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Abstract: Here we present and evaluate a framework for estimating concentrations of pharmaceuticals 

over time in wildlife feeding at wastewater treatment plants (WWTPs). The framework is composed of 

a series of predictive steps involving the estimation of pharmaceutical concentration in wastewater, 

accumulation into wildlife food items, uptake by wildlife with subsequent distribution into, and 

elimination from, tissues. As many pharmacokinetic parameters for wildlife are unavailable for the 

majority of drugs in use, a read-across approach was employed using either rodent or human data on 

absorption, distribution, metabolism and excretion (ADME). Comparison of the different steps in the 

framework, against experimental data for the scenario where birds are feeding on a WWTP 

contaminated with fluoxetine, showed that: estimated concentrations in wastewater treatment works 

were lower than measured concentrations; concentrations in food could be reasonably estimated if 

experimental bioaccumulation data are available; and that read-across from rodent data worked better 

than human to bird read-across. The framework provides adequate predictions of plasma concentrations 

and of elimination behavior in birds, but yields poor predictions of distribution in tissues. We believe 

the approach holds promise, but it is important that we improve our understanding of the physiological 

similarities and differences between wild birds and domesticated laboratory mammals used in 

pharmaceutical efficacy/safety trials, so that the wealth of data available can be applied more 

effectively in ecological risk assessments.  This article is protected by copyright. All rights reserved 
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INTRODUCTION 

Over the past 15 years, there has been growing interest in the effects of active pharmaceutical 

ingredients (APIs; parent compound and active metabolites) on ecosystems. APIs are excreted to 

wastewater by patients, and subsequently can contaminate aquatic and terrestrial environments [1]. 

Wild birds may be exposed to pharmaceuticals when they forage on organisms in wastewater treatment 

plants (WWTPs), soils and surface waters [2-5]. As biologically active molecules designed to bind to 

and interact with a specific receptor or process in a target organism, APIs have the potential to cause 

effects at low concentrations in non-target species, particularly as many of the receptors have been 

evolutionarily conserved in wildlife  [6, 7]. To date, ecotoxicological studies have largely focused on 

the effects of APIs on algae, invertebrates and fish [8]. In order to protect wildlife, it would be 

beneficial to develop an understanding of environmentally realistic exposure and potential effects of 

APIs in other biota such as wild birds and mammals [1, 8-10].  

When registering an API in the EU and the US, there is currently no legislative requirement to 

consider secondary exposure, toxicity and risk to wildlife [11, 12]. Only, toxicity to plants, 

invertebrates (including earthworms) and fish are considered. In the EU, registration of veterinary 

drugs requires risk assessment of secondary exposure and hazard for wildlife [13]. The models used are 

based on the European Commission’s Technical Guidance Document (TGD) Part II [14] for new and 

existing industrial compounds. This TGD approach (initially developed for metals and plant protection 

products) is a simple risk assessment based on daily dietary intake (mg/kg bw) relative to a toxicity 

reference value [14, 15]. The European Food Standards Agency (EFSA) presents a more advanced 

methodology than the TGD approach for calculating exposure [16], but again it is based on dietary 

exposure rather than internal residues (reviewed in [17]). In order to gain a greater appreciation of risk 

it would be beneficial to extend these diet-based models to estimate internal exposure using the wealth 

of data collected in laboratory mammals and humans during pre-clinical and clinical trials [12, 14, 16]. 
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For example, risks of APIs for wildlife could also be assessed by determining whether plasma 

concentrations are likely to exceed therapeutic plasma concentrations. For free-living organisms, it may 

also be more realistic to consider accumulation over multiple low-level daily intakes rather than just a 

single exposure (typically done for pesticides [16]), which may under-estimate risk. Concentrations in 

tissues (particularly sites associated with pharmacological activity) along with diet-based assessments 

likely give a more robust indication of risk than diet-based toxicity reference values alone.  

Accumulation of APIs over environmentally relevant foraging periods (i.e., duration a particular 

food source or site is used) can be assessed using pharmacokinetic equations to calculate predicted 

cumulative body burdens at a given elimination half-life (t1/2, assuming first order kinetics) [18, 19]. 

Alternatively, the theoretical t1/2 required to accumulate or exceed a threshold (e.g., Human Therapeutic 

Dose, HTD) can be back-calculated to assess the plausibility of observing such a value in wildlife 

Lazarus et al [19]. Using pharmacokinetic parameters such as bioavailability (the proportion of the 

ingested contaminant absorbed from the gastrointestinal [GI] tract) and the apparent volume of 

distribution (Vd, the theoretical volume required to contain the remainder of the dose at the same 

concentration as observed in plasma), it is possible to estimate plasma concentration for a specific 

cumulative body burden of an API. Furthermore, concentrations in tissues can be estimated from 

concentrations in plasma using tissue to plasma distribution ratios. By combining estimated tissue 

concentrations with t1/2, the duration (time) that residues in tissues would remain above quantifiable 

levels can be estimated to inform field monitoring study design.  

Pharmacokinetic parameters, relating to absorption, distribution, metabolism and excretion 

(ADME), required to run these predictive models have only been defined for a few APIs in wildlife 

(e.g., the non-steroidal anti-inflammatories diclofenac [20, 21], meloxicam [22] and ketoprofen [23]). 

