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Abstract

Additive manufacturing (AM) or 3D printing, as an enabling technology for massmisation or
personalization, has been developed rapidly in recent wamieus designtools, materials, machines
and service bureawean be found ithe marketClearly, thechoices arabundantbut users can be easily
confusdas to which AMprocesghey should useThis paperfirst reviews the existing multttribute
decisionmaking methodg$or AM process selection arassessetheir suitabilitywith regards tawo
aspects,preference ratingflexibility and performance evaluatiorbjectivity We proposethat an
approachhat is capable diandling incompletattributeinformationand objective assessment virith
inherent data has advantages over other appradgassd on ti$ proposition, this paper proposes a
weightedpreference graph method fpersonalizegreference evaluatipand arough set based fuzzy
axiomatic design approach fperformance evaluaticandthe selection ofippropriateAM proceses
An example based othe previous research worsf AM machine selectioris given to validate its

robustnes$or the priori articulation oAM processelectiondecisionsupport.

Keywords: rough set, fuzzy axiomatic desigmeference grapmulti-attributedecision making, relative

importancerating, additive manufacturing
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Nomenclature

AD Axiomatic Design

AHP Analytic Hierarchy Process

AM Additive Manufacturing

ASTM American Society for Testing amdaterials

CAD ComputerAided Design

DSP Decision Support Problem

DNP DEMATEL based Network Process

FR Functional Requirement

FSE Fuzzy Synthetic Evaluation

GRA Grey Relational Analysis

GT&MA Graph Theory and Matrix Approach

MADM Multi-Attribute DecisionMaking

MOORA Multi-Objective Optimization on the basis of Ratio Analysis
PG Preferencé&sraph

PROMETHEE Preferenc&kanking Organisation Method for Enrichment Evaluations
RIR Relative Importance Rating

SMART Simple Multi Attribute Ratingrechnique

STL STereoLithography

TFN Triangular Fuzzy Number

TOPSIS Technique for Order of Preference by Similarity to Ideal Smtuti
TRN Triangular Rough Number

U-sDSP Utility -based Selection Decision Supperoblem

1. Introduction

Additive manufacturing (AM), also known as 3D printing, creategsigial objects from a
geometrical representation by successive addition of maf&}iarhis prevailing fabrication process,
first became available in 1987, generally begins with a STereolithbyg (STL) file that describes a 3D
model created by a Computgided Design (CAD) system. Its flourish a&tributed tothe unique
capabilities of tfs process such as complex geometry production, integratedidieseamd elimination
of many conventional manufacturing constraifs Besides, it potentially provides huge benefits in
terms of reducing manufacturing costs, shorten product developmerggarandimproved qality of
end product$3]. It has been claimed that AM technologies can reduce up to 70%t@ntbdecrease
the timeto-market by 90%4]. Since its emergence, AM has been exploitedariousmanufacturing
areassuch as automotive, aerospaekectronicandustries, anddomains such as medicine, education,

architecture, cartography, toys and entertainment.



According to American Society for Testing and MateriglaSTM) Standard F292 [5], AM
technologiescan be classified into seven groups: binder jetting, directed enepggitien, material
extrusion, material jetting, powder bed fusion, sheet lamination apth@&tpolymerizationNowadays,
more than one thousamudustrial AM machinesnd materials have been identified in the maj&kt
Each machine, material and system has its own streagthémitationg7]. It is unable foranend user
to keep track o#ll the available choicasorto beaware otthe process capabilitieg each systenflso,
due to the variety of each product's complexity, the manufacturability &f A&tprocess should be
evaluated properly beforehafftl9]. Nevertheless,uk to the lack of experience and knowledggers
frequently face the problem to select the most appropkMtprocess to meet their specific réiguments
[3]. Therefore, a intelligentselection tool becomes critical fire enduser to seleca propemachine
or technoloy that isadequatdor his ownneeds

Aiming to provide an effective tool for AM process selectitis work proposea novel weighted
rough set based fuzzy axiomatic design (AD) approach. The paper is odgasif@lows: Section 2
gives a comprehensive review of the existimgti-attribute decision makindMADM ) methods for AM
process selection based on two aspeotfepnce rating and performance evaluation. Section 3 proposes
a novel method for AM process selectidfeightedpreference graph (PG) methodigroducedfor
personalizedpreference rating, and rough set based fuzzymd@hod is proposed fqrerformance
evaluation and the final custorregntric decision makingSection 4 outlines the procedures of the
proposed AM processelection To validate the method, Sectiogives an illustrative examplEased on

previous worksConclusiors and future work argiven in Section 6

2. Review of MADM methodsfor AM process selection

Table 1 gives an overvieaf someexisting research oADM methods for AM process selection.
The typical approach, preference evaluatigrerformance evaluation and output of each work are
summarised respectively. We assume thiaal the MADM ranking methodgreference evaluation and
performance evaluation are the most critical factors in selecting theapmsipriate AM pocess, which

arethereforereviewed and compared in the followipart.

