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Abstract

Modern financial markets now record the precise time of each stock trade, along with price

and volume, with the aim of analysing the structure of the times between trading events – leading

to a big data problem. In this paper, we propose and compare two Birnbaum-Saunders autore-

gressive conditional duration models specified in terms of time-varying conditional median and

mean durations. These models provide a novel alternative to the existing autoregressive condi-

tional duration models due to their flexibility and ease of estimation. Influence diagnostic tools

are developed to allow goodness-of-fit assessment and to detect departures from assumptions, in-

cluding the presence of outliers and influential cases. Both global and local influence tools are

considered based on the parameter estimates under different perturbation schemes. A thorough

Monte Carlo study is presented to evaluate the performance of the maximum likelihood estima-

tors, and the forecasting ability of the models is assessed using the traditional and density forecast

evaluation techniques. The Monte Carlo study suggests that the parameter estimators are asymp-

totically unbiased, consistent and normally distributed. Finally, a full analysis of a real-world

financial transaction data set, from the German DAX in 2016, is presented to illustrate the pro-

posed approach and to compare the fitting and forecasting performances with existing models in

the literature. One case related to the duration time is identified as potentially influential, but its

removal does not change resulting inferences demonstrating the robustness of the proposed ap-

proach. Fitting and forecasting performances favor the proposed models and, in particular, the

median-based approach gives additional protection against outliers, as expected.

Keywords: Big data; Birnbaum-Saunders distribution; forecasting ability; influence diagnos-

tics; likelihood-based methods; Monte Carlo simulation; R software.
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1 Introduction

The family of autoregressive conditional duration (ACD) models proposed by Engle and Russell

(1998) has been the primary tool to deal with high frequency financial data on transactions, leading

to a big data problem. The ACD model is the counterpart of GARCH models for dealing with trade

duration (TD) data and it is used to capture the clustering structure, which conveys meaningful infor-

mation, observed in high frequency financial data; see Duchesne and Pacurar (2008), Liu and Heyde

(2008) and Pacurar (2008). TD data possess a number of unique characteristics such as: an irregular

nature in which they are collected; a large number of observations or cases; a diurnal pattern, where

activity is higher at the beginning and closing than in the middle of the trading day; asymmetry and

an inverse bathtub shaped hazard rate (HR); see Bhatti (2010) and Leiva et al. (2014b).

Some extensions of the original ACD model have been proposed in the literature; see, for example,

Grammig and Maurer (2000), Bauwens and Giot (2000), Meitz and Terasvirta (2006), Chiang (2007),

Pacurar (2008), Bhatti (2010), and Leiva et al. (2014b). These versions take into account the following

aspects: (A1) the shape of the HR of TD data; (A2) the conditional dynamics established in terms

of mean or median; (A3) the linear form of the conditional mean or median dynamics; and (A4) the

time series properties. Some recent applications of ACD models are discussed in Diana (2015) and

Dionne et al. (2015).

This paper focuses on the Birnbaum-Saunders ACD (BSACD) model; see Bhatti (2010). It is

based on a skew distribution, which has an HR with inverse bathtub shape; see Birnbaum and Saun-

ders (1969) and Kundu et al. (2008). The BS distribution originates from material fatigue and has

interesting properties, doing it widely studied. Some of its recent applications range across fields dif-

ferent to engineering, such as business, environment, finance, industry and medicine, which have been

conducted by an international, transdisciplinary group of researchers; see Jin and Kawczak (2003),

Bhatti (2010), Lio et al. (2010), Castillo et al. (2011), Saulo et al. (2013), Leiva et al. (2015, 2016b,

2017), Wanke and Leiva (2015), Garcia-Papani et al. (2016), Marchant et al. (2016b), and Leao et al.

(2017). The BSACD model proposed by Bhatti (2010) is constructed in terms of a conditional me-

dian duration, rather than an ACD model in the sense of Engle and Russell (1998) based on the mean.

However, the BSACD model provides: (B1) a realistic assumption for ACD data in terms of the shape

of both the probability density function (PDF) and HR of the BS distribution; (B2) a natural param-

eterization in terms of a conditional median duration instead of the mean, since the scale parameter

of the BS distribution is also its median, see (A3); and (B3) an easy parameter estimation due to fast

convergence and obtainment of initial values from the modified method of moments.

Bhatti (2010) suggested that (B2) might possibly: (C1) improve the model fit, since for asym-

metric, heavy-tailed distributions, as occurs with TD data, the median is often considered as a better

measure of central tendency than the mean; and (C2) increase the forecasting ability due to the fact

that the mean is greater than the median for skew distributions. In this context, we consider two mod-

els: A first new mean-based model (BSACD1 in short) specified in terms of a time-varying condi-

tional mean duration, as usual in ACD models, using a reparameterized version of the BS distribution

(see Leiva et al., 2014a; Santos-Neto et al., 2016); and a second median-based model (BSACD2 in

short) specified in terms of a time-varying conditional median duration. Thus, the primary objective

of this paper is to compare both BSACD1 and BSACD2 models. The secondary objectives are: (i)

to obtain the maximum likelihood (ML) estimators of the BSACD1 and BSACD2 model parameters

and to evaluate their performance by a Monte Carlo (MC) simulation study; (ii) to derive influence

diagnostic tools for the BSACD1 and BSACD2 models and to assess the robustness of each model
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to atypical cases (see Liu, 2000); (iii) to fit the BSACD1 and BSACD2 models to a real-world data

set for evaluating (C1); (iv) to establish the forecasting ability of the BSACD1 and BSACD2 models

for detecting (C2); and (v) to compare the fitting and forecasting performances of the BSACD1 and

BSACD2 models with existing models in the literature. Note that the BSACD2 model focusses on the

median of TDs, which is not the typical interested parameter considered in the literature. The median

duration is able to communicate to investors and play an important role in the stock market, because

it provides a more robust alternative to the usual mean, and hence it can be interpreted and used in

exactly the same way. However, this robustness property means that the median is not affected by

extremes or outliers – this is particularly important for skew data such as TDs; see Section 4.1 for a

discussion about outlier detection framework in times series and ACD models. This means that future

predictions will not depend significantly on previous freak events – a sharp jump in the market last

week does not mean a similar jump every week.

The rest of the paper proceeds as follows. In Section 2, we describe the BS distribution and its

mean-based reparameterized version. In Section 3, we introduce the BSACD1 and BSACD2 models

and derive ML-based estimation and inference for their parameters. In Section 4, we derive global

and local influence tools and calculate the normal curvatures of local influence under three different

perturbation schemes. Moreover, we consider two types of residuals for the BSACD models. In

Section 5, we carry out an MC simulation study to evaluate the behavior of ML-based inference. In

Section 6, we apply the ACD models and derived tools to a real-world financial data set. Finally, in

Section 7, we discuss conclusions and future research on the topic of this work.

