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Reconstruction of the perfusion coefficient from temperature

measurements using the conjugate gradient method

K. Cao, D. Lesnic∗

Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

Abstract

We consider the inverse bio-heat transfer problem to determine the space- and time-dependent

perfusion coefficient from temperature measurements. In this formulation, the problem is fully

determined and the coefficient is identifiable if and only if the temperature has dense support.

However, the problem is still ill-posed since small errors in the measured temperature cause large

errors in the output perfusion coefficient due to the numerical differentiation of noisy data involved

which represents an unstable procedure. In order to overcome this difficulty and restore stability,

we employ for the first time the conjugate gradient method (CGM) for solving the inverse problem

under investigation. Regularization is achieved by stopping the iteration process at an appropriate

threshold dictated by the discrepancy principle. Numerical results show that the CGM is accurate

and reasonably stable in retrieving the perfusion coefficient. Moreover, comparison with other

methods shows improved efficiency and stability in inverting noisy data.

Keywords: inverse problem, bio-heat equation, ill-poesd problem, conjugate gradient method,

perfusion coefficient

2010 MSC: 65M32, 35K05

1. Introduction

Despite much work carried out to understand interactions that occur in perfused tissues during

thermal treatments, [1, 2, 3, 4], there is still of great importance to identify how the convective

heat transport is modelled by blood perfusion, [5]. Therefore, in this paper, we consider a one-

dimensional inverse bio-heat conduction problem to determine the space- and time-dependent

blood perfusion coefficient from temperature measurements which would be of very much interest

to bio-medical engineering applications such as, e.g. hyperthermia cancer therapy. In the direct

problem, the cause (perfusion coefficient) is given and the effect (temperature field) is determined.

However, the inverse problem involves the estimation of the cause from the knowledge of the effect.

Difficulties encountered in the solution of the inverse heat transfer problems should be recog-

nized, since, in general, they are ill-posed, see [6, 7]. The solution of a well-posed problem needs
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to satisfy the requirements of existence, uniqueness and stability with respect to the input data.

The existence of a solution for an inverse problem may be assured according to physical reasoning.

However, the uniqueness of the solution can be mathematically proved only under further restric-

tions or assumptions. Further, the solutions may become unstable, as a result of the errors which

are inherently present in the practical measurements.

The mathematical formulation of the coefficient identification problem under investigation is

presented in Section 2. The numerical conjugate gradient method (CGM) for solving it is presented

in Section 3. Numerical results are presented and discussed in Section 4 and finally, Section 5

highlights the conclusions of the work.

2. The mathematical formulation

Understanding the thermal life behaviour and temperature distribution in living tissues are key

tasks in modern clinical treatments of cancer hyperthermia or skin burn injuries using thermother-

apy, [8, 9]. The blood flow exchanged through tissue plays an important role in the temperature

regulatory system of the human body, [1]. The governing equation describing the relation between

the tissue temperature and the arterial blood perfusion is given by the transient bio-heat equation,

[2]. We solve this equation in a finite slab Ω = (0, 1), over the time interval from the initial time

t = 0 to the final time t = tf ,

∂T

∂t
(x, t) =

∂

∂x

(

k(x, t)
∂T

∂x
(x, t)

)

− q(x, t)T (x, t) + S(x, t), (x, t) ∈ (0, 1)× (0, tf ), (1)

subject to the Neumann boundary conditions

−k(0, t)
∂T

∂x
(0, t) = q1(t), k(1, t)

∂T

∂x
(1, t) = q2(t), t ∈ (0, tf ), (2)

and the initial condition

T (x, 0) = T0(x), x ∈ [0, 1], (3)

where k(x, t) > 0 is the thermal conductivity, q(x, t) ≥ 0 is the perfusion coefficient, T (x, t)

represents the temperature, S(x, t) is the source term, q1(t) and q2(t) are heat fluxes and T0(x) is

the initial temperature. For simplicity, the heat capacity has been assumed constant and taken to

be equal to unity. Dirichlet, mixed or Robin boundary conditions can be prescribed instead of the

Neumann heat flux boundary conditions (2).

The perfusion coefficient q incorporates information about the blood perfusion rate and plays

an important role in the temperature regulatory system of the human body, [1, 10]. Note also that

equation (1) occurs in other applications such as those related to diffusion optical tomography,

[11].