2.1 Performage evaluation

Performance evaluation stands for collecting and assessrggpability information about AM
processedn order to determine the performandeterministic values are required in MADM methods
[7], which is quite challengingince the performance is influenced by various factors suclatesiats,
parameters, theoadition of the machine, etc. Also, fsomequalitativeattributes such as cost and build

time, the inherent vagueness and uncertainty make quantitativetmratlifiicult to achievd3]. In this



case, fuzzy set theory has been widely adoptexdnwert the qualitative evaluation into deterministic
values(Table ). Grey set theory has also been propd&6f However, fuzzy arithmetic operation has
its own limitations. First, it may result in thelargement of its fuzzy intervajg1,12] and accordingly
affecs the decisiormaking analysis. Secolyd the membership function selection is challenging for the
pefformance ofafuzzy systemasit is usually determined based on engineers’ experience antibimtui
subjectively[13]. Unlike fuzzy set theory which defis a set by a partial membership without clear
boundary, the rough set theory utilizes the boundary region of a sqiresgxaguene$$4,12] Also,
there is no need for it to require any external or additional subjectiveniafion to analse datg15,14],
which givedts objectivity. Moreover, rough set theory is suitablesimaltsized data set which statistical

methods are natvailable[16,12]



Tablel

Review of MADM method and theipreference evaluation, performance evaluation and output inrAbkgs selection

Preference evaluation Performance evaluation Output
Author, year M ethod ——
Weighting
Input effort Typeof value | Data source
approach
Mahesh et al. [17] Fuzzy logic - Q1
Zhang et al. [18] Knowledge_ value -
measuring
Wang et al. [19] GRA
. Novel modified B
Vahdani et al. [20] TOPSIS Q1&Q2
Chakraborty [21] MOORA
Ic [22] TOPSIS .
Very low (weighting values or Uniform
Mahapatra, Panda [10] GRA goal values) S E
distribution .
Khrais et al. [23] Fuzzy reasoning Direct t Q2 E Ijan:mg i‘ scorés &
- — assignmen urther information
Chuk, Thomson [24] Weighted c_:ntena \%
evaluation
Jones, Campbell [25 Weighted rating B&V
Roberson et al. [26] Proposed ranking Q1 B
system
Ghazy [27] SMART -
Munguia et al. [28] fuzzy inference Low (weighting values and goa V&E
Integrated decision
Zhang, Bernard9] making model values) Ql1&Q2 -
Byun, Lee [7] Modified TOPSIS Q1 &Q2 B
Slightly low (Pairwise Pairwise
Lan* et al. [30] FSE comparisons of weighting) comparison QL& Q2 E




curve for each attribute, weightin
values and goal values)

g

Armillotta [31] AHP Q2 V&E
Lokesh, Jain [32] AHP Q2 E
Rao, Padmanabhan [33] GT&MA Q1 & Q2 B
i Medium (Pairwise comparisons of
Wilson, Rosen [34] Selection DSP _( . P Q1 -
&interval analysis weightingand lottery)
Slightly high (Pairwise
Liao et al. [35] DNP & VIKOR comparisons of weighting and Q2 E
interdependencies)
High (Pairwise comparisons of
Improved weighting and indifference
Venkata Rao, Patel [36 1&Q2 B
[36] PROMETHEE thresholds, preference curve QL &Q
shape and parameters)
Very high (lowest and highest
acceptable values, monaioity . .
Direct Uniform
Fernandez et al. [37] U-sDSP and curvature of the preference . o -
assignment distribution

*Note: Q1 stands foQuantitative data Q2 stands foQualitative data E stands foExpert and engineer experiendg stands foBenchmarkingV stands foVendor’s

documents




2.2 Preference evaluation

For preference evaluation, the major tadloiguide the user to deciden the relative importance of
different attributes. Two kinds ahethod have beerwidely used:direct assignmenand pairwise
comparison(Table 1). Indirect assignmenta user can directly evaluate the relative importance of one
attribute ovetheothers in a certain scdl22]. The process iguitesimpleand straightforwartut it can
be hard for usetto chooseheproper valuesTheytend to rate almost every attribute as impoifta®39]
with the highest possible scores. Also, since the priority imskmewhatependable on the type of
scales used, there is low robustness in the variation of casdalal valuef39]. To make the weighting
processmore reasonabli®r the user, thepairwise comparisomethodis adoptedHowever,uses need
to provide a comparison for every pair of attributes, whichiregoo muchelaboraténformation from
themand sometimes beyortideir knowledge capabilitylt will probably result in inconsistency among
the comparisonsTherefore it is unrealistic to undertake this method with many AM atteisuby

expecing uses to provide much regtitious information accurate[#0,41]

3. Weighted rough set based fuzzy AD method

Based on the above review, two important criteria in evaluating the mustpajpte AM process
selection hae been derived:

1) Obijectivity ofimpreciseperformance evaluation. That is, therformancesvaluation process
should involvdess human or designers subjeciiverpretation

2) Flexibility and usabilityof preference evaluatioithe peference evaluation process should be
flexible enough(e.g. vague expressiar incompleteuser informatiop and user friendlyto
match with real life situations.

