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Abstract 

Edible bird’s nest (EBN) is a precious functional food in Southeast Asia. A rapid 

and nondestructive method for determining the distribution map of protein content 

(PC), carbohydrate content (CC) and sialic acid content (SAC) on EBN sample was 

proposed. Firstly, 60 EBNs were used for hyperspectral image acquisition, and 

components content (PC, CC and SAC) were determined by chemical analytical 

methods. Secondly, the spectral signals of EBN hyperspectral image and EBN 

components content were used to build calibration models. Thirdly, spectra of each 

pixel in EBN hyperspectral image were extracted, and these spectra were substituted 

in the calibration models to predict the PC, CC and SAC of each pixel in the EBN 

image, so the visual distribution maps of PC, CC and SAC on the whole EBN were 

obtained. It is the first time to show the distribution tendency of PC, CC and SAC on 

the whole EBN sample.  

Keywords: edible bird’s nest, distribution map, hyper-spectral imaging, 

nondestructive 
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1. Introduction 

Edible bird’s nests (EBN) are known as the Caviar of the East in Asia (Marcone, 

2005). EBNs have long been regarded as a valuable food in China, and the 

consumption market has been expanding to Western countries (Lau & Melville, 1994). 

Based on modern research, the content of EBN components and its functions show the 

important value of the EBN. The proteins, carbohydrates, sialic acid are known to be 

the major compositional fraction of EBN – comprising of 40%-60%, 10%-30% and 

6%-13% of the mass of the food item, respectively (Ma & Liu, 2012). Researchers 

have figured out the relationships of the components (proteins, carbohydrates, sialic 

acid and various kinds of elements) and functions of the EBN, such as 

chondro-protection ability on human articular chondrocytes (Chua et al., 2013), 

anti-inflammatory properties (Vimala, Hussain & Nazaimoon, 2012) and anti-aging 

properties (Kim et al., 2012). 

Nowadays there is a broad and growing interest in knowing more about the 

distribution of major component in the whole EBN sample. To our knowledge, no 

article related to the distribution of major components on EBN sample has been 

reported in the current literature. Both chemical methods (high performance liquid 

chromatography (HPLC) (Guo et al., 2006), gas chromatographic (GC) (Chua, Chan, 

Bloodworth, Li & Leong, 2015), ultraviolet (UV) spectrometry (Saengkrajang, Matan 

& Matan, 2013) and near-infrared spectroscopy (NIRS) (Deng, Sun, Zhou & Li, 2006) 

may be used as analytical techniques for quantitative analysis, but these methods 

belong to “a single point/region” detection method which does not generally include 

consideration of the major components distribution map in the whole EBN sample. 

For the past few years, hyperspectral imaging technology has been used to 

determine internal and external attributes of biological products (Cen & Lu, 2010; 

Kamruzzaman, Makino & Oshita, 2016; Konda Naganathan et al., 2016; Zou & Zhao, 

2015). Hyperspectral imaging technology combines conventional spectroscopy and 
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imaging techniques to acquire both spectral and spatial information from an object. In 

comparison with conventional spectroscopy and imaging techniques, the instruments 

of hyperspectral imaging technology are much more expensive, the analytical 

accuracy of hyperspectral imaging technology may be slightly low, and sophisticated 

mathematical methods are indispensable for data processing due to the extremely 

large hyperspectral image data. As hyperspectral image data contains both spectral 

and spatial information simultaneously, the hyperspectral imaging technology has 

some unique advantages compared with conventional spectral/imaging technologies 

(Cheng, Sun, Pu & Zhu, 2015; Pu & Sun, 2015; Shi, Zou, Zhao & Wang et al., 2012). 

In order to analyze the physical and/or chemical properties of the biological products, 

the whole surface of the individual items must be evaluated to achieve a full 

assessment. The hyperspectral imaging technique meets these requirements and it has 

been used to analyze chemical properties of various biological products successfully. 