The direct problem is concerned with the determination of the temperature field T (x, t) in the

region [0, 1] × [0, tf ] by solving (1)–(3) when the coefficients k(x, t) and q(x, t) are known. The

inverse problem, on the other hand, is concerned with the determination of the unknown perfusion

coefficient q(x, t) ≥ 0 from the knowledge of the temperature T (x, t).
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The identification of the perfusion coefficient, being constant or dependent on time or space

only, from limited measurements of the temperature, heat flux or energy has been investigated

in, e.g. [12, 13, 14], but in this study we investigate the more general case concerned with the

inversion of the mapping q(x, t) 7→ T (x, t). This inverse problem has previously been investigated

in [10] using stabilisations of the partial derivatives present in the explicit formula, see (1),

q(x, t) =
∂k
∂x (x, t)

∂T
∂x (x, t) + k(x, t)∂

2T
∂x2 (x, t)− ∂T

∂t (x, t) + S(x, t)

T (x, t)
, (x, t) ∈ (0, 1)× (0, tf ). (4)

One can also mention the time semi-discrete scheme of [15], through which the problem is trans-

formed into a sequence of inverse problems with solely space-dependent unknown coefficients, and

the first-order Tikhonov regularization method of [16]. We mention that no numerical tests have

been attempted in these works, [15, 16].

From (4), one can observe that q(x, t) is identifiable if and only if the set {(x, t) ∈ (0, 1) ×
(0, tf );T (x, t) = 0} has zero measure. In this study, we avoid the use of the unstable formula (4) by

reformulating the inverse problem as a least-squares minimization which is then solved numerically

using the regularizing CGM, where the stablisation is achieved by stopping the iterations according

to the discrepancy principle. This is the main novelty and contribution of our paper.

Let T (x, t; q) denote the solution of the direct problem, that is, the temperature corresponding

to a particular perfusion coefficient q(x, t). Let the temperature readings at the uniform space

locations xi =
i−1
I−1 be denoted by Y (xi, t; q) ≡ Yi(t) for i = 1, I. We note that the measured data

may contain noisy errors. The solution of the inverse problem is to be obtained in such a way that

the following least-squares functional is minimized:

J [q] =
1

2

I
∑

i=1

||T (xi, t; q)− Yi(t)||2L2[0,tf ]
=

1

2

∫ tf

0

I
∑

i=1

[T (xi, t; q)− Yi(t)]
2
dt. (5)

The minimization of (5) is performed using the CGM, as described in the next section.

3. The conjugate gradient method (CGM)

The CGM is an iterative method formed of three problems, [17], namely: the direct problem,

the sensitivity problem which will be described in Subsection 3.1 and the adjoint problem which

will be described in Subsection 3.2.

3.1. The sensitivity problem

The sensitivity problem is obtained from the direct problem using the following approach. Let

us suppose that the temperature distribution T (x, t) is perturbed by ε∆T (x, t) when the perfusion

coefficient q(x, t) is perturbed by ε∆q(x, t), where ε > 0 is a small number. Subtracting the

two corresponding direct problems, dividing with ε, and letting ε ց 0, we obtain the sensitivity

problem given by

∂(∆T )

∂t
(x, t) =

∂

∂x

(

k(x, t)
∂(∆T )

∂x
(x, t)

)

− q(x, t)∆T (x, t)− T (x, t)∆q(x, t),

(x, t) ∈ (0, 1)× (0, tf ), (6)
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−k(0, t)
∂(∆T )

∂x
(0, t) = 0, k(1, t)

∂(∆T )

∂x
(1, t) = 0, t ∈ (0, tf ), (7)

∆T (x, 0) = 0, x ∈ [0, 1]. (8)

3.2. The adjoint problem

We can write the minimization of the functional J [q] as a constrained optimization problem,

since the estimated temperature T (x, t; q(x, t)) must satisfy the direct problem. In order to solve

this constrained optimization problem, we use the Lagrange multiplier method. This yields the

following extended objective functional:

J [q] =
1

2

∫ tf

0

I
∑

i=1

[T (xi, t; q)− Yi(t)]
2
dt

+

∫ tf

0

∫ 1

0

λ(x, t)

{

∂

∂x

[

k(x, t)
∂T

∂x
(x, t)

]

− q(x, t)T (x, t) + S(x, t)− ∂T

∂t
(x, t)

}

dxdt, (9)

where λ(x, t) is a Lagrange multiplier. Note that we can use the Dirac delta function δ to rewrite

(9) as

J [q] =
1

2

∫ tf

0

(

[T (x1, t; q)− Y1(t)]
2
+ [T (xI , t; q)− YI(t)]

2
)

dt

+
1

2

∫ tf

0

∫ 1

0

I−1
∑

i=2

[T (xi, t; q)− Yi(t)]
2
δ(x− xi)dxdt

+

∫ tf

0

∫ 1

0

λ(x, t)

