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Highlights 

 Relative humidity and temperature show coupled effect on powder surface caking. 

 Irreversible caking is formed in PVP and HPC at 75% relative humidity (RH). 

 The critical glass transition RH for PVP at 25 °C and 45°C are 63% and 53%. 

 The critical glass transition RH for HPC at 25 °C and 45°C are 61% and 50%. 

 Ball indentation is an effective method for assessment of powder surface caking. 
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       Powder caking is a ubiquitous problem, which could significantly decrease product quality and lead to 

economic losses. Hence it is important to know the conditions under which it occurs. The caking behaviour 

of three powder materials (PVP, HPC and CaHPO4) has been investigated by the ball indentation method 

(BIM) as affected by relative humidity (RH), temperature and time. The resistance to powder flow, as 

indicated by the hardness is measured by a ball indenting the powder bed surface. The surface hardness 

increases with increasing RH and temperature, indicating caking of the powder bed. Moreover, the 

temperature and RH show a coupled effect on powder caking. Irreversible caking is formed in PVP and 

HPC at 75% RH; the particles coalesce and the volume of powder bed is significantly reduced with time. 

However, the caking of CaHPO4 is reversible. To examine the caking mechanism of PVP and HPC, the 

critical glass transition RH is determined at 25 °C and 45 °C. The values are 63% and 53% RH for PVP 

and 61% and 50% RH for HPC, respectively. The glass transition moisture content in the ball indentation 

experiments is comparable with that determined by the dynamic vapor sorption measurement. BIM could 

be a fast and effective method for the assessment of powder surface caking.  

 

Keywords: pharmaceutical powders, ball indentation, caking, moisture sorption, hardness, glass transition 

 

 

1. Introduction 

       Caking is deleterious in powder processing operations. It transforms the powder into lumps, 

agglomerated solid or sticky material (Aguilera et al., 1995). Caked powders cause processing difficulties 

and lower the quality of the final products, hence leading to downtime and significant economic losses 

(Carpin et al., 2016; Aguilera et al., 1995). It is therefore of great importance to know the conditions under 

which powders are prone to caking and how to mitigate it. 

    Caking of powders is influenced by a large number of factors: particle size, shape, relative humidity, 

temperature, applied force, hygroscopicity, deliquescence and possible solid state transformations. Hence, 

it is difficult to predict the caking affinity of any powder (Carpin et al., 2016). Several methods are used 

nowadays to characterise caking, including the uniaxial compression test (Chávez Montes et al., 2011), 

powder rheometer (Freeman et al., 2015), environmentally controlled caking rig (Calvert et al., 2013), 
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Edinburgh powder tester (Thakur et al., 2014), shear cell (Cleaver et al., 2004), and caking index test (Irani 

et al., 1959). A comprehensive review of caking and methods for its characterisation have recently been 

made by Zafar et al. (2017b). When the interest is on a small quantity of powders at very low stress levels, 

the Ball Indentation Method (BIM), developed by Hassanpour and Ghadiri (2007) can detect  the surface 

caking of the powders very quickly with high sensitivity. It assesses the resistance of the powder bed to 

plastic deformation using a simple mechanical testing machine. It has been used recently to characterise 

the flowability of cohesive powders (Pasha et al., 2013; Zafar et al., 2015; Zafar et al., 2017a). In this 

work we expand its application for assessing the onset of powder caking. 

    During handling, storage, processing and distribution, powders may experience variations in 

temperature and humidity, which are key causes of powder caking (Fitzpatrick et al., 2010). The glass 

transition of powders, which have amorphous content, would occur when they are exposed to a high 

relative humidity or temperature (Carpin et al., 2016; Fitzpatrick et al., 2010). It is thus important to know 

the moisture and temperature sensitivities of powders for predicting caking. In the present study, three 

pharmaceutical excipient powders with different hygroscopicity are used. Effects of relative humidity and 

temperature on their surface caking behaviour are examined by BIM. A lightly compacted powder bed in a 

die is exposed to environment conditions with different relative humidity and temperature values for 

different periods of time. The caking behaviour is then analysed in terms of the glass transition RH and 

temperature. 

