
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Journal of
Computational and Applied Mathematics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/11215

Published paper

Winkler, J.R., Hasan, M. (2010) A non-linear structure preserving matrix method
for the low rank approximation of the Sylvester resultant matrix, Journal of
Computational and Applied Mathematics, 234 (12), pp. 3226-3242
http://dx.doi.org/10.1016/j.cam.2010.04.013

http://eprints.whiterose.ac.uk/11215�
http://dx.doi.org/10.1016/j.cam.2010.04.013�

A non-linear structure preserving matrix

method for the low rank approximation of the

Sylvester resultant matrix

Joab R. Winkler, a Madina Hasan a

aDepartment of Computer Science, The University of Sheffield, Regent Court,

211 Portobello Street, Sheffield S1 4DP, United Kingdom

j.winkler@dcs.shef.ac.uk, acp07mah@sheffield.ac.uk

Abstract

A non-linear structure preserving matrix method for the computation of a struc-
tured low rank approximation S(f̃ , g̃) of the Sylvester resultant matrix S(f, g) of
two inexact polynomials f = f(y) and g = g(y) is considered in this paper. It
is shown that considerably improved results are obtained when f(y) and g(y) are
processed prior to the computation of S(f̃ , g̃), and that these preprocessing op-
erations introduce two parameters. These parameters can either be held constant
during the computation of S(f̃ , g̃), which leads to a linear structure preserving ma-
trix method, or they can be incremented during the computation of S(f̃ , g̃), which
leads to a non-linear structure preserving matrix method. It is shown that the non-
linear method yields a better structured low rank approximation of S(f, g) and that
the assignment of f(y) and g(y) is important because S(f̃ , g̃) may be a good struc-
tured low rank approximation of S(f, g), but S(g̃, f̃) may be a poor structured low
rank approximation of S(g, f) because its numerical rank is not defined. Examples
that illustrate the differences between the linear and non-linear structure preserving
matrix methods, and the importance of the assignment of f(y) and g(y), are shown.

Key words: Sylvester matrix, structured low rank approximation

1 Introduction

Resultant matrices arise in several disciplines that require the processing of
curves and surfaces, including computer graphics [7], computer vision [12] and
computer aided geometric design. They are frequently used in geometric prob-
lems because they can be used to determine if two polynomial curves intersect,
and thus the points of intersection are calculated only if the curves intersect.

Preprint submitted to Elsevier Preprint 15 April 2010

In particular, a resultant matrix, the entries of which are functions of the
coefficients of the polynomials, is singular if and only if the curves intersect.
Although design intent may require that the curves intersect, inexact data
may imply they do not intersect, in which case the design intent is realised by
perturbing the coefficients of the polynomials slightly such that their resultant
matrix becomes singular, that is, a structured low rank approximation of the
given resultant matrix is required. This paper compares the methods of struc-
tured total least norm (STLN) [13] and structured non-linear total least norm
(SNTLN) [14] for the calculation of a structured low rank approximation of
the Sylvester resultant matrix, which is one type of resultant matrix.

The Sylvester resultant matrix S(f, g) ∈ R
(m+n)×(m+n) of the polynomials

f = f(y) and g = g(y),

f(y) =
m
∑

i=0

aiy
m−i and g(y) =

n
∑

i=0

biy
n−i, a0, b0 6= 0, (1)

is

S(f, g) =











































a0 b0

a1
. . . b1

. . .
...

. . . a0
...

. . . b0

am−1
. . . a1 bn−1

. . . b1

am
. . .

... bn
. . .

...
. . . am−1

. . . bn−1

am bn











































, (2)

where the coefficients ai of f(y) occupy the first n columns and the coefficients
bi of g(y) occupy the last m columns.

The calculation of a structured low rank approximation of S(f, g) is closely
related to the calculation of an approximate greatest common divisor (AGCD)
of f(y) and g(y). For example, Bini and Boito [1] discuss three methods, based
on the structure of the Sylvester S(f, g) and Bézout B(f, g) resultant matrices,
for AGCD computations. The QR decomposition of S(f, g) is used by Corless
et. al. [3], and Zarowski et. al. [18], and the singular value decomposition of
S(f, g) is used in [2]. The QR and singular value decompositions do not retain
the structure of S(f, g), and they must therefore be compared with methods
that preserve the structure of S(f, g), which are discussed in [8,10,15,16]. Other
methods have also been used to calculate an AGCD of two polynomials, for
example, optimisation techniques are used by Karmarkar and Lakshman [9],

2

and Padé approximations are used by Pan [11].

Many methods for the calculation of an AGCD of two inexact polynomials
involve two stages. In particular, the degree of an AGCD of the polynomials is
determined initially, after which the coefficients of the AGCD are calculated.
The computation of the degree of an AGCD of f(y) and g(y) is equivalent to
the determination of the rank loss of a resultant matrix, and methods for this
computation are considered in [17]. It is assumed in this paper, however, that
the degree of an AGCD is known. This assumption is also made in [8,10,15,16],
and a linear structure preserving method is used in these references to compute
a structured low rank approximation of S(f, g).

