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ABSTRACT 

Ferroxidase activity has been reported to be altered in various biological fluids in 

neurodegenerative disease, but the sources contributing to the altered activity are 

uncertain. Here we assay fractions of serum and cerebrospinal fluid with a newly-

validated triplex ferroxidase assay. Our data indicate that while ceruloplasmin, a 

multicopper ferroxidase, is the predominant source of serum activity, activity in CSF 

predominantly derives from a <10kDa component, specifically from polyanions such 

as citrate and phosphate. We confirm that in human biological samples, ceruloplasmin 

activity in serum is decreased in Alzheimer’s disease, but in CSF a reduction of 

activity in Alzheimer’s disease originates from the polyanion component. 

 

Keywords: Ferroxidase, ceruloplasmin, iron, neurodegenerative disease, polyanion, 

oxidation 
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Iron is required as a cofactor in many metabolic processes.  In aerobic conditions, the 

redox cycling between ferric (Fe
3+

) and ferrous (Fe
2+

) iron
 
is controlled by protein 

chaperoning
1
 to prevent the generation of reactive hydroxyl radicals

2
. Ferroxidase 

activity aerobically catalyses ferrous iron oxidation producing water, so mitigating 

hazardous reactive oxygen species (ROS) production
3
. Iron oxidation

2
, with 

subsequent Fe
3+

 loading into extracellular transferrin (TF)
3, 4

, is important in cellular 

iron homeostasis by facilitating iron efflux through ferroportin (Fpn), the only known 

iron export pore protein.  

In the brain, multicopper ceruloplasmin (CP) is considered the predominant 

ferroxidase for iron export. It is primarily secreted by choroid plexus epithelial cells, 

although there is also ceruloplasmin GPI-anchored to the astrocyte membranes
5
. 

Some less-abundant multicopper proteins within the brain also have ferroxidase 

capability, such as hephaestin (HEPH), which is primarily expressed in 

oligodendrocytes
6
. The importance of ferroxidase activity in the central nervous 

system (CNS) has been demonstrated through ablation of CP in knockout mice and in 

aceruloplasminemia patients, where loss of function mutations of CP lead to brain 

regional iron retention and neurological deficits
7, 8

. Plasma CP can cross the blood 

brain barrier, and rescues neurological features in a mouse model of Parkinson’s 

disease (PD)
7
. Decreased CP oxidase activity has been reported in serum from 

patients suffering from Alzheimer’s disease (AD)
9
 and PD

10
.  

The incorporation of iron into TF has been used to measure ferroxidase activity 

indirectly
4, 11

, but two main controversies on its accuracy arise from a reliance on non-

physiological (low) pH in order to suppress auto-oxidation, as well as the requirement 

for indirect colorimetric detection of holo-TF formation, which is a rate-limiting 
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extraneous step in appraising the enzyme kinetics
1
. A more direct measurement of 

ferroxidase activity is to assay Fe
2+

 loss
12, 13

 and Fe
3+ 

gain
12, 14

 but buffer conditions 

are not physiological in these systems, and TF is absent. While each assay was 

originally used to determine activity in serum, they have been adapted increasingly to 

assay activity in other biological samples including human cerebrospinal fluid 

(CSF)
13-15

. To achieve measurement of ferroxidase activities under physiological 

conditions we recently developed a triplex ferroxidase assay that assesses ‘Ferrous 

Loss’, ‘Ferric Gain’ and ‘TF Loading’ in tandem under biologically relevant pH and 

salinity. Here, we report the first assays of CSF and serum using this more 

physiologically appropriate system.  

Human serum (0.25 mg/ml) was separated into filtrate (containing serum fluid, 

electrolytes, molecules and polypeptides <10kDa) and retentate (containing molecules 

and proteins >10kDa) fractions (Fig. S1). Simultaneous measurement of ‘Ferric 

Gain’, ‘TF Loading’ and ‘Ferrous Loss’ in human serum was determined in the 

presence or absence of apo-TF for all fractions (Fig. 1). Serum activity was achieved 

with all readouts from the triplex assay to provide the rate of total serum activity 

without TF as measured by ‘Ferric Gain’ at 5.21 ± 0.28 µM Fe
3+

/min (Fig. 1Ai). As 

predicted
1
, the rate of oxidation was increased by the presence of TF in the TF 

loading assay (7.48 ± 0.31 µM Fe
3+

/min) (Fig. 1Aii). Most of the activity in total 

serum fractionated into the retentate (Ferric gain: 4.01 ± 0.16 µM Fe
3+

/min [77%], TF 

loading: 6.67 ± 0.20 µM Fe
3+

/min [89%]). 

