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ABSTRACT

In earlier work we have proposed a source-filter decomposition of

speech through phase-based processing. The decomposition leads

to novel speech features that are extracted from the filter component

of the phase spectrum. This paper analyses this spectrum and the

proposed representation by evaluating statistical properties at vari-

ous points along the parametrisation pipeline. We show that speech

phase spectrum has a bell-shaped distribution which is in contrast to

the uniform assumption that is usually made. It is demonstrated that

the uniform density (which implies that the corresponding sequence

is least-informative) is an artefact of the phase wrapping and not an

original characteristic of this spectrum. In addition, we extend the

idea of statistical normalisation usually applied for the magnitude-

based features into the phase domain. Based on the statistical struc-

ture of the phase-based features, which is shown to be super-gaussian

in the clean condition, three normalisation schemes, namely, Gaus-

sianisation, Laplacianisation and table-based histogram equalisation

have been applied for improving the robustness. Speech recognition

experiments using Aurora-2 show that applying an optimal normali-

sation scheme at the right stage of the feature extraction process can

produce average relative WER reductions of up to 18.6% across the

0-20 dB SNR conditions.

Index Terms: phase spectrum, robust speech recognition, phase dis-

tribution, statistical normalisation

1. INTRODUCTION

There has been a recent growth of interest in the phase-based speech

processing. For example, there has been a dedicated special session

in Interpeech 2014 [1], a tutorial session in Interspeech 2015 and a

special issue in Speech Communication journal [2]. An expanding

body of work is showing that the phase spectrum can be usefully em-

ployed in many speech processing applications, including in speech

enhancement [3–6], speech reconstruction [7–11], speech recogni-

tion [12–18] and speaker recognition [19, 20]. However, integrat-

ing the phase spectrum into the speech processing pipeline is not as

straightforward as for the magnitude spectrum. In contrast to the

latter – which has a relatively simple structure that is easily related

to speech perception – the former has a noise-like appearance with

neither a clear trend nor meaningful extrema. As such interpreting

the behaviour of phase and consequently modelling and extracting

useful/compact representations from it remains a challenge.

One of the fundamental models in the magnitude-based speech

signal processing has been the idea of source-filter deconvolution

[21], for example, by cepstral liftering [22]. In [23], we proposed

a novel framework for source-filter separation in the phase domain.

The method was successful in segregating the vocal tract and excita-

tion elements and its superiority in comparison with the magnitude-

based approach was discussed and illustrated. The filter component

of this spectrum was converted into a set of features for ASR and lead

to better speech recognition performance than well-known features

such as MFCC, PLP [24], MODGDF [18], PS [16] and CGDF [17].

In this paper, we aim to study the phase spectrum and its feature

representations from a statistical standpoint at different stages within

the parametrisation process. Such analysis will shed light on the

behaviour of the phase spectrum and further clarify its structure. It

will be shown that contrary to the general belief which considers

phase to have a uniform distribution, it has a bell-shaped distribution

in the clean condition. In addition, such findings help in devising

an efficient normalisation scheme for the phase-based feature. As

shown, an optimal statistical transformation can result in an absolute

WER reduction of up to 4.7% on average (over 0–20 dB SNR).

This paper is structured as follows. In Section 2 the phase-based

source-filter separation framework and the proposed parametrisation

workflow are briefly reviewed. Section 3 is dedicated to studying

the statistical attributes of the phase-based features and the utilised

statistical normalisation schemes. Section 4 includes experimental

results along with discussion and Section 5 concludes the paper.