2 BS distributions

2.1 The BS distribution

A random variable X is BS distributed if it can be represented by the transformation of a standard

normal random variable, Z ∼ N(0, 1) say, given by

X = σ
[
κZ/2 +

{
(κZ/2)2 + 1

}1/2]2
, (1)

where κ > 0 and σ > 0 are shape and scale parameters, respectively. In this case, the notation

X ∼ BS(κ, σ) is used and the corresponding PDF is obtained as

f(x;κ, σ) =
1√
2π

exp

(
− 1

2κ2

[x
σ
+
σ

x
− 2
]) x−3/2[x+ σ]

2κσ1/2
, x > 0. (2)

Then, it can be shown that E[X] = σ[1 + κ2/2], Var[X] = [κσ]2[1 + 5κ2/4] and the median of the

distribution is the scale parameter σ. Note that the BS distribution is closed under scale and reciprocal

transformations, that is, bX ∼ BS(κ, b σ), with b > 0, and 1/X ∼ BS(κ, 1/σ), respectively. The

survival function (SF) and HR of X are expressed as

S(x;κ, σ) = Φ

(
−1

κ

[√
x

σ
−
√
σ

x

])
, h(x;κ, σ) =

φ
(
1
κ

[√
x
σ
−
√

σ
x

])
x−3/2[x+ σ]

2κσ1/2Φ
(
− 1

κ

[√
x
σ
−
√

σ
x

]) , x > 0,

where φ and Φ are the standard normal PDF and cumulative distribution function (CDF), respectively.
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2.2 A reparameterized BS distribution

Consider a reparameterized version of the BS (RBS) distribution by setting κ =
√
2/τ and σ =

τµ/[τ +1], such that τ = 2/κ2 and µ = σ[1 + κ2/2], where τ > 0 is a shape and precision parameter

and µ > 0 is a scale parameter and the mean of the distribution; see Leiva et al. (2014a) and Santos-

Neto et al. (2016). In this case, the PDF of X ∼ RBS(µ, τ) is given by

f(x;µ, τ) =
exp(τ/2)

√
τ + 1

4
√
πµx3/2

[
x+

τµ

τ + 1

]
exp

(
−τ
4

[
x{τ + 1}

τµ
+

τµ

x{τ + 1}

])
, x > 0, (3)

and the RBS and standard normal random variables are related by the transformation

X =

[
τµ

τ + 1

] [
Z/

√
2τ +

√{
Z/

√
2τ
}2

+ 1

]2
. (4)

Note from equation (3) that the mean and variance of X are now E[X] = µ and Var[X] = µ2[2τ +
5]/[τ + 1]2, respectively. In addition, the SF and HR of X are obtained as

S(x;µ, τ) = Φ

(
−
√
τ

2

[√
{τ + 1}x

µτ
−
√

µτ

{τ + 1}x

])
, x > 0,

h(x;µ, τ) =

√
τ + 1

4
√
πµx3/2

[
x+

τµ

τ + 1

] exp
(
− τ

4

[
x{τ+1}

τµ
+ τµ

x{τ+1}
− 2
])

Φ
(
−
√

τ
2

[√
{τ+1}x

µτ
−
√

µτ
{τ+1}x

]) , x > 0.

3 Birnbaum-Saunders ACD models

3.1 Mean-based BSACD model (BSACD1)

Suppose that data collection starts at a time T0 and a sequence of successive times T1, . . . , Tn at

which market events, or trades, occur is recorded. Then, let Xi = Ti − Ti−1 be a duration time, that

is, the time elapsed between two successive occurrence times, Ti−1 and Ti, for i = 1, . . . , n.

The ACD model is then specified, in terms of these duration times, by a conditional mean duration

E[Xi|Ωi−1] = µi, where µi is the RBS mean introduced in Section 2.2. Note that Ωi−1 is a set which

includes all information available until time Ti−1. In this case, the BSACD1 model can be defined by

Xi = µi εi, i = 1, . . . , n, (5)

where εi are independent and identically distributed (IID) random variables following the RBS dis-

tribution with mean equal to one and precision τ , denoted by εi
IID∼ RBS(1, τ), and then the Xis are

independent (IND) not identically distributed, that is, Xi
IND∼ RBS(µi, τ). In addition, autoregressive

(AR) and moving average (MA) processes, of order p1 and q1 respectively, can be defined for the
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model given in equation (5) through the representation

log(µi) = ̟ +

p1∑

j=1

αj log(µi−j) +

q1∑

j=1

βj Xi−j

µi−j

,

leading to the notation BSACD1(p1, q1), as usual in ARMA models.

By using the model given in equation (5) and the PDF expressed in equation (3), the log-likelihood

function for θ = [̟,α1, . . . , αp1 , β1, . . . , βq1 , τ ]
⊤ is obtained as

ℓ(θ) =
nτ

2
− n log(16π)

2
− 1

2

n∑

i=1

log

(
[τ + 1]x3iµi

[τxi + xi + τµi]2

)
−

n∑

i=1

xi[τ + 1]

4µi

−
n∑

i=1

τ 2µi

4[τ + 1]xi
. (6)

Estimation, inference and local influence for θ can be based on the log-likelihood function given in

equation (6). As usual, to obtain the ML estimates of the model parameter θ, one must maximize

expression defined in (6) by equating the score vector ℓ̇(θ), which contains the first derivatives of

ℓ(θ), to zero, providing the likelihood equations. They must be solved by an iterative procedure

for non-linear optimization, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton

method, which is regarded as the best-performing algorithm; see Mittelhammer et al. (2000, p. 199)

and Leiva et al. (2014b). The BFGS method is implemented in the R software (see R-Team, 2016)

available at http://cran.r-project.org, by the functions optim and optimx. Inference

for θ of the BSACD1 model can be based on the asymptotic distribution of the ML estimator θ̂. This

estimator is consistent and has an asymptotic multivariate normal joint distribution with mean θ and

covariance matrix Σθ̂ , which may be obtained from the corresponding expected Fisher information

matrix I(θ). Thus, we have that

√
n [θ̂ − θ]

D→ Np1+q1+2(0,Σθ̂ = J (θ)−1),

as n→ ∞, where
D→ means “convergence in distribution” and J (θ) = limn→∞[1/n]I(θ). Note that

Î(θ)−1 is a consistent estimator of the asymptotic variance-covariance matrix of θ̂. In practice, one

may approximate the expected Fisher information matrix by its observed version obtained from the

Hessian matrix ℓ̈(θ), which contains the second derivatives of ℓ(θ) given in equation (6), whereas the

diagonal elements of its inverse matrix can be used to approximate the corresponding standard errors

(SEs); see Efron and Hinkley (1978) for details about the use of observed versus expected Fisher

information matrices. In addition, local influence diagnostics can also be considered also using the

log-likelihood function; see, for example, Cook (1987) and Liu (2000).

