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Abstract 

Safe, trusted drinking water is fundamental to society. Discolouration is a key aesthetic indicator visible 

to customers. Investigations to understand discolouration and iron failures in water supply systems 

require assessment of large quantities of disparate, inconsistent, multidimensional data from multiple 

corporate systems. A comprehensive data matrix was assembled for a seven year period across the 

whole of a UK water company (serving three million people). From this a novel data driven tool for 

assessment of iron risk was developed based on a yearly update and ranking procedure, for a subset of 

the best quality data. To avoid a ‘black box’ output, and provide an element of explanatory (human 

readable) interpretation, classification decision trees were utilised. Due to the very limited number of 

iron failures, results from many weak learners were melded into one high-quality ensemble predictor 

using the RUSBoost algorithm which is designed for class imbalance. Results, exploring simplicity vs 

predictive power, indicate enough discrimination between variable relationships in the matrix to produce 

ensemble decision tree classification models with good accuracy for iron failure estimation at District 
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Management Area (DMA) scale. Two model variants were explored: ‘Nowcast’ (situation at end of 

calendar year) and ‘Futurecast’ (predict end of next year situation from this year’s data). The Nowcast 

2014 model achieved 100% True Positive Rate (TPR) and 95.3% True Negative Rate (TNR), with 3.3% 

of DMAs classified High Risk for un-sampled instances. The Futurecast 2014 achieved 60.5% TPR and 

75.9% TNR, with 25.7% of DMAs classified High Risk for un-sampled instances. The output can be 

used to focus preventive measures to improve iron compliance.  

Keywords: Water distribution systems; Water Quality; Iron; Machine Learning; Ensemble Decision 

Trees; RUSBoost 

 
1. INTRODUCTION 

Metals of concern in drinking Water Distribution Systems (WDS) include iron, manganese and 

aluminium. The primary sources of metals in WDS are carryover from water treatment (Vreeburg and 

Boxall, 2007) and corrosion by-products within pipes (Prasad and Danso-Amoako, 2014). Once in the 

pipe network, metals accumulate and then can be mobilised by hydraulic events, which can result in 

discolouration and exceedance of regulatory standards (Drinking Water Inspectorate, 2014). Iron and 

manganese are the dominant inorganic materials in most UK discolouration samples (Seth et al. 2003). 

In the UK, the majority of customer complaints about water quality are related to discolouration, 

comprising 80% of complaints in 2007 (Drinking Water Inspectorate, 2008). Due to the association in 

relative levels (Cook 2015) of these, elevated iron concentrations can effectively be thought of as an 

early indicator of discolouration, or discolouration contacts considered as extreme iron events.  

 

WDS are subject to a variety of site-specific hydraulic, chemical and microbiological influences that 

make it difficult to isolate individual reactions and fully understand the mechanisms at work (Husband 

and Boxall, 2011). This coupled with the various uncertainties surrounding complex, ageing, buried pipe 
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infrastructure means that a deterministic modelling approach for estimating iron failures is rarely 

possible, even for the most advanced Water Service Providers (WSP). Hence alternatively, data driven 

techniques can potentially be applied, including analytics, modelling and visualisation, to generate new 

insight and value from complex multidimensional data, often with limited sampling frequency. 

 

This paper presents an ensemble decision tree methodology developed for estimating both current 

(‘nowcast’) and future (‘futurecast’) risk of iron failure (acting as a surrogate for all metals and 

turbidity) using an annual scale across the whole of a WSP’s region with a novel predictive model.  The 

objective of this work was to develop a data driven model that would rank the relative risk of iron 

failure, thereby enabling a WSP to focus its efforts on the District Management Areas (DMAs) with the 

highest risk of non-compliance for iron, manganese or turbidity. Results from this predictive model are 

presented for a case study WSP over a number of historical years. 

 

2. WATER QUALITY DATA FOR DRINKING WATER DISTRIBUTION SYSTEMS 

Current knowledge of the WDS is deficient in providing sufficient descriptions of many of the physical, 

biological and chemical reactions taking place in pipe networks. Together with uncertainty in the exact 

state of the network (flow rates, degradation/corrosion levels, leakage etc.), the challenge therefore is to 

make the best possible use of the data available to prioritise interventions across entire networks. 

