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Abstract

The cochlea processes auditory signals over a wide range of frequencies and intensities.
However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at
different frequency locations along the cochlea. Using recordings from mature gerbils, we
report here a surprisingly strong block of exocytosis by the slow Ca’" buffer EGTA (10 mM)
in basal hair cells tuned to high frequencies (~30 kHz). In addition, using recordings from
gerbil, mouse and bullfrog auditory organs, we find that the spatial coupling between Ca®*
influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (<~2 kHz)
to progressively more microdomain in high-frequency cells (>~2 kHz). Hair cell synapses
have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-
latency encoding of onset and offset of sound intensity in the cochlea’s base and
submillisecond encoding of membrane receptor potential fluctuations in the apex for precise
phase-locking to sound signals. We also found that synaptic vesicle pool recovery from
depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca®"
buffers play an important role in vesicle recruitment in both low- and high-frequency hair
cells. In conclusion, our results indicate that microdomain coupling plays an important role in
the exocytosis of high-frequency hair cells, and suggest a novel hypothesis for why these cells
are more susceptible to sound-induced damage than low-frequency cells; high-frequency
[HCs must have a low Ca”" buffer capacity in order to sustain exocytosis, thus making them

more prone to Ca**-induced cytotoxicity.

Significance Statement
In the inner ear, sensory hair cells signal reception of sound. They do this by converting the
sound induced movement of their hair bundles present at the top of these cells, into an

electrical current. This current depolarizes the hair cell and triggers the calcium-induced
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release of the neurotransmitter glutamate that activates the postsynaptic auditory fibres. The
speed and precision of this process enables the brain to perceive the vital components of
sound such as frequency and intensity. We show that the coupling strength between calcium
channels and the exocytosis calcium sensor at inner hair cell synapses changes along the
mammalian cochlea such that the timing and/or intensity of sound is encoded with high

precision.

Introduction

The sensory neuroepithelium of vertebrate auditory organs is tonotopically organized such
that the characteristic frequency of the hair cells (the sound frequency at which they respond
best) gradually changes with position along the cochlea. Hair cells have developed unique
morphological, molecular and biophysical features that allow them to distinguish a wide
range of sound frequencies and intensities (Fettiplace and Fuchs, 1999) while maintaining
sub-millisecond temporal precision (Matthews and Fuchs, 2010; Heil and Peterson, 2017).
However, the mechanisms by which hair cell ribbon synapses ensure accurate sound encoding
are still largely unknown (Fuchs, 2005; Safieddine et al., 2012). Ribbons are able to tether a
large number of vesicles at the cell’s presynaptic active zones, allowing them to facilitate high
rates of sustained neurotransmission (Glowatzki and Fuchs, 2002; Keen and Hudspeth, 2006).
Vesicle fusion at hair cell synapses is triggered by Ca*" entry through Cay1.3 Ca®" channels
(Platzer et al., 2000), clustered at the cell’s presynaptic active zones (Roberts et al., 1990;
Coggins and Zenisek, 2009; Frank et al., 2010), and uses otoferlin as the major Ca*" sensor
for exocytosis (Roux et al., 2006). However, how Ca”" is able to regulate exocytosis at mature

ribbon synapses is still mostly undetermined.

Spatial tightening between Ca®" channels and docked vesicles improves release efficiency

and is important for fast and high-fidelity neurotransmission not only at functionally mature
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sensory synapses (e.g. calyx of Held: Fedchyshyn and Wang, 2005; Ledo and von Gersdorff,
2009; Chen et al., 2015), but also in the squid giant synapse (Augustine et al., 1991) and
mammalian conventional synapses (Bucurenciu et al., 2008; Schmidt et al., 2013). Calcium
nanodomain coupling between a few Ca’" channels and the exocytotic Ca®" sensor (Neher,
1998; Stanley, 2016) has also been proposed to control vesicle fusion in IHCs (Brandt et al.,
2005; Wong et al., 2014). This tight coupling has the advantage of providing accurate
temporal encoding for phase-locking to low-frequency tones (Rose et al., 1967; Li et al.,
2014) and also allows for the synchronized release of multiple vesicles (Graydon et al., 2011),
which produces large AMPA mediated excitatory postsynaptic currents (Glowatzki and
Fuchs, 2002). However, another hypothesis is that the coupling of Ca*" influx and exocytosis
is controlled by the cooperativity of many channels (Ca** microdomain) and it is the Ca®"
sensor that generates the efficient exocytosis in mature IHC ribbon synapses (Johnson et al.,
2010).

We have previously investigated the effect of the fast Ca®* chelator BATPA on exocytosis
and found it to be comparable in apical and basal gerbil IHCs (Johnson et al., 2008).
However, BAPTA chelates Ca®" independently from the tightness of the coupling between the
Ca®" source and the sensor for vesicle fusion (Wang and Augustine, 2015). Here we used
instead the “slow” Ca”" chelator EGTA, which has similar affinities for Ca*" as BAPTA, but a
140-fold slower ON-binding rate (Naraghi and Neher, 1997), which allows it to bind Ca*"
slower than the sensor for exocytosis and as such act as a high-pass temporal filter for Ca*"
(Wang and Augustine, 2015). Therefore, we investigated the effect of varying the intracellular
EGTA concentration in hair cells positioned at different locations along the mammalian
cochlea (mouse and gerbil) and the amphibian papilla (bullfrog), thus covering cells tuned to
sound frequencies from ~300 Hz to ~30 kHz. We found that the coupling between the Ca**

channels and the exocytotic Ca>" sensor at hair cell ribbon synapses changes with high-
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frequency cells being more microdomain, allowing them to better encode a large dynamic
range of sound intensities, whereas low-frequency cells operate via Ca*" nanodomains for
precise time encoding. We also found that recovery from vesicle pool depletion was slowed
by high EGTA concentrations. We propose that exocytosis at mature hair cell ribbon synapses
can operate via either Ca®” nanodomain or microdomain depending on their location along the
cochlea, the function of which could be to optimize the responses of these primary auditory

receptors.



e
O
-
O
0p)
-
-
®
=
O
D
e
O
)
@)
@)
<
@)
0p)
O
| -
-
)
Z
=)

235
236

237
238

239
240
241
242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

263
264

265
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Materials and Methods
Electrophysiology from mammalian hair cells

IHCs from young adult gerbils of either sex (Miiller, 1996) were studied in acutely
dissected organs of Corti from postnatal day 18 (P18) to P60, where the day of birth is PO.
Recordings were performed from IHCs positioned in the apical, middle and basal gerbil
cochlea of overlapping age range, which correspond to the in vivo mean characteristic
frequency (CF) of ~0.35 kHz, ~2.5 kHz and ~30 kHz, respectively. Experiments were also
performed from P19 to P26 mouse (of ecither sex) IHCs positioned in the apical coil of the
cochlea with a mean CF of ~3.0 kHz. All experiments in mice and gerbils were performed in
accordance with Home Office regulations under the Animals (Scientific Procedures Act) 1986
and following approval by the University of Sheffield Ethical Review Committee.