 

2. Materials and Methods 

        Povidone (PVP, grade: Kollidon 30), Hydroxypropyl Cellulose (HPC, grade: KLUCEL EXF), 

calcium phosphate dibasic anhydrous (CaHPO4, grade: A-TAB) are widely used in pharmaceutical 

industry. They are prone to caking, hence they were selected for this work. Samples of powders were 

provided by AstraZeneca Ltd (Macclesfield, UK). To obtain different relative humidity levels (11%, 33%, 

75%), lithium chloride (LiCl, purity > 99%), magnesium chloride (MgCl2, purity > 98%), and sodium 

chloride (NaCl, purity > 99.5%) were used to prepare saturated salt solutions with which the powders were 

conditioned. They were all of analytical grade, and were obtained by Fisher Scientific UK Ltd 

(Loughborough, UK).  
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    Morphologi G3 (Malvern Instruments Ltd, Worcestershire, UK) was used for particle size and shape 

analyses. The dry sample dispersion unit (SDU) was used and a sample of about 3 mm3 was dispersed onto 

a glass plate using 1 bar injection pressure, injection time of 20 ms, and settling time of 60 s. The projected 

area of particles was determined by automatic image analysis and the results are expressed as circle 

equivalent (CE) diameter, presented on the volume distribution. The characteristic particle sizes for the 

cumulative distribution at 10%, 50% and 90% undersize (CE D[v,0.1], CE D[v,0.5], and CE D[v,0.9) are 

reported, together with circularity, aspect ratio and elongation in Table 1. CaHPO4 has the widest size 

distribution and the largest average size (CE D[v,0.5]=197 µm), however, there is no significant difference of 

size distribution between PVP and HPC. PVP has the highest value of circularity (0.969), HPC exhibits the 

highest value of elongation and lowest value of aspect ratio, owing to its fibrous structure. 

        The images of the particles were viewed with a TM3030Plus table-top scanning electron microscope 

(Hitachi High-Technologies Corporation, Tokyo, Japan) and are shown in Figure 1. PVP is more spherical, 

however, there are many dents on its surface (Figure 1 (a)). HPC has a fibrous type profile with a very 

irregular shape (Figure 1 (b)), while CaHPO4 shows a crystal structure (Figure 1 (c)). 

        The moisture sorption behaviour of the powders was determined with a dynamic vapour sorption 

analyser (DVS) (Surface Measurement Systems Ltd., London, UK) equipped with a Cahn microbalance. 

The experiments were carried out at 25 °C and 45 °C with different relative humidity levels (RH) ranging 

from 0% to 90%. Approximately 10 mg of powders was loaded onto the sample pan. Initially, the samples 

were dehydrated in the DVS chamber at 0% RH until the equilibrium mass was obtained. The samples 

were then subjected to hydration with 10% RH steps. The value of dm/dt (m: mass of sample; t: time) was 

set to be below 0.002 %/min. Each experiment was performed in three repeats. The moisture uptakes of 

PVP, HPC and CaHPO4 as a function of relative humidity at 25 °C and 45 °C are shown in Figure 2. PVP, 

HPC and CaHPO4 present high, medium and low moisture sorption behaviour, having moisture content of 

57.46%, 21.44% and 3.16%, respectively, at 90% RH and 25 °C. Temperature shows a significant effect 

on the moisture sorption behaviour of the powders. For all the samples, the moisture uptake at a particular 

RH decreases with increasing temperature. At 90% RH, the moisture contents of PVP, HPC and CaHPO4 

at 45 °C are 77%, 67% and 60% of those at 25 °C, respectively. At higher temperatures, the attractive 

forces between the water molecules of solid surfaces decrease due to the increase in the kinetic energy of 
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water molecules. Hence, the water molecules are bound more easily to binding sites on the surface of 

powders at low temperatures (Djendoubi Mrad et al., 2013).  

         Powder flow behaviour was analysed using the Schulze RST-XS annular ring shear cell tester 

(Wolfenbüttel, Germany). The applied pre-shear normal stresses (ıpre) were 2, 4, and 6 kPa. For each ıpre, 

five shear stresses were used to construct a yield locus following the standard procedure (Schulze, 2008), 

from which the “flowability index (ffc)”, the ratio of the major principal stress (ı1) to the unconfined yield 

strength (ıc), was determined (Schulze and Wittmaier, 2003). The lowest normal stress was kept at 1 kPa, 

while other points were equally distributed. The results are given in Figure 3. Each point is the average 

values of three repeats. For all the pre-shear normal stresses tested, the resulting flowability index for both 

HPC and CaHPO4 are found to fall within the regime of ‘very cohesive and ‘free flowing’, respectively. 