{

∂

∂x

[

k(x, t)
∂T

∂x
(x, t)

]

− q(x, t)T (x, t) + S(x, t)− ∂T

∂t
(x, t)

}

dxdt. (10)

Then, we can define the directional derivative of J [q] in the direction of the perturbation in q as

∆J [q] = lim
εց0

J [qε]− J [q]

ε
, (11)

where

J [qε] =
1

2

∫ tf

0

(

[T + ε∆T − Y1]
2
+ [T + ε∆T − YI ]

2
)

dt

+
1

2

∫ tf

0

∫ 1

0

I−1
∑

i=2

[T + ε∆T − Yi]
2
δ(x− xi)dxdt

+

∫ tf

0

∫ 1

0

λ(x, t)

{

∂

∂x

[

k
∂(T + ε∆T )

∂x

]

− (q + ε∆q)(T + ε∆T ) + S − ∂(T + ε∆T )

∂t

}

dxdt.

Now expanding the term [T + ε∆T − Yi]
2
and neglecting the second-order terms of order ε2 in the

expression, we obtain

[T + ε∆T − Yi]
2 ≈ T 2 + Y 2

i − 2YiT + 2εT∆T − 2εYi∆T = (T − Yi)
2 + 2ε∆T (T − Yi)

and then

J [qε] =
1

2

∫ tf

0

([

(T − Y1)
2 + 2ε∆T (T − Y1)

]

+
[

(T − YI)
2 + 2ε∆T (T − YI)

])

dt

+
1

2

∫ tf

0

∫ 1

0

I−1
∑

i=2

[

(T − Yi)
2 + 2ε∆T (T − Yi)

]

δ(x− xi)dxdt

+

∫ tf

0

∫ 1

0

λ(x, t)

{

∂

∂x

[

k
∂(T + ε∆T )

∂x

]

− (q + ε∆q)(T + ε∆T ) + S − ∂(T + ε∆T )

∂t

}

dxdt.
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Now subtracting J [q] from J [qε], and neglecting the second-order terms of order ε2, we have

J [qε]− J [q] =

∫ tf

0

ε∆T [(T − Y1) + (T − YI)]dt+

∫ tf

0

∫ 1

0

I−1
∑

i=2

ε∆T (T − Yi)δ(x− xi)dxdt

+

∫ tf

0

∫ 1

0

λ(x, t)

{

∂

∂x

[

k
∂(ε∆T )

∂x

]

− εq∆T − εT∆q − ∂(ε∆T )

∂t

}

dxdt.

Using (11), we obtain

∆J [q] =

∫ tf

0

∆T [(T − Y1) + (T − YI)]dt+

∫ tf

0

∫ 1

0

I−1
∑

i=2

∆T (T − Yi)δ(x− xi)dxdt

+

∫ tf

0

∫ 1

0

λ(x, t)

{

∂

∂x

[

k
∂(∆T )

∂x

]

− q∆T − T∆q − ∂(∆T )

∂t

}

dxdt. (12)

Let us analyse each one of the integrals in (12). We have

I1 =

∫ tf

0

∫ 1

0

λ
∂

∂x

[

k
∂(∆T )

∂x

]

dxdt =

∫ tf

0

[

λk
∂(∆T )

∂x

∣

∣

∣

∣

1

0

−
∫ 1

0

k
∂(∆T )

∂x

∂λ

∂x
dx

]

dt

=

∫ tf

0

[

λk
∂(∆T )

∂x

∣

∣

∣

∣

1

0

− k∆T
∂λ

∂x

∣

∣

∣

∣

1

0

+

∫ 1

0

∆T
∂

∂x

[

k
∂λ

∂x

]

dx

]

dt

and

I2 =

∫ tf

0

∫ 1

0

λ
∂(∆T )

∂t
dxdt =

∫ 1

0

[

λ∆T |tf0 −
∫ tf

0

∆T
∂λ

∂t
dt

]

dx.