2. PHASE-BASED SOURCE-FILTER SEPARATION

Speech is a mixed-phase signal as its complex cepstrum (CC)

is neither causal nor anti-causal [7, 25]. As such it can be de-

composed into minimum-phase (MinPh) XMinPh(ω) and all-pass

(AllP) XAllP (ω) components











X(ω) = XMinPh(ω) XAllP (ω)

|X(ω)| = |XMinPh(ω)|
arg[X(ω)] = arg[XMinPh(ω)] + arg[XAllP (ω)]

(1)

where |X(ω)| and arg[X(ω)] are the magnitude and unwrapped

(continuous) phase spectra, respectively. For the MinPh signals the

CC is causal, i.e., equals zero at negative quefrencies [25]. Based on

this property, the Hilbert transform provides a one-to-one correspon-

dence between the phase and magnitude spectra

arg[XMinPh(ω)] = − 1

2π
log|XMinPh(ω)| ∗ cot(

ω

2
), (2)

where ∗ indicates convolution. By replacing the log|XMinPh|
with log|X(ω)| based on (1), arg[XMinPh(ω)] can be calculated.

Equivalently, arg[XMinPh(ω)] may be computed in the cepstrum

domain by applying a causal lifter (Fig. 1) instead of (2).

As shown in [23], arg[XMinPh(ω)], contrary to the wrapped

phase (ARG[X(ω)]), no longer exhibits a chaotic and trendless

shape. In fact, it could be imagined as a superposition of two

components, one changing slowly (Trend) and the other one oscil-

lating quickly (Fluctuation). Accordingly, these components can

be decomposed based on the difference in their rate of change. By
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Fig. 1. Workflow of the proposed source-filter decomposition in the

phase domain [23].

smoothing (low-pass filtering) the arg[XMinPh(ω)], Trend can be

extracted. As explained in [23], Trend and Fluctuation correspond to

the vocal tract (VT) and excitation (Exc) components, respectively.

Fig. 1 shows the proposed source-filter separation process.

For evaluating the efficacy of the suggested approach, a feature

(named BMFGDVT [23]) was extracted from the vocal tract (filter)

component of the phase spectrum and tested for its usefulness in

ASR (Fig. 2). The performance was better than the listed features

despite the relative simplicity of the parametrisation process. For

a detailed discussion readers are referred to [23]. In the next sec-

tion we study the statistical structure of this representation and try to

improve its performance through statistical normalisation.
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Fig. 2. The proposed phase-based front-end in [23].

3. STATISTICAL PROPERTIES OF THE PHASE-BASED

REPRESENTATIONS

3.1. Statical Normalisation

Variability in the data representation due to nuisance factors is a sig-

nificant issue in pattern recognition posing considerably more diffi-

culties for the back-end in mapping the feature onto the correct class.

This problem could be alleviated by developing either a more robust

front-end or back-end. In the front-end, one sensible approach could

be applying some knowledge about the properties of the clean data

to mitigate the effect of unwanted disturbances. This involves evalu-

ating the behaviour of the extracted pattern in a noise-free condition

and embedding such knowledge into the pipeline, in a principled

way, to attenuate the deviations induced by noise.

Prior knowledge about the clean data could have a determinis-

tic or statistical basis. The latter is more effective in dealing with

the variability problem and is added to the parametrisation process

as a normalisation block aiming at giving a desired statistical prop-
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Fig. 3. Histograms at different stages for MFCC.

erty to the features. From the back-end standpoint, desired features

are those which, among other things, are in harmony with the as-

sumptions it makes about its input. Although any mismatch could

be costly performance-wise, transforming the data by only consid-

ering the back-end could be problematic, too. In fact, there is the

possibility of distorting the features through imposing some proper-

ties on them which do not comply with their original structure. So,

an optimal normalisation should take both ends into account.

Here we aim at investigating the behaviour of the phase and its

representations from statistical standpoint and extending the idea of

statistical feature normalisation to the phase-based representations.

So far, such techniques have been employed mainly for magnitude-

based features. Estimation of the statistical structure of the phase in

the clean condition provides a fresh perspective on the behaviour of

this spectrum, helps in explaining the reason behind success/failure

of each normalisation scheme and paves the way towards finding the

optimal one.

3.2. Distribution of the phase-based representations

For evaluating the distribution of the phase spectrum and its repre-

sentations, the histogram at various points along the proposed work-

flow (Fig. 2) was computed. In order to get statistically significant

results, all the (clean) training data of Aurora 2 [26] has been em-

ployed which includes 8440 waves yielding more than 1.4 M frames.