However, for the case of PVP, a change of flowability regime from ‘easy flowing’ to ‘free flowing’ is 

observed when the pre-shear normal stress is increased from 2 to 4 kPa. Flowabilities of the three samples 

are in the order: CaHPO4 >PVP > HPC. 

        Surface caking was characterised by BIM. Samples were consolidated into a cylinder (40 mm 

diameter) by a stainless steel piston using an Instron 5566 series mechanical testing machine (Instron 

European Headquarters, Buckinghamshire, UK) at the consolidation pressure of 7.5 kPa. They were then 

subjected to indentation using a glass spherical indenter with the diameter of 3.969 mm (Sigmund Lindner 

GmbH, Warmensteinach, Germany). The loading speed was 1mm/min. During the ball indentation process, 

the applied load (F) and the displacement of the indenter were continuously recorded, and a typical 

example of indentation loading/unloading cycle on HPC powder bed is shown in Figure 4. 

       The resistance to plastic deformation of the bulk powder (expressed by the hardness) is used to 

evaluate the surface caking of powder bed. The hardness (H) of a consolidated powder bed could be 

calculated by (Hassanpour and Ghadiri, 2007): 

                                                   H=Fmax / ʌ (Db× hc,max- h2
c,max )                           (1) 

    where Fmax is the maximum indentation load, Db is the diameter of the indenter, and hc,max is the 

intercept of the tangent to the unloading curve, as shown in Figure 4.  
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    Effects of the relative humidity (RH) and temperature on the surface powder caking were investigated 

by BIM. The tests are done by exposing a compacted powder bed in a die to a certain environment with 

three different relative humidity levels and two temperatures for a number of days based on the caking 

kinetics. Similar to the moisture sorption experiments, the low (11%), medium (33%) and high (75%) 

relative humidity levels were created by the saturated salt solutions of LiCl, MgCl2 and NaCl, respectively, 

and two temperatures of 25 °C and 45 °C were used.  The indentation tests were also carried out in three 

repeats. 

    The relative humidity at which the glass transition occurred was determined by DVS for PVP and 

HPC powders. Approximately 10 mg of powders was used and initially dried at 0% RH. They were then 

exposed to a linearly increasing RH from 0 to 90% RH with ramping rates of 2%, 6% and 10% RH/hour, 

respectively. The glass transition RH was considered as the inflection point between surface adsorption 

and bulk absorption (Burnett et al., 2004). These experiments were also carried out at 25 °C and 45 °C in 

triplicate tests.  

3. Results and Discussion 

3.1 Assessment of powder surface caking by Ball Indentation Method 

  The powder bed was pre-consolidated at 7.5 kPa (9.42 N load). The effects of indentation load and 

position on the hardness of different powder beds were first investigated. After suitable conditions of 

indentation load and position were confirmed, the effects of relative humidity and temperature on the 

caking of powder were further studied.  

3.1.1 Effect of indentation load and position on the hardness of powder bed 

        To investigate the effect of indentation load on hardness measurement by BIM, different indentation 

loads were used for different samples (3-11mN for PVP, 10-200 mN for HPC, 3-20 mN for CaHPO4) and 

the results are shown in Figure 5(a). The distance between the indenter and die wall (Diw) was 8 mm, while 

the distance between two successive indentations (Dii ) was 11 mm (Figure 6 (a)).  

        In the ball indentation test, the hardness is inferred from the relationship between the penetration 

depth and the force acting on the indenter (Zafar et al., 2017a). The dimensionless penetration depth (hd), 

which is calculated by the penetration depth (hc,max) divided by the radius of the indenter (Ri), is used as the 

independent variable. Hardness should be independent of penetration depth and indentation load when the 
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bulk powder undergoes plastic deformation. PVP and CaHPO4 show similar results. Their hardness values 

are relatively stable around 0.8 and 1.6 kPa, respectively, under different indentation loads (Figure 5(a)). 

However, for HPC lower values of hardness are obtained at very low penetration depths. When the 

indentation load is over 100 mN, the hardness values of HPC become stable (about 17 kPa). Hence, it is 

very important to have enough indentation loads to get a reliable hardness measurement. Based on the 

previous study, the dimensionless penetration depth should be more than 0.4 to give a reliable measure of 

the hardness (Zafar et al., 2017a). Therefore, the indentation loads 7, 15, 150 mN were used for PVP, 

CaHPO4 and HPC tests in the following study, respectively. 