3.2 Median-based BSACD model (BSACD2)

Now, we specify an ACD model in terms of a conditional median duration, σi = F−1
BS (0.5|Ωi−1)

say, where F−1
BS is the inverse function of the CDF, or quantile function (QF), of the BS distribution

introduced in Section 2.1, with Ωi−1 analogously defined as in Section 3.1. In this case, the BSACD2

model can be formulated as

Xi = σi ̺i, i = 1, . . . , n, (7)
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where ̺i are IID random variables following the BS distribution with shape κ and scale (median)

equal to one, denoted by ̺i
IID∼ BS(κ, 1), and then Xi

IND∼ BS(κ, σi). In addition, an ARMA(p2, q2)
process can be defined for the model given in equation (7) by

log(σi) = ς +

p2∑

j=1

γj log(σi−j) +

q2∑

j=1

δj Xi−j

σi−j

,

inducting the notation BSACD2(p2, q2). Upon the model defined in equation (7) and considering

the PDF given in equation (2), the log-likelihood function for ξ = [ς, γ1, . . . , γp2 , δ1, . . . , δq2 , κ]
⊤ is

expressed as

ℓ(ξ) = −n log(
√
2π)− n log(2)− 3

2

n∑

i=1

log(xi)−
1

2κ2

n∑

i=1

[
xi
σi

+
σi
xi

− 2

]
(8)

+
n∑

i=1

log(xi + σi)− n log(κ)− 1

2

n∑

i=1

log(σi).

Estimation, inference and local influence for ξ can be based on the log-likelihood function given in

equation (8) analogously as in the case of the BSACD1 model.

4 Influence diagnostics and residual analysis

4.1 Outlier detection framework in ACD models

We may record four types of outliers in time series: (a) additive outliers; (b) innovative outliers; (c)

level shift outliers; and (d) transitory change outliers. Types (a) and (b) are mostly considered in time

series. An additive outlier affects a single case, whereas an innovative outlier affects not only a par-

ticular observation but also the subsequent cases. Indeed, there are similarities between the influence

statistics and tests for outlier detection. For instance, in the AR(1) model studied by Zevallos et al.

(2012), the statistics for computing the influential points under the innovative perturbation scheme are

the same as the innovative outlier detection test discussed in Fox (1972). A similar relationship can be

obtained between the test for detecting additive outliers and the statistics for determining influential

points under the data perturbation scheme; see Zevallos et al. (2012).

In the case of multiple outlier detection in time series modeling, Chen and Liu (1993) introduced

detection procedures for avoiding masking and spurious effects. They have considered the four above-

mentioned types of outliers. In the ACD literature, Chiang and Wang (2012) constructed a procedure

to detect additive outliers for the logarithmic ACD model discussed by Bauwens and Giot (2000).

In the Cook distance, which is the deletion measure of influence of individual cases used in our

paper, the masking and swamping issues pose some limitations on the assessment of the mutual

influence and interactions of groups of cases, since this distance is concerned with individual cases;

see Lawrence (1995). Nevertheless, a deeper study of outlier detection taking into account the joint

and conditional deletion influence measures based on the Cook distance is beyond the scope of our

paper. We leave it to be investigated in a further research.
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4.2 Global influence

Global influence is related to case-deletion, that is, an approach to assess the effect of dropping the

case i from the data set. Let a quantity with subscript “(i)” be that calculated with the case i deleted.

Then, ℓ(i) is the log-likelihood function, which is defined in equation (6) (or (8)), but evaluated at

θ̂(i) = [ ̟̂ (i), α̂1(i), . . . , α̂p1(i), β̂1(i), . . . , β̂q1(i), τ̂(i)]
⊤

or at

ξ̂(i) = [ς̂(i), γ̂1(i), . . . , γ̂p2(i), δ̂1(i), . . . , δ̂q2(i), κ̂(i)]
⊤,

according to which of the two models, BSACD1 or BSACD2 respectively, is being considered.

A first measure of global influence can be defined as the standardized norm of θ̂(i) − θ̂, known as

the generalized Cook distance (GCD), which is given by

GCDi(θ) = [θ̂(i) − θ̂]⊤[−ℓ̈(θ̂)][θ̂(i) − θ̂], i = 1, . . . , n, (9)

where ℓ̈(θ̂) is the Hessian matrix of ℓ(θ) evaluated at θ̂. Alternatively, one can compute GCDi(̟),
GCDi(αm), GCDi(βs) and GCDi(τ), with m = 1, . . . , p1 and s = 1, . . . , q1, whose values reveal the

impact of the case i on the estimates of ̟, αm, βs and τ , respectively. Moreover, θ̂(i) and θ̂ can be

compared by their likelihood distance (LD) as LDi(θ) = 2[ℓ(θ̂)− ℓ(θ̂(i))], for i = 1, . . . , n. Similarly

for the parameter ξ of the BSACD2 model, a GCD as that given in equation (9) may be employed.

4.3 Local influence

Local influence relies on the curvature of the surface of the log-likelihood function. Consider

the likelihood displacement (LL) given by LLi(θ) = 2[ℓ(θ̂) − ℓ(θ̂ω)], for i = 1, . . . , n, where θ̂ω

corresponds to the ML estimate of θ for a perturbed model, ω = [ω1, . . . , ωn]
⊤ is a perturbation

vector, and ℓ(θω) is the log-likelihood function of the model perturbed by ω. The local behavior of

LLi(θ) around ω0, the non-perturbation vector, was studied by Cook (1987), who showed that the

normal curvature for θ in the direction d, with ||d|| = 1, is expressed as

Cd(θ) = 2|d⊤
∇

⊤ℓ̈(θ̂)−1
∇d|,

where ∇ is a [1 + p1 + q1]× n matrix of perturbations with elements

∇ji =
∂2ℓ(θω)

∂θj∂ωi

∣∣∣∣
θ=θ̂,ω=ω0

, j = 1, . . . , p1 + q1, i = 1, . . . , n.

