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Freak waves in laboratory and space plasmas

Freak waves in plasmas

Michael S. Ruderman®

School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield,
S3 7TRH, UK

Abstract. Generation of large-amplitude short-lived wave groups from small-am-
plitude initial perturbations in plasmas is discussed. Two particular wave modes
existing in plasmas are considered. The first one is the ion-sound wave. In a
plasmas with negative ions it is described by the Gardner equation when the
negative ion concentration is close to critical. The results of numerical solution
of the Gardner equation with the modulationally unstable initial condition are
presented. These results clearly show the possibility of generation of freak ion-
acoustic waves due to the modulational instability. The second wave mode is the
Alfvén wave. When this wave propagates at a small angle with respect to the
equilibrium magnetic field, and its wave length is comparable with the ion inertia
length, it is described by the DNLS equation. Studying the evolution of an initial
perturbation using the linearized DNLS equation shows that the generation of
freak Alfvén waves is possible due to linear dispersive focusing. The numerical
solution of the DNLS equation reveals that the nonlinear dispersive focusing can
also produce freak Alfvén waves.

1 Introduction

Freak (or rogue, or giant) waves are extremely violent phenomena in the ocean. An encounter
with such a wave can be fatal even for big ocean liners. These waves can be also very dangerous
for various hydrotechnic constructions. This makes studying freak waves a very important
problem. Hence, it is not surprisings that the phenomenon of freak waves has attracted ample
attention of oceanographers (see, e.g., [1-7]).

It seems that the phenomenon of freak waves is quite universal and occurs not only in the
ocean. Recently it has been found experimentally that freak waves can be generated in optical
systems [8,9].

Large-amplitude waves are also observed in space plasmas. In Fig. 1 taken from Ref. [10]
the observations of spike-like dips in the interplantary magnitic filed called magnetic holes
are shown. This observations were made by Voyager 1 in the heliosheath, which is a region
between the termination shock, where the solar wind plasma is decelerated, and the heliopause
separating the solar wind from the interstellar medium. This region is situated at about 100
astronomical units from the sun.

At present there are a few competing theories explaining the appearance of magnetic holes.
They include the current sheet model [11], the creation of magnetic holes by the mirror in-
stability [12-14], and the soliton model [15]. We can suggested one more model explaining the
existence of magnetic holes: they can be freak waves. This is only one example from space
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Fig. 1. Voyager 1 observations of hour averages of the magnetic field strength B in the heliosheath.
The magnetic field magnitude shows many spike-like dips that are too narrow to be resolved in the
hour average. Figure taken from Ref. [10]

physics where the theory of freak waves can be applied, but it clearly shows that freak waves
in plasmas are worth of studying.

In this paper we give a brief review of recent progress in studying generation of freak waves
in plasmas. The paper is organized as follows. In the next section we consider generation of
freak waves in plasmas with negative ions. The evolution of wave packets in such plasmas is
described by the Gardner equation. In Sect. 3 we discuss the generation of Alfvén freak waves
described by the the Derivative Nonlinear Schrodinger (DNLS) equation. Sect. 4 contains the
summary of the review and our conclusions.

2 Modulationally unstable ion-acoustic waves in plasmas with negative ions
2.1 Gardner equation for nonlinear waves

Nonlinear ion-acoustic waves in plasmas have been studied for a very long period of time. It was
shown that the Korteweg-de Vries (KdV) equation can be used to describe waves with moderate
amplitudes [16-18]. The KdV-type ion-acoustic solitons in plasmas consisting of electrons and
positive ions were then studied experimentally [19-23].

The behaviour of ion-acoustic waves becomes mode complicated when the plasma contains
not only positive but also negative ions. When the concentration of negative ions is equal to
the critical value, the coefficient at the nonlinear term in the KdV equation is equal to zero,
which implies that the cubic non-linearity has to be takes into account. As a result, nonlinear
ion-acoustic waves in plasmas with the critical concentration of negative ions are described
by the modified Korteweg-de Vries (mKdV) equation [24-28]. The mKdV solutions were also
observed in the experiment [29].

