason for using provenance is because, first, it
provides traceability of results. Second, reproducibility is
ensured. Third, the schema facilitates the integration of
diverse data sources. Analysis of provenance information
of a given task would pave the way to extract knowledge
from usage data that was not identified using the standard
logging system.

PROV is W3C standard for provenance. As defined by
W3C, “provenance is a record that describes the people,
institutions, entities, and activities involved in producing,
influencing, or delivering a piece of data or a thing” [28].
With regards to distributed systems, Moreau and Groth in
[28] stated that provenance can relate to data, documents
or resources since it is a record that computers have
produced, processed, and exchanged. In addition,
provenance is one essential dimension of process
verification, reproducibility, reliability and trust in
distributed systems [17]. PROV, shown in figure 1, is a
model represents all types of tangible and untangle objects
such as data, and allows the expression of links of causal
relationships and dependencies between them through
nodes and edges. The dependencies define the link
between the effects and the cause in a backwards manner.
B. The PROV-TE Model

In order to extend PROV to address a specific overload
problem – Task Eviction (TE), the PROV-TE model was

Figure 1. PROV Abstract Model [10]

Prov:AgentProv:AgentProv:ActivityProv:Activity

Prov:EntityProv:Entity

prov:wasAttributedTo

responsibilit
y view

data flo
w viewprocess flow view

prov:used

prov:wasGeneratedBy

prov:wasDerivedFrom

prov:wasInformedBy
prov:actedOnBehalfOf

prov:w
asAssociatedW

ith

developed and tested using the Google Cloud 29-Day
Dataset [7], [29] for learning and exploration, Figure 2.

In PROV-TE, nodes can be one of the following:
Entity: a digital, conceptual or physical thing of which we
need to keep the provenance, such as TE_Priority;
Activity: a process that occurs over a duration of time that
act upon entities, such as Evict Task; and Agent:
something/someone to which entities and activities are
attributed or associated, such as Scheduler.

The relationships provided by the PROV model (i.e.
the edges) are retained. These edges represent the
dependencies between the nodes; for instance,
prov:WasGeneratedBy, prov:WasDerivedFrom,
prov:WasAssociatedWith, and prov:WasAttributedTo.

PROV-TE, shown in figure 2, is the second version of
the extension [8]. The only difference between the two
versions is that a correction and more entities were
included in the second version. To illustrate, Agent: User
is linked to Activity: UpdateRunningTasks and entities
TE_username, TE_differentmachine, TE_schedulingclass
were included. PROV-TE model guides the investigations
into job/task behavior leading to the causes for TE as

stated by Google [7]. These causes are: Higher priority
tasks take over the lower priority ones, Increase in request
of resources per task, Actual demand exceeds the machine
capacity, Decrease in machine physical capacity, and
Missing machines (failure or offline). PROV-TE underpin
a number of diagnostic algorithms specific for each cause.

C. Diagnostic Algorithms

Each cause is investigated by a number of diagnostic
algorithms that are implemented using SQLite. For the
scope of this paper, only three causes have been examined.

1) Arrival of Higher Priority Task

One of the causes of task eviction is due to higher
priority tasks taking over the space of the lower priority
ones. This trigger is due to the VMs’ limited resources.

Submit Task
Group Tasks

into Jobs

Schedule

Job

Evict Task
Update

Machine

Add/Remove

Machine

Update

Running

Tasks

TE_username

TE_differentmachine

TE_resource_request_
CPU

TE_schedulingclass

TE_priority

TE_eventtype

TE_taskindex

TE_time

stamp

TE_resource_request_
RAM

JE_username

JE_jobID

JE_eventtype

JE_timestamp

User Scheduler

ME_capacityCPU

ME_machineID

ME_eventtype

ME_capacityRAM

ME_time

stamp

TE_resource_request_
CPU

TE_resource_request_
RAM JE_eventtype

TE_eventtype

ME_eventtype

ME_capacityCPU

ME_capacityRAM

P
ro

v
:W

a
sG

e
n

e
ra

te
d

B
y

P
ro

v
:W

a
sG

e
n

e
ra

te
d

B
y

P
ro

v
:U

se
d

P
ro

v
:U

se
d

JE_eventtype

TE_eventtype

P
ro

v
:U

se
d

P
ro

v
:w

a
sG

e
n

e
ra

te
d

F
ro

m

Prov:wasDerivedFrom

Pro
v:w

asD
eriv

edFro
m

P
ro

v
:w

a
sG

e
n

e
ra

te
d

F
ro

m

Prov:wasDerivedFrom

P
ro

v
:w

a
sD

e
ri

v
e

d
F

ro
m

P
ro

v
:w

a
sG

e
n

e
ra

te
d

F
ro

m

P
ro

v
:U

se
d

P
ro

v
:w

a
sG

e
n

e
ra

te
d

F
ro

m

Prov:Used

Prov:wasGen

eratedFrom Prov:wasDerivedFrom

P
ro

v
:w

a
sD

e
ri

v
e

d
F

ro
m

Prov:Used

Prov:WasAsso

ciatedWith

P
ro

v
:W

a
sA

ss
o

ci
a

te
d

W
it

h

Prov:wasGen

eratedFrom

P
ro

v
:w

a
sD

e
ri

v
e

d
F

ro
m

P
ro

v
:U

se
d

Prov:Used

Legend:

Agent ValueActivity Entitiy

P
ro

v
:w

a
sD

e
ri

v
e

d
F

ro
m

Figure 2. PROV-TE, a PROV Model for Task Eviction in Google Cloud.