If the ratio of the maximum coefficient (in magnitude) to the minimum co-
efficient (in magnitude) of {f(y), g(y)} is large, the polynomials must be
processed before a structured low rank approximation S(f̃ , g̃) of S(f, g) is
computed. These preprocessing operations introduce two parameters, which
can either be held constant, or incremented, during the computation of S(f̃ , g̃).
A linear structure preserving matrix method is used if they are held constant,
but a non-linear structure preserving matrix method is required if they are
incremented. Considerably improved results are obtained when the preprocess-
ing operations are included in the computation of S(f̃ , g̃), and the non-linear
method yields better results than the linear method because the numerical
rank of S(f̃ , g̃) is, in general, more clearly defined. Furthermore, it is shown
that the assignment of the polynomials to f(y) and g(y) is important because
the numerical rank of a structured low rank approximation of S(f, g) may be
defined, but the numerical rank of a structured low rank approximation of
S(g, f) may not be defined.

Subresultant matrices, which are derived from S(f, g) and are important for
the calculation of S(f̃ , g̃), are discussed in Section 2, and the preprocessing
operations on f(y) and g(y) are considered in Section 3. Section 4 contains a
brief comparison of STLN and SNTLN, and the application of SNTLN to the
computation of S(f̃ , g̃) is discussed in Section 5. Section 6 contains examples
that show the differences in the results using STLN and SNTLN, and the
importance of the polynomial order, (f, g) or (g, f), for the computation of a
structured low rank approximation of the Sylvester matrix of f(y) and g(y).
A summary of the paper is contained in Section 7.

2 Subresultant matrices

This section discusses subresultant matrices, which are derived from S(f, g)
by deleting some of its rows and columns. These matrices are required for the
calculation of S(f̃ , g̃), and they are most easily introduced by expressing the

3

product of two polynomials as a matrix-vector product.

If f̂(y) and ĝ(y) are the theoretically exact forms of f(y) and g(y) respectively,
and the degree of their greatest common divisor (GCD) is d̂, then there exist
quotient polynomials uk(y) and vk(y), and a common divisor polynomial dk(y),
such that for k = 1, . . . , d̂,

dk(y) =
f̂(y)

uk(y)
=

ĝ(y)

vk(y)
, deg vk < deg ĝ = n, deg uk < deg f̂ = m, (3)

where

uk(y) =
m−k
∑

i=0

uk,iy
m−k−i and vk(y) =

n−k
∑

i=0

vk,iy
n−k−i.

It follows from (3) that there exists a non-zero polynomial tk(y) such that

tk(y) = vk(y)f̂(y) = uk(y)ĝ(y), k = 1, . . . , d̂,

and if tk ∈ R
m+n−k+1 is the vector of coefficients of tk(y), then

tk = Ck(f̂)vk = Dk(ĝ)uk, (4)

where Ck(f̂) ∈ R
(m+n−k+1)×(n−k+1), Dk(ĝ) ∈ R

(m+n−k+1)×(m−k+1), and uk and
vk are the vectors of coefficients of uk(y) and vk(y) respectively. It follows from
(4) that

[

Ck Dk

]







vk

−uk






= Sk







vk

−uk






= 0, k = 1, . . . , d̂, (5)

where Ck = Ck(f̂), Dk = Dk(ĝ), Sk = Sk(f̂ , ĝ) ∈ R
(m+n−k+1)×(m+n−2k+2) and

S1(f̂ , ĝ) = S(f̂ , ĝ). The matrix Sk(f̂ , ĝ) is the kth subresultant matrix, which
is formed by deleting the last (k− 1) rows of S(f̂ , ĝ), the last (k− 1) columns
of C1(f̂), and the last (k − 1) columns of D1(ĝ).

The polynomials f̂(y) and ĝ(y) have common divisors of degrees 1, 2, . . . , d̂,
because the degree of their GCD is d̂, but they do not have a common divisor
of degree d̂ + 1, and thus

rank Sk(f̂ , ĝ) <m + n − 2k + 2, k = 1, . . . , d̂

rank Sk(f̂ , ĝ) =m + n − 2k + 2, k = d̂ + 1, . . . , min (m, n).

4

It follows that (5) can be transformed, for k = 1, . . . , d̂, from a homogeneous
equation to a linear algebraic equation by setting vk,0 = −1, that is, the
coefficient of yn−k is set equal to −1. Equation (5) therefore becomes

Akx = ck, k = 1, . . . , d̂, (6)

where ck ∈ R
m+n−k+1 is the first column of Sk, Ak ∈ R

(m+n−k+1)×(m+n−2k+1)

is formed from the remaining m + n − 2k + 1 columns of Sk,

Sk =
[

ck

∣

∣

∣

∣

Ak

]

, (7)

and

x =
[

vk,1 · · · vk,n−k −uk,0 · · · −uk,m−k

]T

∈ R
m+n−2k+1.