Datasets currently maintained by water companies include historic and updated asset records, discrete 

water quality sampling and associated laboratory analysis, and continuous / online (hydraulic and some 

water quality) data collection from an increasing telemetry footprint. Companies also keep records of 

customer contacts; however such data is highly dependent on the vagaries and unreliable nature of 

individual customer behaviour. The availability and affordability of varying forms of sensing, smart 

systems, data storage and transmission technology means water utilities are becoming able to collect 
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more data than ever before. Water utility databases are currently growing rapidly, and will continue to 

do so.  

 

The processes associated with the operation and maintenance of WDS are generally applied over a long 

timeframe, often assessing water quality data and customer contacts over a period of months and years, 

to identify trends in network deterioration (Boxall et al. 2011). In order, the key data used in the UK to 

inform decision making processes are customer contacts, water quality sample data and analysis and 

network data such as asset records, burst records and pipe samples. The quality of this data is variable 

from one water utility to the next. Currently interventions are often responsive to customer contacts 

leading to a reactive management that does not necessarily deal with the underlying issues. Where good 

quality data is available, accessible and well maintained, the ability of the distribution engineer to 

monitor, evaluate and make good decisions with regard to the operation and maintenance of the network 

is greatly enhanced. However this is rare, and there is a need to aid the decision making process, to make 

the best possible use of the data that is available. 

 

It has traditionally been difficult to justify efforts to improve data quality in the water industry because, 

although seen as of interest, investment in asset improvements takes priority. It is challenging to put a 

price on the value of improved data quality and / or increased data collection and even online 

instrumentation. However, regulation in the UK is encouraging this with companies in the future seeking 

a basis for their asset planning with the analysis of data from, or directly related to, their operations. 

However, water quality data is not currently collected in a consistent and automated manner across 

networks. Often, WDS water quality is monitored through collection and analysis of discrete samples for 

a variety of aesthetic, chemical and biological parameters. Water quality data analytics are under-
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developed because there are no significant deployments of real-time water quality monitoring (UKWIR 

2013).  

 

The current nature of water utility network data is that it remains sparse in space (e.g. not all locations 

are sampled) and time and typically is not linked across functions (e.g. water quality data is not linked to 

hydraulic model data). Maximising the quality of data (its usefulness) requires consideration of a chain 

of processes and manipulation, e.g. data source, collection, storage, and the anticipated data end-use. 

The required blend of foresight and experience means a move towards ‘Big Data’ solutions and so called 

business intelligence (turning an organisation’s data into patterns that help make intelligent business 

decisions) in WSPs must be somewhat iterative and will require significant development time. 

Ultimately this will result in data exploration tools for non-ICT specialists, reducing the cost of and 

high-fidelity data visualisation and thus enabling human cognition and interpretation. An interim 

position currently exists, where water companies have substantial databases, but lack the connectivity 

and methods to extract the full potential benefit. This study seeks to tackle this issue by the integration 

and analysis of heterogeneous data types. 

 

3. MACHINE LEARNING BACKGROUND 

Machine learning is a type of artificial intelligence that enables computerised learning from patterns in 

data without explicit programming, creating a model that can be applied to new data. In classification, a 

methodology is used for partitioning data instances into a set of categories which are also referred to as 

classes or labels (such as ‘Iron Risk High’ or ‘Iron Risk Low’). The classification methodology can be 

based on a data-driven approach (using supervised learning) which learns directly from relationships 

among variables in available data instances or patterns (usually referred to as the training set). The class 
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labels of the instances in the training set are known and the aim is to build a model in order to label new 

instances which are presented. An instantiation of a particular algorithm (such as a decision tree) for a 

specific training set is called a classifier. 

 

3.1 Data driven classification models 

There are a number of approaches that can be used to develop a data-driven classification (risk ranking) 

model in a water quality application. Regression techniques have been used for decades with some 

success in water distribution problems (Gibbs et al. 2006). Artificial Neural Networks (ANNs) have 

been applied to a variety of water distribution problems including in the water quality domain (Wu et al.  

2014). However, ANNs operate with a black box approach which can be difficult for users to understand 

and accept. In contrast, a level of transparency is provided by a decision tree paradigm whereby one can 

follow a tree structure to understand how a classification has been made (Pedrycz & Sosnowski 2001). 

Furthermore, decision tree models effectively handle a wide variety of continuous data, categorical data, 

sparse data and skewed data and require very little in the way of data pre-processing and manipulation, 

unlike traditional statistical techniques like regression. 