Judgement of the local influence is usually based on index plots. We consider the index graph of the

eigenvector dmax corresponding to the largest eigenvalue of

F̈ = −∇
⊤ℓ̈(θ̂)−1

∇, (10)

Cdmax(θ) say, which can detect those cases that are potentially influential on θ̂. However, we may be

interested only in ̟̂ , α̂ = [α̂1, . . . , α̂p1 ]
⊤, β̂ = [β̂1, . . . , β̂q1 ]

⊤ or τ̂ , such that the normal curvature in
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the direction d is Cl(v̂) = 2|d⊤
∇

⊤[ℓ̈(θ̂)−1 − ℓ̈(v̂)]∇d|, with v = ̟,α,β or τ and

ℓ̈( ̟̂ ) =




0 0 0 0

· ℓ̈(α̂)−1
0 0

· · ℓ̈(β̂)−1
0

· · · ℓ̈(τ̂)−1


 , ℓ̈(α̂) =




ℓ̈( ̟̂ )−1
0 0 0

· 0 0

· · ℓ̈(β̂)−1
0

· · · ℓ̈(τ̂)−1


 ,

ℓ̈(β̂) =




ℓ̈( ̟̂ )−1
0 0 0

· ℓ̈(α̂)−1
0 0

· · 0 0

· · · ℓ̈(τ̂)−1


 , ℓ̈(τ̂) =




ℓ̈( ̟̂ )−1
0 0 0

· ℓ̈(α̂)−1
0 0

· · ℓ̈(β̂)−1
0

· · · 0


 .

In addition, we can consider the direction d = ein, with ein being an n × 1 vector of zeros with one

at the ith position, that is, the canonical basis of Rn, {ein, 1 ≤ i ≤ n} say. Here, the normal curvature

is given by

Ci(θ) = 2ein|F̈ |ein = 2|F̈ii|, i = 1, . . . , n, (11)

where F̈ii is the ith diagonal element of F̈ defined in equation (10). Therefore, if Ci(θ̂) > 2C(θ̂),

where C(θ̂) =
∑n

i=1Ci(θ̂)/n, then the case i is considered as potentially influential. This procedure

is named the total local influence method; see Lesaffre and Verbeke (1998).

Next, considering the model defined in equation (5) and its log-likelihood function given by equa-

tion (6), we derive the different perturbation matrices for each scheme. Similarly for the parameter

ξ of the BSACD2 model, the total local influence method based on Ci given in equation (11) can be

derived.

Case-weight perturbation Under this perturbation scheme, one is interested in evaluating whether

the contributions of the cases with different weights affect the ML estimate of θ. Consider a weight

vector ω = [ω1, . . . , ωn]
⊤. Then, the perturbed log-likelihood is given by

ℓ(θω) =
n∑

i=1

ωiℓi(θ),

with 0 ≤ ωi ≤ 1, for i = 1, . . . , n, and ω0 = [1, . . . , 1]⊤, where

ℓi(θ) =
τ

2
− log(16π)

2
− 1

2
log

(
[τ + 1]x3iµi

[τxi + xi + τµi]2

)
− xi[τ + 1]

4µi

− τ 2µi

4[τ + 1]xi
, xi > 0.

Data perturbation We here assume an additive perturbation for each case of the model given in

equation (5), namely,

Xi(ωi) = Xi + ωi s(Xi) = µi(ωi) εi, εi ∼ RBS(1, τ),

with

log(µi(ωi)) = ̟ +

p1∑

j=1

αj log(µi−j(ωi−j)) +

q1∑

j=1

βj Xi−j(ωi−j)

µi−j(ωi−j)
,
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where s(Xi) is a scale factor and ωi ∈ R, for i = 1, . . . , n. Note thatXi(ωi) ∼ RBS(µi(ωi), τ). Then,

the corresponding log-likelihood function is given by ℓ(θω) =
∑n

i=1 ℓωi
(θ), with

ℓωi
(θ) =

τ

2
− log(16π)

2
− 1

2
log

(
[τ + 1]x3i (ωi)µi(ωi)

[τxi(ωi) + xi(ωi) + τµi(ωi)]2

)
− xi(ωi)[τ + 1]

4µi(ωi)
− τ 2µi(ωi)

4[τ + 1]xi(ωi)
,

for xi(ωi) > 0 and ω0 = [0, . . . , 0]⊤.

Innovative perturbation Note that the log-likelihood function given in equation (6) relies on the

assumption that εis are IID random variables following the RBS distribution. Nevertheless, the model

fitting may be strongly affected by the existence of influential cases. We assume that a perturbation

vector ω is introduced to equation (5) through the conditional mean (or median) duration as

Zi = Xi = µi εi, εi ∼ RBS(1/ωi, τ),

with

log(µi) = ̟ +

p1∑

j=1

αj log(µi−j) +

q1∑

j=1

βj Xi−j

µi−j

.

Then, the corresponding log-likelihood function is given by ℓ(θω) =
∑n

i=1 ℓωi
(θ), where

ℓωi
(θ) =

τ

2
− log(16π)

2
− 1

2
log

(
[τ + 1]x3iµi

ωi[τxi + xi + τω−1
i µi]2

)
− xi[τ + 1]ωi

4µi

− τ 2µi

4[τ + 1]xiωi

,

for xi > 0 and ω0 = [1, . . . , 1]⊤.

4.4 Residual analysis

Goodness-of-fit and departures from the assumptions of the model can be assessed by means of

residual analysis. In particular, two types of residuals are considered in this paper. The first is a

generalized Cox-Snell (GCS) residual given by

rGCS
i = − log(Ŝ(xi|Ωi−1)), i = 1, . . . , n, (12)

where Ŝ is the SF fitted to the ACD data. The SF for the mean-based BSACD model (BSACD1) is

given by

S(xi;µi, τ) = Φ

(
−
√
τ

2

[√
{τ + 1}xi

µiτ
−
√

µiτ

{τ + 1}xi

])
, xi, µi, τ > 0,

whereas for the median-based BSACD model (BSACD2) this is given by

S(xi;κ, σi) = Φ

(
−1

κ

[√
xi
σi

−
√
σi
xi

])
, xi, κ, σi > 0.
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If the model is correctly specified, then the GCS residual is unit exponential, EXP(1) in short, dis-

tributed whatever the ACD model specification; see Bhatti (2010).

The randomized quantile (RQ) residual is the second type of residual to be considered. It is usually

applied to generalized additive models for location, scale and shape; see Dunn and Smyth (1996). The

RQ residual is given by

rRQ
i = Φ−1(Ŝ(xi|Ωi−1)), i = 1, . . . , n,

where Φ−1 is the inverse function of the standard normal CDF and Ŝ is the fitted SF as in equation

(12). The RQ residual follows a standard normal distribution when the model is correctly specified,

again regardless of the ACD model.