For comparison, the same process has been done for MFCC.

As shown in Fig. 3(a), the distribution of the magnitude spec-

trum is heavily right-skewed and may be thought of as a Rayleigh

density, the assumption which is usually made in speech enhance-

ment. Taking Log of the filter bank energies (FBE) results in

a bimodal distribution. The left mode relates to the low-energy

speech/silence and the right one is connected to the speech parts

with a normal energy level. As seen, applying the Log has a sig-

nificant statistical impact on the FBEs and pushes the distribution

toward the Gaussian by decreasing both skewness and kurtosis. This

allows the GMM-based back-end to obtain a much better fit.

Figure 4 demonstrates the histograms of the phase-based fea-

ture at different points across the parametrisation workflow. In a

sharp contrast to the uniform assumption usually made about the

phase spectrum, especially in the speech enhancement literature,

arg[XMinPh(ω)] has a bell-shaped distribution (Fig. 4(a)). On the

other hand, as Fig. 5 shows, uniform density(U(−π, π)) is a correct

choice for the distribution of ARG[X(ω)] (principle phase) but this

is the outcome of wrapping not an inherent property of phase.

In order to prove this point we first wrap the magnitude spectrum

similar to the phase spectrum as follows

wrapped |X(ω)| = (|X(ω)|+ π) mod 2π − π, (3)
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Fig. 4. Histograms of the phase spectrum and its representations

along the workflow shown in Fig. 2.
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and plot its histogram. Fig. 6 shows that the distribution of the

wrapped magnitude spectrum is U(−π, π), too. This corroborates

the claim that the uniform density is only due to the wrapping. Sec-

ond, a data sequence with uniform distribution over its support has

the maximum-level of randomness (entropy) and is least-informative

from an information theory viewpoint [27]. In our empirical study,

it means that after making more than 1.4 M observations, still all the

possible values of the phase are equiprobable and this implies that

phase is a random information-less sequence.

In fact, making a uniform assumption for phase density creates

two paradoxes: First, under some mild conditions, a signal is recov-

erable (up to a scale error) from its phase spectrum [8] and a non-

informative uniformly-distributed sequence should not have such ca-

pability. Second, there is a one-to-one relationship between the mag-

nitude and phase spectra of a MinPh signal. This implies that they

carry the same amount of information and are just two mathemat-

ical realisations of the same information (knowledge). The appar-

ent uniform distribution of the phase coupled with the one-to-one

phase/magnitude relation imply that the magnitude spectrum is also

devoid of information, which is obviously incorrect. Fig. 4(a), how-

ever, shows the true distribution and resolves these contradictions.

Comparing it with Figs. 5 and 6 demonstrates that the uniform dis-

tribution is not a structural property of the phase spectrum and is

merely a repercussion of phase wrapping.

After applying the non-linearity, the FBEs at point C (Fig. 2),

FBE @C, become bimodal (Fig. 4(e)) similar to the log of FBEs in

MFCC, although, this time the underlying reason is different. Con-

trary to the magnitude spectrum, phase and its representations are

scale-blind and energy level has no role to play. The reason here

stems from the fact that zero is a fixed-point of the power transforma-

tion used as nonlinearity (sign(x)|x|a, where x is FBE @ B). As

such, points with a value very close to zero remain identical whereas

others move away and this gives rise to bimodality.

Finally, we need to investigate where the bell-shaped distribu-
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ture (C) with Gaussian and Laplacian densities.

tion of the phase-based features (Fig. 4(f)) stands in comparison with

the Gaussian density. As seen in Fig. 7, although the Gaussian as-

sumption seems to be a reasonable approximation, the distribution

of this feature has a higher kurtosis and is Leptokurtic or super-

Gaussian. The Laplace distribution is an example of such densities.