 

3.2 Supervised classification with decision trees 

Decision tree algorithms are classifier models that learn from an existing dataset so that a flowchart-like 

tree structure can be obtained that illustrates relationships between input predictors from the dataset and 

the target class (Quinlan 1987). The topmost node, called the root of the tree, contains all the 

instances/observations contained in a dataset used for training. Each internal node specifies a test on an 

input predictor and each branch in the tree represents an outcome of the test. An instance is classified by 

starting at the root of the tree and then, depending on the values of the attributes, tracing a path down 
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through the branches of the tree. Eventually, a leaf node is reached at the bottom of the tree and a 

classification can be obtained using the distribution of instances observed in the leaf. A variety of 

techniques are currently available for constructing decision tree classifiers. One of the oldest and most 

widely used is the classification and regression tree (CART) methodology developed in the mid-1980s 

(Breiman et al. 1984). The CART methodology constructs decision tree classifiers using a top-down 

divide-and-conquer approach. Decision tree classifiers have been used for assessing drinking water 

quality (Harvey et al. 2015) and for more intelligent management of water supply systems (Rojeck, 

2014). 

 

An example decision tree for this paper’s application is shown in Figure 1.  

Iron_avg

< 0.0218 > 0.0218

Fe_unlined Turb_avg

< 0.118 > 0.118< 0.135 > 0.135

͙͙ ͙
 

Figure 1: Example decision tree (shown to depth 2 only) – acronyms from section 4.2 

 

Due to the complexity of the iron prediction problem, and since there are comparatively few failures 

upon which to base a predictive model (approximately 4% failure rate across the period of study), a 

single decision tree is too simplistic. For this reason an ensemble method was used.  

 

3.3 Ensemble classifier approach 
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An active area of research in Artificial Intelligence (AI) is the development of hybrid architectures and 

so called ensemble methodologies. Ensemble methods use multiple learning algorithms to improve 

performance (Rokach, 2010). These models have been applied in the hydroinformatics and water 

resources domain particularly for regression (Solomatine 2008). For example, Shu et al. (2004) applied 

ANN ensembles to the problem of flood frequency analysis and Kim and Seo (2015) applied them for 1-

day ahead streamflow forecasting. Model Trees have also been proposed which are tree-structured 

regression models that associate leaves with multiple linear regression functions used to calculate 

numerical values (Jung et al. 2010).  

 

Ensemble based classifiers allow the combining of the predictive power of hundreds of individual 

classifiers (e.g. decision trees or ANN). Decision trees are particularly well-suited for ensembles 

because they are fast and unstable (Gashler et al. 2008). Decision trees can be unstable because small 

variations in the data might result in a completely different tree being generated. By using them within 

an ensemble this problem is mitigated. For ensemble learning, multiple classifiers are used and weighted 

and then combined in order to obtain a classifier with superior performance to individual classifiers. In 

one sense, the approach captures the ‘wisdom of the crowd’ concept (Baker et al. 2008) in that humans 

will seek and weigh several opinions before making an important decision. 

 

Three common methods are utilised for constructing ensembles of decision trees: boosting, bagging 

(bootstrap aggregation) and random subspace (random forests) as compared in Dietterich (2000). The 

most popular model-guided instance selection is boosting. Boosting is a general method for improving 

the performance of a weak learner (such as a decision tree). The method works by repeatedly running a 

weak learner on various distributed training data. The classifiers produced by the weak learners are then 
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combined into a single composite strong classifier in order to achieve a higher accuracy than the 

individual trees would be capable of. AdaBoost (Adaptive Boosting) was first introduced in Freund and 

Schapire (1996), and is a popular ensemble algorithm for binary classification that improves the simple 

boosting algorithm via an iterative process whose main aim is to give more focus to patterns that are 

harder to classify. A range of algorithm variants exist as described in section 4.3.  

 

4. METHODOLOGY 

4.1 Case study data set  

A dataset of relevant data from multiple corporate systems including asset characteristics, water 

treatment works and service reservoir sampling, regulatory water quality sampling and customer 

contacts was assembled. The WSP’s supply area (a European country of size approximately 20,800 km2 

and population three million people) is divided into 86 Water Quality Zones (WQZs) based on their 

source of supply, with a total of 1,312 DMAs within those WQZs consisting of 26,500 km of water 

mains. Traditional analysis of variables commonly associated with iron compliance (e.g. extent of 

unlined iron pipe percentage or number of customer contacts) revealed that no single parameter could 

reliably predict iron failures, thus necessitating a multivariate approach as implemented herein (Ellis et 

al. 2015).  

