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1 Introduction 

Modelling driving behaviour represents a crucial task for many applications in transportation. Three main 

areas can particularly benefit from an enhanced knowledge of driving behaviour: accident analysis and 

prevention, microscopic simulation of traffic, and Intelligent Transportation Systems (ITS). Benefits for ITS 

are mainly expected in the field of Advanced Driver Assistance Systems (ADAS), where some 

assistance/control logics interact with drivers (and their behaviour) and where both drivers’ expectations, 

and impacts of the innovations on drivers’ behaviour have to be considered in order to improve: a) the 

effectiveness of the solutions; b) driving (and traffic) safety and c) acceptance of technological solutions. 

Modelling of driving behaviour is based on two fundamental requirements. On the one hand, theoretical 

frameworks and paradigms are needed. On the other, observation tools and data are required in order 

both to develop/validate theories and to identify modelling parameters for practical applications. If the 

research focus is on disaggregate driving behaviour rather than aggregate traffic behaviour, the best source 

of information is based on individual vehicle data (IVD), as typically obtained by instrumented vehicles (IVs). 

An IV can be described as a standard vehicle where the kinematics, the interaction with surrounding 

vehicles and the vehicle-driver interaction are recorded for subsequent analysis. The possibility of 

observing only the kinematics of IVs, as allowed by some camera-based microscopic roadside observation 

systems like in the NGSIM project (Alexiadis et al., 2004), can lead to a reduced understanding of driving 

behaviour. Indeed, the possibility of observing the kinematics of an IV is just a prerequisite and IVs are 

usually equipped with a large number of sensors. Multisensing approaches not only enhance the estimation 

of the ego-kinematics of the controlled vehicle (Bifulco et al., 2011), but also allow detection of the 

surrounding traffic conditions and direct monitoring of on-board interaction between the driver and the 

vehicle, generally via the controlled area network (CAN). The overall result is a more comprehensive 

observation and enhanced understanding of driving behaviour. 

Different aspects of driving behaviour can be analysed thanks to the data collected by means of IVs. At least 

two of these aspects are relevant to the field of ADAS: the longitudinal and lateral control of the vehicle. 

Lateral control involves manoeuvres such as lane keeping, lane changing and overtaking. In the case of 

longitudinal control, various conditions are often considered, such as free flow, approaching, car-following, 

emergency braking, and stop and go. Of these, the car-following process has probably been the most 

extensively studied. 

Car-following models estimate the kinematics of a following vehicle as a response to the stimuli of a leading 

one. These paradigms assume that the follower adapts his/her speed to the vehicle ahead. Though some 

models have been proposed with a look-ahead approach, that is, based on the influence of more than one 

vehicle in the leading platoon (see Hoogendoorn and Ossen, 2006, for an empirical analysis), most 

approaches assume that the phenomenon can be mainly explained in terms of the vehicle directly ahead. In 

practice, in these models, each update of the follower’s kinematics is obtained by considering its 

instantaneous position, and the speed and some kinematic variables of the leader. An exhaustive review of 

car-following models lies beyond the scope of this work and can be found in Saifuzzaman and Zheng (2014). 

According to this review, car-following paradigms can be classified, depending on their basic approach, in 

Engineering models and psycho-physical paradigms. This is a not new classification that Saifuzzaman and 

Zheng argument and develop, and that is perhaps the most widely accepted in the scientific literature. 

Engineering car-following models apply Newtonian laws of motion to approximate car-following behaviors. 

The most studied model in this stream is probably the stimulus-response model by Gazis et al. (1961), 
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developed at the General Motors labs in Detroit. Several other relevant approaches are the safety-distance 

model of Gipps (1981), or the desired measures model proposed by Treiber et al. (2000). Other approaches 

have emerged from the applications into the car-following behaviour studies of bio-inspired artificial 

intelligence concepts such as Artificial Neural Networks (Colombaroni and Fusco, 2014), fuzzy-logic (Kikuchi 

and Chakroborty, 1992) or cellular automata (Bham and Benekohal, 2004). 

Models based on psycho-physical paradigms have been developed from human-factors studies. They move 

from the assumption that Engineering models are unable to characterize the process of human thinking 

(and solving) associated to the driving problem. As well addressed also in Saifuzzaman and Zheng, even if 

several attempts to embed human behaviours into Engineering models have been carried out (recently 

Pariota et al., 2015 on-line publication), psycho-physical paradigms are characterised by quite peculiar (and 

convincing) fundamental assumptions on the human behaviour. As an example, drivers are assumed to 

adopt a satisficing performance evaluation strategy, rather than an optimal one (Boer, 1999), that means 

humans are often incapable of identifying and implementing optimal control strategy (Zgonnikov and 

Lubashevsky, 2014); moreover, are they can be observed to do not apply a continuous control (Wagner, 

2011). 

All the previous does not prevent from arguing that the stimulus-response and/or the fuzzy-set (or some 

other) approaches can also be considered to have a psycho-physical nature and both pros and cons can be 

debated on this point. However, this is mainly a definitional point, which arises from the attempt to give an 

ordered classification of the proposed models. Moreover, it should be clearly stated that cases could exist 

whose basic assumptions can blur. For example it could be proved that stimulus reaction model by 

Michaels (1963) that will be presented later (as a psycho-physical paradigm) is equivalent to the 

formulation of GHR model with sensitivity proportional to the inverse square of spacing, which leads to the 

Greenshields model in a stationary traffic state (Saifuzzaman and Zheng, 2014). 

Within psycho-physical models, the action point (AP) approach seeks to describe the behaviour of a 

follower with respect to several thresholds, applied to the perception of different influencing stimuli 

coming from the leader. The AP paradigm has also been applied to microscopic traffic modelling (e.g. 

VISSIM), inspiring several researchers (Hoogendoorn et al., 2011). Recently, Bifulco et al. (2013) took a step 

forward in exploiting AP theory in the field of ADAS with the introduction of the car-following waves 

concept. 