         The effect of indentation position on material hardness was investigated and the results are shown in 

Figure 5 (b). Eight indentations were carried out on the same powder bed, the values of Diw and Dii  were 8 

and 9 mm, respectively (Figure 6 (b)). At the indentation loads of 7, 15, and 150 mN, the hardness values 

of PVP, CaHPO4 and HPC are in the range 0.81-0.95, 1.48-1.80 and 14.2-19.2 kPa, respectively. The 

average hardness values of PVP, CaHPO4 and HPC for the eight indentation positions are 0.87 ±0.05, 

1.65±0.09, 16.50 ± 1.7 kPa, respectively. Although there was some fluctuation in the value of hardness in 

different positions, the results were relatively stable for different samples. Therefore, eight positions could 

be used on one die in the further dynamic study.  

3.1.2 Effect of relative humidity on the surface caking of powders 

        Powders were exposed to 11%, 33% and 75% RH at 25 °C for 8 days, the changes of the bed surface 

hardness are shown in Figure 7. When PVP was exposed to 11% RH, the hardness of the powder bed 

surface at different times had no significant change (Figure 7(a)). For 33% RH, the powder bed surface 

hardness of PVP increased slightly and approached a plateau of around 3kPa in six days. However, there 

was a substantial increase in hardness of PVP at 75% RH. The hardness value was the highest (2118 kPa) 

at 7-day exposure to 75% RH, which was 2500 times of that of the start of exposure (0-day). The colour of 

PVP changed from light yellow to yellow; the powder had visually transformed from a powder into a solid 

material. In the cases of HPC and CaHPO4, the low (11%) and medium (33%) RH did not show a 

significant effect on the hardness of powder beds. However, the hardness of both powder beds significantly 

increased at 75% RH. The volume of HPC powder bed started to reduce after 3-day exposure. The change 

of hardness of CaHPO4 was smaller than that of the others, it approached a plateau at day 5 (3.59 kPa), 

which was less than twice the value of day 0. The powder cake was very weak and easily broke down. 
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After 8-day exposure to 75% RH, the hardness of PVP was the highest, followed by HPC and CaHPO4, 

with the latter showing the lowest. The trend is related to the moisture sorption behaviour which is shown 

in Figure 2 and is further analysed below.  

3.1.3 Effect of temperature on the surface caking of powders 

         The experiments were carried out at 25 °C and 45 °C under 75% RH; the results are shown in Figure 

8. The hardness values are much larger at 45 °C than those at 25 °C, particularly for PVP and to a lesser 

extent for HPC, but the changes are still orders of magnitude, even though there is less moisture sorption at 

the higher temperature (Figure 2). This implies that temperature and relative humidity have a coupled 

effect on powder caking. When PVP is exposed at 45 °C to 75% RH, the hardness value increases first and 

reaches the highest value at 2-day with a value of almost 13 MPa. Then it decreases significantly by an 

order of magnitude with time. The states of the PVP powder beds at 45 °C and 25 °C after 8-day exposure 

to 75% RH are very different.  The particles are regarded as “transformed” at the higher temperature, 

whilst they are simply “bonded” at the lower temperature (Oksanen and Zografi, 1990). For HPC and 

CaHPO4, the hardness of both samples increases with temperature, albeit to a minor extent for the latter. 

The hardness of HPC after 1-day exposure to 45 °C is similar to that of 8-day exposure to 25 °C. Clearly 

high temperatures could significantly accelerate the caking rate of powders. After 8-day exposure to 75% 

RH, the hardness of HPC at 45 °C is six times that of 25 °C. More particles are bonded together at the 

higher temperature, hence, the volume of powder bed decreases. However, the powder cake of CaHPO4 is 

still very weak, even after 8-day exposure to 45 °C and 75% RH, where its hardness is only 7.68 kPa. The 

caking of CaHPO4 is reversible, presumably due to its very low moisture sorption ability (about 1%), a 

strong cake cannot form even at the high temperature and relative humidity (Figure 2). Clearly CaHPO4 

has a good stability and not prone to caking. 