 

4.2 Data analysis and pre-processing  

The compilation of data from a variety of disparate WSP sources required a significant amount of 

computational effort but resulted in a comprehensive dataset to support iron risk analysis at a company-

wide scale. Whilst it would be desirable to consider iron compliance at the individual pipe level, the data 

requirements for asset characteristics for the entire network made this goal infeasible. The WSP 



10 
 

indicated that a DMA-level spatial analysis would suit their operational needs and summary statistics 

were available for DMA characteristics, such as pipe material. Therefore a DMA-based scale of analysis 

was selected.  

 

Iron failures are relatively rare events and therefore the temporal scale of the analysis needs to reflect the 

failure frequency of occurrence (in addition some DMAs may be un-sampled during a particular year). 

Use of a monthly scale would have resulted in the majority of DMAs with zero failures. Therefore a 

yearly time scale was selected to allow for sufficient number of failures to be included in each analysis 

period while still providing relatively up-to-date information, with the ability to rerun analysis on an 

annual basis. A complex and repeatable data processing and formatting process involving multiple MS 

Excel (Microsoft Corporation, New Mexico) and MATLAB® 2014b (The Mathworks Inc., 

Massachusetts) operations led to the development of year-by-year data matrices for the period January 

2008 to September 2014. The resulting data matrix includes 1312 DMAs with 56 fields of associated 

parameters per year (see Online Resource 1). Many of the data fields were calculated from raw data 

sources. Some examples include: 

 Water quality sampling data linked to DMA 

 Water chemistry data for Service Reservoirs (SRVs) and Water Treatment Works (WTW) 

 Water supply system connectivity such as which WTWs supply which WQZ (and hence DMA) 

and which SRVs supply which DMAs 

 DMA information: % of certain types of pipe material calculated from overall pipe lengths 

 Clusters of customer contacts: individual customer contacts are rarely indicative of a wide-scale 

water quality problem, but multiple contacts within a short time window could be (Husband et 

al., 2010). The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
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algorithm was used in MATLAB to identify temporal clusters of contacts (Ester et al., 1996). A 

cluster was defined as having three or more contacts at the DMA-level (minPts: minimum 

number of points to form a cluster) within a 48 hour rolling window (İ: neighbourhood distance). 

The results were then limited to WQZs with at least two DMAs containing clusters and this field 

was then added to the matrices for each year: ‘cc_clusters’. 

Overall, 25% of data were missing, highlighting the need for data analysis techniques that can flexibly 

handle missing data. Missing data occurred because a) the regulations do not require all DMAs to be 

sampled for all parameters every year, b) some datasets were only brought on-line later in the study 

period and c) asset data was not always present due to the age of the network. 

 

The data matrix facilitated an extensive exploration of parameters associated with iron failures using a 

variety of traditional statistical and machine-learning techniques. Self-organising maps (SOMs) were 

used to visually explore the interrelationships between various types of water quality, hydraulic and 

asset parameters (Ellis et al. 2015). The application of SOMs provided a method for visualisation of 

clusters within different groupings of parameters and insight into predictor variables. For example, iron 

and turbidity were closely linked at the DMA level. Iron and manganese were sometimes associated 

with each other but occurrences of elevated manganese also took place without an accompanying rise in 

iron. The presence of unlined cast iron pipe in a DMA was not necessarily correlated with a higher 

number of iron failures. Customer contacts in general were correlated with iron failures but to a different 

degree depending on the predominant pipe material within the DMA. The presence of a cluster of 

customer contacts within a WQZ that spanned multiple DMAs appeared to be associated with some iron 

failures, indicating that trunk main operations/bursts or WTW iron sources were playing a role in those 

failures. Additional statistical and data driven evaluation to inform feature selection was conducted 
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(such as a bivariate correlation coefficients and Treebagger for out of bag feature importance). Online 

Resource 2 provides some further details. The three most important features are indicated to be the 

average of median iron measurements, the average of median turbidity measurements and the total 

number of customer contacts (complaints) about water quality. The final model parameters were 

selected using data analysis, in the context of data availability and to maintain relative simplicity for 

decision tree interpretation. Note that SRV iron concentration data was not utilised in the final set of 

predictors. It had very low data availability 2008 – 2011 (less than 1%), but for the period 2012 - 2014 

this had improved to 63.5% availability, which is better but still below an acceptable threshold for 

inclusion. The data analysis indicated that SRV iron could add to accuracy of the model once the data 

coverage is improved. 