The most widely used formulation of AP theory was proposed by Wiedemann (1974), even if earlier (and 

simpler) approaches were proposed by Barbosa (1961) and Todosoiev (1963). The latter models are 

introduced in section 2, where Wiedemann’s theory is shown to be more general but more complex, as it 

requires identification of two further AP thresholds. Some experimental evidence is analysed in order to 

investigate the proposed approaches under a new light and identify a good trade-off between their 

generality, robustness and simplicity. Section 3 presents the experimental campaign in which data were 

collected, carried out during the Italian DriveIN
2
 research project (Bifulco et al., 2012). Data are first of all 

analysed in terms of kinematically-identified APs (as in Brackstone et al., 2002), and then validated versus 

observed actual drivers’ actions. The discussion of the results allows some appropriate conclusions to be 

drawn, the most important being that that in the great part of the cases (at least among those observed in 

the DriveIN
2
 campaign) it is worth adopting a simpler approach. This results confirm, by using a different 

kind of analyses (actions on pedals) and a different dataset, the ones obtained in Bifulco et al. (2013), 

where only kinematic observations were adopted. Another main contribution of this paper is to propose to 

ascertain from candidate APs and actual ones. Moreover, the carried out analyses are based on a (much) 

more extended naturalistic (road) survey experiment with respect to Bifulco et al. (2013), as well as on the 



exploitation of additional data collected by means of two different kinds of driving simulators. It is also 

worth noting that the new framework proposed by this paper allows for analysing the time distribution of 

drivers’ actions, as well as to reciprocally confirm observations from road and virtual driving experiments. 

2 Action point paradigms 

In the early work by Michaels (1963), it is argued that the stimulus to which drivers respond is the angular 

velocity (d� / dt) at which the apparent size of the vehicle ahead changes, where the apparent size is 

defined as the visual angle (�) subtended by the observed leading vehicle. 

 

The angular velocity is proportional to both the current relative speed (��� � ��
� � ��

� , where ��
� and ��

�  

are the current speeds of the leader and of the follower) and the spacing (��� ), via equation 1 below: 
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The angular velocity should be non-negligible in order to stimulate the driver of the following vehicle and 

induce action. An example of the argued role of the angular velocity can be given with reference to the 

transition from a free-flow to an approaching condition. In free-flow the follower is actually approaching a 

(slower) leading vehicle from far away, but does not yet realize that he/she is in an approaching condition. 

Indeed, the following vehicle is at a distance greater than that at which any variation of the angular velocity 

can be detected; in other terms, according to equation 1, �x
t
 is so large that d� / dt proves negligible. As 

the distance progressively decreases, the angular velocity attains a non-negligible value which can be 

perceived by the driver, who starts adapting his/her cruising speed with respect to the leading vehicle 

(actual approaching phase). This point where the change of the visual angle starts to be perceived is 

identified in Michaels’ theory at a value of about � � ���� ��� ���� . According to Michaels’ theory, once 

this threshold is exceeded and the driver approaches the leader by decelerating, the angular speed slows 

down, the driver tends to close on the leading vehicle, and finally he/she tends to both a relative velocity 

close to zero and a separation that still allows steering control and the viewing/safety distance to be 

maintained. This is the steady-state condition where, should the drivers have perfect control over their 

vehicles, the leader-follower pairs proceed with constant headway and constant spacing (the relative speed 

being null). However, it is more likely that in this condition the drivers are unable to fully control the 

acceleration/deceleration of their vehicle, due to the excessively fine adjustments required. Thus the 

dynamics of the vehicle is governed by small values of acceleration and deceleration, as in Montroll's 

acceleration-noise concept (Montroll, 1959): the relative speed oscillates around the null value and the 

spacing around the desired value. These small fluctuations come from the acceleration/deceleration 

applied by the driver as a response to the stimuli perceived once two significant values (thresholds, of 

opposite sign) of the angular velocity are reached. According to equation 1, when the relative speed and 

the spacing are such that the angular velocity is not perceived (below the threshold, in absolute value) 

drivers retain their current behaviour. Rather, they accelerate if the angular velocity reaches the negative 

threshold and decelerate when the angular velocity reaches the positive threshold. The modelling 

framework assumes that the acceleration is kept constant from one threshold to the other. 
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Other research has been carried out to identify conditions and thresholds that determine drivers’ actions in 

car-following. Mention should be made of the investigations carried out by Barbosa (1961) and Todosoiev 

(1963) through the use of driving simulators, employed at their very early technological stage. Barbosa 

started to study car-following behaviour by means of so-called phase plane trajectories. Given a dynamic 

system, a phase plane is a Cartesian plane in which states (or phases) of the physical system are mapped; in 

common use, a characteristic state of the system is plotted together with its time-first-derivative. Barbosa 

having chosen spacing as the characteristic state, the phase trajectory (or phase portrait) was identified by 

spacing (x axis) and relative speed (y-axis). The phase portrait resulting from observed car-following data 

gives rise to the well-known car-following spirals used extensively by analysts. Barbosa interpreted the 

trajectories as very close to being parabolic (as depicted in Figure 1 below, left). This paradigm is consistent 

with Michaels’ theory, as it implies that the second derivative of the spacing is piecewise constant with 

respect to the relative speed. It coincides, assuming constant acceleration of the leading vehicle, with the 

opposite of the follower’s acceleration; hence the follower’s acceleration is (piecewise) constant. According 

to this paradigm, Barbosa proposed the decision-point model, defining the points where the driver makes 

decisions to accelerate/decelerate at a constant acceleration/deceleration rate. The overall result of 

Barbosa’s approach is a trajectory that oscillates around the equilibrium points (null relative speed and 

desired spacing, according to Michaels). 

Place Figure 1 about here 

 

These studies inspired Todosoiev (1963), who analysed the car-following process in the relative 

acceleration vs. relative speed plane, which he defined, consistently with Barbosa, as the second-order 

phase plane. As already stated, parabolic trajectories obtained with the model proposed by Barbosa 

correspond to rectangular trajectories in the second-order phase plane. It is worth noting that the 

trajectories abruptly change sign (from constant deceleration to constant acceleration and vice versa, with 

infinite jerk). These discontinuity points are evident in Figure 1 (right); Todosoiev was the first analyst who 

called them action points (APs) and the associated model the Action-Point Model. 

After the analyses by Todosoiev, Wiedemann (1974) established his own (well-known) action-point 

paradigm. The theory by Wiedemann is more articulated (and complex). He introduced a formalism able to 

distinguish between different longitudinal driving conditions: a vehicle not influenced by any front vehicle; 

consciously influenced because the driver perceives a slower vehicle ahead; unconsciously influenced by 

the vehicle ahead and in steady-state car-following (close-following) conditions; in emergency situations. 

Wiedemann developed the framework for dealing with the transition between these different conditions 

on the basis of appropriate thresholds. In practice, in Weidemann’s scheme, as shown in Figure 2 below, 

the follower drives uninfluenced until the SDV threshold is reached; then the driver consciously starts to 

decelerate because of the perceived slower vehicle. According to Michaels’ scheme, he/she tries to 

maintain a certain headway and a null relative speed, but, unconsciously, he/she oscillates between the 

four thresholds, namely CLDV, ABX, OPDV and SDX, that define the close-following condition in terms of 

spacing and relative speed. In this condition each time a stimulus is perceived, the driver applies a constant 

value of acceleration, and holds this value until a new stimulus is perceived. The absolute value of the 

acceleration applied was parameterized by Wiedemann with a parameter called bnull, which has the 

magnitude of Montroll’s Noise (Montroll, 1959), while the sign of the acceleration is negative or positive 

consistent with closing or opening intentions. The driver behaves in this way indefinitely unless an external 

change (e.g. emergency braking or sudden acceleration of the leader) occurs. 