When the negative ion concentration is not exactly equal to the critical value, but close to
it, both the quadratic and cubic non-linearity has to be taken into account. In that case the
dynamics of nonlinear ion-acoustic waves is described by the Gardner equation [30,31],
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Here 1) is the dimensionless electric potential, 7 the dimensionless time, and £ the dimensionless
spatial variable in the reference frame moving with the velocity of long linear ion-acoustic waves
with respect to the rest plasma. The coefficients in Eq. (1) are given by
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where n = Zym_/Z_m,, v the dimensionless parameter proportional to the deviation of the
negative ion density from the critical value, my and m_ are the masses of the positive and
negative ions, and Z, and Z_ are the ratios of the electrical charges of the positive and negative
ions to the elementary charge.

2.2 Dynamics of modulationally unstable ion-acoustic waves

When the negative ion density is equal to the critical values, which corresponds to v = 0, Eq. (1)
reduces to the mKdV equation. The dynamics of modulationally unstable packets described by
the mKdV equation has been extensively studied (see, e.g., [32]). Recently a similar study has
been carried out for modulationally unstable packets described by the Gardner equation [31].
Here we describe the most important results obtained in [31] that are related to the generation
of freak waves.

We start from discussing the modulational instability of weakly nonlinear wave packets
described by Eq. (1). We consider the solution to Eq. (1) in the form of weakly modulated
sinusoidal wave,

(&, 1) =eW(X,T)exp(iO) + c.c., (5)

where X = (& + 3xk?7), T = %7, © = k& — wT, k is the carrier wavenumber, w = —Yk?, &
is an arbitrary small parameter, and c.c. denotes the complex conjugate. The evolution of the
complex amplitude ¥ is described by the nonlinear Schrédinger equation [33,34],

ov o0*w

OF ox 2
57 3Xk8X2 + 0k|W | P, (6)
where
fogo L (7)
=9 6k

Equation (6) has the solution in the form of a monochromatic wave given by
U =0 = Agexpli(KX — 02T)], 2 =k(5A5 —3xK?). (8)

It is straightforward to show that this solution is stable when yé < 0, and unstable when
X0 > 0. This is the well-known criterion for the modulational or Benjamin-Feir instability (see,
e.g., [35], [36]). Since x > 0, the stability of monochromatic ion-acoustic waves is determined
by the sign of §. It follows from Eq. (7) that the condition for the onset of the modulational
instability is
k>ke=——. 9

= oax 9)
In a particular case when the negative ion density is equal to its critical value, i.e. v = 0, we
have a = 0 and the monochromatic wave is unstable for any value of k. In the general case this
wave is unstable only if the carrier wavenumber k is sufficiently large. Only the long-wavelength
perturbations with the modulation wave number x satisfying

2
K < Klim = AO @ (10)

are unstable.
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The dynamics of the modulationally unstable wave packets was studied numerically. To do
this the new variables were introduced,

T =—(g/6)"*x Voysgn(a),  (=x""¢ (11)
In the new variables Eq. (3) reduces to

r r T 0T
o +6aT8— +6T28— or _

o7 ac ¢ + acs 0, (12)

where o = |a|(6g)~'/?x /6. The criteria for the modulational instability are transformed to

k> a, k< 2A0¢\/1— —. (13)

Equation (12) was solved numerically using the finite-difference scheme described in [37].
The initial condition was taken in the form of a modulated harmonic wave,

T = A[l — mcos(k()] sin(k(). (14)

Note that, in accordance with Egs. (5) and (8), A = 2Ay. The main purpose of the study was
to investigate the role of the quadratic non-linearity. In accordance with this the calculations
were carried out with & = 1 and o = 0 (corresponding to the mKdV equation), and then the
results were compared. In all calculations m = 0.05, k¥ = 1.256 and « = 0.0157 were taken.
In particular, this implies that the first inequality in (13) was satisfied for both values of .
Figure 2 shows the time evolution of the wave for A = 0.05. For this value of A the second
inequality in Eq. (13) is satisfied, so that the perturbation with & = 1.256 is unstable. In Fig. 2
we clearly see the formation of wave groups with the amplitudes approximately equal to 0.15,
which is three times larger than the initial amplitude.