However, it may be possible to utilize ADME data collected in studies on laboratory mammals and 

humans that are performed to assess the efficacy and safety of a pharmaceutical, and then to conduct 

cross-species extrapolation by ‘read-across’ to predict internal exposure and risk for wildlife. Similar 
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interspecific ‘read-across’ extrapolations have been demonstrated to be suitable for some classes of 

pharmaceuticals in fish [24-28]. The application of these approaches for assessing effects in non-target 

species could be valuable in identifying APIs of greatest environmental concern and for characterizing 

risks to free-ranging wildlife.  

One API that has received considerable attention is the antidepressant fluoxetine, a commonly 

prescribed selective serotonin re-uptake inhibitor (SSRI). In the environment, fluoxetine is persistent, 

with monitoring studies often detecting it in water, sediments and aquatic organisms [29, 30]. 

Laboratory exposures show fluoxetine to affect behavior of aquatic invertebrates and fish at 

environmentally relevant concentrations (≥ 0.3 ng/L) [31-34]. To date, studies in birds on fluoxetine 

have been principally toxicological in nature [3, 35, 36], with most attention given to characterizing the 

uptake and distribution of the molecule in mammals [37-41]. In the laboratory, starling foraging 

behavior appears to be altered by fluoxetine at 5% of the HTD [3]. Here we present a predictive 

framework that used data on API use, metabolism, bioaccumulation in food items and 

pharmacokinetics in laboratory mammals and humans to estimate internal exposure in wildlife. We 

evaluate the different components of this approach using field monitoring and ADME data on 

fluoxetine for the scenario where starlings are feeding on invertebrates in a trickling filter bed of a 

WWTP.  

MATERIALS AND METHODS 

Predictive framework for estimating internal exposure 

Dietary exposure of birds to APIs may result from foraging in a variety of environments (soils, 

sediments, surface waters), although greatest exposure is likely to occur during foraging at WWTPs 

due to the higher concentrations of APIs in these systems. A predictive framework for assessment of 

dietary and internal exposure of birds foraging on filter beds at WWTPs is presented in Figure 1.  

The predictive framework that follows is presented in full as an editable worksheet in the 

Supplemental Data. The framework begins by calculating the predicted environmental concentration 
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(PEC) of a pharmaceutical in influent wastewater (PECwastewater). The PECwastwater depends upon the 

mass of pharmaceutical used by a population (MAPI), the proportion of a parent compound excreted by 

patients (Fexcreted), the volume of wastewater emitted per capita (V), and the size of the population 

(Equation 1). 

 

 PECwastewater = MAPI × Fexcreted               (1) 

             V × P 

 

The mass of a pharmaceutical used by a population can be estimated with data collected on 

prescribing rates in kg yr-1 (e.g., [42]). The proportion (≤1) of parent compound excreted by patients 

can be obtained from the literature or from data held by pharmaceutical companies (e.g., [43]). The 

product of MAPI and Fexcreted was then divided by the product of annual per capita wastewater usage 

of (i.e., 73,050 L) [44] and the size of the population for which the usage data are available.  

The PEC in food (PECfood) is then calculated by multiplying the PECwastewater by the 

bioaccumulation factor (BAF) derived from laboratory studies (Equation 2).  

 

PECfood = PECwastewater *BAF     (2) 

A BAF derived for an appropriate species (e.g., earthworms) in OECD-type laboratory studies 

should be used in preference to predictions based on lipophilicity (e.g., [45]).   

The PEC in plasma (PECplasma) of the wildlife is then calculated by adjusting cumulative body 

burden (CBB, measured in mg/kg body wt) of the pharmaceutical over time (e.g., concentration at 

peak, i.e. shortly after a meal = zenith, concentration at trough, i.e., just before a meal = nadir) for the 

fraction of the drug that is bioavailable (Fbioav , ≤1) and the apparent volume of distribution (Vd , with 

units of L/kg body wt) [38, 46-48] (Equations 3a and b). 
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PECplasma,zenith = CBBzenith × Fbioav                (3a) 

                        Vd 

 

PECplasma,nadir = CBBnadir × Fbioav     (3b) 

                                                 Vd                                                                                

 

If data for the Fbiov or Vd are not available, the framework can be initially evaluated using 

values collected in laboratory mammals and humans (e.g., [38, 46]). 

The CBB of an API over time is calculated for example at zenith and nadir assuming 

elimination by first order kinetics (Equations 4a-b) [18, 19]. 

 

CBBzenith = (DIremaining in body)e
-kt

 + DI              Shortly after a meal        (4a)    

 

CBBnadir = (DIremaining in body)e
-kt

 + (DI)e
-kt

          Just before a meal       (4b)    

 

 

The calculation of CBB accounts for the duration of exposure (t, in days) and daily intake (DI) 

of contaminated food (mg/kg body wt); given by the product of mass of food eaten (Mfood, per kg body 

wt) and the concentration of API in the food item (Equation 4c). 

 

DI= Mfood * PECfood                             (4c) 

 

Mfood can be derived from information on diet composition and energetics [EFSA 2009 16] and 

organism body weight e.g., [49] or from estimates based on observations of foraging behaviour e.g., 

[50, 51].  
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The duration of exposure is the period of time for which a bird would likely forage at a 

contaminated site [4, 5]. To estimate CBB over time, equations 4d.i and 4d.ii are used to obtain  the 

fraction of daily intake remaining in the body from prior exposure (DIremaining in body).  