 



Place Figure 2 about here 

 

Wiedemann’s theory is summarised in Table I, where the expected kinematics and actions at each AP are 

made explicit. Importantly, the paradigm can still be interpreted with the help of equation 1 which 

identifies the angular velocity. It is evident that the (four) Wiedemann thresholds include those (two) of 

Barbosa and Todosoiev, where we can assume that only OPDV and CLDV points are considered since, 

according to Table I below, only changes from deceleration to acceleration are taken into account (also 

compare Figure 2 and Figure 1-left, after considering the Cartesian axes are rotated). 

 

Place Table I about here 

 

Importantly, the same multi-regime approach argued by Wiedemann can be found in other versions of the 

AP paradigm. Amongst others, it is worth citing Fritzsche (1994) who used different thresholds (with 

different formulations for them) to describe the longitudinal driving behaviour as a combination of 

behaviours performed in different regions. Again, a bnull value of acceleration is used, equal to 0.2 m/s
2
, to 

model the inadequacy of the driver to fully control the vehicle. Another model was proposed by Fancher 

and Bareket (1998); it is action-point-like, but assumes the perception thresholds for relative speed as 

evaluable by using the looming effect theory. From this study some information about the first threshold 

described in the Michaels model was obtained. Indeed, also using results from Hoffmann and Mortimer 

(1996), they evaluated a perception limit for 
	

	�

 of about  � ���! ��� ����  (5 times bigger than those 

given in Michaels). 

It is generally difficult to prove or refuse the validity of all different proposed Action-Point models, since 

experiments related to the calibration of the thresholds are difficult to carry out. Nevertheless, the 

hypotheses all these paradigms are built upon seem realistic. The aim of this paper with respect to the 

current state of the art is to clarify the role played by the thresholds for either relative speed or spacing. 

We seek to ascertain the actual need of more simple or complex approaches towards AP theory. Using 

experimental evidence we support the choice between Wiedemann’s approach and the more simplified 

approaches adopted by Barbosa and Todosoiev, paving the way for more effective calibration of the 

required thresholds. 

3 Testing Action Point paradigms 

3.1 Collection of experimental data 

Our tests were carried out on data collected in the framework of the DriveIN
2
 research project (Bifulco et 

al., 2012). The project involves eight partners (including Fiat Chrysler Automobiles, the major Italian car-

maker) and focuses on defining methodologies, technologies and solutions aimed at capturing driving 

behaviors using different experimental environments.  

For this project an extensive experimental campaign started in September 2012 has been adopted. The 

campaign comprises 100 driving experiment. An initial pool of 150 participants took part in the study, 

having responded to advertisements requesting volunteers for a study on driving behaviour. A sample of 



100 participants was drawn from this pool to match the population of Italian drivers with respect to gender, 

age and educational level. 

Each driving experiment consisted of (at least) two driving sessions, one on the road and one in a static 

driving simulator (S-DS) environment; 22 (randomly selected) drivers also drove a dynamic driving simulator 

(D-DS). Both on the road and in the virtual environments the drivers drove across the same driving 

scenario. It comprised a single loop on three roads near Naples: (1) National Highway A1 (14 km), consisting 

of a dual carriageway and three lanes of traffic in each direction, a design speed interval of 80-120km/h 

(speed limit 100 km/h); (2) National Highway A30 (30 km), with characteristics similar to National Highway 

A1, but with a posted speed limit of 130 km/h; (3) Rural Roadway SS 268 “del Vesuvio” (16 km), with a 

single carriageway with one lane in each direction, at-grade intersections and a design speed interval of 60-

80 km/h. The three sections were preceded by a 10 km acclimatization section and followed by an 8 km 

urban path to close the loop. In all, the loop was 78 km long. Each driving session lasted about 1 hour. At 

driving simulator the driving session was inclusive of an additional 10-min short practice, that was carried 

out to become familiar with the simulator. The experimental campaign lasted two months and was carried 

out in daily experimental sessions, each consisting of a few (up to 5) driving sessions. 

The on-road driving sessions were carried out by means of the instrumented vehicle (IV) owned by the 

University of Naples. It is equipped with systems (inertial measurement sensors, GPS, sensors on pedals 

and steering wheel, connection to the on-board CAN, forward and backward radars, and video cameras) 

designed to monitor the driver’s actions, the resulting vehicle kinematics and the surrounding vehicles. 

The S-DS consists of a single-seat cockpit, with all the driver controls. A real-time anti-aliased 3-D graphical 

scene of the virtual world is visualized on three surrounding 23" monitors at a total resolution of 5040 x 

1050 pixels. The total horizontal and vertical fields of view are 100° and 20°, respectively. The frame rate is 

constant and fixed at 60Hz. The driving experience provided by the static simulator is enhanced by a 

surround sound system that simulated the various sound sources (e.g. engine, wind, tyres, etc.). Although 

the simulator is fixed-base, torque feedback at the steering wheel is provided and adjustable springs 

provide all the pedals with realistic force feedback. 

The D-DS uses three flat wall-screens (3.00m×4.00m) that surround the motion platform. The visual scene is 

projected to a high-resolution three channel 180 × 50 forward field of view with rear and side mirror views 

replaced by 6.5” LCD monitors. The visual system allows a resolution of 1400×1050 for each channel and a 

refresh rate of 60 Hz. The cockpit is one half of a real Citroen C2 with two adjustable seats and a real 

equipped dashboard. The audio system can reproduce various sounds that can normally be heard while 

driving. Feedback is provided by a force feedback system (SENSO-Wheel SD-LC) on the steering and a six 

degree-of-freedom electric motion platform. Torque feedback at the steering wheel is provided via a motor 

fixed at the end of the steering column. The motion system consists of a Cuesim hexapod with six electric 

actuators, able to reproduce the accelerations that real car occupants feel. 