Equation (6) has an infinite number of solutions for k = 1, . . . , d̂ − 1, exactly
one solution for k = d̂, and no solution for k = d̂ + 1, . . . , min(m, n). Also,
the homogeneous equation (5) is transformed to the linear algebraic equation
(6) by the substitution vk,0 = −1, but it is easily seen that uk(y) and vk(y)
are unchanged, apart from a scalar multiplier applied to each of them, had
the substitution uk,0 = 1 been made. This equivalence between the two sub-

stitutions is valid because the given polynomials f̂(y) and ĝ(y) are exact and
all computations are performed symbolically. It will be shown in Section 5.1,
however, that if inexact polynomials are specified, only an AGCD can be com-
puted and the choice of substitution, vk,0 = −1 or uk,0 = 1, is important when
a structured low rank approximation of the Sylvester matrix of the inexact
polynomials f(y) and g(y) is computed.

3 Preprocessing operations

This section considers three preprocessing operations that are required for
the computation of a structured low rank approximation of S(f, g). These
operations are the normalisation of each polynomial by the geometric mean
of its coefficients, the weighting of g(y) by a parameter α, and a parameter
substitution, and they are considered in Sections 3.1, 3.2 and 3.3 respectively.

5

3.1 Normalisation by the geometric mean

The Sylvester matrix S(f, g) of f(y) and g(y) is shown in (2), and its parti-
tioned structure is immediately apparent. If f(y) and g(y) are not normalised,
then S(f, g) may be unbalanced if, for example, the coefficients of f(y) are
significantly larger than the coefficients of g(y), in which case computational
problems may occur. This problem can be overcome by normalising each poly-
nomial, and normalisation by the 2-norm of the coefficients is used in [1] and
[3]. In this paper, normalisation by the geometric mean of the coefficients is
used because it provides a ‘better average’ when the coefficients of the polyno-
mials vary over several orders of magnitude. The polynomials (1) are therefore
redefined as

f(y) =
m
∑

i=0

ãiy
m−i, ãi =

ai
(

∏m
j=0 |aj |

)
1

m+1

, (8)

and

g(y) =
n
∑

i=0

b̃iy
n−i, b̃i =

bi
(

∏n
j=0 |bj |

)
1

n+1

, (9)

where it is assumed that all the coefficients ai and bi are non-zero. More gener-
ally, the geometric mean is calculated with respect to the non-zero coefficients
only.

3.2 Relative scaling of the polynomials

It follows from (2) that

rank S(f, g) = rankS(f, αg), α ∈ R\0, (10)

which states that the GCD of two polynomials is defined up to an arbitrary
scalar multiplier, GCD(f, g) ∼ GCD(f, αg). Equation (10) is not, however,
satisfied when computations are performed in a floating point environment
because the numerical rank of S(f, αg) is a function of α [15,16]. It follows
from (8) and (9) that the parameter α can be interpreted as the weight of
g(y) relative to the unit weight of f(y), and the importance of α for the
computation of a structured low rank approximation of S(f, αg) is shown
in [15,16]. A method for the calculation of an optimal value of α was not
considered in these references, and thus the second preprocessing operation
involves the computation of an optimal value of α, and this is now considered.

6

It is shown in [4,5] that problems can occur in algorithms for the computation
of the roots of a polynomial when the coefficients of the polynomial vary widely
in magnitude. It is therefore desirable to minimise the ratio of the maximum
coefficient (in magnitude) to the minimum coefficient (in magnitude), and
since the coefficients of f(y) and αg(y), that is, the arguments of S(f, αg), are
ãi and αb̃i respectively, an optimal value α minimises the ratio

max
{

maxi=0,...,m |ãi| , maxj=0,...,n

∣

∣

∣αb̃j

∣

∣

∣

}

min
{

mini=0,...,m |ãi| , minj=0,...,n

∣

∣

∣αb̃j

∣

∣

∣

} . (11)

This minimisation problem can be written as:

Minimise t
s

Subject to

t ≥ |ãi| , i = 0, . . . , m

t ≥ α
∣

∣

∣b̃j

∣

∣

∣ , j = 0, . . . , n

s ≤ |ãi| , i = 0, . . . , m

s ≤ α
∣

∣

∣b̃j

∣

∣

∣ , j = 0, . . . , n

s > 0

α > 0.

The transformations

T = log t, S = log s, µ = log α, α̃i = log |ãi| and β̃j = log
∣

∣

∣b̃j

∣

∣

∣ ,

enable this constrained minimisation problem to be written as:

Minimise T − S

Subject to

T ≥ α̃i, i = 0, . . . , m

T − µ ≥ β̃j , j = 0, . . . , n

−S ≥ −α̃i, i = 0, . . . , m

−S + µ ≥ −β̃j , j = 0, . . . , n,

(12)

7

which is a linear programming problem, where the objective function is

T − S =
[

1 −1 0

]















T

S

µ















.