Cochleae were dissected from gerbils and mice in normal extracellular solution (in mM):
135 NaCl, 5.8 KCl, 1.3 CaCl,, 0.9 MgCl,, 0.7 NaH,POy,, 5.6 D-glucose, 10 HEPES-NaOH.
Sodium pyruvate (2 mM), amino acids and vitamins were added from concentrates (Fisher
Scientific, Loughborough, UK). The pH was adjusted to 7.5 (osmolality ~308 mmol kg™).
The dissected cochlear coils were transferred to a microscope chamber containing
extracellular solution and viewed using an upright microscope (Olympus BX51WI or Nikon
FN1) with Nomarski DIC optics and a long working distance 60X water-immersion objective.

Gerbil and mouse recordings were performed at body temperature (34-37 °C) using an
Optopatch amplifier (Cairn Research Ltd, Faversham, UK). Patch pipettes (2-3 MQ) were
coated with surf-wax (Mr Zoggs SexWax, CA, USA) and contained (in mM): 106 Cs-
glutamate, 20 CsCl, 3 MgCl,, | EGTA-CsOH, 5 Na,ATP, 0.3 Na,GTP, 5 HEPES-CsOH, 10
Na,-phosphocreatine (pH 7.3, 294 mmol kg™). In the experiments in which 1 mM EGTA was
replaced by different EGTA concentrations (0.1, 5, and 10 mM) Cs-glutamate was adjusted to

keep the osmolality constant. In a few experiments, perforated patch was used, and the
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pipette-filling solution contained (in mM): 110 K-aspartate, 21 CsCl, 3 MgCl,, 5 Na,ATP, 1
BAPTA, 5 HEPES-CsOH, 10 Na,-phosphocreatine (pH 7.3; 295 mmol kg'l). The antibiotic
amphotericin B (Merck Millipore, Hertfordshire, UK) was dissolved in dry DMSO before
dilution in the above intracellular solution to 120 or 240 pg ml” (Johnson et al., 2007).
Real-time changes in membrane capacitance (ACy,) were measured as previously
described (Johnson et al., 2008; 2010). Briefly, a 4 kHz sine wave of 13 mV RMS was
applied to IHCs from -81 mV and was interrupted for the duration of the voltage step. The
sine wave was small enough not to activate any significant membrane current since ACy,
requires a high and constant membrane resistance (R,,), which was 738 =+ 61 MQ (n = 87). In
the experiments carried out at the physiological membrane potentials (Fig. 8), our single sine
wave was sufficiently rapid to activate only a small amount of tonic /c,, evident by the
comparatively large R, in these recordings (639 + 77 MQ, n = 20), which could possibly lead
to some facilitation of vesicle release (Cho et al., 2011). The capacitance signal from the
Optopatch was filtered at 250 Hz and sampled at 5 kHz. AC,,, was measured by averaging the
C,, trace over a 200 ms period following the voltage step and subtracting the pre-pulse
baseline. Data were acquired using pClamp software (RRID:SCR_011323) and a Digidata
1440A (Molecular Devices, CA, USA) and analysed with Origin 2016 (OriginLab, USA,
RRID:SCR_002815). Membrane potentials were corrected for the voltage drop across the
series resistance (whole-cell recordings: apical coil IHCs, 4.8 + 0.1 M€, n = 60; middle, 4.9 +
0.2 MQ, n = 12; basal, 5.5 + 0.2 M, n = 45; perforated patch recordings: apical coil IHCs,
52+ 0.2 MQ,n =4, basal, 4.8 + 0.1 MQ, n = 5) and a liquid junction potential of —11 mV,
measured between electrode and bath solutions. The cell membrane capacitance (Cy,) in
whole-cell was: apical coil IHCs: 11.6 + 0.2 pF, n = 60; middle: 11.3 £ 0.5 pF, n = 12; basal:
11.4 + 0.4 MQ, n = 45; C,, in perforated patch was: apical coil IHCs: 10.8 = 0.3 pF, n = 4;

basal: 10.0 + 0.5 MQ, n = 5. The average voltage-clamp time constant (product of R and Cp,)



e
O
-
O
0p)
-
-
®
=
O
D
e
O
)
@)
@)
<
@)
0p)
O
| -
-
)
Z
=)

337
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

in whole-cell was 56 + 2 ps in apical, 55 + 2 ps in middle and 62 + 4 ps in basal IHCs; in
perforated patch it was 55 + 2 ps in apical and 48 + 2 ps in basal IHCs. Experiments were
performed in the presence of 30 mM TEA and 15 mM 4-AP (Fluka, Sigma-Aldrich, UK) to
block the BK current (/i ¢ : Kros et al., 1998) and delayed rectifier K currents (/ neo and Ji ),
and linopirdine (80 uM: Tocris, Bristol, UK) to block Ik , (Marcotti et al., 2003).

Statistical comparisons of means were made by the two-tailed #-test or, for multiple
comparisons, analysis of variance, one-way ANOVA followed by the Bonferroni test. Means

are quoted + S.EM. and p < 0.05 indicates statistical significance.

Electrophysiology from bullfrog auditory hair cells

Following an OHSU (IACUC) approved animal care protocol, amphibian papillae of
adult female or male bullfrogs (Rana catesbeiana) were carefully dissected as previously
described (Keen and Hudspeth, 2006; Li et al., 2009). Semi-intact preparations of hair cells
and their connecting afferent fibers were placed in a recording chamber with artificial
perilymph containing (in mM): 95 NaCl, 2 KCl, 2 CaCl,, 1 MgCl,, 25 NaHCOs, 3 Glucose, 1
creatine, 1 Na-pyruvate, pH adjusted to 7.3 with NaOH, and continuously bubbled with 95%
0, and 5% CO, (osmolality 230 mmol kg™). Oxygenated artificial perilymph was perfused
continuously (2-3 ml/min) during the recordings, which were performed at room temperature.

An Olympus BX51WI microscope equipped with a 60x water-immersion objective lens
(Olympus) and digital CCD camera (QImaging Scientific, Canada) were used to view the
preparation and electrophysiological recordings were performed in the middle area of
amphibian papillac at an average CF of about 0.4 kHz (Li et al., 2014). All recordings were
performed at room temperature using an EPC-10/2 patch-clamp amplifier and Patchmaster
software (HEKA, Germany, RRID:SCR_000034). The control intracellular pipette solution

contained (in mM): 77 Cs-gluconate, 20 CsCl, 1 MgCl,, 10 TEA-CI, 10 HEPES, 2 EGTA, 3
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Mg-ATP, 1 Na-GTP and 5 Na,-phosphocreatine (adjusted to pH 7.3 with CsOH). The amount
of Cs-gluconate was adjusted to match osmolarity of 230 mmol kg for pipette solution
containing 0.1 mM and 10 mM EGTA instead of 2 mM EGTA. For whole-cell recordings,
patch pipettes of borosilicate glass were pulled to resistances of 6 to 7 MQ for hair cells and 8
to 9 MQ for afferent fibers. Hair cells were voltage-clamped with a resting membrane
potential of either ~60 mV or -90 mV and afferent fibers were held at 90 mV (Cho and von
Gersdorff, 2014). Membrane potentials were corrected for a liquid junction potential of 10
mV. The current signal was low-pass filtered at 5.0 kHz and sampled at 100 kHz. The
averaged uncompensated series resistances in whole-cell recordings were 12.1 + 0.2 MQ for
hair cells (n = 93) and 26.5 + 1.7 MQ for afferent fibres (n = 17). The measurements of the
whole-cell membrane capacitance (C,,) from hair cells were performed under voltage-clamp
with the “Sine + DC” method (Lindau and Neher, 1988; Gillis, 2000) using an EPC-10/2
(HEKA) patch-clamp amplifier and Patchmaster software (HEKA). Under voltage-clamp
conditions, 2 kHz sine waves were superposed on the holding potential and the resulting
current response was used to calculate C,, via a Patchmaster software emulator of a lock-in
amplifier (Gillis, 2000).