Substituting the integrals from I1 and I2 into (12), we obtain

∆J [q] =

∫ tf

0

∫ 1

0

∆T

{

I−1
∑

i=2

(T − Yi)δ(x− xi) +
∂

∂x

[

k
∂λ

∂x

]

− qλ+
∂λ

∂t

}

dxdt

+

∫ tf

0

∆T [(T − Y1) + (T − YI)]dt+

∫ tf

0

[

λk
∂(∆T )

∂x

∣

∣

∣

∣

1

0

− k∆T
∂λ

∂x

∣

∣

∣

∣

1

0

]

dt

−
∫ tf

0

∫ 1

0

λT∆q dxdt−
∫ 1

0

λ∆T |tf0 dx. (13)

Using (7) and (8), the vanishing of the integrands containing ∆T in (13) leads to the following

adjoint problem for the determination of the Lagrange multiplier λ(x, t):

∂λ

∂t
(x, t) = − ∂

∂x

[

k(x, t)
∂λ

∂x
(x, t)

]

+ q(x, t)λ(x, t)−
I−1
∑

i=2

(T (xi, t; q)− Yi(t))δ(x− xi),

(x, t) ∈ (0, 1)× (0, tf ), (14)

−k(0, t)
∂λ

∂x
(0, t) = T (0, t; q)− Y1(t), k(1, t)

∂λ

∂x
(1, t) = T (1, t; q)− YI(t), t ∈ (0, tf ), (15)

λ(x, tf ) = 0, x ∈ [0, 1]. (16)

The following term remains in (13)

∆J [q] = −
∫ tf

0

∫ 1

0

λ(x, t)T (x, t)∆q(x, t)dxdt, (17)
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and we know that

∆J [q] =

∫ tf

0

∫ 1

0

J ′[q]∆q(x, t)dxdt. (18)

Thus, by (17) and (18) we find that the gradient of the functional J [q] is

J ′[q] = −λ(x, t)T (x, t). (19)

3.3. Iteration procedure

The following iterative process based on the CGM is now used for the estimation of q(x, t) by

minimizing the objective functional J [q]:

qn+1(x, t) = qn(x, t)− βnPn(x, t), n = 0, 1, 2, · · · , (20)

where the superscript n denotes the iteration number, q0 is an initial guess, βn is the step search

size and Pn is the direction of descent given by

P 0(x, t) = J ′[q0(x, t)], Pn(x, t) = J ′[qn(x, t)] + γnPn−1(x, t), n = 1, 2, · · · . (21)

Different expressions are available for the conjugate coefficient γn. The Polak–Ribiere expression

[6, 18] is given by

γ0 = 0, γn =

∫ tf
0

∫ 1

0
J ′[qn(x, t)]

{

J ′[qn(x, t)]− J ′[qn−1(x, t)]
}

dxdt
∫ tf
0

∫ 1

0
{J ′[qn−1(x, t)]}2 dxdt

, n = 1, 2, · · · , (22)

while the Fletcher–Reeves [6, 18, 19] expression is given by

γ0 = 0, γn =

∫ tf
0

∫ 1

0
{J ′[qn(x, t)]}2dxdt

∫ tf
0

∫ 1

0
{J ′[qn−1(x, t)]}2dxdt

, n = 1, 2, · · · . (23)

The search step size βn is found from the condition

βn = min
β

J(qn − βPn). (24)

Let us set ∆qn = Pn, and by using the definition of the functional J [q] in (5) and linearising

T (xi, t; q
n − βPn) ≈ T (xi, t; q

n) − β∆Tn
i , where the sensitivity function ∆Tn

i (t) = ∆T (xi, t;P
n)

is obtained by solving the sensitivity problem (6)–(8) with ∆qn = Pn, see [20], we have

J(qn − βPn) =
1

2

∫ tf

0

I
∑

i=1

[T (xi, t; q
n − βPn)− Yi(t)]

2
dt

=
1

2

∫ tf

0

I
∑

i=1

[T (xi, t; q
n)− β∆Tn

i − Yi(t)]
2
dt.

Then, we calculate the derivative of J(qn − βPn) with respect to β and obtain

∂J

∂β
= −

∫ tf

0

I
∑

i=1

[T (xi, t; q
n)− β∆Tn

i − Yi(t)]∆Tn
i dt.

Next, we set ∂J
∂β = 0 and obtain the search step size βn as follows:

βn =

∫ tf
0

∑I
i=1 [T (xi, t; q

n)− Yi(t)]∆Tn
i dt

∫ tf
0

∑I
i=1(∆Tn

i )
2dt

. (25)
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3.4. The stopping criterion

The iterative procedure given by equation (20) does not provide the CGM with the stabiliza-

tion necessary for the minimization of the objective functional (5) to be classified as well-posed

because of the errors in the measured temperature. However, the CGM may become well-posed

if the discrepancy principle is used to stop the iterative procedure. In this criterion, the iterative

procedure is stopped when

J [qn] ≈ 1

2
µ2, (26)

where

µ =

√

√

√

√

∫ tf

0

I
∑

i=1

[Yi(t)− Y exact
i (t)]

2
dt, (27)

represents the amount of noise in the measured temperature.