 

DIremaining in body d2 = (DI)e
-kt   

                                (4d.i) 

 

                                                           (4d.ii)  

 

In equations 4d.i and 4d.ii, DI remaining in the body on day 1 is 0 (as there have been no 

previous exposures). DI remaining in the body on day 2 of exposure (DIremaining in body d2) is given by 

multiplying DI (Equation 4c) by the exponential of negative kt (where k is the elimination constant and 

t is time in days) (Equation 4d.i). The DI remaining on day n (DIremaining in body,n) is given by equation 

4d.ii. The elimination constant, k, is calculated by dividing ln(2) by the elimination half-life (in days).  

PEC in tissue (PECtissue) is then calculated as the product of PECplasma and the ratio of API 

measured in key tissues to plasma (Rtissue:plasma ) (Equation 5). 

 

PECtissue = PECplasma × Rtissue:plasma   (5) 

 

As with Fbioav and Vd, it may be necessary to use information presented in the literature for 

Rtissue:plasma in laboratory mammals and humans (e.g., [37,38,52]). 

Post-exposure concentrations in tissue (PECpost-exposure) are calculated from PECtissue  by 

continuing the elimination modelling once the animal stops feeding on the contaminated source 

(Equation 6). 
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PECpost-exposure =  PECtissue,final exposure (e
-kt)n                   

(6) 

 

This is achieved by setting DI to 0 in equation 4a to recalculate PECplasma and PECtissue at 

multiple post exposure time points. The PECpost-exposure can be calculated for any number of days post-

exposure (n).   

Finally, by plotting the data and fitting an exponential trend line (y= Ce
-kx ,where C is the y-axis 

intercept, -k is given by ln(2)/t1/2 [days] and x is time in days), it is possible to estimate the duration for 

which quantifiable residues remain in tissues (XLOQ). An estimate of the time that tissue residues 

exceed the limit of quantification (LOQ) can be obtained by rearranging the exponential trend line 

(Equation 7). 

                                                        
(7) 

 

The output from Equation 7 can be used for both interpretation of risk (i.e., rapid clearance 

below LOQ reduces the likelihood of persistent exposure) and to help inform field monitoring (i.e., 

which tissues should be sampled to assess internal exposure).   

Evaluation of Framework 

To evaluate the predictive framework, we used laboratory and field based investigations to 

generate data to evaluate the different steps in the framework. Observations were then compared with 

predictions from the framework using input data obtained from the open literature (Table 1). A 

description of the validation approach is given below.  

PECwastewater and PECfood 

To evaluate the PECwastewater and PECfood, monitoring was done at four trickling filter WWTPs 

in Northern England in November 2013. At each site, a sample of influent was collected and placed 
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into a 2 L solvent rinsed amber glass bottle. Earthworms (Eisenia fetida) were obtained from the top 20 

cm across the filter beds and placed into a clean glass jar. All samples were placed in cool bags 

containing ice packs and transported to the laboratory. Upon arrival, sludge was rinsed off the 

earthworms using deionized water. Samples were then frozen at -20°C until extraction and analysis 

(See Supplemental Data). To evaluate the framework equations, mean measured concentrations (MEC) 

in influent and earthworms were compared to PECs for influent and food. 

PECplasma, PECtissue, PECpost-exposure 

To evaluate the framework equations for PECplasma, PECtissue and PECpost-exposure , an absorption, 

distribution and excretion study was done by exposing captive starlings to fluoxetine injected 

invertebrates wax moth larvae, (Achroia grisella), for 22 wk (see Supplemental Data or [3]). In total 

there were 12 males (seven fluoxetine-treated and five controls) and 12 females (five fluoxetine-treated 

and seven controls).  Five mornings per week, the starlings were captured, hand fed one wax moth 

larvae and returned to their home pen [3]. Fluoxetine-treated birds received a wax moth larvae injected 

with 1300 ng of fluoxetine (~5% HTD) in 2.5 µL deionized water while controls received a wax moth 

larvae injected with 2.5 µL deionized water (see Supplemental Data). The dose contained in wax 

worms was quantified by HPLC (mean ± SE: 1580 ± 73 ng/larvae; see Supplemental Data or [3]). 

Whole blood (0.5 mL) was collected by jugular venipuncture (1 inch 25-gauge needle, 1 mL syringe) 

after 16 wks of treatment, 1 h after receiving a dose. Blood was immediately transferred to a lithium 

heparin Microtainer® (Becton Dickinson, UK) and centrifuged for 3 mins at 2000 g. Plasma (~150 µL) 

was harvested into 1.5 mL microcentrifuge tubes, held at 4°C for <1 h and then frozen at -20°C. Two 

hours prior to euthanasia, each of the six birds was placed into a cage lined with paper so that feces 

could be collected to assess concentrations of fluoxetine and metabolites. The feces from each bird 

were transferred into a microcentrifuge tube, and subsequently weighed, dried at 40°C, ground using a 

mortar and pestle, and stored in plastic bags at -20°C. Birds were euthanized by cervical dislocation at 

2, 26, 50 and 74 h post-exposure (N=3 Fluoxetine and 3 Control birds per time point). From each bird, 
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whole brain, liver, kidney and pectoral muscle were collected, snap frozen in liquid nitrogen and 

transferred to glass jars held on dry ice and later stored at -80°C. Plasma samples were analyzed for 

fluoxetine by multiple reaction monitoring liquid chromatography triple quadrupole mass-spectrometry 

(MRM LC-MS-MS) and tissue samples and feces were analyzed for fluoxetine and known major 

metabolites by LC-MS-MS and liquid chromatography Fourier-transform ion cyclotron resonance mass 

spectrometry (LC-FT-ICR-MS) (see Supplemental Data). To evaluate the framework equations, mean 

concentrations were compared to predictions obtained from the equations. 