Figure 3 shows the time evolution of the wave for A = 0.23. Once again the second inequality
in Eq. (13) is satisfied, so that the perturbation with k& = 1.256 is unstable. In this figure we
also can see the formation of wave groups with the amplitudes a few times larger than the
initial one.

Hence, the results of numerical modelling reveal that the freak waves are formed due to
modulational instability both in the case of purely cubic non-linearity (mKdV equation) and
mixed non-linearity (Gardner equation). These waves exist only for short periods of time and
then disappear. The main role of the quadratic non-linearity is that it decelerates the wave
evolution. As a result, the first freak wave appears later in the case of mixed non-linearity than
in the case of purely cubic non-linearity.

3 Generation of large-amplitude magnetohydrodynamic pulses by dispersive
focusing

3.1 Derivative Nonlinear Schréodinger equation for Alfvén waves

The Derivative Nonlinear Schrédinger (DNLS) equation describes propagation of nonlinear
Alfvén waves in plasmas [38—41]. It can be written in the form

O 9, 8%

Here b = B, +iB,, where B, and B, are the y and z-components of the magnetic field,
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Fig. 2. Formation of the first intense wave groups due to modulational instability of the wave with
the initial amplitude A = 0.05. The upper panels correspond to a = 0 (the mKdV equation), and the
lower to @ = 1 (the Gardner equation). Figure taken from Ref. [31]

B, is the z-component of the magnetic field (which remains constant), § is the square of the
ratio of the sound speed cg to the Alfvén speed V4, and f2; is the ion gyrofrequency; g, €
and m; are the magnetic permeability of free space, the elementary charge, and the ion mass,
respectively. Note that Eq. (15) is written in the reference frame moving with the speed Vy4 in
the positive z-direction with respect to the rest plasma.

The DNLS equation has been derived under the assumption that the non-linearity and dis-
persion are small. These two conditions mean that |b| < B, and that the characteristic spatial
scale of the perturbation variation is much large than the ion inertial length \/m; /pon;e?, where
n; is the concentration of ions. Another assumption made when deriving the DNLS equation
is that the waves propagate at a small angle with respect to the equilibrium magnetic field.
A comparison of the theoretical results obtained on the bases of the DNLS equation with the
observational data shows that, very often, the DNLS equation provides fairly good description
of Alfvén waves in the solar wind [42].

3.2 Generation of large-amplitude pulses described by the DNLS equation

Recently the generation of large-amplitude short-lived Alfvénic pulses described by the DNLS
equation has been studied [43]. In what follows we will briefly describe the results of this study.
Let us first consider the linearized DNLS equation. Then we obtain Eq. (15) with the nonlinear
term neglected. The solution to this equation satisfying the initial condition b(0,z) = bo(x) is
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Fig. 3. Formation of the first intense wave groups due to modulational instability of the wave with
the initial amplitude A = 0.23. The upper panels correspond to a = 0 (the mKdV equation), and the
lower to @ = 1 (the Gardner equation). Figure taken from Ref. [31]

straightforward,

_ T e [~ 4
bta) = 5o [ ) p( o )d. (16)

Let us take the initial condition in the form
bo(z) = aexpl(—1+ ia)(x/l)z], (17)

where o is a real constant. Substituting this expression for by in Eq. (16) we immediately obtain

B al (x1)?
M= = henz s A P\ T E Doz @0 ) (18)
Obviously, at fixed t > 0, |b| takes its maximum value at = 0, and this maximum is given by
blv = al[(1? — 4Xat)? + (4M)?) /4 19
|