3.5. Algorithm

The steps of the CGM algorithm are as follows:

1 Choose an initial guess q0(x, t) and set n = 0.

2 Solve the direct problem to obtain T (xi, t; q
n), and compute J [qn] by equation (5).

3 Solve the adjoint problem (14)–(16) to compute the Lagrange multiplier λ(x, t; qn), and the

gradient J ′[qn] from the equation (19). Compute the conjugate coefficient γn from (23), and

the direction of descent Pn from (21).

4 Solve the sensitivity problem (6)–(8) to obtain the sensitivity function ∆T (xi, t; q
n) by taking

∆qn = Pn, and compute the search step size βn from (25).

5 Compute qn+1(x, t) from (20).

6 The stopping condition (26) is:

If J [qn] ≈ 1
2µ

2 go to step 7.

Else set n = n+ 1 and go to step 2.

7 End.

4. Numerical results and discussion

In this section we perform numerical experiments based on the CGM described in the previous

section. First, we set n = 0 and choose an arbitrary initial guess q0(x, t).

For numerical discretisation, we construct a rectangular network of mesh size ∆x over the

region and consider the time step of size ∆t,

xi = (i− 1)∆x, i = 1, I, ∆x =
1

I − 1
, (28)

tl = (l − 1)∆t, l = 1, L, ∆t =
tf

L− 1
. (29)

7



We approximate

∂

∂x

(

k
∂T

∂x

)∣

∣

∣

∣

i,l

≃
kli+1/2

(

T l
i+1−T l

i

∆x

)

− kli−1/2

(

T l
i−T l

i−1

∆x

)

∆x

=
kli+1/2

(∆x)2
T l
i+1 −

kli+1/2 + kli−1/2

(∆x)2
T l
i +

kli−1/2

(∆x)2
T l
i−1, (30)

and employ the Crank-Nicolson finite-difference method (FDM), [21], to discretise the partial

differential bio-heat equation (1) as

T l+1
i − T l

i

∆t
=
1

2

{

kl+1
i+1/2

(∆x)2
T l+1
i+1 −

kl+1
i+1/2 + kl+1

i−1/2

(∆x)2
T l+1
i +

kl+1
i−1/2

(∆x)2
T l+1
i−1 − ql+1

i T l+1
i + Sl+1

i

+
kli+1/2

(∆x)2
T l
i+1 −

kli+1/2 + kli−1/2

(∆x)2
T l
i +

kli−1/2

(∆x)2
T l
i−1 − qliT

l
i + Sl

i

}

. (31)

This leads to

−αl+1
i−1/2T

l+1
i−1 + (2 + αl+1

i−1/2 + αl+1
i+1/2 + ql+1

i ∆t)T l+1
i − αl+1

i+1/2T
l+1
i+1

= αl
i−1/2T

l
i−1 + (2− αl

i−1/2 − αl
i+1/2 − qli∆t)T l

i + αl
i+1/2T

l
i+1 +∆t(Sl

i + Sl+1
i ), (32)

where α(x, t) = k(x, t)∆t/(∆x)2 and αl
i±1/2 = (αl

i + αl
i±1)/2.

Thus, the above formulation can be written as:

AT l+1 = f l, l = 1, L− 1, (33)

where A = (aij)I×I is a tridiagonal matrix,

ai,i = 2 + αl+1
i− 1

2

+ αl+1
i+ 1

2

+ ql+1
i ∆t, i = 1, I,

ai,i−1 = −αl+1
i− 1

2

, ai,i+1 = −αl+1
i+ 1

2

, i = 2, I − 1,

a1,2 = −(αl+1
1
2

+ αl+1
3
2

), aI,I−1 = −(αl+1
I− 1

2

+ αl+1
I+ 1

2

),

T l+1 =
[

T l+1
1 , T l+1

2 , · · · , T l+1
I

]T
, T 1 is determined by T0(x), f

l =
[

f l
1, f

l
2, · · · , f l

I

]T
, and

f l
1 = 2αl+1

1/2 (q
l+1
1 /kl+1

1 )∆x+ αl
1/2T

l
0 + (2− αl

1/2 − αl
3/2 − ql1∆t)T l

1 + αl
3/2T

l
2 +∆t(Sl

1 + Sl+1
1 ),

f l
i = αl

i−1/2T
l
i−1 + (2− αl

i−1/2 − αl
i+1/2 − qli∆t)T l

i + αl
i+1/2T

l
i+1 +∆t(Sl

i + Sl+1
i ),

i = 2, I − 1,

f l
I = αl

I−1/2T
l
I−1 + (2− αl

I−1/2 − αl
I+1/2 − qlI∆t)T l

I + αl
I+1/2T

l
I+1 + 2αl+1

I+1/2(q
l+1
2 /kl+1

I )∆x

+∆t(Sl
I + Sl+1

I ),

where T l
0 = T l

2 + 2(ql1/k
l
1)∆x and T l

I+1 = T l
I−1 + 2(ql2/k

l
I)∆x by using the Neumann boundary

conditions (2).