 

Based on the results of the data exploration, the following matrix parameters for the ensemble model 

were selected: 

 Average of median iron concentration from all samples per DMA per year, ‘Iron_avg’ 

 Average of median manganese concentration from all samples per DMA per year, ‘Mn_avg’ 

 Average of median turbidity from all samples per DMA per year, ‘Turb_avg’ 

 Percentage of unlined iron pipe per DMA, ‘Fe_unlined’ 

 Percentage of lined iron pipe per DMA, ‘Fe_lined’ 

 Average of median turbidity from supplying WTWs per year and, where applicable, calculated as 

a weighted average for DMAs with multiple supplying WTWs, ‘WTW_turb_avg’ 

 Number of customer contacts per DMA per year, ‘cc’ 

 Number of customer contacts in WQZ-level clusters per DMA per year, ‘cc_clusters’ 
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Customer contacts (and the derived customer contact clusters) were only available for year 2011 

onwards.  

 

4.3 Ensemble design and algorithm implementation 

The target for the ensemble was defined to be the classification of risk for each DMA as follows: High 

(H) which corresponds to one or more iron failures in the DMA or Low (L) which corresponds to zero 

iron failures in the DMA (for the yearly period under consideration).  

 

Building an effective ensemble classification model can be a challenging task if the data used to train the 

model are imbalanced. When examples of one class greatly outnumber examples of the other class(es), 

traditional machine learning algorithms tend to favour classifying examples as belonging to the 

overrepresented  and dominating (majority) class. In this study, due to the very limited number of iron 

failures within the water quality dataset, this imbalanced situation exists. Typical data sampling 

approaches are to oversample the minority class (see Chawla et al. 2002 for a description of 

SMOTEBoost) or undersample the majority class. The RUSBoost (Random Under Sampling) algorithm 

is designed to classify when one class has many more observations than another and good reference 

results have been obtained (Seiffert et al. 2010). Blackard and Dean (1999) describe an ANN 

classification of an imbalanced dataset achieving 70.6% accuracy, whereas RUSBoost obtained over 

76% classification accuracy. The majority of class-imbalance learning techniques currently 

implemented, including RUSBoost, have been designed for two-class problems. Figure 2 provides an 

outline of the RUSBoost algorithm with X  the feature space and D  the weights.  
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Figure 2: RUSBoost (adapted from Seiffert et al. 2010) 

 

MATLAB implements ensembles with boosting and bagging – which trains each model in the ensemble 
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number of iron failures (typically around 4-7% across DMAs in a particular year), results from many 

weak learners (1000 decision trees were utilised in the final models, with deep trees for higher ensemble 

accuracy and setting minimal leaf size of 1 and learning rate of 0.1) were melded into one high-quality 

ensemble predictor using RUSBoost in this application. A protocol for equalising classes and randomly 

removing data points for particular model subsets is used to remove the imbalance. The ensemble results 

were obtained as predictions of relative likelihood of risk per DMA: High or Low. The model also 

provides the weighting of High vs Low based on the relative weighting across the set of decision trees. 

For each observation and each class, the score generated by each decision tree is the probability of this 

observation originating from this class computed as the fraction of observations of this class in a tree 

leaf. These scores are averaged over all trees in the ensemble. Finally, a ranking placement of each 

DMA can be calculated based on the weighting.  

 

Table 1 provides two key metrics for the holdout dataset (described later in section 5.1) when using the 

ensemble methods AdaBoostM1, LogitBoost, GentleBoost (all described in Friedman et al. 2000), Bag 

(Breiman, 1996), RobustBoost (Freund, 2009) and LPBoost (Warmuth et al. 2006). RUSBoost has the 

highest TPR value by a large margin due to imbalanced classes. 