Data analysis was performed with Igor Pro software (WaveMetrics, OR, USA,
RRID:SCR_000325) and Prism (GraphPad Software, RRID:SCR_002798). Statistical
significance was assessed with unpaired ¢-test and one-way ANOVA followed by the

Bonferroni test. Data are expressed as mean + S.E.M.
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Results

Whole-cell patch-clamp recordings were used to investigate Ca>" dependent exocytosis in
hair cells at specific characteristic frequencies (CF) of the mature gerbil, mouse and bullfrog
auditory organs. Although the mouse and the frog are the most common animal models used
for hearing research, they are mainly tuned to high- (mouse hearing frequency range: ~2-100
kHz, Ehret, 1975; Greenwood, 1990) and low- (bullfrog amphibian papilla: ~0.15-1.2 kHz,
Lewis, et al., 1982; Li et al. 2014) frequency, respectively. The advantage of the gerbil is that
it has an extended low-frequency hearing range (~0.1 to 60 kHz, Miiller, 1996), more similar
to human hearing (~0.02 to 20 kHz: see Greenwood, 1990), which should demarcate better
any tonotopic differences along the spiral extension of the cochlea in a single mammalian
species.

To obtain physiologically relevant data, measurements were performed at body
temperature (Johnson et al., 2005; 2010; Nouvian, 2007) and using the extracellular Ca*
concentration present in the perilymph surrounding the IHCs (1.3 mM: Wangemann and
Schacht, 1996). The physiological coupling between Ca®* influx and the synaptic machinery
was investigated from experiments in which exocytosis was recorded in the presence of
different intracellular concentrations of EGTA. This enables increases in intracellular Ca®" to
be buffered only relatively far away from its source and thus intercept Ca>" travelling within a
microdomain to the Ca®" sensor for exocytosis (Neher, 1998; Stanley, 2016). This is different
from the action of the Ca*" chelator BAPTA, which binds Ca*" more rapidly than the Ca**
sensor for exocytosis and as such is able to chelate Ca>" independently of the tightness of the
coupling between the Ca’" source and the exocytotic Ca®" sensor (Wang and Augustine,
2015). As such, synaptic coupling can be inferred by the different effectiveness of EGTA and
BAPTA in decoupling Ca?* channels from the Ca®>" sensor for exocytosis. Physiological

processes that are prevented by BAPTA but not by EGTA are mediated by a local or

10
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11

nanodomain coupling, while those that are blocked by both imply the presence of a longer
distance between the Ca®" source and its sensor (microdomain) (e.g. Adler et al., 1991, Borst
and Sakmann, 1996; Meinrenken et al., 2002; Fedchyshyn and Wang, 2005; Wang and

Augustine, 2015).

Frequency-dependent variation in the coupling of Ca’" influx and exocytosis
Calcium-dependent exocytosis was measured from IHCs (P20-P27) positioned in the
apical (low-frequency: CF ~0.35 kHz), middle (CF ~2.5 kHz) and basal (high-frequency: CF
~30 kHz) regions of the gerbil cochlea. Calcium currents (/c,) and corresponding ACy,
recordings from IHCs positioned along the gerbil cochlea are shown in Fig. 1. Recordings
were obtained in response to 50 ms depolarizing voltage steps (holding potential of -81 mV),
which allows the release of only vesicles docked at the active zones, resembling the readily
releasable pool (RRP), when performing experiments using physiological 1.3 mM
extracellular Ca>" at body temperature (see Fig. 2 and Johnson et al., 2005; 2010). The size of
Ic, was not significantly affected by the different concentrations of EGTA or by the position
of the IHC along the cochlea (Apical IHCs: 0.1 mM EGTA -141 £ 9 pA, n = 6; 10 mM
EGTA -176 = 18 pA, n = 8; Middle IHCs: 0.1 mM EGTA -122 + 21 pA, n = 6; 10 mM
EGTA -129 £ 9 pA, n =7; Basal IHCs: 0.1 mM EGTA -136 + 10 pA, n=13; 10 mM EGTA
-139 + 13 pA, n =10). This is consistent with previous findings showing that the size of /¢, in
apical and basal gerbil IHCs was unaffected by different concentrations of the intracellular
Ca*' buffer BAPTA (see Fig. 5 in Johnson et al., 2008). In 0.1 mM EGTA, AC,, was found to
be not significantly different in IHCs along the cochlea (p = 0.9, overall one-way ANOVA).
While in apical IHCs 10 mM EGTA did not significantly affect ACy, (9.6 + 1.0 fF, n = 8)

compared to 0.1 mM EGTA (10.5 = 0.8 fF, n =6, p = 0.1) (Fig. 1 A,D), the ability of the Ca*"

chelator EGTA to uncouple Ca®" influx and exocytosis greatly increased towards the high-
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frequency region of the gerbil cochlea. In the presence of 0.1 mM intracellular EGTA, the
size of the induced ACy, in THCs from the middle (19.1 + 2.1 fF, n = 6, Fig. 1B,E) and basal
(22.7 £ 3.9 fF, n = 13, Fig. 1C,F) cochlear regions were significantly larger (» < 0.005; p <
0.0001, respectively) than the values obtained when EGTA was increased to 10 mM (middle:
8.5+ 1.5 fF, n =17, Fig. 1B,E; basal: 1.3 £ 0.9 {fF, n = 10, Fig. 1C,F). In 10 mM EGTA, ACy,
was significantly (p < 0.001) smaller in basal and middle IHCs compared to apical cells. With
10 mM intracellular EGTA, the largely reduced or absent AC,, in middle and basal IHCs,
respectively, suggests the presence of a microdomain coupling between the Ca>* channels and
the Ca”" sensor for vesicle fusion. This finding is also supported by the fact that while the size
of AC,, in apical IHCs (0.1 mM EGTA: Fig. 1D) is comparable to that previously reported
using 1 mM intracellular EGTA (50 ms voltage step: Johnson et al., 2008), that measured in
basal IHCs (Fig. 1F) was in most cells larger despite the similar number of synaptic ribbons
per cell in the two regions (Johnson et al., 2009; Meyer et al., 2009). Since low frequency
IHCs seem to experience a nanodomain scenario, decreasing the concentration of EGTA from
1 mM (Johnson et al., 2008) to 0.1 mM (Fig. 1D) is unlikely to result in a different AC,.
However, the microdomain scenario in high-frequency THCs would allow Ca®" to travel
further when reducing the concentration of EGTA from 1 mM to 0.1 mM, and most likely
able to recruit a small part of the secondary releasable pool in some IHCs (see below).