Multicopper ferroxidase inhibition with sodium azide
12

 verified that CP was the major 

component of retentate activity (Fig. 1B). However, despite all activity being ablated 

when using the Ferric Gain assay (Fig. 1Bi), a small proportion of retentate activity 
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was not inhibited by azide when measured by TF loading (1.44 ± 0.13 µM Fe
3+

/min) 

(Fig. 1Bii). This is consistent with previous TF loading reports identifying the 

presence of a non-CP ferroxidase activity in serum
11, 17

. End point quantitation of Fe
2+

 

loss corroborated the production of Fe
3+

 during the assays in both the presence and 

absence of TF (Fig. 1C). 

Triplex assay parameters for CSF were found to be as previously determined for 

purified CP
1
 and human serum (Fig. 1), at an optimal CSF volume of 20 µl (Fig. 

S2B). In contrast to serum fractions (Fig. 1), the predominant ferroxidase activity in 

CSF was found in the filtrate fraction (<10kDa) by both ‘Ferric Gain’ (Total = 3.47 ± 

0.19 µM Fe
3+

/min, Filtrate = 3.06 ± 0.17 µM Fe
3+

/min [88%]) (Fig. 2Ai) and ‘TF 

loading’ (Total = 2.60 ± 0.35 µM Fe
3+

/min, Filtrate = 2.10 ± 0.18 µM Fe
3+

/min 

[81%]) (Fig. 2Aii) assays. 

In assaying the same volume (5µl) of serum and CSF in both the ‘Ferric Gain’ and 

‘TF loading’ components of the triplex assay, activity was markedly greater in serum 

(Fig. S3A). Upon fractionation of either biological fluid, retentate had markedly 

greater activity from serum (Fig. S3B) and negligible activity from CSF (Fig. 2A). 

Despite this greater percentage of filtrate activity in total CSF, when compared to the 

same serum volume this fraction’s activity only had a minor elevation in Ferric Gain 

velocity (CSF: 1.12 ± 0.06 µM Fe
3+

/min, Serum: 0.54 ± 0.04 µM Fe
3+

/min)(Fig. 

S3Ci) and was comparable by TF loading (CSF: 1.79 ± 0.10 µM Fe
3+

/min, Serum: 

1.81 ± 0.12 µM Fe
3+

/min) (Fig. S3Cii).  

Azide (2.5mM) did not inhibit CSF activity (Fig. 2B), excluding the source of the 

activity being a multicopper ferroxidase e.g. CP. The absence of CP activity in human 

CSF is in alignment with normal levels of CP (~1.5 µg/ml)
18

 being <1% of those 
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found in serum (200-500µg/ml)
19

. Consistent with the previously reported level of CP 

in CSF, recombinant CP at this concentration (~2.5 µg/ml) is outside the active range 

of our assay (<20nM; Fig. S4). Our findings are similar to the activity that has been 

reported to arise from <10kDa species in CSF from healthy and sporadic Creutzfeldt-

Jakob disease (sCJD) patients
14

, but at variance with a report that ferroxidase activity 

in CSF originates from CP
13

. 

To identify whether the ferroxidase activity from the filtrate was of protein enzyme 

origin, fractionated serum and CSF were treated with proteinase K. In serum, the 

protease abolished the retentate activity, but had no effect on the filtrate activity (Fig. 

3A & S5A). Protease incubation with CSF had no effect on the total activity or the 

filtrate fraction (Fig. 3B & S5B).   