Importantly, during the whole road experimental campaign weather conditions did not differ substantially 

across driving sessions; moreover, on-road experiments were carried out only in work-days in order to 

allow for homogeneous traffic conditions. In particular, unsaturated traffic conditions were always 

observed, without stop and go phenomena. A negligible percentage of trucks was always encountered on 

the two motorways, while for the rural roadway a percentage of trucks ranging from 15 to 20 % was 

observed. The different type of leading vehicle could possibly bind the behaviour of the drivers (e.g. in the 

choice of adopted headway). With reference to the focus of this paper we retain that the different size of 

the leading vehicle could have mostly an effect on the value of the reaction-thresholds, than on the 

behaviour of the drivers once the thresholds are reached; thus our analyses do not take into account this 



variable. Note that both the driving simulators were provided with a traffic-simulation module, allowing for 

the emulation of traffic conditions according to the desired average speed of the traffic stream and traffic 

density. These parameters were tuned in order to adapt the simulated experimental conditions to the 

prevailing ones on the road. Many other information on the sample, the total data collected, and the 

results of DriveIn
2
 project can be found in Bifulco et al. (2013). 

The large amount of data collected is used to search for evidence on the action actually taken at 

(candidate) action points, according to expected actions identified in the last column of Table I above. 

3.2 Identification of candidate Action Points 

Before analyzing APs, collected data have undergone several pre-process steps. In the first step each 

trajectory observed for each driver has been split in several sections. Each section is characterized by a 

unique leading vehicle and by uninterrupted car-following conditions. As a result of the trajectory 

sectioning, non-car-following conditions are discarded. The process is carried out by by means of a 

manually-made visual analysis of the video taken by the front camera of the IV. In the two simulators the 

step is made easier because the relative positions of all the vehicles in the simulation are known. All the AP 

analyses have then been applied to the sections. 

Collected data allow car-following spirals to be plotted in the phase-plane, as well as action points (APs), 

defined according to Wiedemann’s theory. An example is depicted in Figure 3 below (left) for few seconds 

of observation. 

The procedure for AP identification was taken from Brackstone et al. (2002); similar procedures have been 

proposed by other authors (Wagner, 2011; Hoogendorn et al., 2011). All these techniques base 

identification of APs on kinematic conditions; identification of these points is straightforward if one analyse 

trajectories in the phase-plane (as in Figure 3 left side). When adopting the procedure, we did not employ 

any filter neither on the follower’s speed nor on the length of the spirals. Using the chosen technique, we 

selected four types of APs (CLDV, OPDV, ABX, SDX), according to Wiedemann’s theory. 

 

Place Figure 3 about here 

 

The previous kinematically-identified APs are here viewed as candidate action points; they have to be 

confirmed as actual APs by searching for actual actions (on pedals) made by the driver in a time-window 

around the time of detection (tap) of the candidate AP. Indeed, the time window searched for the actual 

actions is extended before tap, as the observed kinematic variation is the effect of an action which, given 

the powertrain and other vehicle inertia, should have started before. Moreover, drivers’ actions could also 

hold over tap, as the latest is just the instant when the effect of the action is identified for the first time. As a 

consequence, each time a point is detected as a candidate AP, the trajectory of observed variables are 

associated to tap for all instants within a predetermined range. The considered range is [tap -3, tap +3], as 

three seconds is arbitrarily hypothesised as a time-window to which both the start and the end of the 

action belong for sure. This hypothesis will be confirmed below. Recorded variables are the speed and the 

acceleration of both the leader and the follower, as well as the inter-vehicular spacing and, last but not the 

least, the values of the pedals (gas and brake) pressure. The number of drivers for each environment (static 

and dynamic driving simulator, and instrumented vehicle), information about the selected sections, as well 

as the number of detected candidate APs are shown in Table II. 



 

Place Table II about here 

 

Given the huge quantity of data, an efficient way to analyse and represent them has to be identified. It was 

thus chosen to analyse the data in an aggregate way; this is consistent with our aim to highlight the most 

frequent driving behaviours. Hence we refer below to statistical distributions of relevant variables (e.g. 

actions on pedals) observed over the experimental dataset as a whole. Moreover, we often represent the 

data by appropriate box-and-whisker plots. In principle, the actual action searched for at candidate APs is 

any variation in pedal pressure, since the gas pedal and brake are the actuators that the driver is expected 

to control once in a car-following situation. We argue below in favour of analysing the gas-pedal alone. 

Our analyses refer to the instrumented vehicle, provided that scenarios based on virtual reality could be 

questioned with respect to the realism of the observed driving behaviours. However, we exploit the 

availability of observations collected at driving simulators in order to qualitatively confirm the results, once 

identified on the instrumented vehicle. It is worth noting that the data observed at the driving simulators 

are expected to present a narrow dispersion and a sharper pattern, as they are unaffected by real-word 

biases. 

3.3 Identification of actual Action Points 

During car-following drivers control their vehicles by mainly using the gas pedal and, to a lesser extent, the 

brake. The latter pedal is more likely to be employed in emergency-braking conditions, as slow 

decelerations generally required in car-following conditions can often be applied by simply relaxing the gas 

pedal. In our data, given the experimental conditions (suburban close-following and approaching 

conditions, without stop-and-go phenomena) and according to both expectations and previous studies (e.g. 

Bifulco et al., 2013), we found that the use of the brake pedal is rare. Indeed, the number of times when 

the pressure on the brake pedal exceeded 1% represents about 7% of the total observations. Of course, as 

long as we have observed close-following conditions, collected acceleration are almost all in the range -

1.5/1.5 m/s
2
, that is consistent with expectations in our experimental conditions. 

Our analyses will search for actual actions starting from the definition of the gas-pedal pressure γγ(t); this 

represents the instantaneous value of pressure the driver applies to the accelerator; this varies from 0 

(pedal fully-relaxed) to 1 (pedal fully pushed down). From γ(t) we measure: 

• the relative gas pedal pressure, γr(t) = γ(t) - γ(tap); this represents the difference between the 

instantaneous value of pressure the driver applies and the value of pressure applied in the instant 

tap of candidate AP detection; it varies from -1 to 1; 

• variation in gas pedal pressure, Δγr(t)= γr(t+�t)- γr(t); given that the sampling step of our data 

collection is �t=0.1 seconds, the variation is proportional (with a 10 coefficient) to the numerical 

derivative of the pedal pressure. 

 

Place Figure 4 about here 

 



An example of the value assumed by variables γr and Δγr in one manoeuvre (arbitrarily chosen) is 

represented in Figure 4 . Note that the action is all within the range of analysis [tap -3, tap +3] and that 

choosing tap as the reference time seems to be an appropriate hypothesis. 