In order to investigate whether the vesicle pool dynamics in high EGTA also varied as a
function of frequency position, we measured the rate of neurotransmitter release in gerbil
THCs (P18-P31) by measuring ACy, in response to depolarizing voltage steps to 11 mV of
varying duration (2 ms to 1.0 s: Fig. 2; inter-step interval was at least 11 s), which allowed us
to investigate the emptying of different synaptic vesicle pool populations. When using 1 mM
intracellular EGTA and 1.3 mM extracellular Ca2+, stimuli shorter than ~50 ms reveal the

RRP (see also Johnson et al., 2005; 2010). Longer steps induce the release of vesicles from a

12
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secondarily releasable pool (SRP) that is located further away from the Ca®" channels (frog:
Rutherford and Roberts, 2006; mouse: Moser and Beutner, 2000; gerbil: Johnson et al., 2008).
In 10 mM EGTA, the release from the SRP was almost completely abolished in all IHCs
investigated, irrespective of their cochlear location (apical: Fig. 24,D; middle: Fig. 2B.E;
basal: Fig. 2C,F), which is also in agreement with previous reports in mice (Moser and
Beutner, 2000) and lower vertebrates (Graydon et al., 2011). However, the release from the
RRP was differentially affected along the gerbil cochlea. In apical low-frequency IHCs (~0.35
kHz, Fig. 2G) the size of the isolated RRP in 10 mM EGTA (11.7 + 1.2 fF, n = 5) was not
significantly different from that obtained in 0.1 mM EGTA (18.0 £ 2.3 {fF, n =8, p = 0.07,
from fits to individual IHCs), as also shown in Fig. 14. The initial release rate was also
similar between the two recording conditions (0.1 mM EGTA: 817 £ 115 {F/s or 22074 +
3109 vesicles/s, n = 8; 10 mM EGTA: 596 + 129 fF/s or 16115 * 3493 vesicles/s,n =5, p =
0.2, from fits to individual IHCs: Fig. 2G). However, compared to 0.1 mM EGTA, 10 mM
EGTA largely reduced the release from the RRP in middle-coil IHCs (middle ~2.5 kHz: 0.1
mM EGTA 20.2 + 4.6 fF, n=5; 10 mM EGTA 7.1 £ 1.1 {F, n =6, p < 0.02, Fig. 2H) and
almost completely abolished it in basal cells (basal ~30 kHz: 0.1 mM EGTA 22.1 £ 1.4 {F, n
=6; in 10 mM EGTA the RRP could only be measured in 2 out of 11 THCs and was 2.4 + 0.1
fF, Fig. 2I). As for IHCs in the apical coil, the initial release rate in middle IHCs was also
similar between the two recording conditions (0.1 mM EGTA: 1000 = 101 fF/s or 27076 +
2754 vesicles/s, n = 5; 10 mM EGTA: 723 + 141 fF/s or 19558 + 3708 vesicles/s, n = 6, p =
0.2, from fits to individual IHCs).

Using perforated-patch recordings that preserve the endogenous intracellular Ca**
buffering, we found that the pool sizes and release kinetics of the RRP and SRP were
comparable between apical and basal cells in these physiological conditions (Fig. 3 4-C). We

have previously shown that the endogenous buffer concentration was similar between low-
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and high-frequency gerbil IHCs when expressed as an equivalent BAPTA concentration
(Johnson et al., 2008). However, when the AC,, values obtained in perforated patch were
extrapolated to those obtained using different concentrations of EGTA (Fig. 3 D), they
revealed a higher sensitivity to Ca®" buffering in high-frequency IHCs (~2.9 mM) compared
to low-frequency cells (~6.6 mM) (Fig. 3 D). However, this is not an indication of the
endogenous buffer in THCs but provides further evidence for a different exocytotic Ca*"

coupling of the RRP between apical and basal cells.

Calcium channel and vesicle coupling in high frequency mouse IHCs

In order to confirm that the different coupling between Ca®’ influx and exocytosis
observed in IHCs along the gerbil cochlea (Figs. 1-3) was due to the synaptic machinery
being specialised to detect different frequencies, we performed experiments in the mouse and
the bullfrog. Figure 44, B shows the maximal /c, and the corresponding AC;, recorded from
apical THCs of the mouse cochlea (~3.0 kHz) in the presence of either low (0.1 and 1 mM) or
high (5 mM and 10 mM) concentrations of intracellular EGTA, respectively. Note that the
apical coil of the mouse cochlea has a CF in the same range to that of the middle region of the
gerbil cochlea (~2.5 kHz: see Figs. 1 and 2). The data from 0.1 mM and 1 mM EGTA (Fig.
4) were pooled together because they produced overlapping results. Responses were obtained
using 50 ms depolarizing voltage steps (10 mV nominal increments) from -81 mV. The
maximal size of /¢, recorded in THCs (P15-P26) was not significantly different between low
(0.1 and 1 mM: =179 + 21 pA, n =5, Fig. 4C) and high EGTA (S mM: -115 + 7pA,n=3 or
10 mM: -139 = 11 pA, n = 5: Fig. 4D). However, the induced AC,, was significantly reduced
(overall: p < 0.002, one-way ANOVA) in the presence of 5 mM (6.4 + 0.8 fF, n =3, p <0.05
post-test) or 10 mM EGTA (2.0 £ 1 fF, n =5, p < 0.01 post-test) (Fig. 4D), compared to the

lower concentrations (0.1 & 1 mM EGTA: 16 = 3 {F, n = 6, Fig. 4C).
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The rate of neurotransmitter release in mouse IHCs (P19-P26) was studied by measuring
ACy, in response to depolarizing voltage steps of increasing duration as described for Fig. 2.
Voltage steps of up to about 50 ms (RRP) produced an increase in AC,, that could be
approximated with a single exponential (Fig. 4F). However, in the presence of 5 mM or 10
mM intracellular EGTA the largely reduced size of the RRP (as shown in Fig. 44,B) was also
associated with a significantly reduced initial release rate (5 mM: 374 + 33 {fF/s or 10112 +
877 vesicles/s, n =4, p < 0.05 post-test; 10 mM 203 £ 36 fF/s or 5500 £ 976 vesicles/s, n = 3,
p <0.01 post-test) compared to that measured in lower EGTA concentrations (614 + 75 fF/s
or 16589 + 2036 vesicles/s, n = 5: average from fit to single cells; overall: p < 0.005, one-way
ANOVA) (Fig. 4F). The SRP in high EGTA was almost absent (Fig. 4F). Considering that
the total number of ribbons per IHC is about twenty (Brandt et al., 2005; Mayer et al., 2009;
Zampini et al., 2010), the vesicle release rate per ribbon was about 829 vesicles/s (low EGTA)
506 vesicles/s (5 mM EGTA) and 275 vesicles/s (10 mM EGTA) vesicles/s. This reduced
exocytosis in mouse IHCs in the presence of high concentrations of EGTA has previously
been reported in young (P12-P14: Vincent et al., 2014) but not in more mature (>P14: Moser
and Beutner, 2000) cells using unphysiologically high extracellular Ca*" (5-10 mM) and room

temperature.