When o < 0, |b|y is a monotonically decreasing function of time, so large-amplitude pulses
cannot be generated. However, when o > 0, the situation is different. Now |b|y takes its
maximum value at

b=t = — (20)

— YImax — 4)\(1_’_0_2)7

and this maximum is equal to a(1 + ¢2)'/%. When ¢ >> 1, the ratio of the wave amplitude
at t = tmax and ¢ = 0 is approximately equal to /o > 1, i.e. large-amplitude pulses can be
generated from small-amplitude wave trains.
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It is not difficult to give a physical interpretation to the obtained result. Let us take x =
xo + 0z, |zo| > 1/|o|, and consider |0z < |zg| assuming that |o| > 1. Then Eq. (17) can be
rewritten in the approximate form as

by = Aetkoo ko = 2010 /12, A = aexp[(—1+io)(xe/1)?]. (21)

These expressions describe a circularly polarized monochromatic wave with constant amplitude
|A|. This wave is left-hand polarized when ky > 0 (ox¢ > 0), and right-hand polarized when
ko < 0 (oxo < 0). Hence, a large-amplitude wave can be generated from a small-amplitude
wave train given by Eq. (17) when this wave train is locally left-hand polarized for > 0 and
right-hand polarized for < 0, and cannot be generated in the opposite case. It is worth noting
that a circularly polarized wave with constant amplitude is an exact solution of the DNLS
equation. When the amplitude of such a wave is sufficiently small, this wave is modulationally
unstable when it is left-hand polarized [39,41], and modulationally stable when it is right-hand
polarized.

When o >> 1, the pulse amplitude is larger than a half of its maximum value, i.e. |b|y >

%a o, only in a narrow time interval determined by

2

|t - tmax‘ < m

For |t — tmax| 2 tmax, it follows from Eq. (19) that the characteristic time of variation of |b|um
is [2/X > T. This estimate reveals the short-lived character of larger-amplitude pulses, similar
to one found for perturbations described by the KdV and mKdV equations [2,32].

We can give a very simple qualitative explanation why large-amplitude waves can be gener-
ated from the initial small-amplitude wave train given by Eq. (17) only when o > 0. It follows
from Egs. (15) and (21) that the local dispersion equation takes the form w = —MkZ, so that
the local group velocity is vy = —2Akg. Then, for ¢ > 0, vy < 0 when z > 0, and v, > 0
when & < 0 (recall that we use the reference frame moving with the speed V4 in the positive
a-direction with respect to the rest plasma). This implies that, at the initial moment of time,
the energy flux is directed towards the coordinate origin, which makes the wave amplitude at
the coordinate origin growing. This is a typical picture of the linear dispersive focusing. On the
other hand, for 0 < 0, vy > 0 when x > 0, and vy < 0 when < 0. The energy flux is directed
outwards from the coordinate origin and, as a result, the wave amplitude at the coordinate
origin decreases.

Now we discuss the effect of non-linearity on the dispersive focusing. The DNLS equation
is a completely integrable equation and can be solved by the inverse scattering method (ISM)
[44-47]. The ISM is very appropriate for calculating the asymptotic behaviour of solutions with
arbitrary initial conditions. However, its applicability to studying the intermediate behaviour of
solutions is restricted to the initial conditions for which the corresponding scattering problem
can be solved analytically. To our knowledge, the only non-trivial exact solutions to the DNLS
equation obtained so far are different kinds of the N-soliton solutions (see, e.,g., [48-51]). Since,
at present, it is not clear if the scattering problem for the DNLS equation for the initial con-
dition (17) can be solved analytically, the nonlinear evolution of this perturbation was studied
numerically [43]. The evolution of the initial perturbation strongly depends on the non-linearity
parameter N = hla?/)\. For the numerical solution Eq. (15) was rewritten in terms of dimen-
sionless variables ¢ = b/a, X = 2/l and T = At/I?. The results of the numerical solution are
shown in Fig. 4 for N = 0 (linear theory) and N = 0.45. In this figure the formation of a
large-amplitude short-lived pulse is clearly seen.