Sensitivity and Uncertainty Analysis: The relative sensitivity of individual framework 

parameters was assessed by perturbing values one at a time (up and down by 10% and 90%, 

respectively). The output was compared to the unperturbed result, and the percentage change in 

framework prediction related to percentage perturbation of input parameter (R=1, directly proportional 

change; R<1, framework dampens down changes; R>1, framework amplifies changes in parameter). 

The effect of exposure time was assessed independently by running the unperturbed framework for 1, 

2, 3, 7 and 365 d, respectively, and comparing the output to 22 wk. 

Uncertainty in the framework was assessed by running combinations of input parameters to 

represent the upper and lower limits of the range and mean for i) MECfood, ii) Mass of food eaten/day, 

3) t1/2. These parameters were selected based on sensitivity analysis and the availability of information 

on their individual uncertainties. A matrix approach was used to run the framework using 27 

combinations of variables; the mean ± SE brain concentration at nadir and zenith and percent 

Coefficient of Variation (CV) are presented as an indication of the framework’s uncertainty.  

RESULTS AND DISCUSSION 

Exper imenta l  da ta  

A summary of the results of the monitoring and laboratory studies is provided in Table 2 (see 

Supplemental Data for data on metabolites). Only limited information is available in the literature on 

the occurrence of fluoxetine in the matrices we investigated. Our measured influent concentration 
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(1,310 ng/L) is one to two orders of magnitude greater than concentrations detected in the small 

number of studies that have previously reported fluoxetine in influents (typically 16.6-21.5 ng/L [53], 

but one study in Portugal found 105.8-157.4 ng/L [54]) . The discrepency with our data possibly 

reflects differences in prescribing patterns for psychoactive drugs among the countries studied.  

Evaluation of predictive framework   

PECwastewater: The PECwastewater of 297 ng/L was about four times less than our mean MEC of 

1,310 ng/L (range 774-1,930 ng/L, >LOQ in 6/6) in wastewater influent. Other studies have used these 

types of models for prediction of concentrations of APIs in wastewater (see examples in [55-58]). Ort 

and coworkers [55] calculated PECs for effluent dominated surface waters for eight of twelve APIs 

(including NSAIDs, anticonvulsants and blood pressure medicines) within 50% of MEC. Unlike our 

study, concentrations were typically over-estimated with the mismatch between predicted and 

measured concentrations suggested to be due to over estimation of the fraction excreted as parent 

compound and variability in flow rate. Three of the four drugs with greatest deviations were antibiotics. 

Such multi-fold differences between predicted and empirical observations were also found by others 

for antibiotics and synthetic hormones [58].   

Such elementary modelling approaches are dependent upon comprehensive usage data at the 

catchment scale as well as reliable information on metabolism by patients and other biota, and spatial-

temporal variations in flow rates [59]. While information on prescribing rates is available in some 

countries (e.g., NHS prescription cost analysis in the UK [42] and similar systems are in place in 

Denmark, Germany and Australia [59], this may over estimate consumption for some drugs. For 

example, patients may stop taking medication due to relief of symptoms or adverse side-effects. In 

western countries, the percentage of households where unused medicines are being ‘hoarded’ for future 

use ranges from 1.4 to 65% [60, 61]. For drugs available over-the-counter, prescription data 

significantly underestimates consumption. Metabolism by patients can also be highly variable between 

individuals due to factors including age, sex, health status, race and interactions with other medications, 
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(e.g., excretion of fluoxetine apparently ranges from 5% [62] to 24% of the dose [43]). An alternative 

‘inverse modelling’ approach to overcome some of these difficulties has been suggested by Boxall and 

coworkers [59]; model input parameters are back-calculated from the MEC and used to calculate PECs 

in various other scenarios. Using this inverse approach, it seems unlikely that differences in metabolism 

of fluoxetine could account for much of the 4.4-fold underestimation of MEC that we observed (i.e., 

Fexcreted was already set at the upper end of the range, 0.24). The discrepancy is possibly due to 

underestimation of usage and over estimation of dilution in the environment.   

PECfood: Use of the MECwastewater along with reported BAF values for earthworms from OECD-

type studies with soils as a basis for estimating the PECfood, a concentration of 40,348 ng/kg wet wt 

(range 33,274-46,898) in food was estimated. This value corresponds well with the MECfood (i.e., 

earthworms) of 26,200 ng/kg wet wt (range 2,500-53,800 ng/kg), indicating that BAFs from standard 

studies with soils may be appropriate for estimating uptake into earthworms residing in WWTPs. 

PECplasma: Using the fluoxetine dose administered to starlings and ADME data for rodents, the 

PECplasma was between 0.03 and 0.23 ng/mL (nadir-zenith). Use of human ADME data gave a range of 

0.44 to 0.50 ng/mL. In the starling study, fluoxetine was not detected in the plasma (LOD = 0.15 

ng/mL). It therefore appears that ADME data from laboratory rodents provide better predictions of 

what will occur in starlings. 

 

The low absorption observed in starlings compared to humans could be due to differences including (i) 

GI tract pH, (ii) bioaccessibility, and (iii) rapid GI tract transit. Theoretically, differences in GI tract pH 

could affect bioavailability of a base such as fluoxetine (pKa = 10.06) [63], which would be protonated 

(unable to pass through biological membranes well), and therefore poorly lipid soluble in an acidic 

environment. Starlings have a gizzard pH in the range of 1.6-2.3, which is slightly below the average 

for the stomach of a satiated human (pH 2.5), but similar to that found in fasted individuals (low of pH 
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1.3). The pH of the avian intestine is typically around pH 6.2 compared with a value of approximately 

pH 7.0 in humans [64-67].  