Algorithm 1a: Cause 1 Priority Identifier. Finding the
priority of evicted tasks and isolating the tasks in a separate
table called PriorityofEvictedTasks (PET) table.

1. FOR each task in Sc1Dataset table, until end of period
2. IF Status = Killed
3. STORE priority, timestamp of every distinct

task in PET table.
4. END IF
5. END FOR

Algorithm 1b: Cause 1 Eviction Identifier. Identifying the
number of evicted tasks from PET table within one-step
interval from higher priority tasks being scheduled in the
same VM.

1. FOR each task in PET (E), until end of period
2. FOR each task in Sc1Dataset (S) table, until end of

period
3. IF (S.timestamp < E.timestamp <=

(S.timestamp+ next time interval))
4. AND (E.priority < S_priority)
5. AND (E_machineID = S_machineID)
6. STORE distinct E.Task in

Cause1EvictedTasks (C1ET) table
7. END FOR
8. END FOR

Two Algorithms have been used to investigate this
scenario. First, all evicted tasks in the log is captured and
their priorities are ordered and stored (Algorithm 1a). The
aim is to precisely identify the tasks the have been evicted
only by Higher Priority Tasks being scheduled in the same
Host (VM) and within one interval of higher priority task
arrival timestamp (Algorithm 1b).

2) Increase in Resource Request

Another cause of task eviction is when users ask for
more resources than they have initially requested while
their tasks are running. Each task is scheduled in a specific
VM with specific virtual resources (assigned resources
according to their request). In case of over-commitment,
when users request more resources, the scheduler neither
can allocate more resources nor find an available virtual
machine. A physical machine with fixed resource capacity
would no longer be capable of hosting those tasks because
the sum of the tasks’ virtual resources’ request is higher
than the actual machine’s capacity. So, lower priority tasks
get evicted to avoid an overload in the machine (see
Algorithms 2a-b).

3) Physical Overload

Resources over-commitment causes overload [13], [3].
Providers set a usage threshold level where once it has

been reached, an overload mitigating strategy, i.e. Task
Eviction, is then triggered [13] (see Algorithms 3a-b).

Following is an illustration of how the PROV-TE,
Figure 2, model can be used to trace the workflow of a task
eviction due to the need to schedule a task with a higher
priority. Normally, a user submits a task and specifies its
scheduling priority. After a task is submitted (Activity:
Submit Task), a number of Entities are generated, i.e. TE
event type, TE priority, TE resource CPU/RAM, and all
have a time stamp. Those entities are used by the Activity
(Group Tasks into Job). Then a number of Entities are
generated according to the grouping activity, i.e. JE jobID,
JE event type, JE job name, TE task index, and a time
stamp is recorded. The Activity: Schedule Job will use
those entities and other entities related to the designated
Machine, i.e. ME_MachineID, ME_eventtype,
ME_capacity CPU/RAM) so that the task/job can be
scheduled and hosted. One of the causes of TE is the
submission of a new task with a higher priority,
Algorithms 1a-b, to a VM that lacks resources, so the Evict
Task Activity will react accordingly and processes the
eviction of a task with the lowest priority (i.e. Entity: TE
priority).

D. Instantiation of the Framework – The Auditor

The auditor, shown in Figure 3, consists of three
components: Mapper, Database, and Query Handler. The
Mapper takes the raw data from the log data as input and
maps it to the PROV-TE model structure which then stored
in the database. The Query Handler is the implementation
of the diagnostic algorithms discussed earlier. It gets the
structured dataset from the database as input and then runs

Algorithm 2a: Cause 2 Request Comparer. Comparing
the resources’ request of both CPU and MEM at the task’s
scheduling time with the new resources’ request at running
time, then identify the tasks with the increased update of
resources’ request and isolate them in Updated table (UT).

1. FOR each task in Sc2dataset table, until end of period
2. IF (Status = scheduled (S)
3. AND updated_while_running (U) = true)
4. AND (TE_resource_request_CPU of U >

TE_resource_request_CPU of S)
5. OR (TE_resource_request_Mem of U >

TE_resource_request_Mem of S))
6. THEN STORE Task_timestamp, Task ID,

machineID in UT
7. END IF
8. END FOR

Algorithm 2b: Cause 2 Eviction Identifier. Looking
within the lowest granularity interval of the trace, one-step
interval, from the time of the task resources’ request
update in Updated Table (UT) to identify the tasks that
have been evicted due to the increase in the update.

1. FOR each task in UT table, until end of period
2. FOR each task in Sc2dataset table (ST) with an

increase to their resources’ request, until end of
period

3. IF (ST.Status = evict)
4. AND (Task_timestamp (UT) < Task_timestamp

(ST) <= (Task_timestamp (UT) + next time
interval))

5. AND Task priority (UT) > Task priority (ST)
6. AND Task ID (ST) NOT IN C1ET table
7. THEN display ST.Task_timestamp,

ST.Task ID
8. END IF
9. END FOR
10. END FOR

Algorithm 3a: Cause 3 Overload Calculator. Comparing
the total physical capacities with the resources usage. Once
the usage reaches threshold (80%), store physical machine
ID with timestamp of overload in Overloaded Table (OT).