Aiming to improve the existing methods by emphasizing these two criteria, thisnsproposs

two methods to deal with performance evaluation and preferencagealvespectively.

3.1 Rough set based fuzzy AD methimd performancesvaluation

3.1.1 Basic notiowf fuzzy AD

AD was first proposed by SUyk2] to guideengineering designs. ¢tan be applied to all design
activities by theprovided systematic design framework with methodology. The mgsirtant concept
of AD is the existence of two axion#2]:

“The Independence Axiom: Maintain the independence of functionateeggits (FRS).



The Information Axiom: Minimize the information content.”

For thelnformation Axiomit states that among each design solution that sstitfielndependence
Axiom the one with smallestmount ofinformationis the besf43].

In fuzzy casesgccording to Kulak and Kahramd#], the vague data can be linguistic terms, fuzzy
sets, or fuzzy number3he linguistic termseedto be transformed into fuzzy numbers fiestd crisp
values are assigned to them subsequently for further evaluatiothe vague information, thean be
well defined by thdriangular fuzzy numbers (TFNsas shown irFig. 1, and thus, the information

contentis calculated al5,44}

1)

I ~log TFN of System Desig
' z Common Area

wherel; stands for the information content of tifeattribute “TFN of systemdesigri is the system
designcapability rangeoy TFNs ratings; TFN of design range” stands for the designevsluation
rangeof theFRsby TFNSs ratingstheir overlappingareais wherethe acceptable solution exisknown
as the “common aregdndthe “degree of membership functiontlicateshe probabilities of achieving

theFRs

——Design Range ——System Range

=
o

TFN of 'D'esign
Range

o
o

g
fo}
|

Common Area

<
>

TFN of System
Range

e
o

Degree of Membership f(x)

e
=}

Rating scale

Fig.1. TFN baseduzzy AD methodderived from[46]).

Though fuzzy AD method has been widely used in various engineeringdisldas: advanced
manufacturing systerngomparison [44] transportation companiesvaluation[45], and shipyards
selection47], neverthelesshe selection ofuzzy membership functioria all existingcase studies are

determinedby designers subjective[¢6].

3.1.2Triangular Rough Numbers

Due to the subjectiveelection of fuzzy membership functions, boeindary intervalsf fuzzy set



based method will be enlarged correspondingtyd thus affects the final decision of selecting the
proper AM procesdAiming to solve this problem, thgapemproposes a triangait rough number (TRN)
basedapproachlt takes advantages of rough set based method, i.e. rough number toethbdnce
the MADM of AM processsselection

Definition. Assume there is a settlasses ofisers’ perceptions], P = (M1, My, ..., M;) ordered

in a sequence dfl; <M, < ...< My. U is the universe consisting of all the objects ¥nslan arbitrary
object ofU, then for any claskl; € P, 1 =] = n,the lower and upper approximationMf [11,12]are

defined as:

Lower approximation:

Apr(M;)=u{Ye U/ (V)< Gf; 2)
Upper approximation:

Apr(M;)=ufYe Ul P(Y)> M; ©
Thus the vagueness afserperceptionM; can berepresentedby a rough number defined by its

lower and upper lims.

Lower limit:

Lim(M, ) =<~ S P(Y)1 Y _Ap( V); @
Upper limit: L

Tm(M,) =X P(Y)I Y Ap( M); ©)

where N and Ny are thecount of objectdncludedin the lower and upper approximation wéer
perceptiorM;, respectively.
Hence, the membershipnction of userperceptionM; can be represented by its lower linpt €

0), M itself (pi = 1) and its upper limitg; = 0) [46] in a proposed TRN saghich defined as:

TRNS G)=(_Lin{ ). ¢ Tt ) ©

Users’ vagueassessmentsn the attributes being considered in AM proessglection are first
transbrmedinto crisp numbers b$-9 rating scale, as shown in Table 2. Then, they are calculated into
rough numbes based on E@2) to (5). The membership functions are determined by the crisp numbers
(the numbers predefined in a rating scale) and their resubiagih numberbased on Eq6), other than
designer’s subjective selectiphb]. For example, designensgueevaluation of attributduild time
from A, B, C, D machinés low (3), slightly low (4), high (7), medium (5), pestively Then, based on
Eq. @) to (6), the TRNs of each machine ald&®Nx (3, 3, 4.75), TRB(3.5, 4, 5.33), TRN(4.75,7, 7),
TRNb (4, 5, 6).As TRNs are defined by its inherent data other than desigdsjgctive interpretations,
the proposed methddres better thanTFNs based methobly processing linguistic assessments more

objectively



Table 2
The ratings of attributes on majaM systemg7]

A R S E C B
SLA3500 120 6.5 65 5 VH M
SLS2500 150 125 40 8.5 VH M
FDM8000 125 21 30 10 H VH
LOM1015 185 20 25 10 SH SL
Quadra 95 3.5 30 6 VH SL
7402 600 155 5 1 VVL VL

*Note: A: accuracyyn), R: surface roughnessgnt), S: tensile strengtiMPa), E: elongation %), C:
cost of the part, B: build time of the part.