We can use the above FDM to solve the direct, sensitivity and adjoint problems. Note that in

the adjoint problem, the equation (14) contains the Dirac delta function which can be approximated

by

δ(x− xi) ≈
1

a
√
π
e−(x−xi)

2/a2

, i = 1, I, (34)

8



where a is a small positive constant. The trapezoidal rule is used to approximate all the integrations

involved, e.g. for the objective functional (5), we have

J [q] =
1

2

I
∑

i=1

||T (xi, t; q)− Yi(t)||2L2[0,tf ]

≈ ∆t

4

I
∑

i=1

{

(T (xi, t1; q)− Yi,1)
2 + 2

L−1
∑

l=2

(T (xi, tl; q)− Yi,l)
2 + (T (xi, tL; q)− Yi,L)

2

}

, (35)

where Yi,l = Yi(tl). Note also that T (xi, t1; q) = Yi,1 = T0(xi) for i = 1, I, is given from (3).

We define the error functional at the iteration number n for the perfusion coefficient q(x, t) as

E(qn) =

√

√

√

√

1

IL

L
∑

i=1

I
∑

i=1

(qni,l − qexacti,l )2. (36)

The measurements Y containing random errors are simulated by adding to Y exact an error term

generated from a normal distribution by MATLAB in the form:

Y = Y exact + random(′Normal′, 0, σ, I, L), (37)

where σ = p
100 max0≤x≤1,0≤t≤tf |T (x, t)| is the standard deviation and p% is the percentage of

noise.

Note that from (16) and (19), J ′(x, tf ) always equals zero. Therefore, if the final time values

of q(x, tf ) cannot be predicted before the inverse calculation, the estimated values of q(x, t) will

deviate from the exact values near the final time, [20]. Generally speaking, there are two methods

to avoid it, one is to use the modified CGM, [22], and the other one is to record data a little longer

than the actual period of interest. In this paper, we use the second method and take t′f = 1.2 as

the longer time than the actual final time tf = 1.

In the following, we present the numerical results obtained with a FDM mesh size of ∆x =

∆t = 0.01.

4.1. Example 1

We take the input data as

q1(t) = e−t(2t+ 4), q2(t) = −e−(t+1)(2t+ 3), (38)

k(x, t) = 1, T0(x) = e−x(x2 + 4), S(x, t) = 0, (39)

T (x, t) = Y exact(x, t) = e−(x+t)(2t+ x2 + 4). (40)

The analytical solution of the inverse problem is given by

q(x, t) = 2− 4x

2t+ x2 + 4
. (41)

We take the initial guess q0(x, t) = 1.
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Figure 1: (a) The objective functional J(qn) and (b) the error E(qn) for p ∈ {0, 1, 2}, for Example 1.
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Figure 2: (a) The exact and estimated perfusion coefficient q(x, t) for (b) p = 0, (c) p = 1, and (d) and p = 2, for
Example 1.

Figure 1(a) shows the monotonic decreasing convergence of the objective functional (5) that

is minimized, as a function of the number of iterations n, for various amounts of noise p = 0

10



(no noise) and p% ∈ {1, 2}% noisy data (37). For noisy data, the intersection of horizontal lines

y = 1
2µ

2(p), where µ(p) is given by (27), with the graphs of J [qn] yields the stopping iteration

numbers nd(p) ∈ {10, 8} for p ∈ {1, 2}, respectively, according to the discrepancy principle (26).

These values can then be compared with the optimal ones of nopt(p) ∈ {10, 7} for p ∈ {1, 2},
respectively, obtained by plotting the error curves E(qn) = ‖qn − q‖L2(0,1), as functions of the

number of iterations n, in Figure 1(b). The comparison shows that nd and nopt are close to each

other. Of course, in practice only the values of nd can be calculated according to the discrepancy

principle (26).

The numerical results are illustrated in Figure 2. In the case of no noise in Figure 2(b), the

results are plotted after 50 iterations, whilst for noisy data the results are plotted after nd(p)

iterations. First, from Figure 2(b) it can be seen that in the case of no noise, the retrieved solution

is in very good agreement with the exact solution in Figure 2(a). Second, from Figures 2(c) and

2(d) it can be seen that in the case of noisy data, the retrieved solution is reasonably stable and

it becomes more accurate as the amount of noise p decreases.