1. FOR each physical machine in Sc3dataset table, until
end of period

2. Find total CPU/RAM usage in every interval
3. IF CPU/RAM usage > threshold level
4. THEN Store PM ID, timestamp in

Overloaded table (OT)
5. END IF
6. END FOR

Algorithm 3b: Cause 3 Eviction Identifier. Per every
overloaded physical machine in OT, find all evicted tasks
within one interval of overload in the same machine.

1. FOR each physical machine in OT, until end of period
2. FOR each task in Sc3dataset table (ST) hosted in

an overloaded a physical machine that is in
Overloaded table, until end of period

3. IF (ST.Status = evict)
4. AND (PM_timestamp < Task_timestamp <=

(PM_timestamp + next time interval))
5. AND Task ID NOT IN C1ET table
6. THEN display ST.Task_timestamp,

ST.Task ID
7. END IF
8. END FOR
9. END FOR

the algorithms using SQLite then informs the Virtual
Infrastructure Manager with the causes of TE.

The potential use of the proposed framework is that
following the process of framework development, the
other five mitigating strategies could be modelled based on
PROV and the relevant diagnostic algorithms could be
developed. As a result, each mitigating strategy could have
its own Auditor; e.g. Auditor for Live Migration causes,
Auditor for VM Quiescing causes and so on.

IV. USING SIMULATION FOR FRAMEWORK

EVALUATION

Both the model and the algorithms have gone through
two iterations of development using Google 29-day
dataset. Evicted tasks have been identified as well as the
relevant causes based on metrics such as timestamp and
shared physical machine. Due to the limited access to real
Cloud datasets and in order to evaluate and assess the
diagnostic framework, a simulation tool, SEED [12], has
been used to generate test datasets according to three
known Task Eviction behaviors.

Simulation in computer science domain is a vital
systematic method for auditing and validating complex
behaviors. There are a number of simulation tools that
could have been used, such as CloudSim, GreenCloud, and
MDCSim [30]–[32]. However they struggle to handle
large-scale systems and require understanding of both the
model domain as well as aspects relating to simulation
synchronization. SEED facilitates the modelling of the
domain based on graph notation and was designed
specifically for modelling large-scale data centers with
minimal user intervention and assumptions [12].

A. Purpose

The hypothesis of the research is that provenance adds
value to the raw data by connecting the data in a way that
provides additional meaning for further interpretation and
analysis. Specifically, the analysis will provide the reasons
and causes of an overload.

The aim of this evaluation is to test and evaluate the
reasoning power of the proposed diagnostic algorithms and
the underpinning PROV-TE model for the different
overload scenarios. The simulation tool has been set up
with a general data center configuration and has been used
to generate 15 different datasets. Each data set comes with
a log which includes details of the physical and virtual
machines such as Host ID and CPU/MEM units, and tasks
such as requested units of CPU/MEM and priority. Most
importantly, it includes details about eviction of tasks such
as relevant eviction cause and timestamp. These details
will be used to validate the results of our framework by
calculating the precision and recall of every algorithm.

B. Scope of Evalution

We focus on the following causes (behaviors):

Cause (C1). Arrival of higher priority tasks - higher
priority tasks will always be scheduled no matter of
how full the machines are; hence in a full capacity
situation, lower priority tasks will be automatically
evicted to make space.
Cause (C2). Request for increasing resources for
current tasks - the machine has a fixed capacity, so at a
specific point the lower priority tasks will be evicted to
make space for the new requests of the higher priority
tasks.
Cause (C3). The actual demand exceeds the machine
capacity - once the maximum physical usage reached
the threshold of the machine’s capacity, the scheduler
will automatically evict low priority tasks to avoid
memory halts or breaching SLA’s agreement, i.e.
performance metrics.

These three causes will cover a reasonable range of
typical patterns of behavior in resource management at the
IaaS level of Cloud Computing.

C. Design of Evaluation

Three scenarios have been developed in SEED.
Scenario 1 includes the behavior of C1. Scenario 2
includes the behavior of C1 and C2. Lastly, Scenario 3
includes the behavior of C1 and C3. Each scenario is run 5
times, resulting in a dataset similar to the log data from a
data center. Having a dataset with more than one cause
helps validate the accuracy of the diagnostic algorithms.

D. General Setup for the Simulation

The simulation environment has been configured to
reflect a general data center setup and is shown in Figure 4.
For every run, the tool creates 20 physical machines (PM)
and 40 virtual machines (VM). Each PM has two VMs
(1:2). The PMs’ CPU and RAM sizes are fixed at 8 units
and 15 GB, respectively. VM sizes are chosen randomly
from a specified size list. Number of VM CPU can be 2, 4,
or 8 units. VM RAM size can be 4, 6, or 8 GB. The sizes

Figure 3. PROV-TE system model comprised of an Auditor,
Infrastructure Manager, and Infrastructure Monitor

TABLE I. DESIGN OF SCENARIOS

 Scenario 1 Scenario 2 Scenario 3

Cause (C1)

Cause (C2)

Cause (C3)

are a reflection of Amazon EC2 c3.2xlarge instance [33].
This particular instance allows over-commitment of
resources. This hybrid configuration ensures that simulated
data is similar to real data. The scale of the simulation can
be generalized to larger environments with more PMs and
VMs, generating huge volumes of data. This aims to
demonstrate the feasibility of massive-scale simulation for
implementing provenance-based techniques.