3.1.3TRNSs bhased fuzzy AD method

In order to determine the most appropriate AM procesau$es’ expectation, the Information
Axiom is utilized to calculate the information content of each attribigedaruses’ acceptable values

(system range) and the pamhance evaluation (design rangelg. 2).

—Design Range —System Range
1.0
B TRN of Design Range /\
208 ™
: N/
g
é 0.6 Common Area
z \/ M
= 0.4
P TRN of System Range \/
g o2 /\
0.0 T . . . T ‘
0 1 2 3 4 5 ] g 8 9
Rating scale

Fig.2. TRNbaseduzzy AD method

In Fig. 2, the horizontal axis represeiierating scalef 1 to 9, and the vertical axis stands for the
membership functions of the corresponding AM attributdus,according to Eq.1), the information

contentis calculated as

I = log TRNSs of $stem Rang 7)
! 2 Common Area

The acceptable solution exists in the “common area” where the adoayesroverlaplhe larger the

common area is, the more appropriate AM process is



3.2 WeightedPG method fopreference evaluation

Preference orderingrovidesa straightforward method in ranking timelividual preferences athe
AM process attributegOther than the dire@ssignment and the pairwise comparison approaches, it
represents a good compromise between simplicity diabitéey of user’'s input data, especially when
user’sprioritizing is doubtful,the preference ordering definitely moreintuitive thanthat of weights
[48]. Moreover, h order to be flexible, preference orderisigouldinclude thecases ofindifference
relationship(i.e. equal importance) among attributes and the possibility of omittingranere attributes
[49].

PG, as one of the preference ordering methadss firstproposedoy Nahm and Ishikaw§b0], it
was utilized to determine the priorities udes’ imprecise judgment (or perception) on the importance
of requirements. As a group decisioraking method, the PG method enahisss to make incomplete
or partial comparisonbetween eachequirements, thus reducteir input effort. Useis only need to
specify the preferencerderthat they clearly know initially41], which is closeto real life caseDespite
its usability and flexibility however the determination of preference weights is only by summing up all
the dominant numberbased on the ranking positions, whidnnot show the relative strong or weak
relationship among attributes in actual operati®esides, the PG method only depicts the dominant
relationship among attributes, which did not tatdifferene relationship into consideration.

In order to adapPG method into personalized AM process selectimreflexibly andaccurately,
this work enhancgthe original method by considering eaciseis preferenceas an individuahndby
takingindifference relationship into consideratidoreover Simas’ method51] is adopted and revised

in determining the weightsf vectorsin user’s preference ordering

3.2.1 Definition

Assume thatN AM attributes have been identified based user M’s requiremerg, which are
denoted ad\ttribute 1, Attribute 2;--, Attribute n,---, Attribute N respectivelyM is asked to make a
preference ordering amowiifferent attributes by defininfpur caseg1<i,j <N ):
(1) Attribute jdominate Attribute i, which is represented asvector fromAttribute i pointing to
Attribute j(e.g. the vector in betweéttribute 1 and 2n Fig. 3).

(2) Attribute jis indifference withAttribute i. which is represented as@&qualsetEx {i, j} (e.g.
Attribute 2 and 3n Fig. 3) whichk stands for thé&th equal set.

(3) Attribute jis and Attribute i. has dominance relationship with other attributes, while no
relationship between themselves, which is represenfad@saparableattributes(e.g.Attribute
2, 3andAttribute4 in Fig. 3)

(4) Attribute i and atribute j are omitted, which is represented as a separat® $etj} (e.g.



Attribute 7in Fig. 3

AM Attribute 1
AM Attribute 2 ]
—@0— AM Attribute 6
AM Attribute 3
AM Attribute 4
. | AM Attribute 7
AM Attribute 5 @ stands for white cards

Fig.3. An example of P@ased preference rating

Thus,the PG expressed by usdican be denoted &Gy in a hierarchical bottorap mannerfrom
the least importardattributesin the lowest leve(Position J up to the most important ones

Let PGu be an adjeency matrix for the PG arilibe a positive integaepresenting the number of
elements in seD. Then, the entrpg; (i, j= 1, 2, n, -, N-O) of PG&"o gives the number dfl-O

stage dominances obverj, the dominance matriRy is given as follows:

D, =PG, + PG +...PG, +...PG“ (8)
The sum of the entrieg in row i of the dominance matrix means the total number of ways that
dominant one, two, ..N—K stageg41,52] The(N-K-1) stage dominances are calculated®@rin this
case.Suppose that Fig. 3 is thG that useiM presented. It shows, for example, tiathink Attribute
1is more important thaAttribute 2 and Attribute 3, not knowing the relationship betwegtiribute
2 and Attribute 3Following this manner, user can intuitively geneR@that represent partial orderings

of AM attributes regarding the relative importance based dn dlan preferences, and thus both the