5 Monte Carlo simulation

Two MC simulation studies were carried out to evaluate the performance of the ML estimators for

the BSACD1(p1 = 1, q1 = 1) and BSACD2(p2 = 1, q2 = 1) models. The order of the lags for these

models are set as pl = 1 and ql = 1, for l = 1, 2, because a higher order for BSACD models does not

improve the model fit; see Bhatti (2010). Thereby, in the following, any BSACD1(p1 = 1, q1 = 1)

or BSACD2(p2 = 1, q2 = 1) model is simply denoted as BSACD1 or BSACD2 (the same applies to

other models considered in this work). The first study considers the simulated TDs generated from

the BSACD1 and BSACD2 models, whereas the second one has as its data generating process the

logarithmic ACD model (see Bauwens and Giot, 2000) with generalized gamma errors (GGACD) .

All numerical evaluations were done in the R software; see R-Team (2016).

5.1 Simulation study 1

The first simulation scenario considers: sample size n ∈ {50, 100, 500, 1000, 2000}, vector of

true parameters [̟,α, β, τ ] = [0.1, 0.9, 0.1, 1.65] (BSACD1) and [ς, γ, δ, κ] = [0.1, 0.9, 0.1, 1.1]
(BSACD2), and a number of 10, 000 MC replications for each sample size. The BSACD1 and

BSACD2 samples were generated using the transformations defined in equations (1) and (4), respec-

tively. The ML estimation results are presented in Table 1. The following sample statistics for the ML

estimates are reported: empirical mean, coefficients of skewness (CS) and of kurtosis (CK), relative

bias (RB), and root mean squared error (RMSE) defined as the square root of the mean squared error.

A look at the results in Table 1 allows us to conclude that, as the sample size increases, the RB and

RMSE of all the estimators decrease, indicating that they are asymptotically unbiased, as expected.

Moreover, β̂, δ̂, τ̂ and κ̂ seem to be consistent and marginally asymptotic normal distributed. How-

ever, ̟̂ , ς̂ , α̂ and γ̂ are somewhat skewed and with high kurtosis, but they tend to the normal case, as

the sample size increases.

5.2 Simulation study 2

The second simulation scenario considers: sample size n ∈ {50, 100, 500, 1000, 2000}, vector of

true parameters [a, b, c, ϑ,κ] = [0.1, 0.9, 0.1, 0.75, 1.5] (GGACD) and 10, 000 MC replications for

each sample size. The values of ϑ and κ have been chosen so as to simulate data with a unimodal HR

(ϑ < 1 and ϑ,κ − 1 > 0), which is a characteristic present in financial durations; see Bhatti (2010)
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Table 1: Summary statistics from simulated ACD data for the indicated model, estimator and n.

BSACD1 BSACD2

n n

Statistic 50 100 500 1000 2000 50 100 500 1000 2000

̟̂ ς̂

True value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1992 0.1518 0.1480 0.1101 0.1068 0.0182 0.1657 0.1583 0.0973 0.1002

CS 2.9381 4.6335 8.4225 1.2638 0.9232 9.2936 4.8474 8.3807 0.8559 0.5952

CK 12.4462 26.2824 87.7129 5.6169 4.7492 121.8675 26.8107 73.4060 4.3755 3.7650

RB 0.9922 0.5184 0.4800 0.1012 0.0676 1.8183 0.3430 0.5838 0.0265 0.0027

RMSE 0.5636 0.5295 0.2909 0.0672 0.0459 0.2550 0.7303 0.5506 0.0609 0.0434

α̂ γ̂

True value 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Mean 0.6513 0.7580 0.8634 0.8894 0.8938 0.1803 0.7950 0.8659 0.8946 0.8966

CS −1.4732 −3.0760 −8.4600 −1.0580 −0.8020 1.4751 −3.8060 −8.2852 −0.6918 −0.5089

CK 4.3876 12.713 85.732 4.8490 4.4175 3.4129 16.817 71.8364 3.6231 3.5347

RB 0.2763 0.1577 0.0407 0.0117 0.0069 1.7996 0.1166 0.0379 0.0059 0.0037

RMSE 0.4965 0.3820 0.1600 0.0376 0.0255 0.8051 0.3782 0.2096 0.0254 0.0181

β̂ δ̂

True value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1950 0.1844 0.1220 0.1121 0.1061 0.0395 0.1556 0.1164 0.1096 0.1049

CS 0.0873 0.2552 −0.0363 0.1138 0.0868 2.0847 −0.0316 −0.7590 0.0512 0.0338

CK 3.3799 3.4704 4.1325 3.0158 2.7908 6.5525 3.8752 6.7512 3.1480 2.8253

RB 0.9503 0.8445 0.2204 0.1214 0.0611 1.6041 0.5562 0.1638 0.0958 0.0487

RMSE 0.4416 0.1234 0.0392 0.0242 0.0155 0.1037 0.0799 0.0286 0.0170 0.0107

τ̂ κ̂

True value 1.6529 1.6529 1.6529 1.6529 1.6529 1.1000 1.1000 1.1000 1.1000 1.1000

Mean 1.3199 1.5136 1.5924 1.6197 1.6349 0.2547 1.1684 1.1276 1.1144 1.1077

CS −0.7339 0.5348 0.1600 0.1152 0.1263 1.4431 0.2468 0.3117 0.1930 0.0496

CK 3.7721 3.3853 3.3622 3.2757 3.1453 3.1905 3.3262 3.6865 3.4992 3.1465

RB 0.2015 0.0843 0.0366 0.0201 0.0109 1.7684 0.0622 0.0251 0.0131 0.0070

RMSE 0.6895 0.2994 0.1265 0.0861 0.0570 0.9765 0.1231 0.0499 0.0317 0.0202

and Leiva et al. (2014b). In the GGACD model, the PDF of Xi can be written as

f(xi;ψi, ϑ,κ) =
ϑ

ϕ(ϑ,κ)ψiΓ(κ)

(
xi

ϕ(ϑ,κ)ψi

)κϑ−1

exp

(
−
(

xi
ϕ(ϑ,κ)ψi

)ϑ
)
, (13)

where ϕ(ϑ,κ) = Γ(κ)/Γ(κ+ϑ−1) and log(ψi) = a+ b log(ψi−1)+ cXi/ψi. The GGACD samples

were generated by considering the PDF given in equation (13). For both BSACD1 and BSACD2

models, Table 2 presents the empirical mean, CS and CK of the ML estimators. Note that the RB and

RMSE are not computed as their true values because they do not apply in the true GGACD model.

Hence, we consider only the ACD parameters as comparison. From Table 2, we observe that, in

general, ̟̂ , α̂, δ̂, ς̂ , γ̂ and δ̂ are persistently skewed with high kurtosis. Nonetheless, these results are

expected since the simulated durations were generated using the GGACD model. Overall, the results
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associated with the BSACD1 model are closer to the simulation model ones. Now, a quick glance

at the estimates in Table 3 reveals that â and b̂ are highly skewed with a great degree of kurtosis.