3.2 Caking mechanism of PVP and HPC 

      Significant caking occurs in PVP and HPC powders at high RH and temperatures. The degree of 

caking is related to the moisture uptake and glass transition. To interpret the caking behaviour of PVP and 

HPC which are amorphous, the relative humidity corresponding to the glass transition is examined at 25 °C 

and 45°C.  
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        A typical net change in mass (based on dry basis) versus time for PVP at 25 °C with RH ramping rate 

of 10% RH/h is displayed in Figure 9. The water uptake is relatively low and increases linearly with RH 

below 40%. The moisture uptake in this region is mainly dominated by the surface adsorption of water. 

With RH increasing further, there is a sharp increase in moisture uptake. This has been attributed to the 

bulk absorption of water by PVP (Burnett et al., 2004). The glass transition relative humidity (RHg) is 

inferred from the transition point between surface adsorption to bulk absorption (Figure 9, about 500 min 

and 67% RH); the glass transition moisture content (MCg) is determined as 24%. This value is obviously 

dependent on the rate of increase of RH. Similar experiments have also been done at 2% and 6% RH/h. 

The ramping rates and corresponding RHg and MCg values are shown in Figure 10.  

         As Figure 10 (a) indicates, RHg decreases with decreasing ramping rate. Meanwhile, there seems to 

be linear relationships between RH ramping rate and RHg at 25 °C and 45 °C with correlation coefficients 

(R2) better than 0.95. The critical RHg is calculated by extrapolating the results to zero ramping rate. It 

decreases with the increase of temperature. The critical RHg values for PVP at 25 °C and 45 °C are 63% 

and 53% RH, respectively. Therefore the glass transition of PVP readily occurs on exposure to 75% RH.  

Similarly, a linear fit appears to prevail between the ramping rate and MCg values (R2>0.95). The critical 

MCg for PVP at 25 °C and 45 °C are 22.86 % and 14.13 %, respectively (Figure 10 (b)).  

        To explore the significance of the results, the change of moisture uptake and hardness of PVP are 

shown together in Figure 11. There are turning points in changes of hardness with time at 25 °C and 45 °C 

(at 7-day and 2-day, respectively). After that, the hardness decreases due to deliquescence with more 

moisture uptake, resulting in a decrease in the powder bed volume. The powder bed is transformed from a 

solid glassy state into a highly viscous rubbery state; the particles agglomerate first and eventually coalesce 

with each other (Fitzpatrick et al., 2010). The state of PVP is therefore changed from “bonded” to 

“transformed”. The onset of glass transition of PVP is considered as 7-day and 2-day for exposure to 75% 

RH at 25 °C and 45 °C, respectively. The corresponding moisture contents of PVP are 22.89 % and 

14.51 %, respectively, which is comparable with the critical MCg value predicted above. 

        Similar experiments have also been performed on HPC powder at 2%, 6%, and 10% RH/h and 25 °C 

and 45 °C. RHg and MCg values of HPC as a function of the ramping rate are shown in Figure 12. The RHg 

values plotted versus ramping rate for the two temperatures also indicate a linear correlation (R2>0.96). 

The critical RHg values of HPC at 25 °C and 45 °C are 61% and 50% RH, respectively. RHg increases with 
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increasing ramping rate. However, the ramping rate shows more effect on the RHg values of HPC than 

PVP. When the ramping rate is decreased from 10% to 2% RH/h at 25 °C, the RHg value differences [RHg, 

10%RH/h - RHg, 2%RH/h] of HPC and PVP are 8.29% and 3.78%, respectively (Figure 12 (a)). However, the 

differences of RHg value [RHg, 10%RH/h - RHg, 2%RH/h] of HPC and PVP are significantly increased at 45 °C 

to 14.7% and 11.2 % when the ramping rate is decreased from 10% to 2% RH/h. As Figure 12 (b) indicates, 

MCg decreases with the increase of temperature. The critical MCg values of HPC at 25 °C and 45 °C are 

6.05 % and 3.59 %, respectively. Molecular mobility increases with temperature, hence the glass transition 

is induced by less water uptake (Burnett et al., 2004). The changes of moisture uptake and hardness of 

HPC are shown in Figure 13. Visual observations of the HPC bed surface show the bed volume decreasing 

with time; after exposure for durations of 3-day at 25 °C or 1-day at 45 °C to 75% RH the bed detaches 

itself from the containing wall with a clear visible gap, indicating the occurrence of glass transition. At 

these points in time the corresponding moisture contents are 7.07 % and 5.45 %, respectively, which are a 

little higher than the critical MCg values predicted above (6.05 % and 3.59 %).  