PGwm and thedominance matrif,, is represented as:

(9)

O O O O o o
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Thus, di, =5, d, =2, d}, =0, dy, =1, d}, =0, d, =0, which means thattribute lis

the most important attribute which dominated in 5 ways, anordicgly, Attribute 2is dominated in 2
ways;Attribute 3is dominated in O wayAttribute 4is dominated in 1 wayAttribute 5is dominated in
0 way; Attribute 6is dominated in Qvay. If any attribute has no dominance relationship with other

attributes, e.gAttribute 7, whichis ‘not applicable’ anavill not be tken into further calculation.

3.2.2Determination of normalized weights

Simes’ “cardplaying’ method[51] and its revised methd83] providea simple and straightforward
approachor multi-criteria decision aiding, andlias been successfully utilized in many casash as
material selectiofib4], green bridge rating systeBb] and etcDespitetheir advantages, however, the
operation is based on the assumption that all the attributes (or critemidje ordered in a preference
sequence by a certain amount of subsets. It neglgotsituations: 1) some attributes are omittechiy t
user due todck of knowledge; 2) thancomparable attributesvhich users cannot determine their
dominant relationshipThese problems occurraqliite often in he AM process selection, as various
technologies, materials, parameters, machines and etc. (as illustratedbin Bemteprovided and users
are incapable to manageAiming at this a novelveighted PG method is proposed based on the previous
reseach.

In a PG case, each vector is performeadging “white cards”, i.e. ranking positions in a bottom
up manner, respectively. The “white card” stands for the differenceeopuosference between the two
attributes, and the more of cards, the greatézréifice liesAlso, the lowest level is defined Besition
0. For example, in Fig3, userM putsone“white cards” in the vector betwedkitribute 2 and 6Since
Attribute 6is in the lowest level ofosition Q thus, Attribute 2s in Position 2 correspondingly
Following this mannerthe position of each attribute can be calculated by summing ugeadlaminant
attributes’ positions

P, = Nf(P“jl +WG +1), wherepg = 1 (11)

j=1

where Phi,I represents thigh Attribute’s ranking positionWG stands for the number dfhite card” in



betweenAttribute j and i The equation satisfies only when there is a vgudting fromAttribute ito

Attribute j. Thus, the ranking positiosetof N-K attributes can be denoted as:
P.=[R R . B . B (12)

In order to calculate the normalized weightach attribute, each ranking position is added by 1,

and thugAttribute i can be calculated by:

i P, +1

Wi = ——
> (Ri+1)
=1

(13)

anduserM'’s preference rating can be described as a vector:

RIR,=(W,, W, .. W*, .. 0 (14)

Thus, for the above examplehig. 3, userM’s preference ratings are:

RIRMZ(O.57, 0.14, 0.11, 0.11, 0.04, 0.04,) (15)

One claim is thathe proposed weighted PG method can be utilized as an initial tool for
determining the ratings of preference ordering with limited userrmtion, such as omitted attributes,
incomparable attributes etc. When the selection procedgesvand uses capabilitygrows, other

existing methods (e.g. revised Simos’ approach or AHPgphance or replace it with more accuracy

4. Proceduresof proposed AM process selection method

Fig. 4 depicts the proposed methéat AM process selection. ltonsists of six stepsicluding
preference rating, performance evaluation and the final weighted ranldnly. Fep is described in

detailsas follows:



Step 1

Collection of AM
attributes

A4
Performance
evaluation Step 2

Yes
TRNs rating
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Attributes performance
benchmarking

v Step 3
User preference |
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| |
v

Final weighted
ranking

e

Fig.4. Flow chart of proposed method for AM process selection

Step 6

Step 1: Collection of AMerformanceattributes

The collection of related attributes can be achiewadhly by four ways:

1) Vendor documentBasic information, such as build envelope, layer thickness, resolution,
accuracy, materials and so forth is oftevegiin datasheets by the equipment manufacturers.

2) Expert and engineer experientdsing questionnaires to collect information from experts and
engineers and capture their accumulated process knowledge is a populacta3;8632].
However, most of theinformation derived from experts and engineers is vague and
incomputable and therefore there is a need to translate ftunterical values.

3) BenchmarkingBenchmarking plays a significant role in AM process evalugdh@j. The
results from testing are more persuasive than otheris from benchmarking could be

more reliable and persuasive, but this approach may becom®iming and expensiyg].



4) Mathematical modellingSome attributes (e.g. build time and cost) are influences$grted
factors and contingent on specific cases. Linguistic values can be usegrésseshe
comparative performance of each alternative which is in vagueness. Theredtrematic
modelsare used to tackle this issue anddels need to be comprehensive and accurate enough

to reflect the real situation.