We have previously used in vitro GI tract simulations to examine bioaccessibility of fluoxetine 

from earthworm tissues [68], but not for the lesser wax moth larvae used in our in vivo experiments. 

This work found bioaccessibility of fluoxetine to be lower in birds than mammals; but the 9.6-13.7% 

difference cannot account for the 2-3 orders of magnitude difference between starlings and humans 

[68]. Additionally, a preliminary study suggested there was no difference in bioaccessibility of 

fluoxetine from earthworms that were injected with a solution containing the drug or those that had 

biologically incorporated it from soil. Wax moth larvae have higher percentage lipid content, lower 

percentage water content and lower mass (22% lipid and 72.4% water as reported for terrestrial 

arthropod larvae in [69], approximate mass ~0.2 g, range 0.14-0.32 g - measured in this study) than 

earthworms (9% lipid, 83.3% water, approximate mass, mean and range 0.5 g, 0.3-1.0 g [16, 70]). 

However, absolute lipid content (44 mg/larvae vs 45 mg/earthworm) is similar for wax moth larvae and 

earthworms, which would suggest that bioaccessibilities in the two organisms may also be similar. 

Although theoretical and unlikely, the possibility remains that absorption in starlings was very low 

because of poor bioaccessibility of fluoxetine contained in wax moth larvae.    

Low absorption and rapid clearance of fluoxetine from starling tissues could also be due to 

rapid GI tract transit time. In starlings, invertebrate prey have a GI tract transit time of only 12 mins/g 

invertebrate and a retention time of 20 mins/g invertebrate [71]. Mean retention time of food in humans 

ranges from 0.7 to 4 d (mean = 2.3 d) [72].  Hypothetically, such short GI tract transit times could limit 

absorption of significant quantities of contaminants, conversely birds’ relatively high energetic 

demands and lifespans might increase efficiency of contaminant absorption compared with small 

mammals. At the time of study design, we were unaware of these data, and suggest others who intend 

to investigate ADME using small passerines consider GI tract transit time when estimating the likely 

peak in absorption.  An estimate of rapid elimination could also perhaps have been predicted from 
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basal metabolic rate (see Supplemental Data Figure S2). Thus, we suggest future studies investigating 

GI tract transit time and API bioavailability are warranted, and far simpler and more economical than 

measuring ADME.  

PECtissue :As fluoxetine was not detected in plasma, we used the LOD as a basis for estimating 

concentrations in tissues. The PECbrain was estimated at 7.35 ng/g (1.35-13.35 ng/g), PECliver was 3.0 

ng/g (0.3-5.7 ng/g), PECkidney was 1.35 ng/g and PECmuscle was 0.33 ng/g. Although use of rodent 

ADME likely estimated plasma concentration in the correct range, it appears that its distribution must 

be different between birds and mammals with MEC/PEC ratios of 0.41 for brain, 4.81 for liver, 5.43 for 

kidney, and 8.97 for muscle. Thus, distribution of fluoxetine in starling brain is much lower than for 

laboratory rodents, but distribution into liver, kidney and muscle is greater. As brain is the principal site 

for fluoxetine’s mechanism of action, low distribution into this tissue could be significant for 

pharmacological activity and associated risk to birds [73, 74]. The poor match between MEC and PEC 

suggests the framework for PECtissue needs to be modified before moving onto the next stage of the 

framework (PECpost-exposure). Inverse modelling needs to be applied to better estimate the distribution of 

fluoxetine in avian tissues compared to mammals. By dividing MECtissue by LODplasma, we can estimate 

Rbrain:plasma, Rliver:plasma, Rkidney:plasma and Rmuscle:plasma to be 20, 96, 49 and 20 respectively.    

PECpost-exposure: Fluoxetine was rapidly eliminated from starling tissues and detected in less than 

50% of samples 26 h post-exposure (Table 2, compare values at 26 h, 50 h and 74 h with the value at 2 

h). It was detected in only one of three liver samples after 50 h, which could be an outlier (possibly due 

to genetic variation amongst wild-caught birds). Fluoxetine was not detected in any tissue after 74 h. 

While data in Table 2 suggest that fecal sampling or cloacal swabs may be a non-invasive method to 

qualitatively assess exposure (variable rate of excretion and mass produced), destructive sampling to 

harvest tissues may well be the only option for quantitative purposes.  

The rapid clearance from tissues indicates that we are unable to accurately estimate the 

elimination half-life of fluoxetine. Speculatively, we used the data in Table 2 to estimate fluoxetine t1/2 
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for brain, liver, kidney and muscle at 3.1 h, 8.4 h, 8.3 h, and 10.8 h, respectively. The values are similar 

to the range for laboratory mammals (t1/2 of 3.6-12.9 h), but much shorter than for humans 24-96 h [37, 

41, 46]. Figures 2a-d (X-axis is time, Y-axis is fluoxetine concentration) present MECpost-exposure 

alongside PECpost-exposure in brain, liver, kidney and muscle for 4 d post-exposure for experimentally 

dosed and free-ranging starlings feeding on earthworms at WWTPs. A Y-axis reference line to 

represent the LOQ for each tissue is included to illustrate the time at which residues are cleared below 

quantifiable concentrations. In the predictive framework, we used the mid-point of the mammalian t1/2 

range (8.2 h) to calculate PECpost-exposure, and the extremes (3.6 to 12.9 h) to illustrate variability 

(Figures 2a-d).  