Examples include Total acid content in vinegar (Zhu et al., 2016), chlorophyll 

determination in cucumber plants (Zou et al., 2011), moisture content in mango (Pu & 

Sun, 2015), and total volatile basic nitrogen contents in prawns (Dai, Cheng, Sun, Zhu 

& Pu, 2016). 

Hyperspectral imaging data contains a spectrum with a specific wavelength range 

for each pixel in a 2-dimensional image of the sample. Research has demonstrated 

there is a good correlation between spectral data and chemical composition content in 

fruit (Kumar, McGlone, Whitworth & Volz, 2015), vegetables (Sridhar, Witter, Wu, 

Spongberg & Vincent, 2014), herbs (Saltas, Pappas, Daferera, Tarantilis & Polissiou, 

2013) and other samples (Amneh & Mohammed, 2011; Lebot, Champagne, Malapa & 

Shiley, 2009; Shi et al., 2013; Ziemons et al., 2010). Moreover, published papers 

reported that Carbohydrates components in foxtail millet (Chen, Ren, Zhang, Diao & 

Shen, 2013), Proteins components in protein powder products (Ingle et al., 2016), and 

Sialic acid components (monosialotetrahexosyl) in medical injections (Ma et al., 2014) 
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could be determined by NIR. These studies indicated that there are characteristic 

absorbances in NIR region that could be used to determine 

Carbohydrates/Proteins/Sialic acid, and therefore it is possible to detect the 

distribution of major components (Carbohydrates/Proteins/Sialic acid) in the whole 

EBN sample using hyperspectral imaging technology.  

The objectives of this study are to: (1) provide a rapid and nondestructive method 

for determining the distribution map of major components content (PC, CC and SAC) 

on EBN sample; (2) analyze the distribution tendency of components content (PC, CC 

and SAC) on the whole EBN sample. 

2. Materials and methods 

2.1 materials 

60 white EBN samples were provided by the Edible Bird’s Nest Market 

Committee of China Agricultural Wholesale Markets Association (EBMC).  

2.2 hyperspectral image acquisition and pre-processing 

A hyperspectral imaging system in the Vis/NIR (430-960nm) was used to image 

the EBN sample (Zou & Zhao, 2015). This system consisted of a linescan 

spectrograph (ImSpector, V10E, Spectra Imaging Ltd., Finland), a CMOS camera 

(Bci4-1300, C-Cam Ltd., Belgium), a standard C-mount lens, a DC illuminator (2900, 

Illumination Technologies Inc., USA), a conveyer (Zolix TS200AB, Zolix. Corp., 

China), an enclosure, a data acquisition and pre-processing software (SpectraCube, 

Auto Vision Inc., USA), and a PC as shown in Fig. 1. Based on the hyperspectral 

imaging system, a hyperspectral image of the EBN sample was acquired. The 

hyperspectral imaging date cube of EBN sample was shown in Fig. 2. 

 

Fig.1 goes here 

 

Fig.2 goes here 



  

6 

 

 

As shown in Fig. 2(a), the EBN hyperspectral image can be considered as a 3 

dimension data cube. X axis and y axis are used to indicate the location of each pixel 

in hyperspectral data, and λ axis is used to indicate the wavelength of image signal 

(Zou et al., 2010). While x, y equal to a fixed value specified xj, yk (1≤ xj ≤1024, 1≤ 

yk ≤618), λ equals to any value available (λę[430 9̍60]), the date cube of a specified 

pixel is obtained as shown in Fig. 2(b). The intensity of the images vary according to 

their wavelength, signals in Fig. 2(b) are presented in a line chart, then the spectral 

data of the pixel (xj, yk) are obtained, as shown in Fig.2(c). While λ equal to a fixed 

value specified λi (430≤λi ≤960), x, y equals to any value available (xę[1 1̍024], yę

[1 6̍18]), an EBN image at the specific wavelength λi is obtained. Therefore the EBN 

hyperspectral image combines conventional spectroscopy and imaging techniques 

(Zou, Shi, Min, Zhao, Mao, Chen, Li & Mel, 2011). It can be used to acquire both 

spectral and spatial information from an EBN sample, which makes it possible to 

determine the distribution of major components in the whole EBN sample. 