Step 2: AMattributes performance evaluation

Precisely descriimg the performance of AM processes idig challenge. The performance is
influenced by assorted factors including materials, proceasngders, posprocessing, the condition of
the machine, the ambience of the machine, etc. By varying these fadtifferent performance can be
achieved eg. high precision in low speed or high speed with low preciskurthermore, the
performance cannot be well controlled even under the same combinationuBpradictable factors,
such as ambient temperature, nozzle jam in material extrusion procesgestanel size of powder
materials, have impacts on the performance as well. The heterogenepeidies of printed parts make
it more difficult to precisely predict the performa&nd herefore, it is reasonable for this work to sifgpli
the evaluation prmess by assuming no dependency lies in between each AM attribute.

After gathering the information from Step 1, therformance attributes are classified into two
categoriescrisp valuefrom benchmarking or documents, e.g. accuracy, surface roughnessgaed
informationfrom expert judgemene.g.cost or build time. For therisp valuesthey can be directly
adopted for the rough set based AD method calculation in furthes. Bte thevague informationthey

need to transfer intorisp valuedirst and correspondingly into the further evaluation proegss

Step 3: User preference input

User preference input can be classified into two categories:

1) Relative importance rating(RIR) Users input their preferences regarding each AM
performance attributeand they are further utilized for PG based rating and normalization to
determine the weights.

2) Acceptable value or goal valuEhis is usually optional since users without expert knowledge
might not be capablef seting. Acceptable valuenly considers théowest acceptable level
for each attribute and uses that to decide whether a given solution dars@ri requirements
In contrast, goal value mainly considers the traffe between different attributes and
recommends the best marked solution farsisvhile the threshold is usually not taken into

account.



Step 4: Rough set based Ainkingand normalization

According toFig. 2 and Eq. 7), the proposed method hddferent way of measurement based on
the type of value provided by users.

Foracceptable valueasesthe value set for each performance attribute are regarded astam
range. The ratings of AM performance attributesire represented as thldesignrange. Thus, the
information content of each performance attributes isutatled without weighting information. If is
infinite, that is no overlapping area between system range arghdasige, it means the AM process is
not acceptable. If is 0, hat is system range and design range coincides, it meansréspomding AM
attribute can definitely meet user’s satisfaction.

For goalvaluecasestheuser’svalue set for each performance attribute are regarded deglyn
range.Correspondingly, theystemrange is the evaluation of each attribute. In this case, the proposed
method is similar to the distance based methods (e.g. TOR®IEH the information content stands for
the ‘distance’ between the goal value and attributtopaance

If no value providedy usersit is similarto the goal value approach except thatdesignrange
is determined byhebenchmarking base. For the vague information, each TRN nurfd¢i= (a, b, c)

is defuzzified using the centroid method as:
— 1
TRN :5( a+ br g (16)

Normalization. For the outcome of Eq7), the information content of each attribute needs to be

normalized by following equation:

Kk
I i

K
|

i

N k
21
i=1

(17)

where Iik stands for the normalized information content ofitheM process in thé&" attribute

Step 5: PG based rating and normalization

After Step 4, m order to take user’s preferences into consideration, the propesgdtedPG
method is utilizedUserprovides his/hepartial preference information on the AM attributieathe/she
know clearly e.g. the PG shown Fig. 3. Then, the PG is transferrg@to a dominance matrix based on

Eqg. @) andEg. (10), andthe normalized preferencetirgs arecalcubted by Egs. (11) t(13).
Step 6: Weighted ranking for best AM process selection

At last, to select the most appropriate or best AM probesgd on the previous steps and equations,



each normalized weightof AM attribute is multiplied with each performance evaluation result

(information content) respectively and the sum of each AM process informatitent@ represented
by:
N
D =D RIRx 1K (18)
i=1
wherek stands for th&" AM process choiceRIR stands fothe relaive importance rating of' attribute

by user and correspondingly.s the information content of thé attribute.
5. Anillustrative example

As mentioned above, due to the complexity of various attributes penfme and the
interdependency among therit is reasonable to simplify the evaluation process by naissuno
dependency lies in between each AM attribliieorder to validateour method by comparing other
proposed oneswve collected all the attributes being considered in the above AM processoselect
literature (see Appendix I). This paper selects the exam@ywi and Led7], as it is a typical case
which has beeantilized and comparetly many other research woj®3,57,20,21,19,29,22According
to Section 4, the procedures are described in six.steps

Step 1 and Step 2: Six attributes Al: accuracy (A)A2: surface roughness (R)3: tensile strength
(S),A4: elongation (E)AS5: cost of the part (C) and6: build time (B)-wereidentified as the evaluation
attributeswith 6 machines, i.e.: SLA3500, SLS2500, FDM8000, LOM1015, Quadra andtaik€12into
consideratiorior AM procesgsselectionThe attributesperformanceof each machine is given in Table
2, of whichA5 and AGre vaguexpressiotbased on expertexperience, e.g. very high (VH), very very
low (VVL) and etc.