There are 2(m + n + 2) constraints in the linear programming problem (12),
and if a coefficient ai or bj is equal to zero, then the corresponding constraints
are deleted. The solution α0 of (12) is the optimal value of α.

The parameter α scales the coefficients of g(y) relative to the coefficients of
f(y), and it is shown in the next section that the ratio of coefficients (11) can
be reduced further by scaling the independent variable y.

3.3 Scaling the independent variable

The ratio of the maximum coefficient (in magnitude) to the minimum coeffi-
cient (in magnitude) of the polynomials {f(y), α0g(y)} can be reduced further
by the substitution

y = θw, (13)

where w is the new independent variable and θ is a real constant to be deter-
mined. This substitution is justified provided it does not increase the condition
numbers of the roots of an arbitrary polynomial, and it is shown in [17] that
this requirement is satisfied. The substitution (13) transforms the polynomials
f(y) and g(y), which are defined in (8) and (9) respectively, to

fθ(w) =
m
∑

i=0

(

ãiθ
m−i

)

wm−i and gθ(w) =
n
∑

i=0

(

b̃iθ
n−i
)

wn−i, (14)

and thus following (11), the optimal value θ0 of θ is the value of θ that min-
imises the ratio

max
{

maxi=0,...,m |ãiθ
m−i| , maxj=0,...,n

∣

∣

∣α0b̃jθ
n−j

∣

∣

∣

}

min
{

mini=0,...,m |ãiθm−i| , minj=0,...,n

∣

∣

∣α0b̃jθn−j
∣

∣

∣

} . (15)

This minimisation problem can, like the minimisation problem (11), be solved
by methods used in linear programming. In particular, it can be written as:

8

Minimise t
s

Subject to

t ≥ |ãi| θ
m−i, i = 0, . . . , m

t ≥
∣

∣

∣α0b̃j

∣

∣

∣ θn−j , j = 0, . . . , n

s ≤ |ãi| θ
m−i, i = 0, . . . , m

s ≤
∣

∣

∣α0b̃j

∣

∣

∣ θn−j , j = 0, . . . , n

s > 0

θ > 0.

The transformations

T = log t, S = log s, φ = log θ, α̃i = log |ãi| and β̃j = log
∣

∣

∣α0b̃j

∣

∣

∣ ,

enable this constrained minimisation problem to be written as:

Minimise T − S

Subject to

T − (m − i)φ ≥ α̃i, i = 0, . . . , m

T − (n − j)φ ≥ β̃j , j = 0, . . . , n

−S + (m − i)φ ≥ −α̃i, i = 0, . . . , m

−S + (n − j)φ ≥ −β̃j , j = 0, . . . , n,

(16)

which is almost identical to the linear programming problem (12).

The minimisations (11) and (15) transform the polynomials (14) to

fθ0
(w) =

m
∑

i=0

(

ãiθ
m−i
0

)

wm−i and gθ0
(w) =

n
∑

i=0

(

b̃iθ
n−i
0

)

wn−i,

where θ0 is the solution of (16). The coefficients of fθ0
(w) and gθ0

(w) define the
entries of the Sylvester matrix on which all computations are performed, and it
was noted in Section 3.1 that it is advantageous to normalise these polynomials
by the geometric mean of their coefficients. This yields the polynomials

9

f̄(w) =
m
∑

i=0

(

a∗
i θ

m−i
0

)

wm−i and ḡ(w) =
n
∑

i=0

(

b∗i θ
n−i
0

)

wn−i, (17)

where

a∗
i =

ãi
(

∏m
j=0

∣

∣

∣ãjθ
m−j
0

∣

∣

∣

)
1

m+1

and b∗i =
b̃i

(

∏n
j=0

∣

∣

∣b̃jθ
n−j
0

∣

∣

∣

)
1

n+1

,

and ãi and b̃i are defined in (8) and (9) respectively. The multiplicities of the
roots of f(y) and g(y) are preserved by the transformation (13), and thus
S(f̄ , ḡ) can be used to calculate an AGCD of f(y) and g(y). The roots of f(y)
and g(y) are not, however, equal to the roots of f̄(w) and ḡ(w), respectively,
if θ0 6= 1.

Algorithm 3.1 shows the operations that are performed on the given inexact
polynomials (1) before a structured low rank approximation of the Sylvester
matrix S(f̄ , ḡ) is computed.

Algorithm 3.1: Preprocessing operations

Input Inexact polynomials f(y) and g(y), which are defined in (1).

Output Polynomials f̄(w) and ḡ(w), which are defined in (17).

Begin

(1) Normalise the coefficients of f(y) and g(y) by the geometric mean of their
coefficients, as shown in (8) and (9).