2.3 extraction of spectral data from hyperspectral image 

Hyperspectral imaging systems acquire abundant spatial information during the 

process of collecting spectral information. The hyperspectral data cube obtained from 

an EBN sample is shown in Fig. 1. The appropriate selection of a ROI for a sample 

image becomes critical and has profound impacts on the performance of prediction 

models (Zou, Shi, Min, Zhao, Mao, Chen, Li & Mel, 2011). In this study, the center 

part of EBN sample is defined as the location of the ROI (50×50pixels) in EBN 

hyperspectral image. The average intensity of ROI in images of the specified 

wavelengths (430-960nm) was extracted, so the raw spectra of EBN samples was 

obtained. Each spectra was smoothed with an 11 point mean filter and Standard 

Normal Variate (SNV) to eliminate variations in the baseline promoted by light 

scattering (Guo, Wu & Massart, 1999). 
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2.4 determination of PC, CC and SAC 

Immediately after hyperspectral image acquisition, samples were used to 

determine the PC, CC and SAC. PC was determined by Kjeldahl’s method, using 6.25 

as a conversion factor (Saengkrajang, Matan & Matan, 2013). CC was determined by 

subtraction method, presented in Saengkrajang’s paper with slight modification 

(Saengkrajang, Matan & Matan, 2013). CC was obtained by subtracting the percent of 

moisture, protein, fat, fibre and ash from total EBN mass (CC=Total 

mass-moisture-protein-fat-fibre-ash). Moisture content was determined by drying the 

EBN sample in an oven at 105Υ until a constant weight was obtained (Saengkrajang, 

Matan & Matan, 2013). Fat content was calculated from a fraction of lipid extracted 

from the hydrolysed EBN sample (Wrolstad et al., 2005). Fibre was determined after 

digesting a known weight of a fat-free sample in refluxing 1.25% sulfuric acid and 

1.25% sodium hydroxide (Saengkrajang, Matan & Matan, 2013). Ash contents were 

determined by dry ashing in a furnace at 550Υ for 18 h (Saengkrajang, Matan & 

Matan, 2013).  

SAC was determined by high performance liquid chromatography (Shimadzu Co., 

Kyoto, Japan) with ultraviolet detection (Hurum & Rohrer, 2012). EBN samples were 

dissolved in 0.5 mol/L sodium bisulfate aqueous solution and kept for 30 min in 80ć 

water bath. After cooling the derivatization was carried out using 

O-phenylenediamine 2HCl as derivative. The chromatographic separation was 

achieved on a ZORBAX SB-C18 (4.6mm×150mm, 5 μm; Sigma Chemical Company, 

St Louis, MO) column using a mobile phase composed of 1.0% tetrahydrofuran 

aqueous solution (containing phosphoric acid and 1- butylamine at the levels of 0.5% 

and 0.15%, respectively) and acetonitrile (95:5, V/V) at a flow rate of 1.0 mL/min in 

the isocratic elution mode. The column temperature was kept at 35±0.5ć using a 

column oven. Sialic acid separations are detected by the SPD-20A UV-detector, which 

was set at 230 nm. Standards of the N-Acetylneuraminic acid (Neu5Ac, 
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Product#A0812, Sigma Chemical Company) were dissolved in water. The linear 

portions of the standard curves were used to convert the integrated areas to μg /mg 

EBN weight.  

2.5 Chemometrics methods 

In this study, Genetic Algorithm-interval Partial Least Squares (GA-iPLS) and 

Genetic Algorithm- Partial Least Squares (GA-PLS) were used to select the most 

informative wavelengths correlated with PC/CC/SAC. PLS was used to build 

calibration models based on the selected wavelengths, and leave-one-out 

cross-validation (LOOCV) was employed to evaluate the established calibration 

model. The performance of the calibration models was back-evaluated according to 

the root mean square error of calibration (RMSEC), the root mean square error of 

cross-validation (RMSECV) and the correlation coefficient in the calibration set (Rc). 