The capacity for polyanions to oxidize iron and facilitate the incorporation of Fe
3+

 

into TF is a confounding factor in measuring enzymatic ferroxidase activity
1
. We 

quantified the polyanion content in serum and CSF to identify whether these could be 

a source of the apparent ferroxidation activity in the filtrates. Phosphate and citrate 

are prevalent polyanions to oxidize iron in biological samples. We found that 

phosphate levels were greater in serum (Fig. 4Ai) whereas citrate levels were 

observed to be greater in CSF (Fig. 4Aii). To highlight the polyanion influence on 

ferroxidase activity in CSF, variability in the combined phosphate and citrate levels 

within CSF filtrates was observed to correlate with activity as measured by Ferric 

gain (P=0.010, r
2
=0.465) and TF loading (P=0.006, r

2
=0.509) (Fig. 4B). Ferric gain 

assay identified that both phosphate (P=0.040, r
2
=0.391) and citrate (P=0.029, 

r
2
=0.363) contributed to this correlation (Fig. S6A) and a similar trend was observed 

with TF loading (Fig. S6B).  
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We applied our assays under physiological conditions to assay serum and serum 

fractions from AD patients (n=10) and age-matched healthy controls (n=10) (Table 

S1). Although activities in whole serum samples were not different in AD patients by 

either Ferric gain or TF loading assays (Fig. 5A), there was a significant decrease in 

ferroxidase activity in the serum retentate fractions by these assays (Ferric gain -13%, 

TF loading -10%, Fig. 5A). This is analogous with the ~10% decrease in 

ceruloplasmin specific activity reported in a larger sampling of AD compared to 

control sera
9
. There was no difference between the AD and control groups in the 

serum filtrate activity measured by either assay, consistent with the finding of no 

difference in either serum phosphate, citrate levels (Fig. 5C) or when these were 

combined (data not shown). 

We also applied our assays under physiological conditions to evaluate CSF and CSF 

fractions from AD patients (n=10) and age-matched healthy controls (n=10) (Table 

S1). Total CSF and retentate samples were not altered in AD, but AD CSF filtrates 

had significantly decreased activity by both Ferric gain and TF loading assays (Fig. 

5B). With activity mostly originating from polyanions within the filtrate, citrate and 

phosphate levels were analysed but neither were altered in AD compared to healthy 

controls when measured individually (Fig. 5C) or in combination (data not shown).  

Our data provide simultaneous analysis on all steps of iron oxidation in biological 

fluids under physiological conditions, relevant for neurological disorder screening. 

Utilizing this assay confirms that serum activity largely resides in a >10kDa fraction 

that can be inhibited by azide, consistent with CP. In contrast, the majority of the 

activity in human CSF originates from the <10kDa fraction. Lack of a high molecular 

weight enzymatic activity is consistent with the low CP concentration reported in 
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CSF. We
1, 2

 and others
14

 have previously proposed that abundant polyanions such as 

phosphate and citrate could have a substantial affect on iron oxidation within a 

biological environment and play a role in cellular export when multicopper 

ferroxidases are absent. Indeed, we confirm that the iron oxidation activity derived 

from CSF is protease resistant and correlates with the polyanion content. The 

abundance of these polyanions can fuel iron oxidation to the extent that assays can 

misinterpret the reaction as enzymatic, and hence report a “pseudo-ferroxidase” 

activity. 

Previous measurements of ferroxidase activity using older assays under non-

physiological conditions (e.g. pH, temperature and buffer) have identified moderate 

changes in neurodegenerative diseases associated with iron disruption. We have been 

concerned about the reliability of only measuring one component of the ferroxidase 

reaction, especially under non-physiological conditions. Instead, a multi-component 

analysis of physiological activity and the elimination of the residual pseudo-

ferroxidase activity derived from a non-protein component in the sample is more 

accurate. 

The discovery that these disease associated changes in serum predominately originate 

from an azide inhibitable component suggests that while there is no detectable 

difference in serum copper or CP levels
19

, there may be less copper bound to CP in 

AD patients. This would be different to PD where a lower CP expression correlates 

with age of Parkinsonian onset
20

. Either a decreased copper-dependent activity of CP 

expression would likely cause the decreased iron saturation of TF recently reported 

for AD
21

. While the negligible ferroxidase activity in CSF is unaltered in AD, we 

found a decrease in iron oxidation mediated by small molecular weight species, 
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similar to other neurodegenerative diseases such as sCJD and PD
13, 14

. We could not 

confirm that this change in CSF was attributable to decreased citrate and phosphate 

levels, and other small molecular weight molecules may contribute. Monitoring the 

activity in neurological conditions such as multiple sclerosis that have a reported CSF 

polyanion imbalance
22

 may assist in identifying these other contributory small 

molecular weight molecules.  