(2) Solve the linear programming problem (12) in order to compute α0.
(3) Solve the linear programming problem (16) in order to compute θ0.
(4) Calculate the coefficients a∗

i θ
m−i
0 and b∗i θ

n−i
0 of f̄(w) and ḡ(w), respec-

tively.

End

4 Structured matrix methods

It is assumed that f(y) and g(y), and therefore f̄(w) and ḡ(w), are inexact
and coprime, and thus S(f̄ , ḡ) has full rank. The computation of a structured

10

low rank approximation of S(f̄ , ḡ) requires the determination of a Sylvester
matrix S(δf̄ , δḡ) such that

S(f̄ + δf̄ , ḡ + δḡ) = S(f̄ , ḡ) + S(δf̄ , δḡ),

is rank deficient, where δf̄ = δf̄(w) and δḡ = δḡ(w) are perturbation polyno-
mials that are added to f̄(w) and ḡ(w), respectively, in order to induce rank de-
ficiency in S(f̄ +δf̄ , ḡ+δḡ). The structured nature of the Sylvester matrix im-
plies that structured matrix methods can be used to compute S(f̄ +δf̄ , ḡ+δḡ),
and this computation can be achieved by STLN, which preserves the affine
structure of S(f̄ , ḡ), or SNTLN, which preserves the structure of S(f̄ , ḡ) when
its elements are differentiable non-linear functions of one or more parameters.
These methods are considered in Sections 4.1 and 4.2 respectively.

4.1 Linear structure preserving matrix method

The method of STLN assumes that α0 and θ0 are constant, and thus they are
not updated in the iterative scheme for the computation of the coefficients of
δf̄(w) and δḡ(w). The polynomials (17) are therefore written as

f̄(w) =
m
∑

i=0

āiw
m−i and ḡ(w) =

n
∑

i=0

b̄iw
n−i, (18)

whose coefficients are

āi = a∗
i θ

m−i
0 =

ãiθ
m−i
0

(

∏m
j=0

∣

∣

∣ãjθ
m−j
0

∣

∣

∣

)
1

m+1

, (19)

and

b̄i = b∗i θ
n−i
0 =

b̃iθ
n−i
0

(

∏n
j=0

∣

∣

∣b̃jθ
n−j
0

∣

∣

∣

)
1

n+1

. (20)

The method of STLN allows a structured low rank approximation of S(f̄ , α0ḡ)
to be computed, where f̄(w) and ḡ(w), and their coefficients, are defined in
(18) and (19,20), respectively, and only these coefficients are updated in the
iterative scheme for the computation of the coefficients of δf̄(w) and δḡ(w).
In particular, α0 and θ0 are constant, and only the coefficients āi and b̄i are
updated, which implies that a linear structure preserving matrix method can
be used.

11

4.2 Non-linear structure preserving matrix method

This method is more complex than the linear structure preserving matrix
method because more parameters are updated in the iterative scheme for the
computation of the coefficients of δf̄(w) and δḡ(w). In particular, the initial
values of α and θ in this scheme are α0 and θ0, that is, the solutions of the
linear programming problems (12) and (16) respectively, and the polynomials
(17) are written as

f̄(w) ≈
m
∑

i=0

(

āiθ
m−i

)

wm−i and ḡ(w) ≈
n
∑

i=0

(

b̄iθ
n−i
)

wn−i, (21)

where

āi = a∗
i =

ãi
(

∏m
j=0

∣

∣

∣ãjθ
m−j
0

∣

∣

∣

)
1

m+1

, (22)

and

b̄i = b∗i =
b̃i

(

∏n
j=0

∣

∣

∣b̃jθ
n−j
0

∣

∣

∣

)
1

n+1

. (23)

The constant θ0 is retained in the denominators of these expressions for āi

and b̄i because it simplifies the update procedure for θ between successive
iterations.

The differences between the polynomials (18) and (21) are important:

• Only the coefficients āi and b̄i, which are defined in (19) and (20) respec-
tively, are updated when STLN is used.

• The coefficients āiθ
m−i and b̄iθ

n−i, where āi and b̄i are defined in (22) and
(23) respectively, and α are updated when SNTLN is used.

The next section considers the method of SNTLN for the calculation of a
structured low rank approximation of S(f̄ , αḡ).

5 The method of SNTLN

This section describes the method of SNTLN for the determination of a struc-
tured low rank approximation of S(f̄ , αḡ), where f̄(w) and ḡ(w) are defined

12

in (21) and the inclusion of α follows from (10). The Sylvester matrix S(f̄ , αḡ)
of f̄(w) and αḡ(w) is











































ā0θ
m αb̄0θ

n

ā1θ
m−1 . . . αb̄1θ

n−1 . . .
...

. . . ā0θ
m ...

. . . αb̄0θ
n

ām−1θ
. . . ā1θ

m−1 αb̄n−1θ
. . . αb̄1θ

n−1

ām
. . .