 

Table 1: Comparison of ensemble methods on imbalanced dataset 

Ensemble 

Method 

AdaBoostM1 LogitBoost GentleBoost Bag RobustBoost LPBoost RUSBoost 

Metric 

TPR 0.20 0.24 0.27 0.29 0.26 0.28 0.72 

TNR 0.98 0.97 0.98 0.98 0.97 0.98 0.87 

 

4.4 Nowcast and Futurecast models 
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The availability of the historical data provided and the design of a yearly temporal scale model 

introduced two useful options for using the data. Since it is envisaged the model(s) will be run at the end 

of each calendar year (when all necessary data is compiled per DMA and the data matrix for that year 

generated) two models were decided upon: ‘Nowcast’: the situation at end of calendar year (all data used 

in training and testing) and ‘Futurecast’: attempt to predict end of next year fail situation from this year’s 

data (hence test data is completely ‘unseen’). 

 

4.4.1 Nowcast 

For the Nowcast model, all years up to and including the present year were used to train the model with 

a target output of H/L ranking for each DMA for the present year. Then, the present year’s data was 

presented as input without a target to get the predicted model outputs (predicted class (H/L), HIGH 

SCORE, LOW SCORE and rank), as shown in Figure 3a. Whilst the present year’s Iron fails will be 

known at the end of the year and thus a model is not needed to predict them, their inclusion in the 

analysis allows the Nowcast to rank the current performance of DMAs that have not been sampled for 

iron during the year (for example, in 2013 this was 33% of DMAs).  

 

 

Figure 3a: Nowcast scheme for ensemble model (example for 2013) 
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4.4.2 Futurecast 

For the Futurecast model, all years up to the present year minus 1 are used to train the model, with an 

output target of H/L DMA ranking for the next year. This permits the prediction of iron risk one year in 

advance, using data from up to the end of the current year. So for Futurecast 2014, at the end of 2013 the 

model outputs including risk ranking are available for the predicted situation at the end of 2014, as 

shown in Figure 3b. 

 

Figure 3b: Futurecast scheme for ensemble model (example for 2014) 

 

 

5. RESULTS AND DISCUSSION 

5.1 Nowcast hold-out validation 

Initial exploration of the data involved a partition for quality assessment of the ensemble classifier 

approach. The Nowcast approach using RUSboost and all years holding 50% of the data back for 

completely unseen analysis, resulted in a model that gave 71.5% correct classification of iron fail DMAs 

(H) and 83.5% of no fail DMAs (L) (note that only DMAs that had been sampled were used). Further 

refinement of the model using years 2011 to 2013 with full data availability of all identified input 

attributes resulted in better accuracy than the all (six) years analysis, with the best model obtained after 
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experimentation and analysis giving 71.9% correct classification of iron fail DMAs (H) and 87.3% of no 

fail DMAs (L) on 50% unseen holdout data. Overall percent accuracy may not provide a reliable 

indicator of predictor performance for models trained using imbalanced datasets as it may provide a 

false impression of capabilities for the minority class of interest, which in this case is High Risk DMAs. 

A better performance metric is a confusion matrix. In binary classification problems, classification can 

be grouped into four categories as illustrated in Table 1. This confusion matrix summarises the 

percentage of predictions versus actual values in the Low and High categories and thus gives an 

indication of the number of false positives and false negatives associated with the output. Ideally, there 

will be very few false positives and false negatives (i.e. high accuracy). Confusion matrices should be 

considered along with overall model percentage accuracies to judge the model performance. Two other 

metrics can be useful which are readily available: sensitivity or True Positive Rate (TPR) = 
FNTP

TP


 

and specificity or True Negative Rate (TNR) = 
TNFP

TN


. For reference, the data set in Table 2 

consisted of 6.8% H labels and 93.2% L labels emphasising the imbalanced class categories (for training 

data TPR=0.753, TNR=0.854).  

 

Table 2: Confusion matrix for Nowcast 2011-2013 (50% holdout) 

Actual Percentage of DMAs Predicted as: 

Low High 

Low 85.4 (TN) 14.6 (FP) 

High 24.7 (FN) 75.3 (TP) 
(TP) True Positive = a high risk DMA correctly predicted to be in the ‘H’ class by the model 

(FP) False positive = a low risk DMA incorrectly predicted to be in the ‘H’ class by the model 
(TN) True Negative= a low risk DMA correctly predicted to be in the ‘L’ class by the model 

(FN) False Negative= a high risk DMA incorrectly predicted to be in the ‘L’ class by the model 

 

 

5.2 Summary Nowcast results 
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The final models use all available data with no hold out. Three Nowcast models were developed, 2012, 

2013 and 2014. The later years’ models were trained on more years of historical data (Figure 3a). 