METHODS 

Reagents. Reagents were purchased from Sigma Australia at an analytical grade, 

unless stated otherwise. When required as a positive control, purity of human CP 

(Vital Products) was enhanced by repeated washes with Milli-Q® H20 through a 

30kDa cutoff Amicon Ultra-15 (Millipore). 

Biological sample preparation. Human serum samples from healthy controls and 

from subjects with Alzheimer’s disease (AD) were obtained from The Australian 

Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) study
16

, and CSF 

samples from the same diagnostic categories were obtained from the National 

Dementia Diagnostic Laboratory, University of Melbourne. All procedures were 

carried out in accordance with the Australian National Health & Medical Research 

Council’s National Statement on Ethical Conduct in Human Research (2007) and the 

Victorian Human Tissue Act 1982. 

The CSF and serum samples were also kept at -80
o
C in aliquots (50µl) until required, 

to reduce freeze thawing and maximise ferroxidase activity. To obtain retentate and 

filtrate fractions for each biological material, samples were centrifugally fractionated 

(14,000g, 30 min, 4
o
C) through a 10kDa filter (Amicon Ultra 0.5ml MMCO 10kDa). 

The retentate fraction (>10kDa) was resuspended in Milli-Q® H20 to a comparable 
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volume as the filtrate (<10kda) (Fig.S1). The retentate was then washed once with the 

same volume of Milli-Q® H20 to remove retained filtrate. In experimental conditions 

that required the elimination of protein enzymatic activity, samples were treated with 

50µg/ml of proteinase-K overnight at 37
o
C. 

Ferroxidase assays. Assay conditions originally reported for in vitro analysis
1
 were 

found to be optimal also for measuring activity from CSF and serum. Only the 

duration of the assay and the volume of CSF or concentration of serum required 

optimization (Fig. S2). As previously described
1
, preparation of apo-transferrin (apo-

TF; >98% purity) and ferrous sulfate (FeSO4) in Milli-Q® H20 within an hour prior to 

use minimizes substrate deterioration through auto-oxidation. For kinetic analysis of 

‘Ferric gain’ (measured at Abs310/min) and ‘TF loading’ (measured at Abs460/min) 

velocities, the reagents (final concentrations) were added in the following order to a 

200µl reaction volume: HBS (HEPES 50 mM, NaCl 150 mM, pH 7.2), biological 

sample (optimally determined as 0.25mg/ml of serum or 20µl CSF), +/- apo-Tf 

(50µM), FeSO4 (100uM) and ddH20 made up to the total reaction volume. 

Confirmation of ‘Ferrous loss’ at the end of the log phase of the reaction was 

measured by the addition of Ferene S (500µM) (Abs590 at times dependent on sample 

type). All experiments were performed on the Power Wave HT (BioTek) microplate 

spectrophotometer using the iron extinction coefficient published previously
1
 and 

confirmed to follow the Beer-Lambert Law. When required, sodium azide (2.5 mM) 

was added to block multicopper ferroxidase activity. 

Statistical Analysis and data representation. Results were analysed using a 

combination of Excel (Microsoft 2011) and Prism (v5.0 Graphpad, Software Inc.). 

Difference between the means were calculated by one-way ANOVA followed by 
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Dunnett’s test to confirm the existence of correlations between activity and polyanion 

concentration or between AD and healthy control. P<0.05 was taken to be statistically 

significant and results are expressed as the means ± SEM unless presented otherwise. 