... αb̄n
. . .

...
. . . ām−1θ

. . . αb̄n−1θ

ām αb̄n











































,

where āi and b̄i are defined in (22) and (23) respectively, and the optimal
values of α and θ are determined using an iterative scheme for which α0 and
θ0 are the initial values. The subresultant matrix Sk = Sk(f̄ , αḡ) is partitioned
as, following (7),

Sk =
[

ck

∣

∣

∣

∣

Ak

]

=
[

ck

∣

∣

∣

∣

coeffs. of f̄(w)

∣

∣

∣

∣

coeffs. of αḡ(w)

]

,

where ck = ck(θ) ∈ R
m+n−k+1 and Ak = Ak(α, θ) ∈ R

(m+n−k+1)×(m+n−2k+1).

The polynomials f̄(w) and ḡ(w) are inexact and they are therefore perturbed
in order to induce a non-constant common divisor in their perturbed forms.
If the perturbations of the coefficients of f̄(w) and αḡ(w) are, respectively,

ziθ
m−i, i = 0, . . . , m and αzm+1+iθ

n−i, i = 0, . . . , n,

then the Sylvester matrix Bk = Bk(α, θ, z) ∈ R
(m+n−k+1)×(m+n−2k+2) of the

perturbations is

Bk =
[

hk

∣

∣

∣

∣

Ek

]

=











































z0θ
m αzm+1θ

n

z1θ
m−1 . . . αzm+2θ

n−1 . . .
...

. . . z0θ
m ...

. . . αzm+1θ
n

zm−1θ
. . . z1θ

m−1 αzm+nθ
. . . αzm+2θ

n−1

zm
. . .

... αzm+n+1
. . .

...
. . . zm−1θ

. . . αzm+nθ

zm αzm+n+1











































,

13

where hk = hk(θ, z) ∈ R
m+n−k+1 is the first column of Bk,

z =
[

z0 z1 · · · zm+n zm+n+1

]T

∈ R
m+n+2,

and Ek = Ek(α, θ, z) ∈ R
(m+n−k+1)×(m+n−2k+1). The application of SNTLN to

the computation of an AGCD of f̄(w) and ḡ(w) requires that the equation

(Ak(α, θ) + Ek(α, θ, z)) x = ck(θ) + hk(θ, z), x ∈ R
m+n−2k+1,

which is the perturbed form of (6), be considered. The residual that is associ-
ated with an approximate solution of this non-linear equation is

r(α, θ, x, z) = ck(θ) + hk(θ, z) − (Ak(α, θ) + Ek(α, θ, z)) x, (24)

and thus if r̃ is defined as

r̃ := r(α + δα, θ + δθ, x + δx, z + δz),

then

r̃ = ck(θ + δθ) + hk(θ + δθ, z + δz)

−
(

Ak(α + δα, θ + δθ) + Ek(α + δα, θ + δθ, z + δz)
)

(x + δx)

= ck +
∂ck

∂θ
δθ + hk +

∂hk

∂θ
δθ +

m+n+1
∑

i=0

∂hk

∂zi

δzi − Akx − Akδx

−

(

∂Ak

∂α
x

)

δα −

(

∂Ak

∂θ
x

)

δθ − Ekx − Ekδx −

(

∂Ek

∂α
x

)

δα

−

(

∂Ek

∂θ
x

)

δθ −

(

m+n+1
∑

i=0

∂Ek

∂zi

δzi

)

x,

to first order. It follows that

r̃ = r(α, θ, x, z) −

((

∂Ak

∂θ
+

∂Ek

∂θ

)

x −

(

∂ck

∂θ
+

∂hk

∂θ

))

δθ

−(Ak + Ek)δx −

((

∂Ak

∂α
+

∂Ek

∂α

)

x

)

δα +
m+n+1
∑

i=0

∂hk

∂zi

δzi

−
m+n+1
∑

i=0

(

∂Ek

∂zi

δzi

)

x, (25)

14

where expressions for the partial derivatives are easily calculated from ck, hk, Ak

and Ek.

It is readily verified that

hk = Pkz =







G 0m+1,n+1

0n−k,m+1 0n−k,n+1





 z,

where Pk = Pk(θ) ∈ R
(m+n−k+1)×(m+n+2),

G = G(θ) = diag
[

θm θm−1 · · · θ 1

]

∈ R
(m+1)×(m+1),

and

m+n+1
∑

i=0

∂hk

∂zi

δzi = Pkδz.

Also, there exists a matrix Yk = Yk(α, θ, x) ∈ R
(m+n−k+1)×(m+n+2) such that

Ykz = Ekx,

for all z, x, α, θ, and it therefore follows that on differentiating both sides of
this equation with respect to z,

Ykδz =
(

δEk |α,θ:const.