As juxtaposed in Fig. 7, it forms the upper bound from this perspec-

tive and could be regarded as another approximation for the feature’s

distribution. This implies that both Gaussianisation and Laplacian-

isation might be helpful in pushing the noisy phase-based features

toward their clean counterpart and hence be useful in improving the

robustness. This hypothesis will be validated in Section 4 but before

that we briefly review how the normalisations are implemented.

3.3. Implementing the Statistical Transformation

This subsection briefly overviews the statistical normalisation

schemes which are used in the experiments, namely, Gaussianisa-

tion [28], Laplacianisation and histogram equalisation (HEQ) [29].

These techniques are computationally low-cost as neither need noise

estimation nor stereo data and no explicit expression for how the

features get contaminated by noise is required. The equation which

underpins them mathematically is as follows

CDFY (y) = CDFX(x) ⇒ x = CDF
−1

X (CDFY (y)) , (4)

where X and Y are random variables (rv) associated with the clean

and noisy observations, respectively, and x and y are their realisa-

tions. Implementing (4) involves finding the quantile function of X ,

i.e., CDF−1

X (x), and cumulative distribution function of Y .

If rv Z is defined as Z = CDFY (Y ), Probability Integral

Transform (PIT) [30] shows that it follows U(0, 1). However, com-

puting the quantile function of the clean (reference) features, is not

straightforward and a closed-form expression is only available for

a few density functions. In practice mostly numerical techniques

are employed. Table-based HEQ is an example of such methods

in which this function is estimated from the training data. HEQ

does not make any assumption about the target distribution, contrary

to the Gaussianisation and Laplacianisation, and this turns it into a

more flexible approach. For the Gaussian and Laplace distributions,

the closed-form expression for the quantile function exists























Gaussianisation → xi =
√
2 erf−1(2zi − 1)

Laplacianisation → xi =

{

ln(2zi), zi < 0.5

−ln(2− 2zi), zi ≥ 0.5,

zi =
ri−β

N
, i = 1, 2, ... , N

(5)



where erf−1, ln, z, N and ri denote inverse error function, natural

logarithm, realisation of rv Z, number of observations and the rank

of yi after ascending sort, respectively. β is used to avoid extreme

values and usually set to 0.5 [28]. Note that for mathematical con-

venience, normalisation is (sub-optimally) carried out for each di-

mension independently. The difference of these techniques to mean-

variance-normalisation should also be noted: The former affects all

the moments while the latter only touches the first- and second-order

statistics. As such they have a deeper statistical impact.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Parametrisation Process

Parameter setting is identical to [23]. Aurora-2 [26] is employed

as the database and HMMs were trained from the clean data using

HTK [31] based on the Aurora-2 standard (simple) recipe. The effect

of Gaussinisation (Gaus), Laplacianisation (Lap) and HEQ at differ-

ent stages, signified by A to E at Fig. 2, is investigated. Recognition

results are reported in Tables 2-4 (average 0-20 dB) and Fig. 8 (ver-

sus SNR). BMFGDVT [23] is considered as the baseline.

4.2. Discussion

Comparing Table 1 with Tables 2-4 shows that normalisation, in

most cases, enhances recognition performance, although the amount

of improvement depends on the type of normalisation and the stage

at which it is performed. As seen, point E, namely just before the

back-end, appears to be the best place for carrying out the normal-

isation. Gaussianisation at this point decreases relative word error

rate reduction (RER) by up to 18.6% which is a noteworthy gain,

considering the low computational overhead involved.

Comparison of Table 2 and 3 show that Gaussainisation is a

more effective normalisation scheme than the Laplacianisation. Two

points can help explain this. First, as depicted in Fig. 7, although

the true distribution of the phase-based feature is super-Gaussian, it

is not as Leptokurtic as Laplacian and is closer to Gaussian. As a

result, Gaussianisation leads to less distortion than Laplacianisation

because it is more consistent with the original statistical structure of

the features. The second reason is that the GMM-based back-end

better fits data with a Gaussian distribution.