The data for the predictive framework presented in Figures 2a-d suggest fluoxetine residues 

would be cleared from our experimentally dosed starlings below LOQ after 36.2 h (brain), 42.9 h 

(liver), 31.9 h (kidney) and only 1 h (muscle). By fitting an exponential term to the in vivo data, these 

values are actually likely to be 15.6 h, 54.3 h, 40.8 h, and 5.7 h, respectively, which is a reasonable 

match for all tissues except brain. This illustrates that muscle is not a good matrix to use for monitoring 

purposes due to a combination of variable elimination in vivo (see Table 2) and lower sensitivity of 

analytical methods for this matrix. Liver and kidney are the matrices where fluoxetine is most likely to 

be detected, but in brain residues are cleared more than twice as fast as predicted. Applying the 

predictive framework to free-ranging birds, residues in liver would likely be above LOQ for 39.8 h in 

liver and 28.9 h in kidney (using t1/2 of 8.2 h), but only 12.5 h in brain (using t1/2 of 3.1 h). If the 

fluoxetine concentration in earthworms was actually at the lower end of the field-measured range, then 

residues in brain would never exceed LOQ (0.13 ng/g), while at the upper end of the MECfood range for 

earthworms, residues would still only exceed LOQ for 17.3 h after 22 wk of sustained exposure. 

Therefore, if a bird moved away from feeding on the contaminated source for more than 18 h, then for 

all intents and purposes, its brain could be considered residue free. This narrow window of detection 

opportunity will certainly make destructive sampling of free-ranging birds difficult to justify. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

Furthermore, the rapid clearance from brain is highly relevant, and could result in underestimation of 

risk.  

Elimination via production of different metabolites than rodents and humans is also a potential 

explanation for the observed rapid clearance. We investigated production of the active metabolite 

norfluoxetine and six commonly produced (in humans) inactive metabolites. Norfluoxetine was 

detected in all tissues 2 h after the final dose (Supplemental Data), but was also eliminated rapidly with 

estimated t1/2 of 5.4 h for brain, 6.7 h for kidney, 8.7 h for liver and 3.3 h for muscle. The percentage of 

the dose excreted as fluoxetine 2 h after the final administration is estimated at 19.0±15.9% (derived 

from fluoxetine concentration and mean dry fecal mass of 0.17 g produced by starlings in 2 h). 

Excretion as norfluoxetine accounted for approximately 0.03% of the dose, which was surprising given 

a mean of 25.6 ng/g in liver (1.38% of the dose/g liver). Norfluoxetine in feces was <LOD in all but 

two samples (Supplemental Data). Norfluoxetine must either be excreted between 2 and 26 h or further 

metabolized (See discussion in Supplemental Data). However, we were unable to detect any of the six 

inactive metabolites (commonly detected in humans taking fluoxetine), which suggests that metabolic 

pathways are likely very different between starlings and humans. Future ADME studies in wildlife 

could also benefit from an understanding of interspecies differences in protein binding, membrane 

transport (e.g., proteins of the cell membrane such as P-glycoprotein) and metabolic pathways (see 

Supplemental Data [75-77]). 

If the effects on foraging behavior observed in Bean et al [3] are in fact real, then it is most 

likely due to subtle neurological changes that result from persistent (months) low level exposure to 

fluoxetine. If birds are only periodically exposed to fluoxetine (i.e., tissues are cleared for long periods 

during the winter and breeding season when earthworms are important in the diets of many bird species 

[78]), then it is less likely that up/down-regulation of receptors and endocrine related responses could 

be altered at brain concentrations 3 orders of magnitude below human therapeutic concentration.  

Limitations and uncertainties 
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The relative sensitivity of the predictive framework to both increases and decreases in 

fluoxetine concentration in earthworms, mass of food eaten by starlings, Fbioav and Rtissue:plasma was equal 

to 1 at both nadir and zenith (see editable framework in Supplemental Data 2). The relative sensitivity 

to t1/2 and Vd differed depending on context; at nadir, changes in t1/2 were amplified by the framework 

(for decreased values, R was up to 2.3, and for increased values, R was up to 2.7), whereas at zenith, 

the framework dampened their effect (for decreased values R was as low as 0.02, and for increased 

values R was as low as 0.09). An increase in Vd was dampened by the framework (R= 0.5 to 0.9), 

whereas a decrease in Vd was amplified by the framework (R=1.1 to 10). The output was not very 

sensitive to changes in exposure time due to the t1/2 of the unperturbed model being 8.2 h. There was 

negligible effect of extending the modelling beyond 7 d (at 22 wk, nadir only 0.00007% lower and 

zenith only 0.00001% lower). Indeed, differences after 1, 2 and 3 days with concentrations after 22 wk 

exposure were: 1 day: nadir = -13.2%, zenith =-1.95%; 2 days: nadir = -1.73%, zenith =-0.26%; 3 days: 

nadir = -0.23%, zenith =-0.03%. This suggests time to stable tissue concentrations in birds is likely 

rapid.   

There are several areas of uncertainty in the framework. First, the framework presented does not 

account for degradation of APIs in the WWTP [79-81], which could lead to overestimation of PECfood. 

However, in the present study PECfood and MECfood for fluoxetine happened to be well matched. 