)

x =
m+n+1
∑

i=0

(

∂Ek

∂zi

δzi

)

x,

and thus (25) simplifies to

r̃ = r(α, θ, x, z) −

((

∂Ak

∂θ
+

∂Ek

∂θ

)

x −

(

∂ck

∂θ
+

∂hk

∂θ

))

δθ

−(Ak + Ek)δx −

((

∂Ak

∂α
+

∂Ek

∂α

)

x

)

δα − (Yk − Pk)δz. (26)

The jth iteration in the Newton-Raphson method for the calculation of z, x, α, θ,
is obtained from (26),

15

[

Hz Hx Hα Hθ

](j)





















δz

δx

δα

δθ





















(j)

= r(j), (27)

where r(j) = r(j)(α, θ, x, z),

Hz = Yk − Pk, Hx = Ak + Ek,

Hα =
(

∂Ak

∂α
+ ∂Ek

∂α

)

x, Hθ =
(

∂Ak

∂θ
+ ∂Ek

∂θ

)

x −
(

∂ck

∂θ
+ ∂hk

∂θ

)

,

and the values of z, x, α, θ at the (j + 1)th iteration are





















z

x

α

θ





















(j+1)

=





















z

x

α

θ





















(j)

+





















δz

δx

δα

δθ





















(j)

.

The initial value of z is z(0) = 0 because the given data is the inexact data,
and the initial values of α and θ are α0 and θ0, which are the solutions of (12)
and (16), respectively.

Equation (27) is of the form

Cy = q, (28)

where C ∈ R
(m+n−k+1)×(2m+2n−2k+5), y ∈ R

2m+2n−2k+5, q ∈ R
m+n−k+1,

C =
[

Hz Hx Hα Hθ

](j)

, y =





















δz

δx

δα

δθ





















(j)

, q = r(j). (29)

It is necessary to calculate the smallest perturbations zi such that the per-
turbed polynomials have a non-constant common divisor. Since each of the

16

perturbations zi, i = 0, . . . , m, occurs (n− k + 1) times in Bk, and each of the
perturbations zi, i = m + 1, . . . , m + n + 1, occurs (m− k + 1) times in Bk, it
follows that the weight matrix D ∈ R

(m+n+2)×(m+n+2) associated with z is

D =







D1 0

0 D2






,

where D1 ∈ R
(m+1)×(m+1) and D2 ∈ R

(n+1)×(n+1) are diagonal matrices,

D1 = (n − k + 1)Im+1 and D2 = (m − k + 1)In+1.

Also, α occurs d = (n + 1)× (m− k + 1) times in Bk, and thus it is necessary
to minimise the function

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















D
(

z(j) + δz(j) − z(0)
)

d
(

α(j) + δα(j) − α0

)

θ(j) + δθ(j) − θ0















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















D
(

z(j) + δz(j)
)

d
(

α(j) + δα(j) − α0

)

θ(j) + δθ(j) − θ0















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

:= ‖Ey − p‖ ,

(30)

subject to (28), at each iteration, where E ∈ R
(m+n+4)×(2m+2n−2k+5) and p ∈

R
m+n+4 are given by

E =















D 0 0 0

0 0 d 0

0 0 0 1















, p =















−Dz

d (α0 − α)

θ0 − θ















(j)

,

and y is defined in (29). It is noted that E is constant and not updated between
iterations.

The minimisation of (30) subject to (28) is a least squares minimisation with
an equality constraint (the LSE problem),

min
y

‖Ey − p‖ subject to Cy = q, (31)

which can be solved by the QR decomposition [6]. This LSE problem is solved
at each iteration, where C, p and q are updated between successive iterations.
The initial value x0 of x in the iterative procedure for the solution of this
problem is obtained by setting θ = θ0, α = α0 and z = z(0) = 0, and thus from
(24),

17

x0 = arg min
w

‖Ak(α0, θ0)w − ck(θ0)‖ . (32)

The given data is the inexact polynomials f(y) and g(y), and all computations
are performed on the transformed polynomials f̄(w) and ḡ(w). The computed
structured low rank approximation Sylvester matrix is S(f̃ , g̃), where f̃(w) and
g̃(w) can be transformed back to their equivalents in the independent variable
y by the substitution w = y/θ∗, and θ∗ is the value of θ at the termination of
the iterative scheme for the solution of the LSE problem.

The convergence of the algorithm for the solution of the LSE problem has not
been established, and the success or failure of the algorithm to compute S(f̃ , g̃)
is determined by an a posteriori test on the computed result. Specifically,
the Sylvester matrix S(f̃ , g̃) of the computed polynomials f̃(w) and g̃(w) is
constructed in order to determine if it is, or is not, rank deficient.

Algorithm 5.1 shows the application of SNTLN for the calculation of a struc-
tured low rank approximation of S(f, g).

Algorithm 5.1: SNTLN for a Sylvester matrix

Input Inexact polynomials f(y) and g(y), which are of degrees m and n
respectively and defined in (1), and the degree d̂ of the GCD of the exact
forms of f(y) and g(y).