Moreover, b̂ remains close to the normal distribution in terms of skewness and kurtosis values.

Table 2: Summary statistics from simulated ACD data for the indicated model, estimator and n.

BSACD1 BSACD2

n n

Statistic 50 100 500 1000 2000 50 100 500 1000 2000

̟̂ ς̂

a (GGACD) 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1640 0.1160 0.1361 0.2261 0.0972 −0.1057 −0.1022 −0.1026 −0.1030 −0.0982

CS 1.5929 2.2436 2.7077 2.0290 3.4038 −1.1457 −0.9851 −1.0081 −2.2631 −2.3702

CK 5.9769 9.5881 11.5575 6.9964 17.0474 13.0222 21.3692 10.5784 15.5903 13.9089

α̂ γ̂

b (GGACD) 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Mean 0.6207 0.7342 0.7482 0.6517 0.8037 0.8023 0.7239 0.7462 0.7972 0.8098

CS −1.4016 −2.0746 −2.4127 −1.7828 −3.0732 −2.3469 −2.0830 −2.3519 −2.9810 −3.3607

CK 4.2612 7.4591 9.1998 5.7076 14.0063 9.4004 7.2681 8.8088 13.8514 16.3301

β̂ δ̂

c (GGACD) 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1270 0.1094 0.0840 0.0802 0.0696 0.0445 0.0438 0.0321 0.0278 0.0250

CS −0.1549 0.2365 0.2107 0.0701 0.4838 −0.0320 −0.2496 −0.1600 −0.0105 0.0145

CK 4.0667 5.8606 4.8427 4.7059 5.8006 4.4591 4.5015 4.2197 4.1956 4.9335

6 Analysis of high-frequency financial data

6.1 Exploratory data analysis

The BSACD1 and BSACD2 models are now used to analyse a real high-frequency financial data

set, corresponding to price durations of BASF-SE stock on 19th April 2016 downloaded from the

Dukascopy site (www.dukascopy.com). A data adjustment was applied, using the R package

ACDm (see Belfrage, 2015), to allow for the fact that this type of data has an active trading pattern

in the opening and closing hours and a dormant trading pattern around noon; see Engle and Russell

(1998). Table 4 provides descriptive statistics for the BASF-SE data set, including central tendency

statistics, standard deviation (SD), coefficient of variation (CV), CS and CK. From this table, note the

right skewed nature and high kurtosis level of the data distribution. The skewness is confirmed by the

histogram shown in Figure 1(left).
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Table 3: Summary statistics from simulated ACD data in the GGACD model for the indicated estimator and

n.
n

Statistic 50 100 500 1000 2000

â

True value 0.1000 0.1000 0.1000 0.1000 0.1000

Mean 0.1668 0.1397 0.0869 0.0971 0.0987

CS 2.8514 4.0351 6.2753 6.1861 3.1767

CK 21.2327 23.5028 48.2212 83.6398 24.9667

RB 0.6680 0.3979 0.1300 0.0290 0.0121

RMSE 0.6983 0.4595 0.2342 0.2332 0.1846

b̂

True value 0.9000 0.9000 0.9000 0.9000 0.9000

Mean 0.8496 0.8343 0.8629 0.8902 0.8946

CS −3.6517 −3.7168 −5.7847 −5.4554 −3.1589

CK 18.8634 18.9606 41.7511 69.2005 27.4577

RB 0.0559 0.0729 0.0411 0.0108 0.0059

RMSE 0.2683 0.2628 0.1984 0.0702 0.0457

ĉ

True value 0.1000 0.1000 0.1000 0.1000 0.1000

Mean −0.0426 0.0189 0.0544 0.0570 0.0579

CS 0.9863 0.5387 0.1293 0.2406 0.4003

CK 4.2246 3.5639 4.1752 3.3597 3.6020

RB 1.4265 0.8101 0.4557 0.4295 0.4202

RMSE 1.4360 0.8173 0.4570 0.4301 0.4205

Table 4: Summary statistics for the BASF-SE data.

n Min Median Mean Max SD CV CS CK

2194 0.061 0.682 1.067 9.776 1.167 109.35% 2.521 8.902

The shape of an HR, which is defined by h(x) = f(x)/[1 − F (x)], with f and F being the PDF

and CDF of X , respectively, is a relevant characteristic to decide whether a particular distribution is

suitable or not for a data set. The scaled total time on test (TTT) function (see Aarset, 1987) is usually

a good tool to characterize the HR and is given by W (u) = H−1(u)/H−1(1), for 0 ≤ u ≤ 1, where

H−1(u) =
∫ F−1(u)

0
[1− F (y)]dy, with F−1 being the inverse function of the CDF of X . A plot of the

points [k/n,Wn(k/n)], with

Wn(k/n) =

∑k
i=1 x(i) + [n− k]xk∑n

i=1 x(i)
, k = 1, . . . , n,

and x(i) being the ith observed order statistic, provides an approximation for W . Figure 1(centre)

suggests an inverse bathtub HR for the BASF-SE data set, as expected; see Bhatti (2010) and Leiva

et al. (2014b).

Figure 1(right) shows the usual and adjusted boxplots, with the latter being useful in cases where

the data follow a skew distribution; see Hubert and Vanderveeken (2008). From this figure, we note
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that potential outliers considered by the usual boxplot are not outliers when the adjusted boxplot is

observed.
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Figure 1: Histogram (left), TTT plot (centre) and boxplots (right) for the BASF-SE data.

6.2 Estimation and model validation

Table 5 reports the ML estimates, computed by the BFGS method, SEs and p-values of the t-test

for BSACD1(1,1) and BSACD2(1,1) model parameters. In addition, we report the Akaike (AIC) and

Bayesian information (BIC) criteria and evaluate the absence of autocorrelation in the residuals, pro-

viding the p-values of the Ljung-Box (LB) statistic, Q(γ) say, for up to γth order serial correlation.

For comparison, the results of the GGACD model, in addition to ACD models based on the lognor-

mal (LNACD) and log-Student-t (LtACD) distributions, are given as well; see Bhatti (2010). From

Table 5, note that, at a 1% significance level, the LB statistics provide no evidence of serial correla-

tion in the residuals. We also note that the ACD models based on the BS (BSACD1 and BSACD2)

models provide better adjustments compared to the other models based on the values of AIC and BIC.

Moreover, the AIC and BIC values of the BSACD1 model do not substantially differ from the values

of the BSACD2 model, suggesting no adjustment improvement.