The statistical analyses of the observed γr(t) trajectories for the four different types of candidate APs (CLDV, 

OPDV, ABX, SDX) are shown in Figure 5 below. Note that adopting γr(t) instead of γ(t) allows normalising 

with respect to the absolute magnitude of the applied acceleration/deceleration, which may differ greatly 

for different detected candidate APs. For the sake of visual clarity, plots are shown with reference to sub-

sampling with 0.6-second steps in the time-interval [tap -3, tap +3]. The representation makes use of box and 

whisker plots; boxes represents the 25
th

, 50
th

 and 75
th

 percentiles and whiskers cover 95% of the 

distributions. 

 

Place Figure 5 about here 

 

In Figure 5 we search for characteristic patterns of the gas pedal as expected at the different types of APs 

and in accordance with the rightmost column of Table I above. In order to interpreter the figures shown by 

the charts above, just as an example, please refer your attention to the upper-left chart. Note that in 75% 

of the cases the value assumed by γr 3 seconds before to the instant tap is positive, moreover, in 50% of the 

cases it is greater than 0.05 and in 25% of the cases it is greater than 0.10. These values are remarkable if 

one takes into account two things: i) the average value of γ observed in the same instants with reference to 

CLDV points (computed across all considered trajectories) is around 0.15, with a standard deviation of 0.1; 

the average value of γ observed at tap with reference to CLDV points (computed across all considered 

trajectories) is around 0.08, with a standard deviation of 0.07. Thus a value of about 0.05 for γr represents a 

relevant quantity for the phenomenon. Similar considerations can be made can be made also with 

reference to the other candidate APs. With reference to values depicted in Figure 5, the Standard Error of 

the Mean (SEM) has been computed for each of the boxes. Computed SEM values range (for all the boxes, 

and for all the candidate APs) in the interval [0-0.0019] (it should be noted that for normal distributions the 

Standard Error of the Median is about 25% larger of the SEM); the values assumed by the SEM confirm that 

results showed in Figure 5 (e.g. median values of γr) are very significant. 

The expected reduction of γr is clearly observable at the CLDVs, as well as the expected increment at the 

OPDVs. The driver relaxes the gas pedal when he/she realizes that the gap is closing too much, while on the 

other hand he/she increases the pedal pressure when he/she realizes that the gap is opening too much. 

Interestingly, CLDVs and OPDVs are detected (by kinematic conditions) once the action has been 

completed, and the pedal pressure has become nearly constant. Unlike expectations made explicit by Table 

I in section 2, two flat zones are exhibited before the detection of candidate ABX and SDX points. In 

particular before the time instant tap the two distributions persist around the null value. It is worth noting 

that for ABX points a slight increment of γr after tap is observed; this is counterintuitive and in contrast with 

the expected action described in Table I (a further relaxing of the gas pedal). The same, in the opposite 

manner, happens after tap for SDX points (a slight relaxation of the gas pedal instead of an expected further 

pressure (Table I). The counterintuitive results can be explained considering that for each spiral ABX 

precedes OPDV, and SDX precedes CLDV. Indeed, given the large time of observation after tap, it would be 

logical to think that the above unintuitive behaviour is an effect of the actions associated to the 

forthcoming OPDVs and CLDVs, and not a matter of actions associated to ABXs and SDXs. This suggests that 

the actual interval in which the action can be analysed is narrower than [tap -3, tap +3]; this will be 

confirmed by some further analyses below. 



That said, the behaviour at candidate points ABX and SDX seems to contradict Wiedemann’s approach. The 

absence of significant actions before ABX and SDX confirms the early theories by Barbosa and Todosoiev. 

Alternatively (and not contradictorily), a particular case of Wiedemann’s paradigm could have occurred, as 

described by Figure 6 below, where the thresholds for ABX and SDX lie outside the region identified by the 

natural slope of the spiral determined by the actions performed in OPDV and CLDV. In this case, it is 

possible (from a purely kinematic point of view) to identify some F_SDX (False SDX) and F_ABX (False ABX) 

points, as these are the points where the gradient of the spacing becomes null. However, these points do 

not correspond to any actual action and are only the direct consequence of actions previously taken at 

OPDV or CLDV. 

 

Place Figure 6 about here 

 

The aggregate analysis in Figure 5 suggests that the particular case of Wiedemann’s theory illustrated in 

Figure 6 is very likely to hold (at least in the observed dataset) and that the thresholds for ABX and SDX 

almost never bind actual driving behaviour. 

An aggregate analysis of the Δγr(tap) values is shown in Figure 7 below, where the distributions of the 

median values of Δγr(tap) at the four candidate types of APs are plotted. They confirm the results of Figure 5 

and hence the interpretation that the most likely conditions are those identified by the particular case of 

the Wiedemann paradigm. Variations in gas pedal pressure are mainly observed around points CLDV and 

OPDV, while they are negligible before ABX and SDX. Figure 7 also allows better identification of the actual 

range around tap where much of the action can be revealed. This range seems to be no more extended than 

1.6 seconds before and after tap. 

 

Place Figure 7 about here 

 

The previous analyses can be validated by also looking at the acceleration and deceleration patterns. To 

this end, we use the following terms: 

• the instantaneous follower’s acceleration, α(t): this represents the instantaneous value of the 

detected acceleration; 

• the instantaneous relative follower’s acceleration, αr(t) = α(t)- α(tap): this represents the difference 

between the instantaneous value of the detected acceleration and the value detected in the instant 

tap, where the candidate AP has been identified. 

The observed relative follower accelerations are shown in Figure 8 below, where the interval of 1.6 second 

before and after the candidate AP was adopted as a consequence of the lesson learned from Figure 7. 

 

Place Figure 8 about here 

 

Note that the transition from acceleration to deceleration is evident at CLDV and vice versa from 

deceleration to acceleration at OPDV. Once again, a flat zone is revealed at ABDX and SDX, instead of 

respectively the expected (see the third column in Table I in section 2) further deceleration and further 



acceleration. From the quantitative point of view, Figure 8 shows that the decrease at CDLV and OPDV is 

(for the median values) about 0.2 m/s
2
 (the acceleration turns from 0 to about -0.2 m/s

2
 at CLDVs and from 

about -0.05 m/s
2
 to 0.15 m/s

2
 at OPDVs). 

It is interesting to test the sensitivity of our results with respect to the value of α(t). To this aim we have 

repeated our analyses after having defined a cut-off value on α(t), so far not employed. the cut-off value is 

the maximum value admitted in our analyses in order to consider the observed manoeuvre actually belongs 

to the Wiedemann’s unconscious reaction zone. Greater values could correspond to other phenomena such 

as emergency braking or sudden leader’s accelerations. For different cut-off values a different number of 

manoeuvres has been discarded from the analysis. Given that the appropriate cut-off value is unknown, a 

parametric analysis has been done. The used cut-offs have been: none, 1.5, 1.25, 1, 0.75 and 0.5 m/s
2
. Of 

course if no cut-off value is applied, then any observed manoeuvre is considered as consistent with the AP 

theory, on the other hand the cut-off value of 0.5 m/s
2
 bounds the AP area probably in a too narrow way. 

