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A DANZER SET FOR AXIS PARALLEL BOXES
DAVID SIMMONS AND YAAR SOLOMON

ABSTRACT. We present concrete constructions of discrete sets in R? (d > 2)
that intersect every aligned box of volume 1 in R?, and which have optimal
growth rate O(T9).

1. INTRODUCTION

A set D C R? is called a Danzer set if there exists an s > 0 such that D
intersects every convex set of volume s. The question whether a discrete Danzer
set in R? of growth rate O(T?) exists is due to Danzer, see [CFG] [Gal [GI]],
and has been open since the sixties.

There are several variants of this question. One is to weaken the Danzer
property in the following sense. We say that Y C R? is a dense forest if there

is a function € = ¢(7") 2% 0 so that for every € R? and for every direction
v € 89! the distance between Y and the line segment of length 7" which
starts at = and proceeds in direction v is less than (7). Intuitively, as it was
presented in [Bi], 7" is the maximal distance that a man can see when standing
in a forest with a trunk of radius € located at each element of Y. Note that
every Danzer set is a dense forest with ¢(T) = O(T~/(@=1) and a dense forest
with £(T) = O(T~@V) is a Danzer setl]l A construction of a dense forest
of growth rate O(T?) is given in [SW], and another construction in the plane
follows from the proof of [Bi, Lemma 2.4].

One other interesting direction is to look for Danzer sets with faster growth
rates. A Danzer set of growth rate O(T%(log T)*"!) is given in [BW]; this bound
was improved recently in [SW] by a probabilistic construction that gives growth
rate O(T%1ogT).

IThe second statement is proven as follows: let D be a dense forest with e(T) =
O(T~@=1), and let R C R? be a box (i.e. a parallelotope with adjacent faces orthogo-
nal) with volume s and shortest edge length 2e. Since the volume of a box is the product of

the length of its sides, R has an edge of length at least T := (%)1/(d_1). Let L be the line
segment parallel to this edge, passing through the center of R, and of length T' — 2¢. If R
does not contain any points of D, then the distance from L to D is at least £, which implies
that e < O(T~ (1)) = O(e/s). For s sufficiently large, this is a contradiction, so every box
of sufficiently large volume intersects D. Since every convex set contains a box of volume at

least a constant times the volume of the convex set, this shows that D is a Danzer set.
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Another approach in trying to weaken the Danzer problem is by hitting a
smaller family of sets, instead of all the convex sets. John’s theorem [Jo] implies
that replacing convex sets by boxed] gives an equivalent question. In this note
we consider a question that arises naturally from the Danzer problem. We say
that D C R? is an align-Danzer set if there is an s > 0 such that D intersects
every aligned box of volume s. In our main results, Theorem [L.Il and Theorem
L3 below, we present simple constructions for align-Danzer sets in R? of growth
rate O(T?). Neither of these constructions is new, but the viewpoint of seeing
them as connected with Danzer’s problem is new.

We denote by {0,1}%, the subset of {0, 1} consisting of those bi-infinite
sequences that contain only finitely many 1s.

Theorem 1.1. The set

D { (i Y an2t, + Zanr") € R?: (a,) € {0, 1}%}

nez nel

is an align-Danzer set in R? of growth rate O(T?).

The set in Theorem [I.I]is a variant of the binary version of the well-known
van der Corput sequence (see e.g. [vd(]).

Although the set D in Theorem [[Ilis given very explicitly, and the proof is
by elementary means, it only solves the problem in dimension 2, and no simple
higher-dimensional extension comes to mind. To solve the problem in higher
dimensions we use a dynamical approach.

For a fixed d > 2 let A C SL4(R) be the subgroup of diagonal matrices with
positive entries, and let 2 be the space of all lattices in R¢.

Definition 1.2 ([SK, p.6]). A lattice A € Q is admissible if its orbit under A
is precompact in €2.

Theorem 1.3 (Corollary of [Skl, Theorem 1.2]). For every d > 2 there exists
an admissible lattice in R?, and every admissible lattice is an align-Danzer set.

Although Theorem is a direct consequence of [Skl Theorem 1.2], we
provide the proof since it is elementary. We also refer to the discussions in
p. 24-31] for additional reading.

As a direct consequence we reprove a result in computational geometry, that
follows from a result of Halton on low discrepancy sequences, see [Ha]. We
remark that Corollary [[4] is not stated in [Hal, but it is well known in the
computational geometry and combinatorics communities that Halton’s con-
struction satisfies it.

2A boz in R? is the image of an aligned box [ay,b1] X --- X [ag, bg] under an orthogonal
matrix.
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Corollary 1.4. For every € > 0 there are e-nets of optimal sizes O(1/¢) for
the range space (X, R), where X =[0,1]¢ and R = {aligned bozes}.