Calcium channel and vesicle coupling in low frequency tuned bullfrog hair cells

We next investigated I, and the corresponding ACy, in single hair cells from a semi-intact
adult bullfrog amphibian papilla preparation, which are tuned to a lower frequency range
(~400-500 Hz; Li et al., 2014), to examine the exocytotic Ca®* coupling. To measure Ic, and
ACy,, we stimulated the hair cells with voltage-clamp step depolarizations from -90 mV to
-30 mV for various durations (Fig. 54). A depolarization to -30 mV elicits the peak /c, in

bullfrog hair cells (Graydon et al., 2011). As the pulse duration increased so did the resulting
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ACy, (Fig. 54; see also Li et al., 2009). We compared AC,, in response to depolarizing pulses
with 2 mM and 10 mM intracellular EGTA (Fig. 54 and B). Depolarizing pulses shorter than
50 ms did not show any significant difference in AC,, between 2 mM and 10 mM EGTA
(unpaired t-test, P < 0.05; see also Graydon et al., 2011). However, ACy, was significantly
larger for 50 ms pulses (Fig. 5B). Our previous study shows that a pulse shorter than 50 ms
from -90 mV to -30 mV only triggers the RRP of hair cells, which includes about 700
vesicles per hair cell, or 12 vesicles per synaptic ribbon (Graydon et al., 2011). To confirm
this insensitivity of the RRP to EGTA, we compared ACy, in response to pulses of 20 ms and
500 ms with 0.1 mM, 2 mM and 10 mM intracellular EGTA (Fig. 5C,D). The average AC,, in
response to a 20 ms pulse was not significantly different with 0.1 mM (21.7 = 1.7 fF, n = 21),
2mM (17.8 £ 1.4 {F, n = 18), and 10 mM EGTA (17.4 £ 1.0 fF, n = 14, one-way ANOVA,
Fig. 5C). In contrast, different concentrations of intracellular EGTA significantly changed the
average ACy, in response to a 500 ms pulse (overall: p < 0.006, one-way ANOVA, Fig. 5D):
ACy, with 0.1 mM (203.8 + 34.8 fF, n = 16) which was significantly different from that with
10 mM EGTA (104.1 + 8.5 fF, n = 13, p < 0.05, post-test; Fig. 5A), although the AC,, with 2
mM (147.3 £ 9.1 {F, n = 34) was not significantly different from those with 0.1 mM and 10
mM EGTA (post-test). In summary, our data suggests that, in stark contrast to mouse high-
frequency IHCs (Fig. 4), the release of vesicles in the RRP from low-frequency hair cells is
relatively insensitive to the concentration of intracellular EGTA. However, for longer
depolarizing pulses of 50 ms and 500 ms we do find that release is significantly reduced by 10
mM EGTA. This suggests that during a longer depolarizing pulse the recruitment of vesicles
from a reserve pool is sensitive to global rises in intracellular free Ca®* and is thus sensitive to
the intracellular levels of EGTA. The RRP of amphibian papilla hair cells, which are tuned to

low frequency sound signals, is thus controlled by nanodomain Ca®" coupling.
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Paired-pulse responses in gerbil IHCs and bullfrog auditory hair cells

We investigated possible differences in the rate of AC,, recovery from gerbil IHCs (P18-
P27) positioned in the apical and basal cochlear regions by applying a two-pulse protocol in
which cells were depolarized to —11 mV for 50 ms, which recruited the RRP, while changing
the interpulse interval (IPT) from 10 ms up to 1.0 s (Fig. 64). Examples of ACy, recorded from
apical and basal THCs using the two-pulse protocol and in the presence of either 0.1 mM
EGTA or 10 mM EGTA are shown in Fig. 6B,C, respectively. The average AC,, ratio
(ACw/ACy'": see Fig. 64) from apical IHCs (0.1 mM EGTA, n = 12; 10 mM EGTA, n = 6)
was plotted against IPI and the data were well approximated with a single exponential
function (Fig. 6D). For basal THCs the average ACy, ratio in 0.1 mM EGTA showed an initial
depression at short intervals and then facilitation at around 100 ms (Fig. 6E; see also
Goutman and Glowatzki, 2011; Cho et al., 2011).

To study whether the concentration of EGTA can affect short-term plasticity at low-
frequency tuned hair cell synapses (tuned to ~400-500 Hz), we performed paired recordings
between adult bullfrog hair cells and their afferent fibres. We held presynaptic hair cells at
—60 mV, which is close to their physiological in vivo resting membrane potential (Crawford
and Fettiplace, 1980; Pitchford and Ashmore, 1987) and measured paired-pulse ratios of
EPSCs using 2 mM and 10 mM intracellular EGTA in the patch pipette of the hair cell (Fig.
7A4). Hair cells were stimulated by a pair of 20 ms depolarizing pulses from -60 mV to -30
mV with various interpulse intervals and EPSCs were recorded from the connected
postsynaptic afferent fibres (Fig. 74,B). The average amplitude of the first EPSC was not
significantly different with 2 mM (2504 = 307 pA, n = 20) and 10 mM EGTA (2582 + 499
PA, n =18, p = 0.89, unpaired #-test), showing that the RRP exocytosis released by 20 ms

pulses is insensitive to the concentration of EGTA. These results using AMPA receptor
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mediated EPSCs confirm our earlier results with AC,,, changes in hair cells held at -90 mV
(see Fig. 5A,C).

We next studied the changes in paired-pulse ratio under 2 mM and 10 mM EGTA. While
hair cells were held at -60 mV, the second EPSC was smaller than the first EPSC throughout
various interpulse intervals (from 3 ms to 4 s), showing a robust paired-pulse depression (Fig.
7A4,B). For short interpulse intervals such as 20 ms, this synapse shows very strong paired-
pulse depression and as the interpulse intervals get longer, paired-pulse depression recovers
(Fig. 74,B). This depression is not caused by AMPA receptor desensitization (Graydon et al.,
2014), and more likely reflects vesicle pool depletion (Cho et al., 2011). We examined
whether the enhanced level of EGTA can affect the recovery from paired-pulse depression.
The paired-pulse ratio (PPR) was calculated by the ratio of EPSC amplitudes (EPSC,/EPSC)).
With 2 mM intracellular EGTA, a double exponential function can fit the recovery of PPR
with fast (T; = 15 ms; 63 %) and slow (T, = 602 ms; 37 %) time constants (Fig. 7C; see also
Cho et al.,, 2011). When we increased the concentration of intracellular EGTA to 10 mM,
recovery of paired-pulse depression was delayed for both the fast (T, = 92 ms; 35%) and slow
(T, = 1161 ms; 65%) time constants. The median (weighted-mean) time constant increased
significantly from 232 ms with 2 mM EGTA to 787 ms with 10 mM EGTA. These data thus
indicate that recovery of paired-pulse depression is dependent on global intracellular Ca*"
levels within hair cells. This suggests again that the recruitment of vesicles from a reserve
vesicle pool to the RRP is sensitive to the intracellular levels of EGTA and, thus to the

intracellular free Ca*".

