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Abstract—This paper looks into the modelling of the ACUREX
distributed solar collector field at the Plataforma Solar de
Almeria (PSA). ACUREX possesses resonance characteristics
that lie well within the desired control bandwidth and quite
commonly is modelled by dividing the receiver tube in the solar
collector field into a number of segments. However, the number
of segments has varied significantly in the literature. This paper
provides an open-loop and closed-loop analysis with the aim of
finding the number of segments needed to adequately model the
resonance characteristics.

Index Terms—Nonlinear systems, Parabolic trough, Resonant
modes, Solar thermal power plant.

I. INTRODUCTION
A. Background and problem statement

The latest world energy statistics [1] illustrate the need
to produce marketable electricity from clean and sustainable
alternatives to fossil fuels. The steady increase in the con-
sumption of fossil fuels (coal, oil and natural gas) and their
contribution to C'O2 emissions are the driving factors behind
this need. Solar energy is a highly appealing alternative.

In 2011, the International Energy Agency (IEA) stated that
”The development of affordable, inexhaustible and clean solar
energy technologies will have huge longer-term benefits. It
will increase countries’ energy security through reliance on
an indigenous, inexhaustible and mostly import-independent
resource, enhance sustainability, reduce pollution, ... ” [2].

Solar energy is converted into electrical energy by two
main approaches; a direct approach using photovoltaic (PV)
technology and an indirect approach using concentrated solar
power (CSP) technology, where electricity is produced by
thermal means [3]. The scope of this paper will be limited to
the application of the most developed CSP technology, namely
parabolic trough.

ACUREX is a parabolic trough technology-based solar
thermal power plant. It is one of the research facilities of the
Plataforma Solar de Almeria (PSA) in south-east Spain and has
served as a benchmark for many researchers across academia
and industry. Collectors of the ACUREX plant are parabolic
in shape and concentrate the incident solar radiation onto a
receiver tube that is placed at its focal line. A heat transfer
fluid (HTF) is heated as it flows through the receiver tube
and circulates through a distributed solar collector field. The
heated HTF then passes through a series of heat exchangers to
produce steam which in turn is used to drive a steam turbine
to generate electricity.

From a control point of view, one of the biggest challenges
is to maintain the field outlet temperature at a desired level de-
spite changes, mostly in solar radiation, field inlet temperature,
or ambient temperature. This can be handled by manipulating
the volumetric flow rate of the HTF. A detailed description of
the plant and control problem can be found in [4].

It was argued in [5] that the ACUREX distributed solar
collector field possesses resonance characteristics, namely res-
onant modes that lie well within the desired control bandwidth.
These phenomena arise due to the relatively slow flow rate
of the HTF and the length of the receiver tube. It was
also found that the phenomena have a significant impact on
the control performance and hence modelling the resonant
modes sufficiently accurately is crucial to ensure high control
performance with adequate robustness.

A common approach for constructing nonlinear models of
the ACUREX plant is to divide the receiver tube in the solar
collector field into a number of segments as will be discussed
later on in the paper. However, the literature has witnessed
a significant variation in the number of segments used and
hence it makes one wonder how many segments are actually
needed to adequately model the resonant modes of the plant.
Surprisingly, this has received little attention in the literature.

B. Paper contribution and organisation

The paper draws attention to a practice that can be helpful in
deciding on the number of segments needed and hence begins
by constructing a number of nonlinear simulation models of
the plant for a different number of segments and investigating
their performance in an open-loop and closed-loop fashion.

For the open-loop analysis, the performance of each model
will be analysed against a measured output from the ACUREX
plant. The closed-loop analysis requires the estimation of a
linear time-invariant (LTT) state space model from each and
every constructed nonlinear simulation model and hence the
estimation process and some frequency-domain analysis will
be discussed first.

A brief literature review of the available nonlinear models
of the ACUREX plant is presented in Section II and then
a general procedure for constructing a nonlinear simulation
model for any number of segments is discussed in Section
III. This is followed by an open-loop analysis in Section IV
and Closed-loop analysis in Section V. Finally, Section VI
is devoted to a discussion of the overall results and some
concluding remarks.



II. NONLINEAR MODELS OF THE ACUREX PLANT

The dominant dynamics of the ACUREX plant are captured
by a set of energy balance partial differential eqns. (PDEs):
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where the subindex m refers to the metal of the receiver tube
and f to the HTF [4], [6]. See Table I for variables and
parameters.

TABLE I: Variables and Parameters.

Symbol Description ST unit
p Density kg/m3
C Specific heat capacity J/kg°C
A Cross-sectional area m?