Results for Nowcast 2014 are presented in Table 3. For the year 2014, 3.3% of DMAs had class label H, 

44% had class label L and 52.7% were unsampled (96.7% predicted as Low, 3.3% as High).  

 

Table 3: Confusion matrix for Nowcast 2014 

Actual 

Percentage of DMAs predicted as: 

Low High 

Low 95.3 (TN) 4.7 (FP) 

High 0.0 (FN) 100.0 (TP) 

 

TPR= 1.0 TNR=0.953 

 

The Nowcast 2014 Model had the ability to predict 100% of the high risk DMAs and a reasonable 

number (3.3%) of high risk DMAs in the un-sampled category. For earlier models, Nowcast 2012 had 

performance TPR= 1.0, TNR= 0.99 (with 21.8% predicted High from the un-sampled DMAs) and 

Nowcast 2013 had performance TPR= 1.0, TNR= 0.97 (10.7% predicted High from the un-sampled 

DMAs). 

 

The model output also provides a weighting for each of the (potentially) 1000 decision trees within the 

ensemble. An evaluation of the weighting for the top three trees was performed to understand the degree 

to which the model was able to be described by a few trees. The top three decision trees contributed 

19.1% to the scoring for this model (see Online Resource 3). Exploring these larger weighted decision 

trees can enable an understanding of what is most significant in determining a class label for a particular 

DMA. 
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5.3 Summary Futurecast results 

Three Futurecast models were developed, 2013, 2014 and 2015 according to Figure 3b. Predicting the 

DMAs’ relative iron risk for the following year is of course a much more challenging problem, because 

the Futurecast performance is tested on unseen data. Table 4 provides the Futurecast 2014 results. As 

was the case for the Nowcast models, it was expected that training the Futurecast models on larger 

datasets would improve the proportion of correctly classified DMAs and this was observed with 

improved performance in later models (for Futurecast 2013, TPR=0.541 and TNR=0.749). The 

Futurecast 2014 model was able to accurately predict 60.5% of the high risk DMAs (in comparison to 

54.1% for Futurecast 2013). However a large number (25.7%) of high risk un-sampled DMAs were 

predicted, which is significantly worse than the actual observed performance. The contribution to 

scoring from the top three trees from the ensemble was only 7.2% for this model, compared with 19.1% 

for Nowcast. 

 

Table 4: Confusion matrix for Futurecast 2014 

Actual 

Percentage of DMAs predicted as: 

Low High 

Low 75.9 (TN) 24.1 (FP) 

High 39.5 (FN) 60.5 (TP) 

 

TPR= 0.605 TNR=0.759 

 

 

5.4 Futurecast predictions for 2015 

For Futurecast 2015, a prediction of the system performance for 2015 was performed using data from 

2011 through 2013 to train the model, with 2014 as test data (the matrix for 2015 being unavailable) 

This model yielded a total contribution from the top three trees of 7.2%, which is similar to the other 
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Futurecast models. A large number of DMAs (22.9%) are predicted to be high risk as was the case for 

previous Futurecast models but the actual system performance is likely to be similar to previous years. 

 

Classifying DMAs as either High or Low risk presents the WSP with a list of DMAs requiring attention 

and the Futurecast 2015 results in 300 High risk DMAs for 2015 when using only the binary output of 

the ensemble model (see Figure 4a plotted using GIS: ArcMap 10.1 (ESRI, California)). In order to 

produce a more fine grained and focussed assessment, the model output also ranks the DMAs so that the 

highest risk sites can be targeted first (using the generated weightings across the ensemble). Figure 4b 

shows the Futurecast 2015 rank predictions colour-coded, with the 20 DMAs having the highest risk in 

red (darkest shade). 