Exocytosis under physiological resting membrane potential in gerbil IHCs

The above experiments in mice and gerbils were performed using a resting holding

potential of -81 mV, which is commonly used for exocytosis (capacitance measurements)
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studies from hair cell ribbon synapses (mouse: Moser and Beutner, 2000; Johnson et al.,
2010; Wong et al., 2014; gerbil: Johnson et al., 2009; bullfrog: Li et al., 2009; Cho et al.,
2011). Since the estimated in vivo resting potential is likely to be around -50 mV for apical
and -60 mV for basal IHCs (Johnson et al., 2011; Johnson, 2015), and /¢, has been shown to
activate at around -60 mV (gerbils, Johnson et al., 2008), cells will be subjected to some
continuous Ca®" influx even at rest (see Materials and Methods). Therefore, we investigated
gerbil IHC (P19-P28) exocytosis and the coupling between Ca*’ influx and the RRP using the
more physiological resting membrane potentials (Fig. 8). For these experiments, | mM EGTA
was used as the intracellular Ca®>" buffer in apical and basal IHCs since it produces
comparable ACy, (Johnson et al., 2008) as those measured in perforated patch recordings (Fig.
8E) for both the RRP and SRP. This also allowed us to test the specific effect of the
theoretical in vivo membrane potential on the release and replenishment of the RRP. Despite
the different resting membrane potentials, the maximal /¢, (apical: -128 £ 13 pA, n = 7; basal:
-125 + 11 pA, n = 9) and the corresponding ACy, (apical: 10.5 + 1.1 {F; basal: 8.8 + 1.4 fF)
was similar between apical and basal IHCs (Fig. 84-D), as well as the size of the RRP (Fig.
8E). However, the rate of ACy, recovery during paired pulses was significantly faster in basal
(t=27 £ 11 ms, n = 6, from fits to single IHCs, p < 0.02) than in apical IHCs (r = 156 * 43
ms, n = 5). This is in line with our findings in the bullfrog showing that faster recovery
depends on the availability of global free intracellular Ca** present in a microdomain situation

(Fig. 7C).
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Discussion

Using physiological recording conditions, in terms of extracellular Ca®* level and body
temperature, we show that the coupling between Ca®" channels and the Ca®*-sensor for vesicle
fusion changes as a function of the cell’s frequency position. While low-frequency hair cells
(<~2 kHz), which phase-lock to sound, exhibit a nanodomain coupling between Ca”" channels
and Ca®" sensor, high-frequency cells have a looser coupling, which becomes progressively
more microdomain along the gerbil cochlea. We have also shown that the level of intracellular
Ca®" buffer affects the speed of recovery from paired-pulse depression. We propose that either
nanodomain or microdomain coupling is present in mature auditory hair cells, the function of
which is to preserve the precise temporal coding of sound in phase-locked low-frequency hair

cells and stimulus intensity in high-frequency cells, respectively.

Mechanisms of Ca* influx-secretion coupling in IHCs

A characteristic feature of the coupling between Ca>" entry and vesicle fusion at THC
ribbon synapses is the change in the Ca>* dependence of exocytosis from a high-order relation
in immature cells to linear in mature post-hearing cells (Brandt et al., 2005; Johnson et al.,
2005; 2008; 2010; Wong et al., 2014). However, such linearization in synaptic function only
occurs in mature high-frequency IHCs responding to sound frequencies above a few kHz
(Johnson et al., 2008; 2009), which encompasses the entire frequency range in the mouse
cochlea (~3-100 kHz: Greenwood, 1990) but only the middle and basal regions in the gerbil
(~0.1-60 kHz: Miiller, 1996). This exocytotic linearization implies that vesicle fusion scales
linearly with Ca®" entry, which in mature high-frequency IHCs has been proposed to depend
upon the developmental tightening of the spatial coupling between Ca>" channels and release
Ca’" sensors (Ca*"-nanodomain coupling: Brandt et al., 2005; Wong et al., 2014). In this

. 2+ . .
scenario, one or very few Ca”" channels are sufficient to govern the release of a nearby vesicle
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(Brandt et al., 2005; Zampini et al., 2013; Graydon et al., 2011). However, an alternative
hypothesis is that the linearization is due to developmental changes in the Ca®" sensor(s) that
affect the intrinsic Ca®" dependence of the synaptic machinery. Although otoferlin is the
major Ca’" sensor in IHCs (Roux et al., 2006; Safieddine et al., 2012), synaptotagmin IV is
essential for establishing the linear exocytotic Ca>* dependence (Johnson et al., 2010), which
could arise from its inability to bind Ca®" in the C2A domain (Siidhof, 2002). In this second
hypothesis, a Ca®"-microdomain coupling scenario could be postulated (Wang and Augustine,
2015). These two synaptic scenarios (i.e. nano- and micro-domain coupling) may in fact co-
exist within the same auditory organ, since low- and high-frequency IHCs are specialized to
emphasize mainly the phasic or sustained components of the cell's in vivo receptor potential,

respectively (Johnson, 2015).

Nano- versus micro-domain coupling at hair cell ribbon synapses

In squid giant synapses and mature calyx of Held synapses vesicle release is reduced more
effectively by BAPTA than by EGTA (Augustine et al., 1991; Fedchyshyn and Wang, 2005;
Chen et al., 2015; Nakamura et al., 2015), indicating a nanodomain coupling between Ca*"
channels and exocytotic Ca®" sensors at mature synapses. However, recent findings have
shown that mature hippocampal synapses can also operate via a loose coupling (Vyleta and
Jonas, 2014), challenging the view that Ca’"-microdomain mode of Ca>" signalling is only a
characteristic of immature synapses (e.g. Meinrenken et al., 2002; Fedchyshyn and Wang,
2005; Ledo and von Gersdorff, 2009; Wang and Augustine, 2015). Instead it suggests that the
vesicle release modality is optimized for specific functional requirements independent from
the stage of cell maturation.

Here we found that the RRP of low frequency hair cell ribbon synapses, in both the

mammalian cochlea (~350 Hz) and bull frog papilla (<1 kHz), were relatively insensitive to
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EGTA, whereas RRP release from IHCs responding above a few kHz was either largely
reduced (~2-3 kHz) or abolished (~30 kHz). This indicates that the spatial coupling between
Ca”" influx and exocytosis progressively changes along the gerbil auditory organ in order to
cover a wider hearing range (~0.1-60 kHz). Although it has previously been reported that the
RRP in mouse IHCs was insensitive to 5 mM EGTA (Moser and Beutner, 2000), perhaps due
to the use of high unphysiological extracellular Ca®’, paired recordings from IHCs and
auditory afferent fibres in the rat cochlea have demonstrated that the onset and rise time of the

EPSC was largely slowed by 10 mM EGTA (Goutman and Glowatzki, 2007).

Vesicle recruitment and the Ca2+-dependence of recovery from depression

We found that apical IHCs tuned to ~350 Hz in the gerbil recovered fully from paired-
pulse depression within ~200 ms for 50 ms depolarizing pulses and with 0.1 mM EGTA. This
recovery rate was slowed by 10 mM EGTA. Similar results were obtained in bullfrog hair
cells tuned to lower CF (400-500 Hz; Fig. 7C). The enhanced fast recovery of EPSCs with
lower Ca*" buffering may be due to the greater spread of Ca”" that speeds the replenishment
of vesicles to the ribbon (Van Hook et al., 2014). Recovery from paired-pulse depression was
even faster in basal gerbil IHCs (<100 ms), which is consistent with their microdomain
coupling. These recovery rates are extremely rapid when compared to that in retinal bipolar
cells, which also operate via ribbon synapses (Palmer et al., 2003). This rapid recovery may
be an evolutionary adaptation for hair cell ribbon synapses, which are specialised to detect

rapid sound signals with short gaps and encode these as firing patterns in the auditory nerve.