Hypothesis testing of H0: θ = θ0 versus H1: θ 6= θ0 can be performed using the Wald statistic

defined by W = [θ̂ − θ0]/SE(θ̂), which is approximately N(0,1) distributed under H0, where θ̂ and

θ0 are the corresponding estimator and its proposed value under H0, respectively. From Table 5, note

that all the ACD parameters are statistically significant at the 5% level. Figure 2 displays the QQ plots

with simulated envelope of the GCS and RQ residuals for the BSACD1, BSACD2, GGACD, LNACD

and LtACD models. From this figure, observe that the GCS residuals show good agreement with the

EXP(1) distribution and the RQ residuals with the N(0, 1) distribution in the BSACD1 and BSACD2

models.

6.3 Diagnostic analysis

Global influence Figure 3 presents the case-deletion measures GCDi(θ) and LDi(θ) presented in

Section 4.2. We note that both the GCDi(θ) and LDi(θ) statistics indicate that the case #1118 is a

possible influential observation.
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Table 5: ML estimates (with SE in parentheses) and model selection measures for fit to the BASF-SE data.
ACD model Parameter ML estimate p-value Q(4) Q(16) AIC BIC

BSACD1 ̟ −0.0485(0.0189) 0.0101 0.6227 0.2400 4461.66 4484.43
α 0.5799(0.1763) 0.0010
β 0.0692(0.0183) 0.0001
τ 1.3946(0.0421)

BSACD2 ς −0.2756(0.0975) 0.0047 0.6238 0.2403 4461.66 4484.43
γ 0.5800(0.1758) 0.0009
δ 0.0403(0.0106) 0.0001
κ 1.1974(0.0180)

GGACD a 0.0724(0.0183) <0.0001 0.7964 0.4344 4488.384 4516.851
b 0.7204(0.0936) <0.0001
c 0.0494(0.0117) <0.0001
ϑ 15.0013(6.5247)
κ 0.2467(0.0547)

LNACD a1 −0.2666(0.0799) 0.0008 0.9472 0.7028 6505.187 6482.413
b2 0.5951(0.1502) <0.0001
c2 0.0494(0.0117) <0.0001
ξ 1.0675(0.0161)

LtACD a3 −0.2278(0.0592) 0.0001 0.8662 0.6887 6782.066 6753.599
b3 0.6498(0.1193) <0.0001
c3 0.0561(0.0124) <0.0001
ζ 0.8786(0.0176)
ν 3

where a1, b1, c1 are the ARMA parameters of the LNACD model and ξ its shape parameter, whereas a2, b2, c2
are the ARMA parameters of the LtACD model, ξ its scale parameter and ν its degrees of freedom.
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Figure 2: QQ plot and its envelope for the GCS (top) and RQ (bottom) residuals in the indicated model with

the BASF-SE data.

Case-weight perturbation Index plots ofCi under case perturbation are shown in Figure 4, detecting

the case #1119 as a potential influential observation for both of the BSACD1 and BSACD2 models.
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Figure 3: GCD and LD for the BSACD1 (left) and BSACD2 (right) models with the BASF-SE data.
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Figure 4: Index plots of Ci for the indicated parameter under case-weight perturbation in the BSACD1 (top)

and BSACD2 (bottom) models with the BASF-SE data.

Data perturbation Index plots of Ci under data perturbation are displayed in Figure 5, where the

case #1119 is again detected as a potential influential observation for both models.

Innovative perturbation Figures 6(a)-(d) show index plots of Ci under innovative perturbation,

where the case #1119 is once again detected as a potential influential observation for the BSACD1

and BSACD2 models.

Relative change Here, the impact of the detected influential cases on the model inference is checked.

We compute the relative change (RC), which is obtained by removing influential cases and re-estimating

the parameters and the corresponding SEs as RCθj(i) = |[θ̂j − θ̂j(i)]/θ̂j| × 100% and RCSE(θj(i)) =

|[ŜE(θ̂j)− ŜE(θ̂j)(i)]/ŜE(θ̂j)| × 100%, where θ̂j(i) and ŜE(θ̂j) are the ML estimate of θj and its cor-

responding SE, respectively, after removing the case i, for j = 1, . . . , 4 and i = 1, . . . , n, with

θ1 = ̟, ς; θ2 = α, γ; θ3 = β, δ; and θ4 = τ, κ. Table 6 reports the RCs in the parameter estimates

and SEs, as well as the p-values of the corresponding t-test obtained by considering the data with

dropped cases. From this table, note that the largest RCs are related to the removal of the case #1118.
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Figure 5: Index plots of Ci for the indicated parameter under data perturbation for the BSACD1 (top) and

BSACD2 (bottom) models with the BASF-SE data.
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Figure 6: Index plots of Ci for the indicated parameter under innovative perturbation for the BSACD1 (top)

and BSACD2 (bottom) models with the BASF-SE data.

In terms of model sensitivity, we observe a more pronounced influence of the removed cases on the

ML estimates of the BSACD1 model parameters than on the ML estimates of the BSACD2 model

parameters. This result can be interpreted as a robustness of the BSACD2 model to atypical cases.

Thus, no inferential changes are found for either model; namely, the diagnostic measures identify

potentially influential cases, but these do not alter the inference of the models.
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Table 6: RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and removed

cases, and respective p-values with the BASF-SE data.
Removed case(s) BSACD1 BSACD2

̟̂ α̂ β̂ τ̂ ς̂ γ̂ δ̂ κ̂

{1118} RCθj(i)
40.38 12.62 37.30 23.29 8.12 2.80 3.91 1.73

RCSE(θj(i)) (6.44) (15.37) (7.84) (0.83) (12.22) (15.22) (8.05) (0.37)

p-value [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

{1119} RCθj(i)
1.41 2.56 0.6 6.58 2.26 4.39 0.08 0.49

RCSE(θj(i)) (1.11) (1.50) (0.6) (0.25) (1.34) (1.52) (0.65) (0.09)

p-value [0.008] [<0.001] [<0.001] [<0.001] [0.005] [<0.001] [<0.001] [<0.001]

{1118,1119} RCθj(i)
37.67 18.22 35.36 28.25 7.97 3.62 3.71 2.12

RCSE(θj(i)) (6.53) (14.04) (7.85) (1.03) (12.22) (13.89) (8.15) (0.44)

p-value [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

6.4 Forecasting performance

We evaluate the forecasting ability of the proposed models using traditional forecasting and density

forecast evaluation.