The numerical solution was also used to study the dependence of the maximum amplitude
of the wave on ¢. Similar to the linear theory, this maximum amplitude is a monotonically
increasing function of ¢ for any value of N. On the other hand, this maximum amplitude is a
monotonically decreasing functions of N for any fixed o.

This result makes an impression that the non-linearity plays a negative role in the large-
amplitude pulse generation. However in fact, this result only shows that the non-linearity sup-
presses the large-amplitude pulse generation form the particular initial perturbation given by
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Fig. 4. The time evolution of the X-dependence of |g| for o = 6. The left panel corresponds to N = 0
(liner theory), and the right panel to N = 0.45. Figure taken from Ref. [43]
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Fig. 5. The initial perturbations used in linear (N = 0) and nonlinear (N = 0.45) calculations. The
thick and thin solid curves show |g| and Re(q) respectively. The left curves correspond to (17) with
o = 6. Since equation (15) is invariant with respect to shift of x, the spatial positions of the initial
perturbations are chosen arbitrarily. Figure taken from Ref. [43]

Eq. (17). It is quite possible that large-amplitude pulses can be generated from small-amplitude
initial perturbations very efficiently even in the nonlinear regime if we change the initial condi-
tion. This conjecture was verified in the following way. Let gy, (T, X) be the solution to Eq. (15)
written in the dimensionless form with N = 0 and with the initial condition (17). It takes its
maximum amplitude (1 + 02)¥/* at T = Tax = Mmax/l>. Equation (15) was solved with
N = 0.45 taking qiin (Tmax, X ) as the initial condition, and integrating it backward with respect
to time. As a result, the solution gnoni (7, X) was obtained for T' < Tyax. Let T = Tinin < Tinax
be the moment of time when the amplitude of ¢non (7, X) takes its minimum value. Then the
solution to Eq. (15) with N = 0.45 and with the initial condition ¢ = ¢o(X) = gnoni(Twmin, X)
at T = 0 is equal to qin(Tmax, X) at T = Tmax — Tmin- Fig. 5 displays bg(X)/a and ¢o(X)
for o = 6. We can see that max |go| < max|by/a|. Hence, the amplification rate obtained in
the nonlinear regime with the initial perturbation g is even larger than the amplification rate
obtained in the linear regime with the initial perturbation (17). This example clearly shows
that the dispersive focusing works both in nonlinear as well as in linear regime.
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4 Summary and conclusions

In this paper we gave a brief review of the recent development in studying freak waves in
plasmas. We started from considering the generation of ion-acoustic freak waves in plasmas with
negative ions. When the concentration of negative ions is close to critical, the nonlinear ion-
acoustic waves are described by the Gardner equation. The results of the numerical modelling of
the time evolutions of modulationally unstable perturbations are discussed. These results clearly
show that large-amplitude short-lived pulses are generated from the initial small-amplitude
perturbation. These pulses have all typical properties of freak waves. The study of generation
of freak ion-acoustic waves in plasmas with negative ions can be interesting for laboratory
plasma experiments.

We then proceed to reviewing the study of generation of Alfvén freak waves in astrophysical
plasmas. Nonlinear Alfvén waves propagating at small angles with respect to the background
magnetic field are described by the DNLS equation. First we discussed the linear theory of
the freak wave generation by the dispersive focusing. A simple solution of the linearized DNLS
equation was presented. This solution shows that a wave group with the arbitrarily large ratio
of amplitude to the amplitude of the initial perturbation can be obtained. Then we considered
the freak wave generation in the nonlinear regime. The results of the numerical solution of the
DNLS equation clearly show that the nonlinear dispersive focusing also results in the generation
of large-amplitude short-lived Alfvénic pulses.
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