We finally note that Example 1 has also been considered in [10] using the nonlinear Tikhonov

regularization, as well as a local approach based on regularizing the numerical differentiation (once

in time and twice in space) of the noisy measured temperature (37). On comparing the results of

[10] with the CGM results in Figure 2 it is reported that both methods yield accurate results for

exact data, i.e. p = 0, but the latter one is more stable when inverting noisy data.

4.2. Example 2

We take the input data as

q1(t) =− 2π + 1

12
e−t(1 + t), q2(t) =

2 + t

12
e−t, (42)

k(x, t) =
1 + x+ t

12
, T0(x) = sin(πx) + (π + 1)x+ 1, (43)

S(x, t) =− e−t(sin(πx) + (π + 1)x+ 1)− e−t

12
(π cos(πx) + π + 1)

+
π2

12
(1 + x+ t)e−t sin(πx) + (1 + x+ t)e−t(sin(πx) + (π + 1)x+ 1). (44)

T (x, t) = Y exact(x, t) = e−t(sin(πx) + (π + 1)x+ 1). (45)

In contrast to the previous example corresponding to a homogeneous tissue with constant ther-

mal conductivity, this example characterises a heterogeneous tissue with the thermal conductivity

k(x, t) = (1 + x+ t)/12 depending on both space and time.

The analytical solution of the inverse problem is given by

q(x, t) = 1 + x+ t. (46)

We take the initial guess q0(x, t) = 1.
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Figure 3: (a) The objective functional J(qn) and (b) the error E(qn) for p ∈ {0, 1, 2}, for Example 2.
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Figure 4: (a) The exact and estimated perfusion coefficient q(x, t) with (b) p = 0, (c) p = 1, and (d) p = 2, for
Example 2.

Figure 3(a) shows the monotonic decreasing convergence of the objective functional (5), as

a function of the number of iterations n, for various amounts of noise p = 0 (no noise) and

p% ∈ {1, 2}% noisy data (37). For noisy data, the intersection of horizontal lines y = 1
2µ

2(p),
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with the graphs of J [qn] yields the stopping iteration numbers nd(p) ∈ {17, 12} for p ∈ {1, 2},
respectively, according to the discrepancy principle (26). These values can then be compared with

the optimal ones of nopt(p) ∈ {13, 11} for p ∈ {1, 2}, respectively, obtained by plotting the error

curves E(qn) = ‖qn−q‖L2(0,1), as functions of the number of iterations n, in Figure 3(b). Although

for p > 0, nd and nopt are not as close to each other as in Example 1, Figure 3(b) illustrates that the

valley of minima of the error E(qn) is rather flat over some range of iterations before it diverges.

The numerical results for the perfusion coefficient are illustrated in Figure 4. In the case of no

noise in Figure 4(b), the results are plotted after 100 iterations, whilst for noisy data the results are

plotted after nd(p) iterations. First, from Figure 4(b) it can be seen that in the case of no noise,

the retrieved solution is in very good agreement with the exact solution in Figure 4(a). Second,

from Figures 4(c) and 4(d) it can be seen that in the case of noisy data, the retrieved solution is

reasonably stable and it becomes more accurate as the amount of noise p decreases.

4.3. Example 3

We take the input data as

q1(t) = −3

4
, q2(t) = 0, k(x, t) = 1, S(x, t) = 0, (47)

T0(x) = 5 +











(x− 1
2 )

3, 0 ≤ x ≤ 1
2

0, 1
2 ≤ x ≤ 1

, (48)

T (x, t) = Y exact(x, t) = 5− 4t+











(x− 1
2 )

3, 0 ≤ x ≤ 1
2

0, 1
2 ≤ x ≤ 1

. (49)

The analytical solution of the inverse problem is given by

q(x, t) =











6x+1
5−4t+(x− 1

2
)3
, 0 ≤ x ≤ 1

2

4
5−4t ,

1
2 ≤ x ≤ 1

. (50)

The example has also been considered in [10] and it consists of retrieving non-smooth but contin-

uous perfusion coefficient (50).

We take the initial guess q0(x, t) = 2.