The optimal model was also tested by an independent prediction set. The performance 

of optimal model for the prediction set was evaluated according to the root mean 

square error of prediction (RMSEP) and the correlation coefficient in the prediction 

set (Rp) (Shi, Zou, Zhao & Holmes et al., 2012; Zou, Zhao, Malcolm, Mel & Mao, 

2010).  

2.5.1 Genetic algorithm iPLS (GA-iPLS) 

The GA-iPLS algorithm which combines the advantages of GA and PLS 

described in this paper was an evolution of the GA algorithm and the iPLS algorithm. 

The GA algorithm was used to select spectral regions, the PLS algorithm was used to 

established regression model using the selected spectral regions, and leave-one-out 

cross-validation (LOOCV) was employed to evaluate the established calibration 

model. The combination of intervals with the lowest RMSECV was chosen. The 

GA-iPLS was repeated ten times in order to avoid its stochastic influence. Details of 

the GA-iPLS algorithm can be found in our published literatures (Shi, Zou, Zhao & 

Holmes, 2012). 
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2.5.2 Genetic algorithm PLS (GA-PLS) 

In order to reduce the number of variables and simplify the calibration model, the 

GA-PLS algorithm was used to select most informative wavelengths correlated with 

PC/CC/SAC from those wavelength regions that selected by GA-iPLS. Therefore, the 

GA-PLS algorithm described in this paper was similar to the GA-iPLS algorithm. The 

GA algorithm was used to select spectral wavelengths from the specific wavelength 

regions, then the PLS algorithm was used to established regression model using the 

selected spectral regions. The GA-PLS was repeated ten times in order to avoid its 

stochastic influence. Details of the GA-PLS algorithm can be found in our published 

literatures (Zou, Zhao, Huang & Li, 2007). 

2.6 Estimating major components distribution map 

The main steps of estimating major components distribution map including: (1) 

building calibration models, (2) testing the calibration models, (3) estimating 

distribution map. The flow chart of determining PC/CC/SAC map on an EBN sample 

is shown in Fig. 3.  

2.6.1 Building calibration models 

As shown in Fig.3, 40 EBN samples in the calibration set were used to build PC, 

CC and SAC calibration models. Firstly, after hyperspectral image acquisition, 

components content (PC, CC and SAC) of ENB samples were determined by 

chemical analytical methods. Secondly, the center part of EBN sample is defined as 

the location of the ROI (50×50pixels) in EBN hyperspectral image. The average 

intensity of ROI in images of the specified wavelengths (430-960nm) was extracted, 

so the spectra of calibration set was obtained. Thirdly, GA-iPLS algorithm and 

GA-PLS algorithm were used to select most informative wavelengths correlated with 

PC/CC/SAC and build calibration models based on selected wavelengths. The whole 

spectrum was divided into 30 equidistant subintervals, the number of the generations 

is equal to 60, crossover probability (pc) is equal to 0.50, mutation probability (pm) is 
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equal to 0.05, a random population (population size 40, the average percentage of 

variables selected in the chromosomes of the starting population was 10%) was used 

as the initialized population.  

2.6.2 Testing the calibration models 

As shown in Fig.3, 20 EBN samples in the prediction set were used to test the 

PC/CC/SAC calibration models. Firstly, after hyperspectral image acquisition, 

components content (PC, CC and SAC) of ENB samples were determined by 

chemical analytical methods. Secondly, the spectral of prediction set was extracted 

according to the ROI that has been defined in section 2.6.1. Thirdly, the spectral of 

prediction set was substituted in the PC/CC/SAC calibration models to calculate the 

PC/CC/SAC of the prediction samples. Finally, the root mean square error of 

prediction (RMSEP) and the correlation coefficient in the prediction set (Rp) were 

used to evaluate the capability of the PC/CC/SAC calibration models, so the optimal 

PC/CC/SAC calibration model could be obtained. 