 

  
Figure 4a: Binary output for Futurecast 2015 
plotted on excerpt of WSP region 

Figure 4b: Futurecast 2015 ranking results 
plotted on excerpt of WSP region (scale non-
linear to highest risk DMAs) 

 

This ranking list provides a potential method for prioritising interventions into high risk DMAs, some of 

which may experience iron failures during 2015. Early findings from 2015’s compliance for the live 

network showed that of the five iron non-compliances that had been detected (as of May 2015), four 

were in DMAs predicted as High risk by the Futurecast 2015 model. The fifth failing DMA was one 

where no past sampling data were available for training or testing the model (Ellis et al. 2015). 
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5.5 Discussion 

The ensemble technique combines many weak learners in an attempt to produce a strong learner. If an 

ensemble could be reduced to a single decision tree with univariate splits, there would be no point in 

growing the ensemble - i.e. it is hard to visualise in multivariate space. However, just a few trees may 

represent a significant weighting of the ensemble. The resulting image of a tree is interpretable, even by 

those unfamiliar with the data mining process. For example, in Figure 1, DMAs are initially separated 

based on median iron concentration, with a concentration cut-off of approximately 0.02 mg l-1. Those 

DMAs with iron concentrations of less than this value were then classified by percentage of unlined iron 

pipeline in the DMA and those greater than the cut-off were alternatively divided by median turbidity. 

This process continues down branches of the tree until a leaf node is reached (class label of H/L). 

 

The RUSBoost decision tree ensemble methodology has been demonstrated to have potential for 

producing a DMA-specific prediction of risk of iron failure using multiple data sources assembled in a 

comprehensive yearly scale matrix. The model presented here was tested on an incomplete dataset 

(January to September 2014). In basing the predictions for Futurecast 2015 on three years of training 

data it could be more accurate than those for Futurecast 2014. It would nevertheless have been beneficial 

to be able to test the model on a full year’s data and it is possible that accuracy may have been 

compromised by having a truncated dataset for 2014. In future years, larger training datasets will be 

available to improve the accuracy of the model and the WSP should have greater confidence in utilising 

the model outputs in operational decisions.  
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The decision tree(s) utilises the water quality and system parameters that are likely to result in iron non-

compliance. The decision tree ensemble models generated in this project (in MATLAB), produce an 

output that can be plotted in GIS software to highlight the DMAs most at risk of iron failures. The 

results from this work are already enabling the WSP to better target specific areas of their network to 

prevent iron non-compliance, with a view to extending the impact with future iterations of the model.  

 

6. CONCLUSIONS 

This paper presents a novel data driven methodology to enable the estimation of iron failure risk from 

sparse multidimensional data from UK water company corporate systems. Iron failures result in a 

significant quantity of customer complaints and water company investment, so methods to understand 

and predict intervention strategies are of great value. The work has shown how the use of ensemble 

methods with multiple learning algorithms (of the same base learner such as a decision tree) can be used 

to improve performance and supply sufficient coverage across a sparse multidimensional problem space. 

In particular the paucity of target data, iron fails, was overcome with the results from multiple ‘weak’ 

decision trees melded into one high-quality ensemble predictor using the RUSBoost algorithm, which is 

designed for situations where one class has many more observations than another (imbalanced class 

label distribution). The final outputs are ensembles of decision tree classifiers that enable assessment of 

both current and future iron risk at DMA scale. Results can be obtained as predictions of relative 

likelihood of risk (by averaging across decision tree weightings over the ensemble) of iron failure per 

DMA: High or Low, and as a relative ranking of DMAs by risk.  

 

Two model formulations are presented here, Nowcast and Futurecast. The Nowcast model allows 

comprehensive review of current data and extrapolation to unsampled areas (as much as 33% for the 
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data set explored here). The Nowcast achieved 71.9% TPR and 87.3% TNR on a 50% holdout. The 

Nowcast 2014 model with all data achieved 100% TPR and 95.3% TNR, with 3.3% of DMAs classified 

High Risk for the un-sampled instances. The Futurecast 2014 model achieved 60.5% TPR and 75.9% 

TNR, with 25.7% of DMAs classified High Risk for the un-sampled instances. The real world success 

and value of this Futurecast has been demonstrated by 80% correct prediction of failures (with the only 

missed fail being in a previously un-sampled DMA) from January to May 2015. 

 

Overall this work demonstrated how ensemble decision trees can be applied to explore and data mine 

sparse, multidimensional space for WDS data, producing outputs that show operators and managers the 

basis of how results have been obtained, making them an accessible tool for decision-making unlike 

black box approaches. The widespread application of these types of ensemble decision tree models for 

classification analysis within the water industry could revolutionise the way that investment is justified, 

prioritised and implemented for proactive pipeline management, making them more efficient and more 

cost-effective. 
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