

This is a repository copy of *Infrared spectroscopic study of absorption and separation of CO using copper(I)-containing ionic liquids*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/112195/</u>

Version: Supplemental Material

Article:

Repper, S.E., Haynes, A. orcid.org/0000-0002-6854-1618, Ditzel, E.J. et al. (1 more author) (2017) Infrared spectroscopic study of absorption and separation of CO using copper(I)-containing ionic liquids. Dalton Transactions, 46 (9). pp. 2821-2828. ISSN 1477-9226

https://doi.org/10.1039/C6DT04816A

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Information

Infrared spectroscopic study of absorption and separation of CO using copper(I)-containing ionic liquids

Stephen E. Repper, Anthony Haynes*, Evert J. Ditzel and Glenn J. Sunley

Figures S1-S3: Data from high pressure IR experiments for $[C_n mim][CuX_2] + CO$ reactions.

Figures S4-S5: UV/vis spectra of solutions of Cu(II) and Cu(I) salts in MeNO₂.

Figures S6-S7: Data from gas phase IR measurements for determination of headspace CO content.

Synthesis of 1-alkyl-3-methylimidazolium halide salts

HPIR spectroscopic data for CO uptake experiments

Figure S1. Plot of IR absorbance (2076 cm⁻¹) vs. time for first 160 s of CO uptake by $[C_6 mim][CuCl_2]$ at 25 °C (stirrer speed 428 rpm) with initial *p*CO = 8 bar.

Figure S2. Initial rate of CO uptake for $[C_6 mim][CuCl_2]$ at 25 °C (from slopes of absorbance vs. time plots, e.g. Fig S1) (a) vs. initial CO pressure (with stirrer speed 428 rpm) and (b) vs. stir rate (with initial *p*CO = 8 bar).

Figure S3. Plots of equilibrium v(CO) intensity vs. initial CO pressure for CO uptake at 25 °C by (a) $[C_2mim][CuBr_2]$; (b) $[C_4mim][CuBr_2]$; (c) $[C_6mim][CuBr_2]$; (d) $[C_6mim][CuI_2]$.

Figure S4. UV/vis spectrum of a 0.001 M solution of a 1:1 mixture of $[C_6mim]Br$ and CuBr₂ in CH₃NO₂, showing strong absorptions due to Cu(II).

Figure S5. UV/vis spectrum of a 0.01 M solution of $[C_6mim][CuBr_2 in CH_3NO_2]$. Note the very weak absorptions due to trace Cu(II) despite the 10x higher Cu concentration compared to Figure S4. Estimated Cu(II) content is <0.1% of total Cu.

Gas-phase IR data for quantification of CO content of gas mixtures

Figure S6. Example gas phase IR spectrum (ν (CO) region) of CO/H₂ mixture in 10 cm gas cell.

Figure S7. Beer-Lambert calibration plots for pure CO and 1:1 CO:H_2 in 10 cm gas cell. Absorbances are integrated intensities over frequency range 2250-1975 cm⁻¹.

Synthesis of 1-alkyl-3-methylimidazolium halide salts

The synthetic procedure for the 1-alkyl-3-methylimidazolium halide salts was adapted from similar methods reported in the literature.^{1,2} In a typical procedure, 1-methylimidazole or 1,2dimethylimidazole (~ 0.250 mol) was placed into a degassed and dried round bottom flask under N₂. In the case of the chloride and bromide salts, the alkyl halide precursor was added in excess (~ 1.2 equivalents) and the reaction mixture heated to 80-90 °C overnight, with the exception being reactions involving the low-boiling bromoethane, which were carried out at 40 °C. For the iodide salts, 1 equivalent of alkyl iodide was added dropwise at 0 °C over approximately 20-30 minutes. The reaction vessel was wrapped in foil to prevent the lightinduced formation of I_2 . The reaction mixture was then stirred at room temperature overnight. ¹H NMR spectroscopy was used to assess complete reaction of the 1-methylimidazole. If required, a further 0.1 equivalents of the alkyl halide was added and the reaction allowed to continue for a further 6 hours under the same conditions as previously used. Unreacted alkyl halide was removed under reduced pressure and the product was dried under vacuum at 80 °C for at least 4 h. All the products were collected either as hygroscopic solids or liquids and were analysed by ¹H NMR spectroscopy, ¹³C NMR spectroscopy, electrospray mass spectrometry (ES⁺ and ES⁻) and CHN elemental analysis.

1-hexyl-3-methylimidazolium chloride [C₆mim]Cl pale yellow viscous liquid (36.65 g, 96 %).