2.6.3 Estimating distribution map 

As we known, hyperspectral imaging data contains a spectrum with a specific 

wavelength range for each pixel in a 2-dimensional image of the sample. In the 

optimal PC/CC/SAC calibration model, a relationship between EBN spectra and 

PC/CC/SAC was defined. Therefore, it possible to estimate the distribution of major 

components in the whole EBN sample using hyper-spectral imaging technology. 

Firstly, after hyperspectral image acquisition, spectra of all pixels was extracted from 

the hyperspectral of an EBN sample. Secondly, the spectral of each pixel was 

substituted in the PC/CC/SAC calibration models to estimate the PC/CC/SAC in each 

pixel of the EBN sample. Thirdly, the PC/CC/SAC of the pixels were displayed in two 

dimension spastically, then the distribution maps of PC/CC/SAC were obtained, as 

shown in Fig.3.  
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Fig.3 goes here 

 

2.6 Software 

All the image processing and data analysis procedures described above were 

executed using programs developed in Matlab 7.0 (MathWorks, Natick, MA, USA). 

Extraction of reflectance spectra from the hyper-spectral images was accomplished 

using ENVI 4.3 (ITT Visual Information Solutions, Boulder, CO, USA). 

 

3. Results and discussion 

3.1 PC, CC and SAC in EBN samples 

As illustrated in Table 1, the descriptive statistics for the PC/CC/SAC in EBN 

samples were presented. The min values of the PC, CC and SAC was 470.12mg/g, 

189.47 mg/g, and 83.35 mg/g for all EBN samples (including both calibration set and 

validation set). The max values of the PC, CC and SAC was 600.05 mg/g, 446.49 

mg/g, and 113.58 mg/g for all EBN samples (including both calibration set and 

validation set). The 60 EBN samples were divided into a calibration set and a 

validation set. To avoid bias in subset selection, this division was made as follows: all 

samples had been sorted according to their respective y-value (viz. the reference 

measurement value of PC/CC/SAC). A 2/1 division of calibration/validation samples 

was chosen, thus two samples out of every three samples were randomly selected into 

the calibration set, so that the final calibration set contains 40 samples and the 

validation set contains 20 samples (Shi, Zou, Zhao, Holmes, Wang, Wang & Chen, 

2012). The descriptive statistics for the PC, CC and SAC in calibration set and 

validation set were shown in Table 1. 

 

Insert table 1 here 
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3.2 Estimating the distribution map of PC/CC/SAC 

As shown in Fig.3, the main steps of estimating major components distribution 

map including: (1) building calibration models, (2) testing the calibration models, (3) 

estimating distribution map. In this section, relevant results and discussion to these 

steps were presented.  

3.2.1 Building calibration models 

After hyperspectral image acquisition, spectral data of calibration set were 

extracted from the hyperspectral images of 40 EBN samples in calibration set, as 

shown in Fig.3. Then spectra data and EBN components content (PC, CC and SAC) 

determined by chemical analytical methods were used to build calibration models. In 

order to obtain good and simple calibration models, GA-iPLS algorithm and GA-PLS 

algorithm were used to select most informative wavelengths correlated with 

PC/CC/SAC and build calibration models based on selected wavelengths.  

Firstly, GA-iPLS was employed to select most informative spectral regions 

correlated with PC/CC/SAC, and calibration models based on selected spectral 

regions were shown in Table 2. 82 wavelengths were identified as the optimal 

wavelengths for PC prediction. Based on the optimal wavelengths, a PC calibration 

was built and yielded acceptable results (Rc = 0.95, RMSEC = 2.02 mg/g, Rcv =0.93, 

RMSECV = 2.29 mg/g). 103 wavelengths were identified as the optimal wavelengths 

for CC prediction. Based on the optimal wavelengths, a CC calibration was built and 

yielded acceptable results (Rc = 0.93, RMSEC = 15.78 mg/g, Rcv = 0.92, RMSECV 

= 16.10 mg/g,). 83 wavelengths were identified as the optimal wavelengths for SAC 

prediction. Based on the optimal wavelengths, a SAC calibration was built and 

yielded acceptable results (Rc = 0.96, RMSEC = 0.38 mg/g, Rcv = 0.95, RMSECV = 

0.39 mg/g).  