Second, the foraging behaviors of free-ranging birds can be quite variable; this could affect the extent 

to which individuals routinely ingest earthworms contaminated with pharmaceuticals. Third, in terms 

of pharmacokinetics it would be beneficial to know Vd and Fbioav for multiple APIs and how the 

physiologies of birds relate to laboratory mammals. Fourth, overestimation of CBBzenith and 

underestimation of CBBnadir would result from assumptions that the dose is taken up in a single meal. In 

reality, many species feed throughout the day and are often opportunistic (gorge themselves). Finally, 

once APIs are distributed into liver, some fraction may end up in bile, re-enter the intestine and blood 

stream, and return to the liver (entero-hepatic recirculation [82]).  
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Uncertainty in the framework was greater at nadir than zenith. Using the 27 different 

combinations of input parameters, mean ± SE brain concentration at nadir was 0.47±0.13 ng/g 

(CV=146.2%) and zenith was 2.70 ± 0.47 ng/g (CV= 90.5%). However, uncertainty could be reduced 

at nadir to, 0.58 ± 0.13 ng/g (CV = 117.1%) and at zenith to, 3.35 ± 0.39 ng/g (CV= 60.9%) by 

excluding fluoxetine concentrations at one of the four WWTPs where values were much lower. While 

the CV is relatively high, it is important to view this uncertainty analysis in perspective (i.e., describing 

relative change in the low ng/g to pg/g concentration range). Therapeutic effects of fluoxetine in 

humans and laboratory mammals are only found at µg/g levels. Thus, the uncertainty of the framework 

does not change the conclusions about the likelihood of adverse effects. It is important to acknowledge 

that this is a preliminary framework upon which we hope others can build and integrate in ecological 

risk assessment.  

The present framework illustrates that substituting rodent fluoxetine ADME data for starling 

ADME data predicts low absorption and rapid elimination, but markedly overestimates distribution into 

brain. Nonetheless, predicted internal concentrations are still within a few ng/g of measured internal 

concentrations in experimentally dosed starlings.  If we had compared our starling ADME to that of 

humans, the low absorption of fluoxetine by starlings and absence of accumulation after such an 

extended dosing period would have been problematic. However, using rodent ADME and inverse 

modelling to calculate PECtissue for starlings that were chronically dosed at 5% HTD, we would expect 

residue levels to be 1000 times less than the therapeutic concentration.  

Data needs 

In order for interspecific pharmacokinetic extrapolations to work as a predictive framework for 

internal API concentrations in wild birds, we must gain a better understanding of the physiological and 

pharmacological differences between wild birds, mammals and humans. For example, estimates of 

PECplasma could be improved using a combination of in silico (literature review of current knowledge 

on interspecific differences in GI tract physiology), in vitro (assessments of bioaccessibility [68], 
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CYP450 expression [77], protein binding and active transport of APIs and receptor sensitivity, see 

Supplemental Data for discussion) and in vivo approaches (intravenous injection compared with oral to 

assess bioavailability, define plasma concentrations at higher doses than environmentally relevant 

concentrations to exceed LOD). It would be feasible to determine absorption (compare plasma uptake 

curve between oral and intravenous administration) and distribution into key sites of pharmacological 

activity. It would be beneficial to identify and conduct these in vivo assessments in several model wild 

bird species that could be considered representative of key Orders of birds likely exposed to APIs (e.g., 

passerine, waterfowl, gallinaceous birds, corvids, gulls and even raptors). To ensure the elimination-

curve can be captured, post-exposure time-points should be limited to 24 h, rather than 74 h as used 

herein.  

Once the predictive framework is validated for one exposure pathway, the next challenge is to 

expand the scope of the framework to include uptake of multiple APIs in various food webs (e.g., 

plants/fruits/ seeds grown in soil amended with sludge, aerial insectivores above WWTPs, wading birds 

in estuarine sediments). Field measurements of APIs soils, sediments and aquatic environments as well 

as the wildlife food items that grow and develop therein, could enable estimation of BAFs. These could 

be applied to expand the predictive framework. It will also be important to understand the extent to 

which individuals rely on contaminated sources for nutrition. This could be achieved through 

observations [4], remote tracking methods [83] and next generation sequencing of fecal samples (e.g., 

[84]).  

CONCLUSIONS 

Dietary exposure of wild birds to APIs is plausible, but at present there is limited quantitative 

evidence to support this assertion, and even less for estimating hazard and risk.  Gaining an improved 

understanding of API ADME for wildlife, and its relation to rodent and human ADME is important. 

This would enable the use of a wealth of information on effects of APIs gathered from pre-clinical and 

clinical trials for the conduct of ecological risk assessments. 
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Figure 1. Schematic of predictive framework for evaluation of exposure and risk of APIs in WWTPs 

for wild birds. Predicted Environmental Concentrations (PEC) in influent wastewater and earthworms 

are used to estimate risk of therapeutic or adverse effects based on dietary intake (relative to Human 

Therapeutic Dose), similar to TGD approach. The TGD approach is then extended using 

pharmacokinetic data for laboratory mammals and humans to calculate PECs in plasma and tissues for 

improved risk assessment based on internal residues.   