T Temperature °C

t Time s

I Solar radiation W/m?
o Mirror optical efficiency -

G Mirror optical aperture m
D, Outer diameter of the receiver tube m
H,; Global coefficient of thermal losses W/m°C
Ta Ambient temperature °C
D; Inner diameter of the receiver tube m
H; Coefficient of metal-fluid heat transfer ~ W/ m2°C
q HTF volumetric flow rate m3/s
x Space m

It is a common practice in the literature to construct
nonlinear simulation and prediction models based on these
PDEs by dividing the receiver tube into N segments each of
length Ax and then converting the set of PDEs (1) into a set
of ordinary differential equations (ODEs) or simply a set of
difference equations. One of the early constructed nonlinear
simulation models is reported in [4], where the receiver tube
was divided into 100 segments each of length 1m. The PDEs
(1) were solved using a two-stage algorithm of three difference
equations.

More recently and after simplifying the PDEs by neglecting
the dynamics of the metal of the receiver tube, a set of ODEs
has been obtained for simulation and prediction purposes. For
simulation purposes, the receiver tube was divided into 10
segments and for prediction purposes and after neglecting the
heat losses, the receiver tube was divided into 5 segments [7].
In [8], in an attempt to obtain a linearised state space model of
the plant, an ODE is obtained from a simplified version of the
PDEs and the receiver tube has been divided into 8 segments
whereas in [9] and for the same exact reason, the PDEs were
converted into a set of ODEs by dividing the receiver tube
into 15 segments.

Clearly, the number of segments used to construct nonlinear
simulation and prediction models has varied significantly
(from 5 to 100) in the literature and these are examples where
the number of segments was stated explicitly.

IIT. CONSTRUCTION OF A NONLINEAR SIMULATION
MODEL

The set of PDEs (1) can be approximated by a set of ODEs
by dividing the receiver tube into "N segments each of length
Az with the boundary condition T g = T inie+ (field inlet
temperature) and H;,Hy,p; and C'y being time—varying [10].
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The set of ODEs (2) is transparent and can be simply imple-
mented for any number of segments. In order to meet the first
aim of this paper, five nonlinear simulation models have been
constructed for N = 15, 13, 10, 7, and 4.

Remark 1. The set of ODEs (2) is implemented and solved
for the five nonlinear simulation models using the MATLAB
solver ODE45 (an explicit Runge-Kutta method) where the
temperature distribution in the receiver tube and HTF can
be accessed at any point in time and for any segment n. The
number of ODEs solved at each sample time k for a nonlinear
simulation model of N segments is 2 X N.

IV. OPEN-LOOP ANALYSIS

In this section and using some measured data T from
the ACUREX plant, the performance of the five nonlinear
simulation models is assessed in the time-domain and in an
open-loop manner. Fig. 1 shows the measured inputs and Fig. 2
shows the performance of the five nonlinear simulation models
against the measured output. Note that models 1, 2, 3, 4 and
5 refer to the nonlinear simulation models with 15, 13, 10, 7
and 4 segments respectively.

Inspection of Fig. 2 indicates that the variation in the
number of segments is only affecting the transients, i.e., the
larger the number of segments the slower the response. To
gain better insight into the respective performance, Table II
gives a numerical comparison of the five non-linear models.

TABLE 1II: Assessment of the Simulation Models

Simulation model RMSE (°C)
1 14.4859
2 14.2301
3 13.8792
4 13.5739
5 13.3112

Table II shows that a small number of segments gives lower
root mean square error (RMSE), but the impact on RMSE of
the variation in the number of segments is not significant. The
similarity in accuracy of these models could be an explanation
for the notable variation in the number of segments used in
the literature; the next section delves deeper into the problem.

TThe measured data was collected on 15 July 2003 and after a series of
step changes in the volumetric flow rate of the HTFE.
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Fig. 1: Measured inputs.

V. CLOSED-LOOP ANALYSIS
A. Control objective and strategy

It has been mentioned earlier that in a solar thermal power
plant a core control objective is to keep the field outlet
temperature at a specific target in spite of any changes in solar
radiation, the field inlet temperature, or ambient temperature
by suitably adjusting the volumetric flow rate of the HTFE.
In order to meet this aim, researchers have proposed many
different control strategies (e.g. see comprehensive surveys on
control strategies [11], [12]).

In [10], and due to the nonlinearity of the ACUREX plant,
a predictive control strategy has been designed locally around
a single operating point. That control strategy is adopted here
and used to investigate the performance of the five nonlinear
simulation models. The control strategy is model-based and
hence a local LTI state space model needs to be estimated
from each of the five nonlinear simulation models.

B. System identification and frequency-domain analysis

Following the same identification process in [10], LTI state
space models are estimated directly from input-output data
using the subspace identification method N4SID [13]. Table III
gives a summary of the results. Local models 1, 2, 3, 4 and 5
have been estimated from the constructed nonlinear simulation
models with 15, 13, 10, 7 and 4 segments respectively.