Tasks are then generated according to a random task
submission rate (TSR). TSR is randomly chosen from 100-
300 per hour. The simulation length is 24 hours. The
method of task distribution is: send one task to one VM at
a time, in equal distribution, then loop back again until all
tasks are sent to be queued in every VM.

There are 4 variables assigned to each task. Firstly, a
task’s length is measured in steps. The task length is
randomly chosen from 2 to 10. The length of the task is the
number of steps needed to finish execution. Events are
logged in a one-step interval. A step is a predefined
interval of 30 seconds. Second, a priority is randomly
assigned to each task. It is a number to define the privilege
of a task - 0 (lowest), 1 and 2 (highest). Finally, requested
resources, CPU and RAM, are assigned to the tasks. The
resources are also chosen randomly from a predefined list
(1, 2, 3, 4, 5, 6, 7, 8).

For every VM, there are three queues for tasks to be
scheduled, once for each priority which ensures that every
task get its fair time of waiting in the queue. In the
scheduling method, there is a loop that goes around the
three queues and dequeues one task from each queue at a
time to be scheduled.

E. Scenario Specific Configration

Each scenario has additional configuration in order to
generate the needed behavior in the dataset. Three
algorithms are developed to mimic the behavior led by the
three causes, namely – Task Evictor, Request Handler and
Overload Manager. A brief description of these is detailed
below.

1) Arrival of Higher Priority Tasks

For every VM, whenever there is a lack of RAM or
CPU and there is a task waiting in the queue with higher

priority than the ones running, lower priority tasks get
evicted so the VM to be ready for the next task.

Algorithm 4: Task Evictor: Whenever a task is to be
scheduled, the scheduler has been configured to first
check the available VM capacity, CPU and RAM. If there
is enough space, then the task gets scheduled. Otherwise,
if there lower priority tasks running in the VM, a list is
then created to include all lower priority tasks ordered
ascendingly by priority. From the top of the list, tasks get
evicted until enough space becomes available. Then the
task in question gets scheduled. In case there are no lower
priority tasks, the to-be-scheduled task is to wait in the
queue until free space becomes available.

2) Increase in Resourse Request

Scheduling a task on a specific VM depends on the
task’s requested capacities, in terms of CPU and RAM.
Once hosted, a task can request a change in the requested
resources. In case there is no free resource to accommodate
this request and there are lower priority tasks on the same
VM, the task eviction mechanism will be executed until
the desired requested capacities become available.

Algorithm 5: Request Handler: While a task is running,
the simulation tool has been configured to generte a new
random request from a predefined list (1, 2, 3, 4, 5, 6, 7,
8). The request will get approved only if there is available
space in the VM. Otherwise, the same lower priority task
eviction method of Algorithm 4: Task Evictor is run until the
requested space becomes available.

3) Physical Machine Overload

Over-commitment is a policy that is widely adopted in
data canters to maximize resources’ usage. Physical and
virtual usage are managed by overload threshold levels
[34]. The simulation tool has been configured with an 80%
physical threshold level. Once physical usage exceeds it,
eviction process is executed. Unlike the other scenarios,
two policies are enforced when evicting tasks, lower
priority task first and Last-In-First-Out (LIFO). It is more
sensible to evict tasks that have just started than those near
to finish.

Figure 4. Configuration of the simulation environment using the

SEED simulator

SEED Simulator

Experiment Manager Model Elements

Automated execution management

Data

Output

20x Physical Machines
• CPU: 8

• RAM: 15GB

40x Virtual Machines
• VCPU: {2,4,8}

• VRAM: {4,6,8}GB

Tasks
• Submssion: 100-300/hr

• Length: 60-300s

• Priority: 0-2

• CPU/RAM: {1-8}

Configuraiton
• Duration: 24hrs

• Interval: 30s

Server

CPU RAM VMs

Scheduler

Virtual Machine

VCPU VRAM Tasks

Scheduler

Task

VCPU VRAM LengthProcess Priority

TABLE II. OUTPUT OF SIMULATION

 Scenario 1 Scenario 2 Scenario 3

 Total
Tasks

Total
Evicted
Tasks

Total
Tasks

Total
Evicted
Tasks

Total
Tasks

Total
Evicted
Tasks

Run
1

4208 259 3735
C1 C2

3131
C1 C3

904 20 326 54

Run
2

4530 266 4076
C1 C2

2341
C1 C3

967 20 16 187

Run
3

4501 421 4328
C1 C2

2687
C1 C3

1041 45 1 176

Run
4

4653 297 4035
C1 C2

3077
C1 C3

1012 37 177 76

Run
5

4538 319 4049
C1 C2

2596
C1 C3

994 43 96 157

Algorithm 6: Overload Manager: For every physical
machine, the total physical usage is calculated every one-
step interval (30 seconds). If the total physical usage
exceeds the predifented usage thresold limit, tasks get
evicted following the same lower priority task eviction
method of Algorithm 4: Task Evictor until normal usage
behavior is restored. The list is ordered ascending by tasks
priority and descending by time of hosting in the VM. The
normal usage behavior means the total physical usage is
less than the usage thresold limit.