Figure 2. PECpost-exposure and in vivo data for fluoxetine in starling a) brain, b) liver, c) kidney and d) 

muscle over 4 days after the final dose. The error bars represent the minimum and maximum extent of 

the range, the horizontal y-reference line represents the limit of quantification (LOQ). Note the 

different y-axis scales. 
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Table 1: Parameters used in predictive modelling of internal concentration  

PEC Parameter Value Units Ref 
Wastewater M Fluoxetine usage/yr 4639.8  Kilograms per 

year (kg yr-1) 
 

NHS 2010[42] 

Fexcreted Proportion excreted as 
fluoxetine 
 

0.24 Unitless 
proportion 

Lienert et al. 2007 
[43] 

D Dilution in the 
environment 

3.7741×1012 (200 L 
per capita/per day 
Population of England 
51.7 million) 

liters (of water 
per year) (L) 

Williams 2005 [44] 
 

Food BAF Bioaccumulation factor 
including pore water 

30.8 (25.4-35.8) Unitless ratio Carter et al. 
2014[45]  

Plasma BW Body weight of a 
starling 
 

~80 (72-100) Grams (g) Robinson 2016 [49]  

DI Daily intake of 
earthworms wet weight 

15-38.5 Grams wet 
weight g (w/w) 

Markman et al 2008 
[50] 
East and Pottinger 
[51] 

Texp Duration of exposure 22 Weeks Bean et al 2014 [3] 
 

T1/2 Elimination half-life 3.6-12.9 (lab mammals) 
 
 
24-96 (humans) 

Hours (h), but 
convert to days 
for calculations 

Vartazarmian et al 
2005 [41] 
Caccia et al 1990 
[37] 
Hiemke and Hartter 
2000 [46] 
 

Fbioav Fraction of the dose 
that is bioavailable 

0.38 (lab mammals) 
 
0.6-0.8 (humans) 

Unitless 
proportion 

Caccia et al 1990 
[37] 
Eli Lilly 2009 [47] 
 

Vd Volume of distribution 27 (lab mammals 
 
 
14-100 (humans) 

L/kg BW Holladay et al 1998 
[38] 
 
Hiemke and Hartter 
2000 [46] 

Tissue Rtissue:plasma 

for brain 

Ratio of fluoxetine in 
brain tissue relative to 
plasma 

9-89 (lab mammals) 
 
 
 
10-20 (humans) 

Unitless ratio Caccia et al 1990 
[37], Unceta et al 
2007 [40] 
 
Hiemke and Harter 
2000 [46] 

Rtissue:plasma 

for liver 

Ratio of fluoxetine in 
liver tissue relative to 
plasma 

2 (lab mammals) 
 
38 (humans) 

Unitless ratio Lefebvre et al 1990 
[48] 
Lewis et al 2007 
[52] 

Rtissue:plasma 

for kidney 

Ratio of fluoxetine in 
kidney tissue relative to 
plasma 

No data (lab mammals) 
 
9 (humans) 

Unitless ratio  
 
Lewis et al 2007 
[52] 

Rtissue:plasma 

for muscle 

Ratio of fluoxetine in 
muscle tissue relative 

No data (lab mammals) 
 

Unitless ratio  
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to plasma 2.2 (humans) Lewis et al 2007 
[52] 

Post-exposure T1/2 Elimination half-life 3.6-12.9 (lab mammals) 
 
24-96 (humans) 

Hours (h) Vartazarmian et al 
2005 [41]; Caccia 
et al 1990 [37]  
Hiemke and Hartter 

2000 [46] 
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Table 2: Fluoxetine concentrations in influent wastewater, earthworms and starling tissues and feces after 22 weeks of treatment and in plasma 
after 16 weeks of treatment.  

Influent 
ng/mL 

Eisenia 

fetida (ng/g) 
Time post- 

exposure (h) 
Plasma 
ng/mL 

Brain 
ng/g 

Liver 
ng/g 

Kidney 
ng/g 

Muscle 
ng/g 

Feces 
ng/g 

FLUOXETINE 
1.31±0.23 

(6/6) 
26.20±4.70 

(12/12) 
2 <LOD 

0/12 
3.05±1.50 

(3/3) 
14.42±4.36 (3/3) 7.34±1.38 

(3/3) 
 

2.95-2.97* 
(2/3, 1<LOD) 

1487.3±1223.4 
(3/3) 

  26 No 
Sample 

- 
(3<LOD) 

- 
3<LOD 

1.61-1.62* 
(2/3, 1<LOD) 

 

1.94 
(1>LOD, 
2<LOD) 

62.43 
(1/3, 2<LOD) 

  50 No 
Sample 

- 
(3<LOD) 

1.21 
(1/3, 2<LOD) 

 

- 
(3<LOD) 

1.72 
(1>LOD, 
2<LOD) 

3.47 
(1>LOD, 
2<LOD) 

  74 No 
Sample 

- 
(3<LOD) 

- 
(3<LOD) 

- 
(3<LOD) 

- 
(3<LOD) 

- 
(3<LOD) 

CONTROLS 
 

<LOD <LOD 2, 26, 50 and 74 <LOD <LOD <LOD <LOD <LOD <LOD 

 

Concentrations are mean ±SE (detection frequency); * Kaplan-Meier mean calculated where fluoxetine was detected in ≥2 samples; raw data presented 
when detected in only one sample. 

Concentrations in all tissues are given on a wet weight basis, feces on a dry weight basis  

Fluoxetine limit of detection, LOD (with LOQ in parenthesis) in ng/g: influent 0.6 ng/L (2 ng/L); earthworm 0.45 ng/g (1.5 ng/g); brain 0.03 (0.15); 
kidney 0.03 (0.53); liver 0.07 (0.41); muscle 0.04 (2.97), feces 1.78 (5.92); plasma in ng/mL 0.15 (0.51).  
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