Secondly, In order to reduce the number of variables and simplify the calibration 

model, the GA-PLS algorithm was used to select most informative wavelengths 
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correlated with PC/CC/SAC from those wavelength regions that selected by GA-iPLS. 

Calibration models based on spectral wavelengths selected by GA-PLS were shown in 

Table 2. 12 wavelengths were identified as the optimal wavelengths for PC prediction. 

Based on the optimal wavelengths, a new PC calibration was built and yielded 

acceptable results (Rc = 0.88, RMSEC = 3.28 mg/g, Rcv =0.86, RMSECV = 3.49 

mg/g). 9 wavelengths were identified as the optimal wavelengths for CC prediction. 

Based on the optimal wavelengths, a new CC calibration was built and yielded 

acceptable results (Rc = 0.90, RMSEC = 18.42 mg/g, Rcv = 0.89, RMSECV = 18.76 

mg/g). 10 wavelengths were identified as the optimal wavelengths for SAC prediction. 

Based on the optimal wavelengths, a new SAC calibration was built and yielded 

acceptable results (Rc = 0.90, RMSEC = 0.43 mg/g, Rcv = 0.87, RMSECV = 0.51 

mg/g). 

 

Insert table 2 here 

 

3.2.2 Testing the calibration models 

After hyperspectral image acquisition, spectral data of predication set were 

extracted from the hyperspectral images of 20 EBN samples in predication set, as 

shown in Fig.3. Then the spectral of prediction set was substituted in the calibration 

models based on GA-iPLS/GA-PLS to predicate the PC/CC/SAC of the EBN samples, 

and the root mean square error of prediction (RMSEP) and the correlation coefficient 

in the prediction set (Rp) were used to evaluate the capability of the PC/CC/SAC 

calibration models for predication set. Results of ‘Testing the calibration models’ were 

presented in Table 2. RMSEP of PC, CC and SAC based on GA-iPLS calibration 

models was 2.81 mg/g, 19.04 mg/g and 0.42 mg/g, respectively. Rp of PC, CC and 

SAC based on GA-iPLS calibration models was 0.90, 0.88 and 0.91, respectively. 

RMSEP of PC, CC and SAC based on GA-PLS calibration models was 3.51 mg/g, 
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19.30 mg/g and 0.54, respectively. Rp of PC, CC and SAC based on GA-PLS 

calibration models was 0.85, 0.86 and 0.85, respectively. 

Table 2 summarizes the results of PC/CC/SAC calibration models developed by 

GA-iPLS and GA-PLS. By comparing the PC/CC/SAC calibration models developed 

by GA-iPLS, PC/CC/SAC calibration models developed by GA-PLS yielded results 

with lower PLS factors and higher RMSEC/RMSECV/RMSEP values. Results 

indicated that although accuracy of the GA-PLS models was decreased due to the 

higher RMSEC/RMSECV/RMSEP values; and dimensionality of GA-PLS models 

was reduced due to the lower PLS factors. Usually dimensionality reduction could be 

beneficial to develop a multispectral system for on/in-line application, and could also 

make the calibration models easier to interpret. 