Ca’" influx-secretion coupling and hair cell receptor potential

The receptor potential of low-frequency IHCs (up to a few kHz) has a predominantly

phasic component that is phase-locked to the sound frequency and graded in size to the

22
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stimulation intensity (Dallos, 1985; Cheatham and Dallos, 1993). The localisation of low
frequency sound is accomplished by cells in the auditory brainstem that detect minute time
delays in the arrival of the phase-locked afferent activity originating from the two ears (~10
us: Grothe et al., 2010). Such a precise temporal coding has to be preserved at IHC ribbon
synapses and the nanodomain coupling scenario would guarantee rapid and reliable vesicle
fusion (Neher, 1998). In the low-frequency cochlear region, a nanodomain coupling would
also be required to explain why the time delay in vesicle fusion is similar at all levels of [HC
depolarization (i.e. stimulus intensity). This property is crucial for the accurate preservation of
stimulus timing at all sound intensities and has been suggested to be governed by the single
Ca’" channel properties of first latency and current amplitude (Magistretti et al., 2015). At
very low frequencies, the relatively slow depolarizing cycle will allow sufficient Ca** influx
to saturate the exocytotic Ca®" sensor even at low sound intensities. At higher frequencies (up
to ~2 kHz), but still within the limit for phase-locking, the reduced time for Ca*" influx into
IHCs is likely to be insufficient to trigger exocytosis; this could be overcome, in a
nanodomain scenario, by the elementary Ca”" tail currents, where the amplitude and speed of
the current is maximized and constant. Indeed, when sinusoidal stimuli of a few hundred Hz
were applied to rat IHCs or hair cells from the bullfrog papilla, afferent fibres responded with
large EPSCs that occurred more frequently during the repolarizing phase of the cycles
(Goutman, 2012; Li et al., 2014), which corresponded to the Ca*" tail currents.

The filtering characteristics of the hair cell membrane prevents phase-locking above ~2-3
kHz (Palmer and Russell, 1986), so receptor potentials are mainly graded and sustained to
represent sound intensity and stimulus envelope (Russell and Sellick, 1978). High frequency
sound localization is performed by cells that compare inter-aural level differences originating
from graded responses in >3 kHz IHCs of each ear (Caird and Klinke, 1983). Therefore, high-

frequency IHCs are not designed to follow the frequency components of sound, and as such

23
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do not require the precise timing provided by nanodomain coupling, which is likely to be
unsuitable for accurate intensity coding. Instead, the changes in the amplitude and kinetic
properties of the macroscopic /¢, with sound intensity are now more relevant (Magistretti et

al., 2015), which is more in line with a microdomain coupling reported in this study.

Damage due to loud sounds: why are basal IHCs more susceptible?

We found that high-frequency IHCs (especially those at ~30 kHz) exhibit a strong block of
exocytosis by 10 mM EGTA, indicating that these cells cannot have a large endogenous Ca"
buffering capacity, because it would severely impair transmitter release. This was confirmed
by the estimated intracellular Ca*" buffer expressed as an equivalent of EGTA concentration
(Fig. 3). Indeed, a triple knock-out mouse for different Ca**-binding proteins did not reveal
changes in synaptic sound encoding (Pangrsic et al., 2015), suggesting that high-frequency
IHCs may thus have a relatively low concentration of Ca*>* binding proteins. By contrast, low-
frequency tuned bullfrog hair cells have an estimated 8 mM of high-affinity Ca®"-binding sites
on small mobile proteins (e.g. parvalbumin and calbindin; Heller et al., 2002), suggesting that
their endogenous Ca”" buffering capacity may be more equivalent to 10 mM EGTA.

High-frequency hair cell synapses are also particularly vulnerable to damage during loud
noises and aging, which has been shown to lead to the loss of both IHC synaptic ribbons
(Kujawa and Liberman, 2009; Kujawa and Liberman, 2015) and low-spontaneous rate
afferent fibers (Furman et al., 2013). We thus propose that low-frequency IHCs may express
higher concentrations of Ca®" binding proteins, which will not block exocytosis, but may
confer neuroprotection against excessive Ca’" influx during prolonged stimulation. By
contrast, the low Ca”" buffer capacity in high-frequency basal IHCs, which is required for
their graded release, will make them more prone to Ca®-induced cytotoxicity. A tonotopic

gradient in Ca®" binding protein expression has been reported in auditory hair cells (Patel et
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1191 2 exocytosis in some animal species (Rutherford and Roberts, 2006; Patel et al., 2012; Schnee
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Figure Legends

Figure 1. Ca™* dependence of exocytosis in gerbil IHCs

A-C, Ic, and ACy, from apical (4: ~0.35 kHz), middle (B: ~2.5 kHz) and basal (C: ~30 kHz)
IHCs in the presence of 0.1 mM EGTA (left panel) and 10 mM EGTA (right panel).
Recordings were obtained in response to 50 ms voltage steps from the holding potential of
-81 mV to -11 mV. For clarity, only responses at -81 mV and -11 mV are shown. D-F,
Average peak I-V and AC.,-V curves in apical (D: 0.1 mM EGTA, P20-P21, n = 6; 10 mM
EGTA, P21-P27, n = 8), middle (E: 0.1 mM EGTA, P23-P24, n = 6; 10 mM EGTA, P23-P24,

n=7) and basal (F: 0.1 mM EGTA, P18-P27, n=13; 10 mM EGTA, P21-P27, n = 10) IHCs.

Figure 2. Kinetics of vesicle release in gerbil IHCs

A-C, AC,, from apical (4), middle (B) and basal (C) IHCs in the presence of 0.1 mM EGTA
(black traces) and 10 mM EGTA (grey traces). Recordings were obtained in response to
voltage steps from 2 ms to 1.0 s (to around -11 mV) elicit both the RRP and SRP. For clarity,
only a few responses are shown. D-F, Average AC,, obtained using the above protocol from
apical (D: 0.1 mM EGTA, n =8; 10 mM EGTA, n = 3), middle (E: 0.1 mM EGTA, n=15; 10
mM EGTA, n = 6) and basal (F: 0.1 mM EGTA, P18-P20, n = 6; 10 mM EGTA, P21-P31, n
= 11) IHCs revealing the SRP. G-I, Isolated RRP (first 50 ms expanded from D-F)
approximated with single exponential functions from the average data (apical, G: 0.1 mM
EGTA, maximum AC,, = 19.2 + 5.0 fF, T=31 £ 12 ms; 10 mM EGTA, AC,=11.1 £ 1.0 {F,
T=18 + 3 ms; middle, H: 0.1 mM EGTA, AC, = 19.9 £ 5.8 fF, T=25 £ 13 ms; 10 mM
EGTA, AC,,=7.9 + 1.3 fF, T=21 + 8 ms; basal, I: 0.1 mM EGTA, AC,=23.1 £ 5.7 fF, 1=

28 + 12 ms; 10 mM EGTA, data could not be fitted because AC,, was almost absent.
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Figure 3. Kinetics of vesicle release in endogenous Ca’" buffer from gerbil IHCs

A, AC,, from apical (black) and basal (grey) IHCs recorded with perforated patch.
Recordings were obtained as described in Fig. 2. For clarity, only a few responses are shown.
B, Average ACy, from apical (P37-P52, n = 4) and basal (P37-P60, n = 5) IHCs revealing the
RRP and SRP. C, Isolated RRP (first 50 ms expanded from B) approximated with single
exponential functions from the single data (apical, maximum ACy, = 11.6 = 1.8 fF, T=26 = 10
ms; basal, ACy,, = 12.2 + 3.2 fF, T=31 + 17 ms). D, The perforated-patch values of ACy, at 20
ms, a value that is well within the range of the RRP, were extrapolated (dotted lines) to those
obtained using different EGTA concentrations (data from Fig. 2). The | mM EGTA data are

from Johnson et al., 2008.