Step 3: Since nayoal value or accept valumnsidered, in this caseseronly needto provide their
partial preference information on the given attribLitesrder tocompare witltheexisting AHP paiwise
method[7], the dominance relationship between six attribistelepicted by a PGhowingthesimilarly
preferencesHig. 5). For example, the ranking positionAis 5.

Step 4: For thelinguistic termsof A5 and A6 they are firsassigned with a crisp number irl&®
rating scaleas shown in Table 3. #tands for different classes in roughtbetory Then, based on Eq
(2) to (6), the TRNs forA5 and A6are calculated respectively, as shown in Table 4. For example, the
vagueness afostattribute in SLA3500 igery high (6.3, 8, 8) As nogoal value or accept valuecluded,
the detizzification of TRNs are calculated by Eq.6§1 as shown in Table 4, e.gost attribute in

SLA3500 isvery high: 7.43.
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Fig.5. PGbased prefance rating among AM attributes

Table3
Linguistic variables irL-9 rating scale

Terms of linguistic variable Rating scale

Very, very low (VVL)
Very low (VL)

Low (L)

Slightly low (SL)
Medium (M)

Slightly high (VH)
High (H)

Very High (VH)

Very, very High (VVH)

© 0 N O U b WN P

Then, the information content of each attribute can be caldutased on the benchmarking by Eqg.
(7). The system ranges are represented by each attribute value and theashggigrare determined by
the best performance choices’ values among each attribute, respeé&toredxample, the best choice
for Al: accuracyis Quadra, value 95. Therefore, #dtin Z402, the common area, that is the overlapping
area of between design range (95) and system range (600)Tisu85 the information content &fL in

Z402 is calculated as:

|, =log, (%}J =2.658%3 (19)

Following thismanner, the sum of each AM process information content is given in Tabledbtvit
preference weightind@-hen, based on Eq. 7}, the normalized information is given in TableSince the
one with smallest information content is the best one, therefore, Quatira best choice. And the
ranking of choices withowteightsare:Quadra > 2402 > SLA3500 > SLS2500 > LOM1015 > FDM8000.

Step 5. Based on Eq(8), thedominance matrix of attributes Fig. 5 are represented as follows:
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Correspondingly, theanking position andelative importance rating of each AM attribuaee

calculatedby Ecp. (11) to (13) andrepresented as:

PR,=[20 21 1 6, & 21)

RIR=(0111 0111 0.056 0.056 0.333 0.3 (22

Step 6: Based on the information content of each attribute in Table SharahtculatedRIRvector
in Step 5, the weighted ranking for AM process selection is derived by &gaglshown in Table 7.
And correspondingly, the rankings of AM processes 2462 > Quadra> LOM1015 > SLA3500 >
SLS2500 > FDM8000, whicA402is the most appropriate one.

Compared with the results from Byun and [Bewhich is ranked as: Z402 > LOM1015 > Quadra >
SLA3500 > > SLS2500 > FDM®O. It is found that only the second best choice is differenthabies
not affect the result of the best AM process selecfitie. fact of ranking difference is result from the
various normalization processaisdecision matribetween TOPSIS method araligh set baseftizzy
AD method. One can find th&OPSIS is based otie absolutenormalizationmechanism, i.e. the
distance (or information content) are normalized by agldihthe values of attributes into calculation,

as depictedh Eq. (20)

k

r_k = )<'— (22)

, Where rik stands for the normalizedeightof thei™” AM process in th&™" attribute Nevertheless

for rough set based fuzzy AD method, it is based orehiéve normalizatioimechanism (see Eq. (17)).
The normalized information content of each attribugegistenrangg of any AM process is determined
by comparing with its best attribute (i@esign range In other word, AD method treat each best
attribute with informatin content of none (or positive distance of infinite). The author wokedtdi

argue that theelative normalizatiormechanism should be more suitable for the AM process selection



since it represents thienit of each attributes within the existing selectionmedoreover, heproposed
method showtalents in evaluating the most appropriate AM process with more obijgctivi more

user input flexibility



Table 4

Calculation result of RNs and defuzzified TRNs on majaiM systems

SLA3500 SLS2500 FDM8000 LOM1015 Quadra 2402

C (6.3,8,8)7.43 (6.3,8,8)7.43 (4.7,7,7.8)6.5 (3.5,6,7.4)5.63 (6.3,8,8)7.43 (1,1,6.3)2.77

B (4,5,6)5 (4,5,6)5 (4.7,8,8)6.9 (3.3, 4,5.2p1.17 (3.3,4,5.2) 4.17 (2,2,4.7)2.9
Table5
Calculation result of unweight rough set based fuzzy AD infaonatontent