As can be seen by Figure 9, the observed behaviour is such that even a small cut-off value (e.g. 1 m/s
2
) 

allows us to consider more than 80% of the dataset as representative of the behaviours in the unconscious 

reaction zone. 

 

Place Figure 9 about here 

 

However the trends around APs observed in Figure 8 are not affected by the selected threshold, nor are 

affected the αr(t) reached values if reasonable cut-off values (not less than 1 m/s
2
) are considered. This can 

be seen in Figure 10 where the median values of αr(t) for all the cut-offs have been reported. 

 

Place Figure 10 about here 

 

Finally, data in the Figure 8 are also confirmed at the simulator, where much of the bias that affects the IV 

data is eliminated. The results are much more evident than in the case of the IV and are shown in Figure 11 

below (the left side refers to the static simulator and the right to the dynamic simulator). 

 

Place Figure 11 about here 

 

The flat zone at points ABX and SDX is particularly evident, while respectively a decrease and an increase of 

the acceleration is observed at points CDLV and OPDV. In quantitative terms, with respect to points CLDV, 

the median value of αr(t) decreases from 0.1 m/s
2
 to -0.5 m/s

2
 (thus the total deceleration is about -0.6 

m/s
2
) at the static simulator, while in the dynamic simulator it decreases from 0.15 m/s

2
 to -0.2 m/s

2
 (thus 

with a total variation of about 0.35 m/s
2
); with reference to points OPDV the median value of αr(t) increases 

from -0.1 m/s
2
 to 0.25 m/s

2
 (thus the total acceleration is about 0.35 m/s

2
) at the static simulator, while in 

the dynamic simulator it increases from -0.1 m/s
2
 to 0.1 m/s

2
 (hence with a total variation of about 0.2 

m/s
2
). The dynamic simulator seems to lie half way between the instrumented vehicle and the static 

simulator, thus suggesting that, as expected, a more realistic virtual environment is a better proxy of the 

real world. 



3.4 Analysis of driving behaviour at action points 

Detection of consistent patterns at CLDVs and OPDVs helps to quantify some characteristics related to 

manoeuvres at them. In particular, the time interval in which Δγr(t) has a significant value coincides with 

the time interval in which the action is actually performed. Figure 12 below again shows the plots over time 

for the median of Δγr(t), adding that revealed at the two virtual environments (and restricting the analysis 

in the range of 1.6 seconds before and after the identified AP time, when all the actions occur in all 

environments). 

 

Place Figure 12 about here 

 

Much additional information can be drawn. The patterns observed in the different experimental 

environments are all similar, and are consistent with expected behaviour. Notably, the durations of closing 

and opening manoeuvres are quite different. These differences can be discussed with respect to two levels. 

At a first level, with reference to median values, actions related to CLDV points last 1.6 seconds in the S-DS, 

and range from 1.2 seconds before to 0.4 seconds after tap. In the D-DS the previous time window is shorter 

(1 second); the actions start later (0.6 seconds before tap), and finish at the same time (0.4 seconds after 

tap). The IV data show a situation which is more similar to the S-DS (the time window is again 1.6 seconds), 

although actions start, and finish, 0.2 seconds later (respectively at tap -1, and tap +0.6). A similar trend is 

observed also with respect to OPDV data. Two comparable time windows are observed again for the S-DS 

and IV data: manoeuvres start at tap -0.8 and tap -1.2 seconds, and stop at tap +1.6 and tap +1.2 seconds, 

respectively. A shorter time window is observed in the D-DS environment (actions start at tap -0.6 and tap +1 

seconds). Consistently for all the experimental environments, actions around OPDV points last longer, and 

the instantaneous variations of γr(t) are smaller around OPDV points compared to CLDV points.  

Another major point concerns the actual variation of gas pedal pressure (Δγr) in the three environments. 

The variation is chosen as it normalise the analysis from the absolute value of the pressure that has no 

actual behavioural meaning, as it depends on the actual sensitivity of the pedal, on the engine and on the 

powertrain, and typically differs from vehicle to vehicle, and from real vehicle to driving simulator. It has to 

be noted that the data of Δγr for the IV are more similar to those for S-DS. They range in the interval -

0.003< Δγr(t)<0.003 for the IV, and in the interval -0.010< Δγr (t)<0.005 for S-DS, while they have a greater 

range of variation for D-DS (-0.04< Δγr (t)<0.02). For CLDV and OPDV points, the distribution of Δγr in the 

three environments have also been compared using the Kolmogorov-Smirnov test. Of course, for a full 

comparison, distributions have been normalised with respect to the maximum value or the minimum one 

(respectively for OPDV and CLDV). As a result six distributions between 0 and 1 have been obtained. The 

test showed that the two simulated environments are not significantly different (with p-values of 0.63 with 

reference to CLDV, and 0.06 with reference to OPDV). With reference to the IV, both the environment are 

significantly different (all the tests gave p-values lower than 0.001).  

4 Summary 

The possibility to observe variables directly correlated to drivers’ actions, such as gas pedal pressure, allows 

an in-depth discussion concerning action point paradigms. In the case of points OPDV and CLDV the 

behaviour of drivers was shown to change rather sharply. In particular, before CLDV a reduction in pedal 



pressure is observed, while an increase can be associated to OPDV. By contrast, small variations were 

observed at points ABX and SDX, where respectively a local minimum and maximum mean value is 

observed, even though around the tap instants (e.g. tap -1, tap +1) these values tend to be ordered like those 

of a flat function (see Figures 5, 8 and 11). Importantly, the existence of ABX and SDX is specific to 

Wiedemann’s model, while it is neglected in previous approaches, where the applied pedal pressure (and 

the relative acceleration) are considered constant between CLDVs and OPDVs. The results of our study 

seem to confirm the approach adopted by Todosoiev and Barbosa. Alternatively, a particular case of 

Wiedemann’s paradigm, as described by Figure 6, could have occurred, where some F_SDX (False SDX) and 

F_ABX (False ABX) points were selected as candidate APs as a consequence of the AP selection algorithm, 

which is based on purely kinematic conditions. However, these points do not correspond to any actual 

action and are only the direct consequence of actions previously taken at OPDV or CLDV. Further 

confirmation can be found in the recent work of Bifulco et al. (2013), even if obtained without direct 

observation of pedal actions, where ABX and SDX are identified as only pass-through points (with no 

behavioural relevance), and where a linear pattern is found to fit (in what is called an opening chart) the 

observed CLDV and OPDV points using the inverse of TTC. Also Hoogendoorn et al. (2011), using empirical 

data, identified action points by analysing accelerations, and stored, once a point was classified as an action 

point, the spacing and relative speed at the detection instants. Using these points, they defined some 

regions in the phase-plane in which the driver is likely to perform an action (in the sense that he/she is 

likely to decrease or increase acceleration). Once again, patterns very similar to CLDV and OPDV curves 

were obtained, while patterns for ABX and SDX were not detected. 