This Corollary follows directly from the above Theorems by restricting to
a bounded cube and rescaling to [0,1]%. We refer to [AS, for a more
comprehensive reading about the notions in Corollary [I.4l

Remark 1.5. Align Danzer sets in R? of growth rate O(T'%) can also be con-
structed by modifying the proof of [SW] Theorem 1.4] to work for aligned boxes
and then combining with the result of or [vd(] in the unit cube. Nonethe-
less, our constructions here are simple and the proofs are straightforward.

1.1. Acknowledgements. We thank Sathish Govindarajan, Shakhar Smorodin-
sky, and Barak Weiss for useful discussions that helped us understand the
status of the problem. We also thank the referee for helpful comments.

2. PROOF OF THEOREM [L.1]

Proof of Theorem[L.1. We first show that D intersects every aligned box of
volume 64. It suffices to show that

nez neL

intersects every aligned box of volume 16 that sits in R% o 0, 00)2.

Let R C Ri be an aligned box of volume 16, and denote its lower left
vertex by (z,y). Let ¢ > 0 be such that the lower right and the upper left
vertices of R are (v +t,y) and (z,y + lt—ﬁ) respectively. We define a sequence
(an)nez € {0,1}%,, so that (3,5 an2", >,z an27") € R.

For each integer k, we denote by {0,1}z and {0,1}5F the subsets of
{0,1}2% and {0, 1}=*, respectively, consisting of those sequences that contain
only finitely many 1s. Here {0, 1}=* is the set of all sequences in {0, 1} of the
form (ay, ag,1,...), and {0,1}<" is the set of all sequences in {0, 1} of the form
(- . '>ak—2>ak—1)'

Let k € Z be such that 28 < L < 251 Observe that )
for any sequence (a,) in {0, 1}5F
the set

PN = {Z an2" : (a,) € {0, 1}%2;} .
n>k
Then we may choose the a,s forn > k so that 3 ., a,2" € (z,2+47), and thus

for any choice of the a,s for n < k (and in particular for the choice described
below) we have ) _, a,2" € (z,r +1).

a2 <2< 4
and that the interval (z,z 4 %) intersects
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The analysis of the y coordinate is similar. Here 271 < % < 27% and

therefore 2751 < % < 27F2 We have Dok 27" < 2kl < % for any
k

sequence (a,) in {0,1}%F = and the interval (y,y + %) intersects the set

27FHIN = {Z a,27": (a,) € {0, 1};5?”} .

n<k

Then we may choose the a,s for n < k so that Y _, a,27" € (y,y + 2),
and thus for any choice of the a,s for n > k (and in particular for the choice
described above) we have Y, a,27" € (y,y + ).

It is left to show that D (or D) is of growth rate O(T?). To see that,
consider the set

B { <Z an2", ZanT") e R?: (a,) € {0, 1}%%} .

n>0 n<0

Observe that the mapping ¢g : D, — B which is defined in the obvious way by

nez nez n>0 n<0

is a bijection, and for any (z,y) € Dy we have ||(z,y) — g(x,y)|l, < V/5 (where
|||, denotes the Euclidean norm). But since B = N x 2N, the assertion
follows. O

Remark 2.1. We want to stress that D is not a Danzer set in R? and not even
a dense forest. To see it, observe that symmetric sequences (a,) correspond
to points on the line y = x. On the other hand, non-symmetric sequences
correspond to points (z,y) with |z —y| > 1, and in particular D misses a
neighborhood of the line y = = + i.

3. PROOF OF THEOREM

Fix d > 2 LetV = {t € R?: Zleti = 0}, and for each t € V let
gt € SLg(R) be the diagonal matrix whose entries are €. Then t — g is a
homomorphism.

Proof of Theorem[L.3 Let K be a totally real number field of degree d, and let

Ok be its ring of integers. Let ¢q,..., ¢4 : K — R be the Galois embeddings

of K into R, and let ® : K — R? be their direct sum. Then Adéf(I)((’)K) is a

lattice in RY. To see that A is admissible, fix x = ®(a) € A, and observe that
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if x #0,

d d

[Tl =[] l6:(e) = IN()] € Z~ {0}.

i=1 i=1
Here N denotes the norm in the field K. In particular, [J, |z;| > 1 and thus
[T, lefiz;| > 1 for all t € V. Tt follows that |efz;| > 1 for some i = 1,...,d
and thus ||g¢x|| > 1. Since t, x were arbitrary, Mahler’s compactness criterion
shows that A is admissible.

For the second part of the proof, let A be an admissible lattice in RY. Let
R be an aligned box disjoint from A. Then there exists t € V such that
gi R is a cube. By assumption giA is in a compact subset K C €2, hence the
codiameterf] of g¢\ is bounded above by a constant independent of t. But
since g¢R is disjoint from g¢A, the distance from the center of g¢R to the
complement of gy R, i.e. half the edge length of the cube gy R, is bounded above
by the distance from the center of g¢ R to g¢/A, which is in turn bounded above
by the codiameter of g;A. Thus both the diameter and the volume of g; R are
bounded above by a constant independent of t. Since Vol(R) = Vol(g¢R), the
proof is complete. ]
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