3.2.3 Estimating distribution map 

A relationship between EBN spectra and PC/CC/SAC have been built by the 

established GA-PLS calibration models in section 3.2.1. Then these calibration 

models were used to estimate the PC/CC/SAC at each pixel of the EBN hyperspectral 

image. Distribution maps of PC/CC/SAC can be obtained by displaying PC/CC/SAC 

at all pixels as a 2D image, as shown in Fig.3. Fig.4 shows the distribution maps of 

PC/CC/SAC as predicted by the optimal GA-PLS calibration models. These 

distribution maps are coloured according to the band intensity indicating the relative 

PC/CC/SAC [mg/g]. With the PC/CC/SAC distribution maps, it is possible to observe 

the levels of PC/CC/SAC in the different regions directly. This highlights the 

advantages of hyperspectral imaging technology compared with point/region analysis 

technologies such as HPLC, GC, and near infrared spectroscopy. 

PC distribution map in EBN sample was shown in Fig.4 (a), the PC of EBN 

sample was in the range of 450-650 mg/g, and is concentrated in 500-600 mg/g. CC 

distribution map in EBN sample was shown in Fig.4 (b), the CC of EBN sample was 

in the range of 200-450 mg/g, and is concentrated in 280-350 mg/g. SAC distribution 
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map in EBN sample was shown in Fig.4 (c), the SAC of EBN sample was in the range 

of 80-110 mg/g, and is concentrated in 85-95 mg/g. The acquired PC/CC/SAC 

distribution of EBN sample in general is in agreement with the results of chemical 

analysis (shown in Table 1) and the published paper (Ma & Liu, 2012).  

PC and CC are not evenly distributed throughout the EBN sample as shown in 

Fig.4 (a) and Fig.4 (b). It could be also found that the areas with high PC in Fig.4 (a) 

correspond to low CC in Fig.4 (b), and the areas with low PC in Fig.4 (a) correspond 

to high CC in Fig.4 (b). These maybe resulting from the PC/CC/SAC in saliva of 

swiftlets. As we know, EBN is made from the saliva of swiftlets (Ma & Liu, 2012). 

Usually, the construction process of an edible bird’s nest may take the birds about 35 

days (Marcone, 2005). During this period, daily consumption of food may affect the 

protein content and carbohydrate content in the saliva of swiftlets. The consumption 

of insects and small fish increase PC in the saliva of swiftlets, while the consumption 

of seaweed increase CC in the saliva of swiftlets. Fig.4 (c) shows that SAC is 

distributed evenly on the EBN sample. Sialic acids are a family of nine-carbon acidic 

monosaccharides that occur naturally at the end of sugar chains attached to the 

surfaces of cells and soluble proteins (Wang & Brand-Mille, 2003). Sialic acid 

disorders will cause serious problems to humans and animals (Sillanaukee, Pönniö & 

Jääskeläinen, 1999). Therefore sialic acid content in saliva of swiftlets remains 

relatively stable level, which is the main reason why sialic acid component of the 

EBN sample is distributed evenly. According to the published papers, Sialic acids 

have been identified as one of the special nutrient components in EBNs due to its 

anti-virus and immune-enhancing properties (Guo, Takahashi, Bukawa, Takahashi, 

Yagi, Kato, Hidari, Miyamoto, Suzuki & Suzuki, 2006). Fig.4 (c) indicates that 

nutrient values of different parts of EBN sample are the same in the aspects of 

anti-virus and immune-enhancing properties.  
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Fig.4 goes here 

 

EBN samples with different Carbohydrates/Proteins/Sialic acid content can cause 

changes in the reflectance of hyperspectral image, this is the fundamental reason why 

Carbohydrates/Proteins/Sialic acid content can be predicated by hyperspectral data. 