Figure 4. Ca”" currents and ACy, in mouse IHCs

A, B, Ic, (top panels) and ACy, (bottom panels) responses recorded from IHCs positioned in
the apical region (CF: ~3.0 kHz) of the mouse cochlea in the presence of low (0.1 & 1 mM)
and high (10 mM) concentrations of intracellular EGTA, respectively. Recordings were
obtained in response to 50 ms voltage steps from the holding potential of -81 mV to -11 mV.
C, D, Average peak current-voltage (I-V, bottom panel) and capacitance-voltage (AC-V, top
panel) curves from IHCs recorded in the presence of low and high intracellular EGTA,
respectively. E, Average ACy, in response to voltage steps from 2 ms to 1.0 s (to around -11
mV) showing the RRP and SRP. F, RRP (first 50 ms expanded from panel E) approximated
with single exponential functions for the difference concentrations of EGTA used (0.1 & 1
mM: maximum AC, =164 + 34 fF, T=32+10ms; 10 mM: AC,=3.4+04fF, T=17+2
ms). The available RRP (see text) was calculated using a conversion factor of 37 aF/vesicle

(Lenzi et al., 1999).
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Figure 5. Ca** currents and ACy, in bullfrog hair cells tuned to ~ 400-500 Hz sound
signals

A, Calcium current (/c,) and membrane capacitance (C,,) were measured while hair cells were
depolarized from a holding potential of -90 mV to -30 mV for 20 ms (black), 100 ms (grey),
and 500 ms (light grey) with 0.1 mM (left), 2 mM (middle), and 10 mM of intracellular
EGTA (right). Note the change in vertical scales for the C,, data and the large AC,, jump
(exocytosis) produced by 500 ms depolarizing pulses when 0.1 mM EGTA is used in the
patch pipette internal solution. B, Average ACy, in response to voltage steps from 2 ms to 50
ms with 2 mM (black) and 10 mM EGTA (grey). The depolarization of 50 ms from -90 mV
to -30 mV only showed significant difference of AC,, between 2 mM and 10 mM EGTA
(asterisk, unpaired t-test, p < 0.05). Data modified from Graydon et al., 2011. C, Comparison
of ACy, in response to voltage steps of 20 ms from -90 mV to -30 mV using 0.1 mM (light
grey, n =27,21.7 + 1.7 {fF), 2 mM (black, n = 18, 17.8 + 1.4 {F), and 10 mM (grey, n = 14,
17.4 £ 1.0 fF) of EGTA. AC,, was measured after 4 minutes since the break-in. One-way
ANOVA did not show significant difference (p = 0.098). D, Comparison of ACy, in response
to voltage steps of 500 ms pulse from -90 mV to -30 mV using 0.1 mM (light grey, n = 16,
203.8 & 34.8 fF), 2 mM (black, n = 34, 147.3 £ 9.1 {F), and 10 mM (grey, n = 13, 104.1 £ 8.5
fF) of EGTA. The ACy, jump was measured after 4 minutes from whole-cell break-in to allow
for the full diffusion of EGTA into the hair cell. One-way ANOVA followed the Bonferroni

test that showed significant difference (overall: p = 0.006).

Figure 6. Rate of ACy, recovery in gerbil IHCs.
A, Schematic diagram of the paired-pulse protocol used to stimulate IHCs. AC;, was elicited
in response to 50 ms depolarizing voltage steps to —11 mV (holding potential of —81 mV) at

time 0 and varying the interpulse interval (IPI =10 ms, 20 ms, 40 ms, 100ms 200 ms, 500 ms,
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1s) after the initial step. B, C, Ic, and AC,, from apical (B: ~0.35 kHz) and basal (C: ~30 kHz)
THCs in the presence of 0.1 mM EGTA (black) and 10 mM EGTA (grey). Voltage protocol is
as shown in panel A. D, E, Average ACy, ratio (ACpn 7ACy " see panel A) from apical (D) and
basal (E) IHCs. In apical IHCs (D), the data were plotted against IPI and fitted with a single
exponential function (0.1 mM EGTA, 7, =42.1 £ 8.1 ms, n = 12; 10 mM EGTA, 7, = 75.1 £
17.1 ms, n = 6; significantly different at p < 0.0005). Basal IHCs showed an initial facilitation
followed by a decline (E). In panel E the data from 10 mM EGTA were omitted because AC},
was almost absent (see panel C), which made it difficult to measure ACy, 14g06 ' ratio with

accuracy.

Figure 7. Recovery from paired-pulse depression at bullfrog hair cell synapses is
significantly slower with 10 mM EGTA.

A, B, EPSCs evoked by two depolarizing pulses where obtained by paired recordings from an
afferent fibre and an amphibian papilla bullfrog hair cell. The hair cell was depolarized from
-60 mV to -30 mV for 20 ms (black bars) with various interpulse intervals (20, 50, 200 and
500 ms). The intracellular Ca** buffer of the hair cells was 2 mM EGTA (4) or 10 mM EGTA
(B). Note that the first depolarizing pulse still evokes a large phasic EPSC (EPSC,) when 10
mM EGTA is present in the hair cell. However, the recovery of the phasic component of the
second EPSC (EPSC,) was significantly slower with 10 mM EGTA. C, Summary of the
paired pulse ratio (EPSC,/EPSC;) recovery time course. Two EPSCs were evoked by
depolarizing hair cells using a pair of 20 ms pulse with various interpulse intervals. 2 mM
(black, n = 4-9 pairs) and 10 mM EGTA (grey, n = 5-8) were used as intracellular calcium
buffers within hair cells. All the EPSCs were measured after 4 minutes from the whole-cell
break-in to allow for full dialysis with EGTA. Data with 2 mM EGTA were modified from

Cho et al., 2011. Paired-pulse ratio (PPR) with 20, 50, 100, 200 and 500 ms interpulse
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intervals were significantly different between 2 mM EGTA and 10 mM EGTA (* p <0.05, **

p <0.01, unpaired t-test).

Figure 8. Exocytosis in gerbil IHCs under in vivo resting membrane potential.

A, B, Ic, and AC,, from apical (4) and basal (B) IHCs in the presence of 1 mM EGTA in the
intracellular solution. Voltage protocol is as described in Fig. 1 apart from the holding
membrane potential that was =51 mV for apical and -61 mV for basal IHCs. For clarity, only
responses at the resting membrane potential and the peak of Ic, (-11 mV) are shown. C, D,
Average peak [-V and AC,,-V curves in apical (C: P19-P28, n = 7) and basal (D: P19-P28, n =
9) IHCs. E, Average ACy, from apical (black: P19-P28, n = 7) and basal (grey: P19-P28, n =
5) IHCs obtained in response to voltage steps from 2 ms to 100 s (to -11 mV). Note that
voltage steps up to 50 ms could be fitted by a single exponential function, which reveals the
RRP, and values were: apical, maximum ACy,, = 40.1 + 14.9 fF, T=81 + 38 ms; basal, ACy, =
25.6 £ 10.5 fF, T = 86 + 42 ms. Voltage step to 100 ms were able to additionally recruit the
SRP. F, Average ACy, ratio (ACp 7ACy " see Fig. 64) from apical (black) and basal (grey)
IHC:s elicited in response to 50 ms depolarizing voltage steps to —11 mV (holding potential of
=51 mV for apical and =61 mV for basal I[HCs) at time 0 and varying the interpulse interval
(IPI) between 10 ms and 1s after the initial step. Data were well fitted with a single

exponential function.
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