4. Conclusions 

         An assessment of surface caking of PVP, HPC and CaHPO4 powders has been made by BIM. The 

hardness of powder beds of PVP, HPC and CaHPO4 increases with increasing RH and temperature. RH 

and temperature show a coupled effect on the caking of powders. Strong cakes are formed for PVP and 

HPC at 75% RH; In contrast, the cake of CaHPO4 is very weak and easily breaks down. The glass 

transition of PVP occurs when the RH is over 63% and 53% RH at 25 °C and 45 °C, respectively. The 

state of the powder bed of PVP changes from “bonded” to “transformed” on adsorption of moisture and 

undergoes deliquescence. Once the RH of HPC is increased beyond 61% and 50% RH at 25 °C and 45 °C, 

respectively, samples transform from a glassy state into a rubbery state; particles fuse together and the 

volume of the powder bed decreases significantly. The moisture content at which the glass transition 

occurs (MCg) is detected by the hardness of the powder bed surface. It turns out the MCg values are 

comparable with the critical MCg values predicted by DVS measurements. The results indicate that BIM is 

a fast, effective and reliable method for assessing powder surface caking. 
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Figure Captions: 

Figure 1. SEM of PVP (A1: 50×; A2: 800×), HPC (B1: 80×; B2: 1000×),) and CaHPO4 (C1: 50×; C2: 500×) 
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Figure 2. Moisture sorption behaviours of PVP, HPC, and CaHPO4 at 25°C and 45°C 

 

Figure 3  (Colour; Black and white) 
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Figure 3. Flow functions of PVP, HPC, and CaHPO4 at different pre-shear normal stresses 

Figure 4  (Colour; Black and white) 
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Col 2 vs Col 1 
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Figure 4. A typical loading/unloading curve of the ball indentation process on the HPC powder bed 

Figure 5 a)  (Colour; Black and white) 
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Figure 5 b)   (Colour; Black and white) 
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Figure 5. Effect of indentation load (a) and position (b) on the hardness of powder beds of test materials 

Figure 6 
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Figure 6. The photos of ball indentation experiments at different indentation loads (a), and positions (b) 

Figure 7 a)   (Colour; Black and white) 
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Figure 7 b)   (Colour; Black and white) 
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Figure 7 c)   (Colour; Black and white) 
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Figure 7. Effect of relative humidity on the surface hardness of (a) PVP, (b) HPC and (c) CaHPO4 at 25 °C 

Figure 8  (Colour; Black and white)  
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8. Effect of temperature at constant RH on the surface hardness of powder beds of HPC, PVP and CaHPO4 
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Figure 9. Relative humidity (RH) ramping experiment (10%RH/h) for PVP at 25 °C. Red line shows the net 

change in mass while the blue line shows the RH profile of sample 

Figure 9 (Colour) 
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Figure 9 (Black and white) 
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Figure 10 (Colour) 
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Figure 10 (Black and white) 
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Figure 10. (a) Glass transition relative humidity and (b) glass transition moisture content as a function of the 

ramping rate for PVP at 25 °C and 45 °C. Solid line and equation represent the linear fit 

a) 

b) 
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Figure 10 (Colour) 
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Figure 11 a) 25 °C   (Colour; Black and white) 
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Figure 10 (Colour) 
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Figure 10 (Black and white) 

 

a) 

b) 



34 
 

y = 0.4725x + 62.85   
R2 = 0.9501

Ramping Rate (%RH/hour)

0 2 4 6 8 10

R
H

g 
(%

R
H

)

52

54

56

58

60

62

64

66

68

70
25°C, PVP
45°C, PVP

y = 1.3988x + 52.74
R2 = 0.9682

 

Ramping Rate (%RH/hour)

0 2 4 6 8 10

M
C

g 
(%

, 
dr

y 
m

a
tte

r)

12

14

16

18

20

22

24

26
25°C, PVP
45°C, PVP

y = 0.8725x + 14.13
R2 = 0.9952

y = 0.155x + 22.86   
R2 = 0.9597

 

 

 

Figure 11 a) 25 °C   (Colour; Black and white) 
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Figure 11  b) 45 °C   (Colour; Black and white) 