However, EBN samples with different shape and surface angle can also cause changes 

in the reflectance of hyperspectral image. Changes in the reflectance caused by 

sample shape or surface result in errors in predicating Carbohydrates/Proteins/Sialic 

acid content. In order to eliminate the negative effects of sample shape and surface 

angle, some measures were employed in hyperspectral image collection. (1) EBN is in 

its natural round shaped form, resembling the shape of “cupped hand”. Unlike 

samples with flat surface, the shape and surface angle of EBN samples can affect the 

quality of hyperspectral image acquisition. Usually, in order to obtain high quality 

images, the height of a sample should be less than the Depth of field (DOF) of an 

imaging system. In this study, A proper position with low height (EBN samples were 

put on a platform with its big side down the ground) was chosen for EBN samples 

during hyperspectral image collection. So the height (4-6 cm) of EBN samples is 

lower than DOF (10 cm) of hyperspectral imaging system. (2) At the same time, EBN 

surface angle and light source (type, distribution) decide the directions of reflected 

light. We noticed that EBN is dome-shaped. In order to reduce the effects of surface 

angle, two directional lights (45° and 135°) in symmetric distribution were employed 

as lighting source system during hyperspectral image collection. 

4. Conclusions 

In this paper, PC/CC/SAC and its distribution on the whole EBN sample were 

determined using hyperspectral imaging. The results presented illustrate that 

hyperspectral imaging is a powerful tool for PC/CC/SAC analysis in EBN sample. 

After hyperspectral image acquisition and pre-processing, average spectra obtained 
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from the ROI of EBN images were used for calibration model development. GA-iPLS, 

GA-PLS were constructed for the prediction of the PC/CC/SAC. When the calibration 

model was applied to an independent validation set, PC/CC/SAC was reasonably well 

predicted (Rp = 0.85, 0.86, 0.85). Application of the calibration models to the spectra 

of each pixel in hyperspectral image enabled the PC/CC/SAC distribution map to be 

estimated. The acquired PC/CC/SAC distribution of EBN sample in general is in 

agreement with the results based on chemical analysis. With the PC/CC/SAC 

distribution maps, it is possible to observe the levels of PC/CC/SAC in the different 

regions directly. 
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Figure 1 Hyperspectral imaging system 

Figure 2 EBN hyperspectral image data cube 

Figure 3 Process flowchart for estimating PC/CC/SAC content distribution in EBN sample 

Figure 4 Distribution maps of protein content (a), carbohydrate content (b) and sialic acid content (c) 
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Table 1 descriptive statistics for the PC, CC, and SAC in EBN samples 

components group number 
Min 

(mg/g) 

Mean 

(mg/g) 

Max 

(mg/g) 

SD 

(mg/g) 

PC 

All samples 60 470.12 568.82 600.05 15.43 

Calibration 40 470.12 568.33 600.05 15.47 

Validation 20 480.02 569.79 596.19 15.63 

CC 

All samples 60 189.47 347.12 446.49 57.78 

Calibration 40 189.47 344.46 446.49 57.35 

Validation 20 200.08 352.45 441.85 60.64 

SAC 

All samples 60 83.35 100.66 113.58 5.41 

Calibration 40 83.35 100.45 113.58 5.51 

Validation 20 90.27 101.07 112.62 5.29 
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Table 2 performance of PC, CC, and SAC models based on GA-iPLS and GA-PLS 

models component 
Number of 

wavelength

PLS 

factors 

RPD 

value 

Calibration Cross-validation Prediction 

Rc RMSEC Rcv RMSECV Rp RMSEP 

GA-iPLS 

PC 82 15 5.56 0.95 2.02 0.93 2.29 0.90 2.81 

CC 103 12 3.18 0.93 15.78 0.92 16.10 0.88 19.04 

SAC 83 17 12.60 0.96 0.38 0.95 0.39 0.91 0.42 

GA-PLS 

PC 12 7 4.45 0.88 3.28 0.86 3.49 0.85 3.51 

CC 9 6 3.14 0.90 18.42 0.89 18.76 0.86 19.30 

SAC 10 5 9.80 0.90 0.43 0.87 0.51 0.85 0.54 
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Highlights 

� A rapid and nondestructive method for determining the distribution of EBN 

components were first proposed. 

� Distribution maps of three EBN components content (PC, CC and SAC) were 

determined. 

� Distribution tendency of PC, CC and SAC on the whole EBN sample was first 

analyzed. 

 