F. Simulation Output

To show the randomness, variances and differences of
the resulting generated behavior, each scenario has 5
simulation runs (i.e. 15 simulated datasets in total).

Table II summarizes the overall output of the 15 runs
of the three scenarios. For each run, the total number of
tasks as well as the total number of evicted tasks are
shown. Also, because Scenario 2 and 3 have two causes
each, the total number of evicted tasks related to each
cause is also shown.

The aim for table II is that it will be used after applying
the algorithms of the framework to calculate the precision
and recall of the results, which will be explained in the
next section.

Figure 5 shows the execution time of every run for
every scenario. Table III illustrates the mean of the
execution time of the five runs for every scenario and the
standard deviation. Due to the small number of tasks of
Scenario 3 which depends on the random TSR, the mean
of Scenario 3 execution times is smaller compared to the
means of Scenarios 1 and 2. Also, Scenario 2 execution
times are relatively higher is because of the complexity of
Algorithm: Request Handler. While tasks are running, their
resources request are constantly and randomly changed. In
order for every request to be approved or not, capacities
comparison is undertaken. Every request in RAM or CPU
must be less or equal the size of the VM. Also, if there is
no VM space and there are lower priority tasks, the
eviction process is triggered. Only then the request is
approved.

V. TESTING THE DIAGNOSTIC FRAMEWORK

The following shows the results of the implementation
of the framework, the Auditor component shown figure 3.
For scenario 1, the auditor will only trigger C1 related
algorithms. For scenario 2, the auditor will trigger C1 and
C2 related algorithms. For scenario 3, the auditor will
trigger C1 and C3 related algorithms, illustrated in table I.

The input to the Auditor is the 15 simulated test
datasets. Then, the diagnostic algorithms are applied to
find the causes of all eviction. The output of the Auditor is
the identification of causes and relevant evicted tasks.

A. Output from the Auditor

Table IV summarizes the output of all diagnostic
algorithms. In section VI, precision and recall statistical
measures will be applied to evaluate the results.

VI. ANALYSIS AND DISCUSSION

The simulation facilitated the generation of 15 cloud
test datasets that captured specific behaviors for task
eviction. The developed diagnostic algorithms make use of
PROV-TE. This has proved to be helpful by both the
ability of auditing the datasets and identifying evicted tasks
and also distinguishing the relevant causes.

In order to evaluate the accuracy of the diagnostic
algorithms, precision and recall statistical measures have
been applied. Precision is a measure of the capability of
the framework to only identify the relevant evicted task for
each cause. It is a statistical measure of reliability of the
framework. Recall is a measure of the capability of the
framework to retrieve and identify the highest possible
number of relevant evicted tasks for a specific cause. It is a
statistical measure of the sensitivity of the framework.

 Precision ൌ ୰୳ୣ ୭ୱ୧୲୧୴ୣ ሺሻ୰୳ୣ ୭ୱ୧୲୧୴ୣ ሺሻାୟ୪ୱୣ ୭ୱ୧୲୧୴ୣሺሻ ൈ ͳͲͲ (1)

Recall ൌ ୰୳ୣ ୭ୱ୧୲୧୴ୣ ሺሻ୰୳ୣ ୭ୱ୧୲୧୴ୣ ሺሻାୟ୪ୱୣ ୣୣ୲୧୴ୣ ሺሻ ൈ ͳͲͲ (2)

Figure 5. Execution time for every simulation run.

0

0.5

1

1.5

2

2.5

3

3.5

Run

1

Run

2

Run

3

Run

4

Run

5

Run

1

Run

2

Run

3

Run

4

Run

5

Run

1

Run

2

Run

3

Run

4

Run

5

Scenario 1 Scenario 2 Scenario 3

Ti
m

e
in

 H
o

u
rs

TABLE III. MEAN AND STANDARD DEVIATION OF EXECUTION TIMES

 Scenario 1 Scenario 2 Scenario 3

Mean 1.292 2.53 0.43

Standard
Deviation

± 0.1 ± 0.73 ± 0.065

TABLE IV. OUTPUT OF FRAMEWORK

 Scenario 1 Scenario 2 Scenario 3

Total
Tasks
Found

Evicted
Tasks
Found

Total
Tasks
Found

Evicted
Tasks
Found

Total
Tasks
Found

Evicted
Tasks
Found

Run
1

4208 259 3735
C1 C2

3131
C1 C3

900 13 307 58

Run
2

4530 266 4076
C1 C2

2341
C1 C3

960 15 91 60

Run
3

4501 421 4328
C1 C2

2687
C1 C3

1048 20 75 55

Run
4

4653 297 4035
C1 C2

3077
C1 C3

1012 22 182 36

Run
5

4538 319 4049
C1 C2

2596
C1 C3

997 23 159 55

TABLE VI. SCENARIO 2: MEAN PRECISION AND RECALL

C1 Algorithms Relevant Tasks
(Simulated)