36 
 

Time (day)

0 2 4 6 8

M
o

is
tu

re
 C

o
nt

e
nt

 (
%

, 
dr

y 
m

a
tte

r)

0

5

10

15

20

25

H
a

rd
ne

ss
 (

kP
a

)

0

3000

6000

9000

12000

15000
Moisture Content
Hardness

  

 

Time (day)

0 2 4 6 8

M
o

is
tu

re
 C

o
nt

e
nt

 (
%

, 
dr

y 
m

a
tte

r)

0

5

10

15

20

25

H
a

rd
ne

ss
 (

kP
a

)

0

3000

6000

9000

12000

15000
Moisture Content
Hardness

 

 

 

 

Figure 11. Moisture uptake and hardness change of PVP as a function of time at (a) 25 °C and (b) 45 °C 
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Figure 10 (Colour) 

y = 0.4725x + 62.85   
R2 = 0.9501

Ramping Rate (%RH/hour)

0 2 4 6 8 10

R
H

g 
(%

R
H

)

52

54

56

58

60

62

64

66

68

70
25°C, PVP
45°C, PVP

y = 1.3988x + 52.74
R2 = 0.9682

 

Ramping Rate (%RH/hour)

0 2 4 6 8 10

M
C

g 
(%

, 
dr

y 
m

a
tte

r)

12

14

16

18

20

22

24

26
25°C, PVP
45°C, PVP

y = 0.8725x + 14.13
R2 = 0.9952

y = 0.155x + 22.86   
R2 = 0.9597

 

 

 

 

Figure 10 (Black and white) 
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Figure 11 a) 25 °C   (Colour; Black and white) 
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Figure 11  b) 45 °C   (Colour; Black and white) 
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Figure 12  (Colour; Black and white) 
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Figure 12 (Black and white) 

a) 

b) 



42 
 

Ramping Rate (%RH/hour)

0 2 4 6 8 10

R
H

g 
(%

R
H

)

45

50

55

60

65

70

75
25°C, HPC
45°C, HPC y = 1.0363x + 60.61   

R2 = 0.9760

y = 1.8375x + 49.20
R2 = 0.9654

 

Ramping Rate (%RH/hour)

0 2 4 6 8 10

M
C

g 
(%

, 
dr

y 
m

a
tte

r)

2

4

6

8

10
25°C, HPC
45°C, HPC

y = 0.2413x+6.05
R2 = 0.9903

y = 0.3263x+3.59
R2 = 0.8899

 

 

 

Figure 12. (a) Glass transition relative humidity and (b) glass transition moisture content as a function of 
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ramping rate for HPC at 25 °C and 45 °C. Solid line and equation represent the linear fit 

Figure 12 (Black and white) 
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Figure 13 a) 25 °C   (Colour; Black and white) 
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Figure 12 (Black and white) 
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Figure 13 a) 25 °C   (Colour; Black and white) 

Time (day)

0 1 2 3 4 5 6 7 8

M
o

is
tu

re
 C

o
nt

e
nt

 (
%

, 
dr

y 
m

a
tte

r)

0

2

4

6

8

10

12

H
a

rd
ne

ss
 (

kP
a

)

15

20

25

30

35

40
Moisture Content
Hardness

  

Time (day)

0 1 2 3 4 5 6 7 8

M
o

is
tu

re
 C

o
nt

e
nt

 (
%

, 
dr

y 
m

a
tte

r)

0

2

4

6

8

10

12

H
a

rd
ne

ss
 (

kP
a

)

15

20

25

30

35

40
Moisture Content
Hardness

 

 

 

 

Figure 13 b) 45 °C   (Colour; Black and white) 
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Figure 13. Moisture uptake and hardness change of HPC as a function of time at (a) 25 °C and (b) 45 °C 
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Table 1. Size and shape parameters of test powders 

Parameters PVP HPC CaHPO4 

CE D[v,0.1] (µm) 38±3 33±2 75±8 

CE D[v,0.5] (µm) 81±10 81±3 197±9 

CE D[v,0.9] (µm) 135±14 130±20 292±10 

Circularity 0.969 ±0.005 0.666±0.002 0.779±0.003 

Aspect Ratio 0.934±0.005 0.552±0.010 0.671±0.001 

Elongation 0.066±0.005 0.448±0.010 0.329±0.001 

 

 

 

 

 

 