Comparing Tables 2 and 3 with 4 shows that both Gaussiani-

sation and Laplacianisation return better results than HEQ. Three

points should be noted: First, HEQ assumes that the noise-corruption

process is a monotonic transform and does not cause any informa-

tion loss. This demand is not met here due to the random effect of

the noise. Second, the simple Table-based HEQ approach utilised

here is not state-of-the-art; more advanced HEQ techniques might

lead to better results. Third, as shown in Figure 7, the true distribu-

tion of the phase-based feature is relatively close to both Gaussian

and Laplacian distributions. Thus both can approximate it to a rea-

sonable extent and the flexibility of HEQ is unnecessary.

Figure 8 demonstrates the performance of these techniques (after

applying each one at the corresponding optimal point) versus SNR

(averaged over all test sets). As seen, these methods are especially

useful in SNRs below 10 dB and return absolute accuracy improve-

ment of over 7% and 10% in SNRs of 5 and 0 dB, respectively.

5. CONCLUSION

After developing a framework for source-filter separation through

phase spectrum manipulation, we proposed a feature extraction al-

gorithm from the vocal tract component of phase. In this paper, the

statistical properties of this spectrum and its representations at differ-

ent points along the parametrisation process was studied. It was ob-

Table 1. Average (0-20 dB) recognition rates for Aurora-2 [23].

Feature TestSet A TestSet B TestSet C Ave. All

MFCC 66.2 71.4 64.9 67.5

PLP 67.3 70.6 66.2 68.0

MODGDF 64.3 66.4 59.5 63.4

CGDF 67.0 73.0 59.4 66.5

PS 66.0 71.2 64.6 67.3

Baseline 73.2 77.4 73.4 74.7

Table 2. Average accuracy after Gaussianisation at points A− E.

Feature A B C Ave. All RER(%)

Gaus-A 74.1 78.3 74.4 75.6 3.6

Gaus-B 73.0 76.0 74.1 74.4 -1.9

Gaus-C 74.0 76.7 74.9 75.2 2.0

Gaus-D 78.6 80.2 77.0 78.6 15.4

Gaus-E 79.3 81.0 77.8 79.4 18.6

Table 3. Average accuracy after Laplacianisation at points A− E.

Feature A B C Ave. All RER(%)

Lap-A 74.4 78.5 74.8 75.9 4.7

Lap-B 73.9 76.7 74.8 75.1 1.6

Lap-C 74.0 76.7 75.2 75.3 2.4

Lap-D 75.5 77.5 74.0 75.7 4.0

Lap-E 77.5 79.3 75.9 77.6 11.5

Table 4. Average accuracy after HEQ at points A− E.

Feature A B C Ave. All RER(%)

HEQ-A 74.0 78.0 74.9 75.6 3.5

HEQ-B 74.2 78.0 75.2 75.8 4.3

HEQ-C 74.5 78.4 75.4 76.1 5.5

HEQ-D 76.5 78.2 73.5 76.1 5.5

HEQ-E 77.0 78.7 74.9 76.9 8.7

  0 5 10 15 20

SNR (dB)

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Baseline

Gaus @ E

Lap @ E

HEQ @ E

Fig. 8. Accuracy versus SNR for different normalisation schemes.

served that contrary to the general assumption made about the phase

spectrum, its density has a bell-shaped structure and is not uniform.

It is also argued that the uniform distribution is an artefact of phase

wrapping and is not an intrinsic characteristic of this spectrum. We

tried three statistical normalisation schemes to improve the perfor-

mance of the proposed feature in noisy condition. Analysis of the

statistical structure of the phase-based representations provided an

understanding of the reason behind success/failure of each approach

and helped in selecting the best normalisation scheme. It was ob-

served that optimal statistical normalisation at the right stage can

have a remarkable impact on the performance of the phase-based

features. This suggests that taking the statistical properties of the

phase spectrum into account has significant potential to improve the

performance of the phase-based techniques in speech processing and

is an avenue for future research.
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