Irrelevant Tasks
(Simulated)

Relevant Tasks
(Framework)

TP = 981.4
Std Dev = ± 54

FP = 2
Std Dev = ± 3

Irrelevant Tasks
(Framework)

FN = 2.2
Std Dev = ± 3.1

TN = 0
Std Dev = ± 0

Precision 99%

Recall 99%

C2 Algorithms Relevant Tasks
(Simulated)

Irrelevant Tasks
(Simulated)

Relevant Tasks
(Framework)

TP = 18.6
Std Dev = ± 4.3

FP = 0
Std Dev = ± 0

Irrelevant Tasks
(Framework)

FN = 14.4
Std Dev = ± 8.4

TN = 0
Std Dev = ± 0

Precision 100%

Recall 56%

TP, FP, and TN have been calculated by comparing the
output of the simulation, Table II, with the output of the
auditor, Table IV. For example, looking at the Tables II
and IV, in Run 1 of Scenario 2, the Auditor has been able
to identify all tasks, 3735, and also has been able to
classify the evicted tasks based on the specific causes, C1
and C2. For C1, 900 (TP) evicted tasks out of 904 have
been identified (FN = 4), so the precision is 100% and the
recall is 99%. For C2, 13 evicted tasks out of 20 have been
identified which makes precision 100% and recall 65%.

Since the output is overwhelming, the precision and
recall have been calculated based on the mean TP, FP, and
TN of the five runs for every cause in the three scenarios.
The precision and recall of C1 related algorithms have
been calculated in every scenario because all datasets
capture C1 task eviction behavior whereas C2 task eviction
behavior is captured in only Scenario 2 and C3 task
eviction behavior is captured in only Scenario 3.

In table V, because the simulated datasets of scenario 1
have one behavior, the precision and recall are 100%.
There is only one cause and the algorithms have identified

all evicted tasks due to this cause, whereas the other
scenarios have 2 behaviors so the algorithms precision and
recall are not as high.

Table VI summarizes the mean precision and recall of
scenario 2 across all runs. It can be seen that the diagnostic
algorithms of C1 are quite promising with 99% in both
precision and recall, as seen in figures 6a and 7a. C2
diagnostic algorithms have returned precisely the relevant
evicted tasks but failed to pick up 44% of the evicted tasks
because of C2, as seen in figures 6b and 7b.

In table VII, C1 diagnostic algorithms of scenario
3 are able to identify relevant evicted tasks.

TABLE V. SCENARIO 1: MEAN PRECISION AND RECALL

C1 Algorithms Relevant Tasks
(Simulated)

Irrelevant Tasks
(Simulated)

Relevant Tasks
(Framework)

TP = 312.4
Std Dev = ± 65

FP = 0
Std Dev = ± 0

Irrelevant Tasks
(Framework)

FN = 0
Std Dev = ± 0

TN = 0
Std Dev = ± 0

Precision 100%

Recall 100%

(a) Cause 1: Evictions due to higher priority tasks

(b) Cause 2: Evictions due to increased resource request by

higher priority tasks
Figure 6. Average of actual and identified evicted tasks per hour, showing the variance across all simulation runs.

(a) Cause 1

(b) Cause 2

Figure 7. Cumulative average task evictions over all simulations of Scenario 2.

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

N
u

m
b

e
r

o
f

Ta
sk

s

Hour
Scenario 2 C1 - Ave Actual Scenario 2 C1 - Ave Identified

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23

N
u

m
b

e
r

o
f

Ta
sk

s

Hour

Scenario 2 Cause 2 - Ave Actual

Scenario 2 Cause 2 - Ave Identified

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
al

ti
ve

 F
re

q
u

en
ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumilative Frequence Identified Cumilative Frequence

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
al

ti
ve

 F
re

q
u

en
ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumilative Frequence Identified Cumaltive Frequence

However, as shown in figures 8a and 9a there is
probably an overlap in terms of the identified causes
as 40% of which are irrelevant. The recall percentage
of C3 diagnostic algorithms is high, 90%, which
means it is capable of identifying the relevant evicted
tasks. However, its precision measure is 40%, as
seen in figure 9b. The precision and recall of C1
diagnostic algorithms are relatively high across all
scenarios.

Figure 10 shows the power of C1 and C3 diagnostic
algorithms combined. Almost 90% of all evicted tasks due
to C1 and C3 have been identified. This could suggest that
running a hybrid algorithm of two or more causes could
return better results with higher precision and recall instead

of auditing each cause separately.
For every run of every scenario, the Auditor can

generate files for each cause which include the IDs of the
evicted tasks and their physical and virtual host IDs which
can be further investigated. Also, the Auditor can order the
causes in terms of level of impact on the system. From
tables IV, the most dominant cause is C1 which is the
Arrival of Higher Priority Tasks and the least dominant
cause is C2 which is Increase in Resource Request.