Ia Ir Is le Ic Is Vi

SLA3500 0.337035 0.893085 3.70044 2.321928 1.423476 0.785875 9.461839

SLS2500 0.658963 1.836501 3 3.087463 1.423476 0.785875 10.79228

FDMB8000 0.395929 2.584963 2.584963 3.321928 1.230554 1.250543 11.36888

LOM1015 0.961526 2.514573  2.321928 3.321928 1.023249 0.523994 10.6672

Quadra 0 0 2.584963 2.584963 1.423476 0.523994 7.117396

2402 2.658963 2.146841 0 0 0 0 4.805804
Table 6
Calculation result of normalized unweight rough set based fuBzinformation content

la Ir Is le Ic Is 2

SLA3500 0.06724 0.089524 0.260736 0.158621 0.218183 0.203054 0.997357

SLS2500 0.131466  0.184093 0.211382 0.210918 0.218183 0.203054 1.159096

FDM8000 0.07899 0.259119 0.182138 0.226935 0.188613 0.323114 1.25891

LOM1015 0.191829 0.252063 0.163605 0.226935 0.156838 0.135389 1.12666

Quadra 0 0 0.182138 0.17659 0.218183 0.135389 0.712301

2402 0.530475 0.215201 0 0 0 0 0.745677




Table7
Calculation result of weighted rough set based fuzzy AD infooma&ontent

la IR Is le Ic Is Xl
SLA3500 0.007464 0.009937 0.014601 0.008883 0.072655 0.067617 0.181157
SLS2500 0.014593 0.020434 0.011837 0.011811 0.072655 0.067617 0.198948
FDMB8000 0.008768 0.028762 0.0102 0.012708 0.062808 0.107597 0.230843
LOM1015 0.021293 0.027979 0.009162 0.012708 0.052227 0.045085 0.168454
Quadra 0 0 0.0102 0.009889 0.072655 0.045085 0.137828

7402 0.058883  0.023887 0 0 0 0 0.08277




6. Conclusion

AM process selectioproblemhas been discussed for years. Many tools and systeeblean
brought up tdacilitatethe selection, which typically consists of three pakh:performance evaluation,
userpreference evaluation and aking scheme. This worfirst analysed the existin]ADM methods
for AM process selection anda@uates their suitability by twaspectspreference ratindlexibility and
performance evaluation objectivitiVe assume that ampproachdealingwith incomplete weighting
information and assessing AM attribute performance objectivalithin inherent data should be
advantageoudHowever, he review shows that:

o Preference ratings generally done by pairwise comparison or diesstgnment User often
lack of sufficient knowledge aneal life case tendto be more dynamic and complex, which
the existing method cannot deal witlem accurately

e Performance evaluatiof.he membership function selection in fuzzy set based cassgaly
determined based on engineers’ experience and intuition subjectivedy.cdiid result in
inaccuracy of the best AM process selection

Based on the above problems, this paper propaseovel weighted rough sbased fuzzy AD
approach for AMprocessselectionIn order to hank uses’ incomplete informaon in rating, this work
proposedheweightedPRmethod which isnoresuitable for real life casesith dynamic situationand
limited user informationAlso, it maintained theating accuracyy partial pairwise comparison, and
also reducedserinput effort To achieveevaluationobjectivity, the proposed rough set based fuzzy AD
approachovercomes the subjectivity of designer’s interpretation on the fuzzy membezitipan by
rough numbes and rough boundary intervals instead. Accordingly, a flowchart is givers¢aluethe
procedures of the MADM for AM process selectidhe case study result shows thatileéghted rough
set based AD metharhn performaswell as the previous worlMoreover, it has advantages in processing
subjective linguistic assessments since the membership functions atatedlétom the inherent data
other than predefined by designers subjectively, espewibkn information is limited.

The proposed priori articulation of preferences process decision rsuppthod has its own

limitation, as it is suitable fanses withoutmuch knowledgend experiencan AM processselection.
In the futuretherobustness of thmethod will be validatedith more complicated applicationanda
posteriori articulation of preferences approach should be devatlmpetpbknowledgeableisers explore

existing solutions and make their designs more suitable to aprabéss.
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Appendix |

Attributes being considered in existing AM procsskection

Geometric properties Functional properties Production
Surface | Resolution/ Dimensional
Author, year Build Part Mechanical| Thermal | Material Post-
finish Minimum accuracy Complexity Cost | Time | Quantity | Reliability
envelope function property property type processing
feature size| Overall | feature
Jones, Campbell [25] R \/ \/ v v S
Chuk, Thomson [24] v \/
Wilson, Rosen [34] \/ \/ \/
Fernandez et al. [37] N v
Byun, Lee [7]Rao,
Padmanabhan [33]
Venkata Rao, Patel [36]
Chakraborty [21] N N N N S
Vahdani et al. [20]¢ [22]
Wang et al. [19Fhang et
al. [18]
Lan* et al. [30] N N \ \/ N N S \
Mahesh et al. [17] N N S
Byun, Lee [58] N N N
Armillotta [31] N N N N S N
Lokesh, Jain [32] N N N N \
Khrais et al. [23] N N \
Munguia et al. [28] N N N N N v N \/ \/




Ghazy [27]

Roberson et al. [26]

Mahapatra, Panda [10]

Zhang, Bernard [29]

Liao et al. [35]
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