Figure 5(a) shows the monotonic decreasing convergence of the objective functional (5), as

a function of the number of iterations n, for various amounts of noise p = 0 (no noise) and

p% ∈ {1, 2}% noisy data (37). For noisy data, the intersection of horizontal lines y = 1
2µ

2(p),

with the graphs of J [qn] yields the stopping iteration numbers nd(p) ∈ {40, 24} for p ∈ {1, 2},
respectively, according to the discrepancy principle (26). These values can then be compared with

the optimal ones of nopt(p) ∈ {34, 21} for p ∈ {1, 2}, respectively, obtained by plotting the error

curves E(qn) = ‖qn − q‖L2(0,1), as functions of the number of iterations n, in Figure 5(b). The

comparison shows that nd and nopt are close to each other.

The numerical results are illustrated in Figure 6 and the same conclusions as those obtained

for Example 2 can be reported.
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Figure 5: (a) the objective functional J [qn] and (b) the error E[qn] for p ∈ {0, 1, 2}, for Example 3.
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Figure 6: (a) The exact and estimated perfusion coefficient q(x, t) with (b) p = 0, (c) p = 1, and (d) p = 2, for
Example 3.

4.4. Example 4

Finally, we consider reconstructing a more physical example represented by a discontinuous

perfusion, as it is well-known that the blood perfusion has a different value for healthy tissue than

14



for a tumour, [3]. We take the input data as

q1(t) = 1, q2(t) = 0, k(x, t) = 1, S(x, t) = 0, (51)

T0(x) = 2 +











(x− 1
2 )

2, 0 ≤ x ≤ 1
2

0, 1
2 < x ≤ 1

, (52)

T (x, t) = Y exact(x, t) = 2− t+











(x− 1
2 )

2, 0 ≤ x ≤ 1
2

0, 1
2 < x ≤ 1

. (53)

Then the analytical solution of the inverse problem is given by

q(x, t) =











3
2−t+(x− 1

2
)2
, 0 ≤ x ≤ 1

2

1
2−t ,

1
2 < x ≤ 1

. (54)

Remark that, unlike the previous examples, q(x, t) is discontinuous on the line x = 1/2, t ∈ [0, 1],

hence the example (54) is more severe.

We take the initial guess q0(x, t) = 0.5.
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Figure 7: (a) The objective functional J(qn) and (b) the error E(qn) for p ∈ {0, 1, 2}, for Example 4.

Figure 7(a) shows the monotonic decreasing convergence of the objective functional (5), as

a function of the number of iterations n, for various amounts of noise p = 0 (no noise) and

p% ∈ {1, 2}% noisy data (37). For noisy data, the intersection of horizontal lines y = 1
2µ

2(p),

with the graphs of J [qn] yields the stopping iteration numbers nd(p) ∈ {36, 22} for p ∈ {1, 2},
respectively, according to the discrepancy principle (26). These values can then be compared with

the optimal ones of nopt(p) ∈ {42, 26} for p ∈ {1, 2}, respectively, obtained by plotting the error

curves E(qn) = ‖qn − q‖L2(0,1), as functions of the number of iterations n, in Figure 7(b). The

comparison shows that nd and nopt are close to each other.
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Figure 8: (a) The exact and estimated perfusion coefficient q(x, t) with (b) p = 0, (c) p = 1, and (d) p = 2, for
Example 4.
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Figure 9: The exact and estimated perfusion coefficient q(x, t) for p ∈ {0, 1, 2} at (a) t = 0, (b) t = 0.3, (c) t = 0.5,
and (d) t = 1, for Example 4.

The numerical results are illustrated in Figures 8 and 9. In the case of no noise in Figure
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8(b), the results are plotted after 150 iterations, whilst for noisy data the results are plotted after

nd(p) iterations. First, from Figures 8(b) and 9 it can be seen that in the case of no noise, the

retrieved solution is in good agreement with the exact solution. From Figure 9, we can also find

that the retrieved solution with no noise is in good agreement with the exact solution for t ∈ [0, 1].

Of course, the numerical results for deviate from the exact solution near the point x = 0.5 for

t ∈ [0, 1], since from (54) the exact perfusion coefficient q(x, t) is discontinuous at x = 0.5. Second,

from Figures 8(c), 8(d) and 9 it can be seen that in the case of noisy data, the retrieved solution

is still reasonably stable and it becomes more accurate as the amount of noise p decreases.

5. Conclusions

In this paper, the determination of the space- and time-dependent perfusion coefficient from

temperature measurements has been investigated using the CGM. Regularization has been achieved

by stopping the iterations at the level at which the least-squares objective functional, minimizing

the gap between the computed and the measured temperature, becomes just below the noise

threshold with which the data is contaminated. Compared to the previous numerical methods

developed in [10], the present CGM is more efficient and stable when inverting noisy data. Future

work will consist in multi–dimensional reconstructions of the perfusion coefficient.
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