VII. CONCLUSION AND FUTURE WORK

In this paper we have discussed how cloud providers
use resource over-commitment to leverage under-utilized
capacity yet with a trade-off of introducing the problem of
overload. A Provenance-Driven Diagnostic Framework
has been presented and evaluated. The framework’s aim is
to efficiently mine big and growing data to find the causes
of Task Eviction in a data center. Our main contribution of

(a) Cause 1: Evictions due to higher priority tasks

(b) Cause 3: Evictions due to machine overload

Figure 8. Average of actual and identified evicted tasks per hour, showing the variance across all simulation runs.

(a) Cause 1

(b) Cause 3

Figure 9. Cumulative average task evictions over all simulations of Scenario 3

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23

N
u

m
b

e
r

o
f

Ta
sk

s

Hour

Scenario 3 C1 - Ave Actual Scenario 3 C1 - Ave Identified

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

N
u

m
b

e
r

o
f

Ta
sk

s

Hour

Scenario 3 Cause 3 - Ave Actual
Scenario 3 Cause 3 - Ave Identified

0%

20%

40%

60%

80%

100%

120%

140%

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23

C
u

m
al

ti
ve

 F
re

q
u

e
n

ce

N
u

m
b

e
r

o
f

E
vi

ct
e

d
 T

as
ks

Hour

Actual Identified

Actual Cumilative Frequence Identified Cumilative Frequence

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23

C
u

m
a

lt
iv

e
 F

re
q

u
e

n
ce

N
u

m
b

e
r

o
f

E
vi

ct
e

d
 T

a
sk

s

Hour

Actual Identified

Actual Cumilative Frequence Identified Cumaltive Frequence

TABLE VII. SCENARIO 3: MEAN PRECISION AND RECALL

C1 Algorithms Relevant Tasks
(Simulated)

Irrelevant Tasks
(Simulated)

Relevant Tasks
(Framework)

TP = 119.4
Std Dev = ± 126.2

FP = 43.4
Std Dev = ± 37.6

Irrelevant Tasks
(Framework)

FN = 3.8
Std Dev = ± 8.4

TN = 0
Std Dev = ± 0

Precision 73%

Recall 97%

C3 Algorithms Relevant Tasks
(Simulated)

Irrelevant Tasks
(Simulated)

Relevant Tasks
(Framework)

TP = 52
Std Dev = ± 9.2

FP = 78
Std Dev = ± 55.5

Irrelevant Tasks
(Framework)

FN = 0.8
Std Dev = ± 1.7

TN = 0
Std Dev = ± 0

Precision 40%

Recall 98%

Figure 10. Cumulative average task evictions over all simulations of

Scenario 3, combining C1 and C3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
a

lt
iv

e
 F

re
q

u
e

n
ce

N
u

m
b

e
r

o
f

E
vi

ct
e

d
 T

a
sk

s

Hour

Actual Identified

Actual Cumilative Frequence Identified Cumilative Frequence

this paper is the evaluation of the framework using a
massive-scale simulation tool, SEED. SEED has been used
to generate 15 different cloud test datasets with different
task eviction behaviors. The Framework, PROV-TE and
Diagnostic Algorithms, have been applied on these
datasets and the found results have been compared with the
simulation results. Finally, the results have been
statistically analyzed using precision and recall measures
to find the levels of sensitivity and reliability. The average
precision and recall of the diagnostic algorithms are 83%
and 90%, respectively. Although the diagnostic algorithms
identify the causes of task eviction fairly precisely, there
are limitations relating to the overlapping of identified
causes for evicted tasks. This could explain the precision
levels of Scenario 3 diagnostic algorithms.

For future work, we intend to run a more extensive
simulation experiment with a larger environment. It will be
of interest to apply the framework on a dataset that
encompasses all task eviction behaviors. Also, this work is
a first step for research that looks into mitigating TE in
data centers, which is assumed to lead to a decrease in the
number of overload instances. In addition, we will further
improve the diagnostic algorithms and the approach of
identifying Task Eviction root causes in order to increase
the level of accuracy in terms of precision and recall.

ACKNOWLEDGMENT

The authors thank Slingshot Simulations Ltd.
(http://www.slingshotsimulations.co.uk) for providing the
use of the SEED simulator for this work.

REFERENCES

[1] Y. Amanatullah, C. Lim, H. P. Ipung, and A. Juliandri, “Toward
cloud computing reference architecture: Cloud service management
perspective,” in International Conference on ICT for Smart
Society, 2013, pp. 1–4.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” 2011.

[3] S. Baset, L. Wang, and C. Tang, “Towards an Understanding of
Oversubscription in Cloud,” in USENIX Hot-ICE’12, 2012.

[4] Y. Liu, “A Consolidation Strategy Supporting Resources
Oversubscription in Cloud Computing,” in IEEE 3rd International
Conference on Cyber Security and Cloud Computing (CSCloud),
2016, pp. 154–162.

[5] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient
datacenter resource utilization through cloud resource
overcommitment,” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2015.

[6] T. Wo, Q. Sun, B. Li, and C. Hu, “Overbooking-Based Resource
Allocation in Virtualized Data Center,” in 2012 IEEE 15th
International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops, 2012, pp. 142–149.

[7] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage
tracesௗ: format + schema V2.1,” pp. 1–14, 2014.