¹H NMR (250 MHz, CDCl₃) δ/ppm, 0.75 (3H, t, 6.9 Hz), 1.15-1.30 (6H, m), 1.80 (2H, m), 4.05 (3H, s), 4.22 (2H, t, 7.4 Hz), 7.46 (1H, s), 7.65 (s, 1H), 10.50 (1H, s)

¹H NMR (250 MHz, CD₃NO₂) δ/ppm, 0.89 (3H, t, 6.9 Hz), 1.22-1.42 (6H, m), 1.94 (2H, m), 4.02 (3H, s), 4.30 (2H, t, 7.4 Hz), 7.51 (1H, s), 7.54 (s, 1H), 9.41 (1H, s)

¹³C NMR (250 MHz, CDCl₃), 13.8, 22.2, 25.7, 30.1, 30.9, 36.3, 49.8, 121.9, 123.8, 137.5

TOF MS (ES⁺): m/z 167 ([C₆mim]⁺)

Elemental analysis, calculated for $C_{10}H_{19}N_2Cl$: C 59.22% H 9.38% N 13.83%, found:

C 57.88% H 9.71% N 13.76%

1-ethyl-3-methylimidazolium bromide [C₂mim]Br white crystalline solid (47.96 g, 96 %).

¹H NMR (400 MHz, CDCl₃) δ/ppm, 1.6 (3H, t, 7.4Hz), 4.1 (3H, s), 4.40 (2H, q, 7.4Hz), 7.50 (1H, s), 7.52 (1H, s), 10.43 (1H, s)

¹³C NMR (250 MHz, CDCl₃) δ/ppm, 15.57, 36.53, 45.04, 122.01, 123.64, 136.50

TOF MS (ES⁺); m/z 111 ([C₂mim]⁺), (ES⁻); m/z 79 ([Br]⁻)

Elemental analysis, calculated for $C_6H_{11}N_2Br$: C 37.72% H 5.76% N 14.67%, found: C 37.03% H 5.84% N 14.21%

1-butyl-3-methylimidazolium bromide [C₄mim]Br yellow viscous liquid (26.91 g, 98 %).

¹H NMR (250 MHz, CDCl₃) δ/ppm, 0.9 (3H, t, 7.4Hz), 1.15 (2H, m), 1.7 (2H, m), 3.90 (3H, s), 4.15 (2H, t, 7.3Hz), 4.44 (1H, s), 7.55 (1H, s), 10.10 (1H, s)

¹³C NMR (250 MHz, CDCl₃) δ/ppm, 13.2, 19.2, 32.1, 36.7, 49.7, 122.1, 123.7, 136.9

TOF MS (ES⁺), m/z 139 ([C₄mim]⁺), (ES⁻); m/z 79 ([Br]⁻)

Elemental analysis, calculated for $C_8H_{15}N_2Br$: C 43.86% H 6.85% N 12.79%, found: C 43.09% H 6.85% N 12.53%

1-hexyl-3-methylimidazolium bromide [C₆mim]Br pale yellow liquid (29.74g, 96 %).

¹H NMR (250 MHz, CDCl₃) δ/ppm, 0.75 (3H, m), 1.1-1.3 (6H, m), 1.7-1.8 (2H, m), 4.0 (3H, s), 4.2 (2H, t, 7.3Hz), 7.4 (1H, s), 7.6 (1H, s), 9.88 (1H, s)

¹H NMR (250 MHz, CD₃NO₂) δ/ppm, 0.89 (3H, t, 6.9Hz), 1.2-1.4 (6H, m), 1.95 (2H, m), 4.01 (3H, s), 4.3 (2H, t, 7.3Hz), 7.53 (1H, s), 7.55 (1H, s), 9.22 (1H, s)

¹³C NMR (250 MHz, CDCl₃) δ/ppm, 13.9, 22.1, 25.5, 30.25, 31.0, 36.75, 50.0, 122.0, 123.7, 137.0

TOF MS (ES⁺); m/z 167 ([C₆mim]⁺), (ES⁻); (m/z) 79 ([Br]⁻)

Elemental analysis, calculated for $C_{10}H_{19}N_2Br$: C 48.60% H 7.70% N 11.34%, found: C 47.28% H 7.73% N 11.07%

1-hexyl-3-methylimidazolium iodide [C_6 mim]I, was isolated as a pale yellow liquid (yield = 31.19 g, 83 %).

¹H NMR (400 MHz, CDCl₃) δ/ppm, 0.75 (3H, m), 1.1-1.3 (6H, m), 1.85 (2H, m), 4.00 (2H, s), 4.28 (2H, t, Hz), 7.48 (1H, s), 7.58 (1H, s), 9.85 (1H, s)

¹H NMR (250 MHz, CD₃NO₂) δ/ppm, 0.90 (3H, t, 6.9 Hz), 1.3-1.4 (6H, m), 1.94 (2H, m), 4.02 (2H, s), 4.29 (2H, t, 7.3Hz), 7.51 (1H, s), 7.55 (1H, s), 8.89 (1H, s)

¹³C NMR (250 MHz, CDCl₃) δ/ppm, 13.79, 22.15, 25.60, 30.01, 30.84, 37.00, 49.49, 122.34, 123.82, 136.25

TOF MS (ES⁺); m/z 167 ([C₆mim]⁺), (ES⁻); (m/z) 127 ([I]⁻)

Elemental analysis, calculated for $C_{10}H_{19}N_2I$: C 40.30% H 6.5% N 9.5%, found: C 40.30% H 7.05% N 9.14%

References

- 1. S. Liu, C. Xie, S. Yu and F. Liu, *Cat. Comm.*, 2009, **10**, 986.
- 2. S. V. Dzyuba and R. A. Bartsch, J. Heterocycl. Chem., 2001, 38, 265.