‘Ferric gain’ plots represent the differential amount of Fe(III) that results from 

biological sample oxidation, ‘Transferrin loading’ identifies the amount of Fe
3+

 that 

was loaded onto apo-transferrin and lastly ‘Ferrous loss’ illustrates the amount of Fe
2+

 

that remains from the conversion of Fe
2+

 to Fe
3+

 during the oxidation process by the 

sample. 
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FIGURE LEGENDS 

Figure 1: Characterizing ferroxidase activity in human serum. A. Total, retentate 

and filtrate fractions of human serum ferroxidase activity were kinetically quantified 

for Fe
3+

 production (Ferric Gain) (i) and apo-TF loading (ii) over 5min. B. Identical 

parameters as A were measured for retentate and filtrate fractions in the presence of 

sodium azide (2.5mM) for Fe
3+

 production (i) and apo-TF loading (ii). C. After 

10min, remaining Fe
2+

 (Ferrous Loss) post ferroxidase conversion from all serum 

fractions +/- sodium azide (2.5mM) was measured at endpoint with the addition of 

ferene S in the absence (i) or presence (ii) of TF. Final optimal conditions for carrying 

out the triplex assay in human serum were: HBS buffer (50mM HEPES, 150mM 

NaCl, pH 7.2); Serum (0.25mg/ml); +/- sodium azide (2.5mM); FeSO4 (100µM); +/- 

apo-TF (50µM).  Temperature was constant at 24
o
C throughout the assay and results 

blanked against the reading at the first time point. The individual data points shown 

are means ± S.E., n= 8 read in duplicates. 

Figure 2: Characterizing ferroxidase activity in human CSF. A. Velocity rate of 

iron oxidation was kinetically measured for total, retentate and filtrate fractions of 

human CSF by Ferric Gain (i) and Fe
3+

 loaded into apo-Tf (ii) within 5 min. B. 

Conditions replicated from A were used to measure retentate and filtrate fractions of 

human CSF ferroxidase activity in the presence of sodium azide (2.5mM). C. 10 min 

after ferroxidase conversion remaining Fe
2+

 was measured by ferene S in the absence 

(i) or presence (ii) of TF to confirm ferroxidase activity from CSF total, retentate and 

filtrate fractions. The same conditions as for serum were found to be optimal for CSF 

(20 µl). The individual data points shown are means ± S.E., n= 8 read in duplicates.       
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Figure 3: Determining enzymatic activity in serum and CSF. A. Total, retentate 

and filtrate fractions of human serum was incubated with proteinase K (50µg/ml) 

overnight at 37
o
C before ferroxidase activity was quantified for Fe

3+
 production (i) 

and apo-TF loading (ii) after 5min. B. Identical parameters as A were measured for 

human CSF to measure Fe
3+

 production (i) and apo-TF loading (ii). The triplex assay 

conditions were as optimally determined for human serum and CSF. Temperature was 

constant at 24
o
C throughout the assay and results blanked against the reading at the 

first time point. The individual data points shown are means ± S.E., n= 3 read in 

duplicates. ***=P<0.001 & NS=not significant by 2-tailed T-test analysis. 

Figure 4: Phosphate and Citrate analysis in serum and CSF. A. To represent 

polyanion levels in biological fluids, total serum and CSF samples were assayed for 

phosphate (i) and citrate (ii). B. Activity obtained by Ferric Gain (i) and TF Loading 

(ii) was correlated with the combined phosphate and citrate concentrations for the 

filtrate fraction. In A, each biological fluid was grouped for means ± S.E., n= 10 read 

in triplicate. ***=P<0.001 by 2-tailed T-test analysis. For B, the means of each 

individual data point was correlated before analysis by 2-tailed T-test. 

Figure 5. Determining the ferroxidase activity in human control and Alzheimer’s 

disease biological fluid. A. Alzheimer’s disease (AD) ferroxidase activity in total 

serum as well as the retentate and filtrate fractions were compared to age-matched 

healthy controls (HC) by Ferric Gain in the absence of TF (i) or apo-TF loading (ii). 

Conditions for carrying out the triplex assay in human serum were as optimized in 

Fig. 1. B. As with A, ferroxidase activity in AD CSF was compared to HC by Ferric 

Gain in the absence of TF (i) or apo-TF loading (ii) using the optimal conditions 

identified in Fig. 2. C. Within the filtrate fraction found to contain non-enzymatic 

activity, phosphate (i) and citrate (ii) levels in AD were compared to HC in serum and 
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CSF. Individual data points are means read in triplicates, each disease group are 

means ± S.E, with each group containing n= 10. *=P<0.05 as analysed by 2-tailed T-

test. 
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