Interestingly, the proposed curves were calibrated using spacing and relative speed conditions at the 

detection instants, while it was shown that the actual action by the driver starts several instants before (see 

Figures 5, 7 and 12), and thus the stimulus that determines the action starts even before . In particular, the 

pedal operations start (and finish) in different instants (with reference to tap), and last the same time for 

the S-DS and the IV (1.6 seconds for closing actions, 2.4 seconds for opening actions), while they are shorter 

(1 second for closing actions, 1.6 seconds for opening actions) in the D-DS environment. These lags should 

be considered in the calibration of CLDV and OPDV thresholds. Indeed, stimuli should be sought where the 

actions are actually performed (or even before, considering the perception-reaction time), and a pedal-

based calibration procedure could be applied. As an alternative, the kinematic-based calibration should 

carefully take into account anticipation with respect to tap. In any event, a pedal-based procedure like that 

applied in this work, possibly associated with a disaggregate analysis, has the potential to give a conclusive 

explanation of the AP paradigm. 

The observed data evidence an asymmetric behaviour in terms of acceleration/deceleration applied, as 

both the magnitude and the duration of the action at closing (CLDV) and opening (OPDV) phases are 

different. This asymmetric behaviour confirms the findings by Forbes (1963) who noticed that the driver’s 

response is slower in acceleration than in deceleration. This represents an interesting issue that has 

consequences in traffic flow phenomena as well. For instance, Newell (1965) suggested that, for the same 

speed, the applied spacing in acceleration manoeuvres always exceeds that in deceleration. What is 

important is that this asymmetry produces clockwise loops in the flow-density plane, later referred to as 

the traffic hysteresis phenomenon (Treiterer and Myers, 1974). Studies related to this phenomenon as well 

as to its effect on the traffic stream still represent an open question, as demonstrated by the recent work 

by Yeo (2008). 

A final issue concerns observed patterns of the variables considered in the three environments which, 

albeit differing in magnitude, become very similar (and consistent with literature) once scaled properly, 

that is by normalising with respect to absolute values (Δγr) and by accepting different duration of the 

actions. It is worth noting that although we retain equivalent the observed phenomena from a qualitative 



point of view, quantitative differences exist. However, authors’ opinion is that differences between 

experimental environments are not a matter of drivers behaving differently. Rather, they depend on 

different dynamics (especially inertia) of the three vehicles involved in the experiment, on one hand the IV 

and on the other hand the two virtual cars, modelled in the two different DS environments. Of course the 

two virtual cars are similar because of the same adopted driving simulation software and the same 

parameters for characterising the virtual car. In the context of our analyses the previous considerations are 

not a matter, as the observed phenomena are qualitatively similar in the different contexts (virtual and 

naturalistic). However, our analyses show that driving simulators are validated environment for driving 

behaviour (car-following) studies only in terms of relative validations. Observation and comparison 

techniques (as the ones adopted in this paper) could be applied in the future in order to check (and tune) 

for full validation of virtual driving environments. 

5 Conclusions 

The work described in this paper was based on a large-scale experimental campaign carried out in Italy 

during the DriveIn
2
 research project. The campaign involved 100 drivers who experienced the same 

scenario in both a real and virtual environment, with each driving session lasting about one hour. Data 

were analysed in the framework of the Action Point theory, and on the basis of kinematic conditions 

different kinds of candidate APs (according to Wiedemann’s definition) were selected and classified. The 

total number of selected candidate APs exceeded 29,000 points. Analyses have been carried out in order to 

further investigate candidate APs with the aim to check for actual APs. Candidate APs were analysed with 

reference to the use of the gas pedal, employed by drivers to control the vehicle in close-following 

conditions. The results show that actual actions can be associated to candidate action points defined with 

respect to relative velocity (CLDV and OPDV). The aggregate analysis of the candidate points defined with 

respect to space (ABX and SDX) does not support the evidence that actual actions can be systematically 

associated to these points.  

Our results support the implementation of simpler theories (e.g. calibration of two AP thresholds instead of 

four). This is particularly relevant to Advanced Driving Assistance Systems, where the solutions based on 

the reproduction of driving behaviour have to be applied on line, with evident performance/efficiency 

requirements. 

Future research efforts in the field explored by this work could involve analysing the distribution of (actual) 

APs among drivers, and possible clustering of drivers with similar behaviour (and comparison of the 

resulting clusters with those resulting from psychological measures).  
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Table I ʹ AĐƚŝŽŶ ƉŽŝŶƚƐ͕ ĞǆƉĞĐƚĞĚ ĚǇŶĂŵŝĐƐ ĂŶĚ ĞǆƉĞĐƚĞĚ ĂĐƚŝŽŶ ŝŶ WŝĞĚĞŵĂŶŶ͛Ɛ ƚŚĞŽƌǇ 

Point/Phase Description Expected Dynamics Expected Action 

Free-flow 

Phase 

Given ǻv, the spacing ǻx is very large. Hence dׇ/dt is 

negligible and the driver does not perceive any stimulus 

The follower cruises at the desired speed and unconsciously 

approaches the leader. The spacing progressively decreases and 

thus dׇ/dt increases toward non-negligible values 

SDV Point 

The spacing ǻx, starting from far away, has reached a 

threshold (SDV) such that (given the relative speed ǻv) the 

angular velocity (d฀/dt) is perceived and stimulates the 

driver 

The follower starts changing the 

dynamics of the vehicle from uniform 

speed to (constant) deceleration.  