Traditional forecasting technique Forecasts from an ACD model can be carried out in an analogous

way to that used for GARCH models; see Tsay (2009). Consider the BSACD1 and BSACD2 models

and suppose that the forecast origin is i = h. For a 1-step-ahead forecast, the models state that for

BSACD1 xh+1 = µh+1 εh+1 with µh+1 = exp (̟ + α log(µh) + β xh/µh) and for BSACD2 xh+1 =
σh+1 ̺h+1 with σh = exp (ς + γ log(σh) + δ xh/σh). Let xh(1) be the 1-step-ahead forecast of xh+1

at the origin h. Then, xh(1) = E[µh+1 εh+1] = µh+1 (BSACD1) and xh(1) = F−1
BS (0.5|Ωh) = σh+1

(BSACD2). For multi-step-ahead forecasts, we use xh+j = µh+j εh+j (BSACD1). Then, its j-step-

ahead (j > 1) forecast under the BSACD1 model is

xh(j) = E[µh+j εh+j] = E[exp(g(εh+j−1))]E[exp(̟ + α log(µh+j−1))]

= Ξ1E[exp (̟ + α log(µh+j−1))]

= Ξ1E[exp (̟ + α(̟ + α log(µh+j−2) + g(εh+j−2)))]

· · ·
= Ξ1Ξ2 · · ·Ξj−1

(
exp

(
̟[1− αj−1]

1− α
+ αj−1 log(µh+1)

))
,

where Ξm = E[exp (αm−1g(εh+j−m))], with g(εh+j−m) = βεh+j−m = β xh+j−m/µh+j−m. An es-

timate of Ξm can be computed by Ξ̂m = [1/N ]
∑N

h=1 exp (α
m−1g(εh)), with m = 1, . . . , j − 1.

Similarly, j-step-ahead (j > 1) forecasts may be obtained for the BSACD2 model; see Dufour and

Engle (2000). Now, we compare the forecast ability of the BSACD1, BSACD2, GGACD, LNACD

and LtACD models. Table 7 presents the estimated mean square error (MSE) for 6-step-ahead fore-

casts from these models. The results indicate the good performance of the ACD models based on BS

distributions.

18



Table 7: Forecasts 6-step-ahead and MSE from the indicated model with the BASF-SE data.

j 1 2 3 4 5 6

BSACD1 0.054 0.040 0.002 1.263 0.086 0.089

BSACD2 0.011 0.004 0.034 1.617 0.201 0.017

GGACD 0.075 0.087 0.010 0.883 0.005 0.311

LNACD 0.012 0.006 0.031 1.596 0.194 0.020

LtACD 0.016 0.008 0.029 1.599 0.181 0.024

Density forecast evaluation technique Next, the density forecast (DF) evaluation technique, pro-

posed by Diebold et al. (1998), is used to compare the forecasting ability of the BSACD1, BSACD2,

GGACD, LNACD and LtACD models. In our case, this technique consists of checking whether a

sequence of one-step-ahead DFs generated by an ACD model, {fi(xi|Ωi−1)} say, and a sequence of

PDFs defining the data generating process, {pi(xi|Ωi−1)} say, are such that

{fi(xi|Ωi−1)} = {pi(xi|Ωi−1)}, (14)

or not. Due to the fact that {pi(xi|Ωi−1)} is never observed, we compute the probability integral

transform given by

zi =

∫ xi

−∞

fi(u)du.

Under a null hypothesis based on equation (14), the sequence {zi} of {xi} with respect to {fi(xi|Ωi−1)}
are IID random variables following the U(0,1) distribution; see Diebold et al. (1998) and Bauwens

et al. (2004). Therefore, graphical analysis, such as histogram, autocorrelation function (ACF), and

partial ACF (PACF) plots, can be used to verify if independence and uniformity are met. Also, the

Kolmogorov-Smirnov (KS) and LB tests may be employed to corroborate goodness-of-fit and inde-

pendence, respectively.

The sequence {zi} for each model is computed out-of-sample; namely, parameter estimates are

calculated on the first part of the sample, and then the sequence {zi} is calculated based on the other

part. Table 8 reports the p-values of the KS test for the sequence {zi} and the p-values of the LB test

for the sequences {zi} and {z2i } over 4 and 16 lags, where {z2i } is used to test a possible non-linear

serial correlation. From this table, note that the hypothesis of uniformity for the sequence {zi} is

confirmed by the results of the KS test for the BSACD1 and BSACD2 models. This confirms the

superiority of these models in terms of out-of-sample forecasting ability over the GGACD, LNACD

and LtACD models; see Table 8. Moreover, by means of the ACF and PACF plots displayed in

Figure 7, independence of the sequence {zi} for the BSACD1 and BSACD2 models is observed,

which is confirmed by the p-values of the LB test; see Table 8.

From these results, we can also conclude that the BSACD1 and BSACD2 models have a quite

similar out-of-sample forecasting performance and better than the GGACD, LNACD and LtACD

models for the BASF-SE data.
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Table 8: Out-of-sample test results (KS and LB p-values) for the indicated model with the BASF-SE

data.
p-values

Model KS Q(4) Q2(4) Q(16) Q2(16)
BSACD1 0.123 0.660 0.676 0.913 0.895

BSACD2 0.124 0.514 0.497 0.519 0.539

GGACD 0.016 0.494 0.363 0.931 0.796

LNACD <0.001 0.278 0.080 0.780 0.239

LtACD <0.001 0.227 0.070 0.703 0.230
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Figure 7: ACF and PACF plots of the probability integral transform {zi} for the BSACD1 (left) and BSACD2

(right) models with the BASF-SE data.

7 Concluding remarks

We have compared and analyzed two Birnbaum-Saunders autoregressive conditional duration mod-

els based on the mean and median durations, the former one being a new model to be proposed in the

present research. We have considered inference about the model parameters, influence diagnostics

and two types of residuals for these models. A Monte Carlo simulation study was carried out to eval-

uate the behaviour of the maximum likelihood estimators of the corresponding parameters. We have

applied the proposed and existing models to a recent real-world data set of financial transactions from

the German DAX stock exchange. We have evaluated the global and local influence of atypical cases

based on the proposed models for these data. The influence diagnostic study suggested the BSACD2

model is more robust to atypical cases than the BSACD1 model hence making it a more reliable

choice in highly unpredictable market conditions. In addition, the forecasting ability of the proposed

and existing models based on the traditional and density forecast evaluation techniques has been as-

sessed. In general, the results have shown that the two Birnbaum-Saunders autoregressive conditional

duration models have similar performances in terms of model fitting and forecasting ability, and that

they outperform the existing models in the literature. As part of future research, it is of interest to

study outlier detection taking into account the joint and conditional deletion influence measures based

on the Cook distance, as well as propose an outlier detection procedure to evaluate and estimate their

effects in ACD models; see Chiang and Wang (2012). In addition, influence diagnostic tools can be

extended to more general Birnbaum-Saunders ACD models, such as those based on scale mixture of

normals or versions of extreme value; see Leiva et al. (2016a). Furthermore, multivariate models can

also be explored; see Marchant et al. (2016a). Work on some of these issues is currently in progress

and we hope to report some findings in future papers.
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