[8] A. Albatli, L. Lau, and J. Xu, “Application of PROV Model for
Modeling a VM Overload Mitigating Strategy: Task Eviction,” in
Provenance Analytics Workshop, 2014.

[9] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale,” in
Proceedings of the Third ACM Symposium on Cloud Computing,
2012, pp. 1–13.

[10] L. Moreau and P. Groth, “Provenance: An Introduction to PROV,”
Synth. Lect. Semant. Web Theory Technol., vol. 3, no. 4, Sep. 2013.

[11] P. Townend, P. Groth, and J. Xu, “A provenance-aware weighted
fault tolerance scheme for service-based applications,” in
Proceedings - Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 2005, pp. 258–266.

[12] P. Garraghan, D. McKee, X. Ouyang, D. Webster, and J. Xu,
“SEED: A Scalable Approach for Cyber-Physical System

Simulation,” IEEE Trans. Serv. Comput., vol. 9, no. 2, 2016.
[13] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon,

“Overdriver: Handling Memory Overload in an Oversubscribed
Cloud,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, 2011.

[14] A. Stage and T. Setzer, “Network-aware migration control and
scheduling of differentiated virtual machine workloads,” in ICSE
Workshop on Software Engineering Challenges of Cloud
Computing, 2009.

[15] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori,
“Dynamic load management of virtual machines in cloud
architectures,” in Cloud Computing, vol. 34, Springer Berlin
Heidelberg, 2010, pp. 201–214.

[16] K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Provenance for
the Cloud,” in Proceedings of the 8th USENIX Conference on File
and Storage Technologies, 2010.

[17] M. A. Sakka, B. Defude, and J. Tellez, Document provenance in
the cloud: constraints and challenges, vol. 6164. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010.

[18] I. Abbadi and J. Lyle, “Challenges for Provenance in Cloud
Computing,” in 3rd USENIX Workshop on the Theory and Practice
of Provenance (TaPP’11), 2011.

[19] M. Imran and H. Hlavacs, “Provenance in the cloud: Why and
how?,” Third Int. Conf. Cloud Comput. GRIDs, Virtualization, pp.
106–112, 2012.

[20] K.-K. Muniswamy-Reddy, M. Peter, and S. Margo, “Making a
Cloud Provenance-Aware,” in 1st Workshop on the Theory and
Practice of Provenance (TaPP’09), 2009.

[21] S. M. S. Da Cruz, M. Manhaes, J. Zavaleta, and R. M. Costa,
“Cirrus: Towards Business Provenance As-a-Service in the Cloud,”
IEEE 19th Int. Conf. Web Serv., no. i, pp. 668–669, Jun. 2012.

[22] P. Macko, M. Chiarini, and M. Seltzer, “Collecting provenance via
the Xen hypervisor,” in Proceedings of 3rd USENIX Workshop on
the Theory and Practice of Provenance (TaPP ’11), 2011.

[23] S. Townend, P; Venters, CC; Lau, L; Djemame, K; Dimitrova, V;
Marshall, A; Xu, J; Dibsdale, C; Taylor, N; Austin, J; McAvoy, J;
Fletcher, M; Hobson, “Trusted Digital Spaces through Timely
Reliable and Personalised Provenance,” in 15th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops, 2012, pp. 136–141.

[24] P. Groth and L. Moreau, “PROV-Overview: An Overview of the
PROV Family of Documents,” 2013.

[25] J. Lacroix and O. Boucelma, “Trusting the cloud: A PROV +
RBAC approach,” in IEEE International Conference on Cloud
Computing, CLOUD, 2014, pp. 652–658.

[26] P. L. Rupasinghe, H. H. Weerasena, and I. Murray, “Trustworthy
provenance framework for document workflow provenance,” in
International Conference on Computational Techniques in
Information and Communication Technologies, 2016, pp. 168–175.

[27] Y. Li and O. Boucelma, “Provenance Monitoring in the Cloud,” in
IEEE Sixth International Conference on Cloud Computing, 2013.

[28] L. Moreau and P. Groth, “PROV-Overview: An Overview of the
PROV Family of Documents,” W3C Note, no. April, pp. 1–9, 2013.

[29] I. Solis Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,
Modeling and Simulation of Workload Patterns in a Large-Scale
Utility Cloud,” IEEE Trans. Cloud Comput., vol. PP, no. c, 2014.

[30] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSimௗ: A Toolkit for the Modeling and Simulation
of Cloud Resource Management and Application Provisioning
Techniques,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

[31] S. Malekzai, D. Yildiz, and S. Karagol, “GreenCloud simulation
QoSbox in cloud computing,” in 24th Signal Processing and
Communication Application Conference (SIU), 2016.

[32] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das,
“MDCSim: A multi-tier data center simulation, platform,” in 2009
IEEE International Conference on Cluster Computing and
Workshops, 2009, pp. 1–9.

[33] Amazon Web Services Inc, “EC2 Instance Types – Amazon Web
Services (AWS),” 2016. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/. [Accessed: 24-Oct-
2016].

[34] R. Birke and L. Y. Chen, “Managing Data Center Ticketsௗ:
Prediction and Active Sizing,” 46th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Networks, Jun. 2016.