The gas pedal is 

relaxed 

Consciously 

Approaching 

Phase 

Both the relative speed (in absolute value) and the spacing 

progressively decrease, the angular velocity (dׇ/dt) tends to 

be constant and the driver is not stimulated 

The relative speed (ǻv) is still negative but is going to 

progressively decrease in absolute value; the spacing decreases 

too 

ABX Point 

The relative speed ǻv is very low (in absolute value), but the 

spacing ǻx has reached a threshold value (ABX) and the 

angular velocity d฀/dt stimulates the driver to further slow 

down in order to keep the spacing required for controlling the 

vehicle 

A further deceleration is started, in 

addition to that already applied 

(constant)  

The gas pedal is 

further relaxed (or 

the brake is slightly 

pushed down) 

Opening Phase 

The relative speed ǻv is positive and still small in absolute 

value and the spacing increases. The angular velocity dׇ/dt is 

small and does not stimulate the driver 

Both the relative speed and the spacing increase 

OPDV Point 

The relative speed ǻv has reached a threshold value (OPDV) 

and is enough to produce a stimulating angular velocity 

d฀/dt 

The follower starts to apply the 

transition from a (constant) 

deceleration to a (constant) 

acceleration, in order to start closing 

the gap 

The gas pedal is 

pushed down 

Still Opening 

(but actually 

with closing 

intention) 

Phase 

The relative speed ǻv decreases and the spacing ǻx increases; 

there is no stimulus from the angular velocity dׇ/dt 

The gap is still opening but with a reduced gradient, according 

to the closing intention at OPDV  

SDX Point 

The relative speed ǻv is very low (in absolute value), but the 

spacing ǻx has reached a threshold value (SDX) such that the 

contact seems to be lost with the leading vehicle; 

A further acceleration is started, in 

addition to that already applied 

(constant)  

The gas pedal is 

further pushed 

down 

Closing Phase 

The relative speed ǻv is negative and increasing in absolute 

value, the spacing ǻx decreases; the angular velocity dׇ/dt 

progressively increases 

The gap is closing 

CLDV 

The (negative) relative speed ǻv has reached a threshold 

value (CLDV) and is high enough to produce a stimulating 

angular velocity d฀/dt 

The follower starts to apply the 

transition from a (constant) 

acceleration to a (constant) 

deceleration, in order to start opening 

the gap 

The gas pedal is 

relaxed (or the 

brake pushed 

down) 

Still closing (but 

actually with 

opening 

intention) 

Phase 

The (negative) relative speed ǻv decreases in absolute value 

and the spacing ǻx also decreases; there is no stimulus from 

the angular velocity dׇ/dt 

The gap is still closing but with a reduced gradient, according to 

the opening intention at CLDV  

ABX point 

again 
The conditions for the ABX point hold again and the unconscious car-following phase goes on periodically 
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Table II ʹNumber of drivers involved, sections selected and candidate APs detected, per 

experimental environment 

 

Involved 

Drivers 

 

Sections Detected Candidate APs 

Total  

Number 

Length [km] Duration [min] 
CLDV ABX OPDV SDX 

total mean (st.dv.) total mean (st.dv.) 

S-DS 99 2670 2964 1.11 (1.90) 1968 0.74 (1.20) 3003 3003 2859 2859 

D-DS 22 290 768 2.65 (2.51) 570 1.97 (1.36) 980 980 1006 1006 

IV 100 1279 2303 1.80 (1.96) 1664 1.30 (1.32) 3274 3274 3367 3367 
The number of CLDV and ABX (as well as the number of OPDV and SDX) in each environment is the same as a 

consequence of the AP detection algorithm. 

 



 
Figure 1 - An example of phase planes (left: first-order; right: second-order) 

 

 
Figure 2 ʹ GƌĂƉŚŝĐĂů ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ŽĨ WŝĞĚĞŵĂŶŶ͛Ɛ ƉĂƌĂĚŝŐŵ ʹ The relative speed has opposite direction with respect 

to the original paper 

 

 

Figure 3 ʹ Typical experimental car following spiralƐ͕ ǁŝƚŚ APƐ ĞǀĂůƵĂƚĞĚ ŝŶ ĂĐĐŽƌĚĂŶĐĞ ǁŝƚŚ WŝĞĚĞŵĂŶŶ͛Ɛ ƉĂƌĂĚŝŐŵ͕ 
depicted in the Spacing vs. Relative Speed plane (left), and in terms of gas-pedal pressure (right). Ground velocity 

around 70 km/h, observation time 30 seconds. 
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Figure 4 ʹ TŚĞ ǀĂůƵĞƐ ŽĨ ɶr(t) variables around a CLDV point (left), and the associated ȴɶr(t) pattern (right). 

 

 
Figure 5 ʹ TŚĞ ǀĂůƵĞƐ ŽĨ ɶr(tap) at the four candidate APs; boxes represent respectively first, second (in bold) and 

third quartiles of the distribution, whiskers show 95% coverage of the data.  
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Figure 6 ʹ TŚĞ ƉĂƌƚŝĐƵůĂƌ ĐĂƐĞ ŝŶ WŝĞĚĞŵĂŶŶ͛Ɛ ƉĂƌĂĚŝŐŵ ĞǀŝĚĞŶĐĞĚ ŝŶ ƚŚĞ ĚŝƐĐƵƐƐĞĚ ĚĂƚĂʹ The relative speed has 

opposite direction with respect to the original paper 

 

 
Figure 7 ʹ The distribution of the ȴɶr(t) median values around all the potential APs (ȴƚсϬ͘1 s) 
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Figure 8 ʹSƚĂƚŝƐƚŝĐĂů ĚŝƐƚƌŝďƵƚŝŽŶƐ ŽĨ ɲr(t), observed with the instrumented vehicle; boxes represent respectively 

first, second and third quartiles of the distribution, whiskers show 95% coverage of the data. For CLDV and OPDV 

points, accelerations concerning time-intervals obtained from the analysis of ȴɶr(t) are depicted in bold. 

 

 

Figure 9 ʹ Number of APs discarded from the analysis with different thresholds for accepted ɲ(t); patterns are shown 

for no-threshold and cut-off values of 1.5, 1.25, 1, 0.75 and 0.5 m/s
2
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Figure 10 ʹ TŚĞ ĚŝƐƚƌŝďƵƚŝŽŶ ŽĨ ƚŚĞ ŵĞĚŝĂŶ ǀĂůƵĞƐ ŽĨ ɲr(t) with different thresholds for accepted ɲ(t); patterns are 

shown for no-threshold and cut-off values of 1.5, 1.25, 1, 0.75 and 0.5 m/s
2
 

 

 
Figure 11 ʹSƚĂƚŝƐƚŝĐĂů ĚŝƐƚƌŝďƵƚŝŽŶƐ ŽĨ ɲr(t) at driving simulators; boxes represent respectively first, second and 

third quartiles of the distribution, whiskers show 95% coverage of the data. For CLDV and OPDV points, accelerations 

concerning time-intervals obtained from the analysis of ȴɶr(t) are depicted in bold.  
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Figure 12 ʹ The distribution of the ȴɶr(t) median values around all the potential APs (ȴƚсϬ͘1 s) in the three 

experimental environments 
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