TABLE III: Summary of the Estimated Local Models

Local model  Model order  Best fit (%) CT (s) MSE
1 5th 97.17 125.835  0.2854
2 5th 97.21 106.471  0.2649
3 5th 97.21 79.556  0.2373
4 qth 97.16 53797 0212
5 3rd 97.10 30.443  0.1909

One way of describing Table III is to say that as the number
of segments is increased, the model order of the estimated state
space models is increased as well as the computational time
(CT) required to obtain the input-output data. The best fit and
mean squared error (MSE) are quantitative assessments of the
estimation process and one can notice slight variation to their
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Fig. 2: Simulation models against the measured output.

values. For more details about the model order selection and
the best fit criterion, readers are referred to [10].

The fact that the time-domain analysis gives little informa-
tion about the resonant modes of the plant necessitated an
alternative approach. Fig. 3 shows the frequency response of
the locally estimated LTI state space models. The Bode plot
clearly shows that the resonant modes indeed lie within the
Nyquist bandwidth and more importantly, as the number of
segments is increased they become more obvious and indeed
the resonance characteristics are not quite captured by local
model 5.
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Fig. 3: Frequency response of the estimated local models.

C. Simulation results

The estimated local LTI state space models are used for
the design of corresponding local predictive controllers. The
performance of the estimated models in capturing locally the
behaviour of the plant is put to the test using the simulation
scenario illustrated in Fig. 4 and Fig. 5. The scenario assumes
a fixed field inlet and ambient temperature and each time
a local controller is applied the plant is represented by the
corresponding nonlinear simulation model. The scenario starts
with a clear day and slowly time-varying solar radiation, but
adds a sudden drop in solar radiation at 12.45 A to simulate a
passing cloud.

The closed-loop performance of the five local controllers
can be summarised by the following interesting observations.
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During set point tracking, the local controllers that have been
designed based on a small number of segments show less
oscillatory tracking performance than the ones that have been
designed based on a large number of segments. Also local
controllers designed based on a large number of segments and
when operating far from the nominal operating point (0.006
m?3/s) give more severe control actions.

Conversely, in terms of the resonant modes of the plant, they
have been excited by the sudden drop in the solar radiation.
Inspection of Fig. 5 shows that the local controllers that have
been designed based on a large number of segments react to
the disturbance in a better way than the ones designed based
on a small number of segments.

For a better insight into the set point tracking performance
and disturbance rejection, Table IV gives an assessment of
the five local controllers across the whole range of operation
(RMSE,,) and the narrow range of the disturbance (RMSE).

TABLE 1V: Assessment of the Local Controllers

Local Controller RMSE,, (°C) RMSE, (°C)
1 2.3623 0.7753
2 2.4044 0.8047
3 2.1531 0.8385
4 1.9699 0.8725
5 1.8117 0.8943

VI. DISCUSSION AND CONCLUDING REMARKS

This paper investigated the number of segments needed
to adequately model the resonance characteristics of the
ACUREX plant. A number of nonlinear simulation models
were constructed and their performance assessed in open-loop
and closed-loop manner.

The open-loop analysis revealed that the variation in the
number of segments primarily affects transients and gives
little information about the resonant modes. A closed-loop
analysis requires the estimation of a LTI state space models;
here the resonant modes are more obvious when the models
are estimated from a nonlinear simulation model with many
segments.

The LTI state space models were evaluated using a nonlinear
simulation environment. The state space models estimated

T T T T

—Reference temperature|

—Local controller 1
Local controller 2

—Local controller 3 [ 4

—Local controller 4 [

Local controller 5

Temperature (°C)

I I I I I 12,8
95 10 105 1 115 12 125 13 135 14 145

13, 132 134

Fig. 5: Closed-loop performance.

based on a large number of segments react to a sudden
disturbance in a better way than those based on a small
number of segments. On the other hand, the state space models
estimated based on a small number of segments have shown
better set point tracking performance.

This leads to the following interesting finding. Constructing
a nonlinear simulation model using a large number of seg-
ments captures the dynamics of the plant at high frequencies
and constructing a nonlinear simulation model using a small
number of segments captures the dynamics of the plant at
low frequencies. Obviously this is a dilemma that calls for
something beyond the time-based measurements to validate a
nonlinear simulation model.

One way of resolving the dilemma is to relate to the fre-
quency response of the plant. In [14], the frequency response
of the plant has been obtained around three different operating
points and by inspecting the frequency response of the five
nonlinear simulation models around the same operating points,
it has been found that a nonlinear simulation model when 7
segments are considered gives a reasonable approximation to
the resonance characteristics of the plant. This can be clearly
seen in Fig. 6, Fig. 7 and Fig. 8.
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Note that the linear models that have been used here
to generate the frequency response of the plant are quite
controversial as discussed in [15] due to the fact that these
models were subject to changes in solar radiation during the
identification process, but this is not an issue here since the
normalised steady-state gain has been used for validation.
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