Output A structured low rank approximation of S(f, g) of rank m + n − d̂.

Begin

(1) Preprocess f(y) and g(y) using Algorithm 3.1.
(2) Set k = d̂.
(3) % Initialise the data

• Set z = z(0) = 0, which yields Ek = ∂Ek

∂α
= ∂Ek

∂θ
= 0 and hk = ∂hk

∂θ
= 0.

• Calculate Ak, Yk, Pk, ck,
∂Ak

∂α
, ∂Ak

∂θ
and ∂ck

∂θ
for θ = θ0, α = α0 and the

initial value x0 of x, which is defined in (32). Calculate the initial value
of q, which is equal to the residual,

r(α0, θ0, x0, z
(0) = 0) = ck − Akx0,

and set the initial value of p, p = 0.
• Define the matrices C and E.

(4) % The loop for the iterations
% Use the QR decomposition to solve the LSE problem at each iteration

18

repeat
(a) Compute the QR decomposition of CT ,

CT = QR = Q







R1

0





 .

(b) Set w1 = R−T
1 q.

(c) Partition EQ as

EQ =
[

E1 E2

]

,

where E1 ∈ R
(m+n+4)×(m+n−k+1) and E2 ∈ R

(m+n+4)×(m+n−k+4).
(d) Compute

z1 = E†
2 (p − E1w1) .

(e) Compute the solution

y = Q







w1

z1






.

(f) Set z := z + δz, x := x + δx, α := α + δα and θ := θ + δθ.
(g) Update Ak,

∂Ak

∂θ
, ∂Ak

∂α
, Ek,

∂Ek

∂θ
, ∂Ek

∂α
, Yk, Pk, ck,

∂ck

∂θ
, hk,

∂hk

∂θ
(and there-

fore C) from α, θ, x and z. Compute the residual

r(α, θ, x, z) = (ck + hk) − (Ak + Ek)x,

and thus update q. Update p from α, θ and z.
until ‖r(α,θ,x,z)‖

‖ch+hk‖
≤ 10−12

End

5.1 The definition of the polynomials

It is assumed in Section 5 that all computations are performed on S(f, g), and
not on S(g, f). If f(y) and g(y) are exact polynomials and all computations
are performed symbolically, then the results obtained with S(f, g) are equal
to, up to a scalar multiplier, the results obtained with S(g, f), as explained in
Section 2.

19

The situation is more involved when computations are performed on inexact
polynomials because (6) does not possess an exact solution in this situation.
In particular, the results obtained from S(f, g) are not equal to the results
obtained from S(g, f) because the entries of Ak and ck are dependent upon
the order in which the polynomials are specified, that is, the order (f, g) or
the order (g, f). It is clear that this reversal of the order of f(y) and g(y) does
not change the normalisation of each polynomial by the geometric mean of its
coefficients, and the solutions of the linear programming problems (12) and
(16) need not be recomputed for S(g, f). In particular, it has been shown that
α0 and θ0 are the optimal values of α and θ when the polynomial order (f, g) is
used. When the polynomial order (g, f) is used, computations are performed
on S(ḡ, αf̄), where 1/α0 is the initial value of α, and θ0 is the initial value of
θ, when the method of SNTLN is used.

6 Examples

This section contains two examples that show the differences in the results
between the methods of STLN and SNTLN, the importance of the order of
assignment of the polynomials to f(y) and g(y), and the significant reduction
in the ratio of the maximum coefficient (in magnitude) to the minimum coef-
ficient (in magnitude) when the preprocessing operations discussed in Section
3 are implemented.

It is necessary to refer to the Sylvester matrices of several pairs of polynomials
when the results of the examples are considered. The following notation is
therefore used in all the examples:

• f̂(y) and ĝ(y) are the theoretically exact polynomials, and S(f̂ , ĝ) and
S(ĝ, f̂) are calculated by normalising each polynomial by the geometric
mean of its coefficients.

• f(y) and g(y) are calculated from f̂(y) and ĝ(y) by adding noise and normal-
ising these inexact polynomials by the geometric mean of their coefficients.

• f̄(w) and ḡ(w) are the polynomials, the coefficients of which form the en-
tries of the Sylvester matrix whose structured low rank approximation is
computed. These polynomials and their coefficients are defined in (18) and
(19,20) when STLN is used, and in (21) and (22,23) when SNTLN is used.

• f̃(w) and g̃(w) are the polynomials that are computed by the methods of
STLN and SNTLN, and thus S(f̃ , α∗g̃) and S(g̃, f̃/α∗) are the structured
low rank approximations of the Sylvester matrix of f(y) and g(y). The value
of α∗ depends on whether STLN or SNTLN is used:
· STLN: α∗ = α0.
· SNTLN: α∗ is equal to the value of α when the iterative procedure for the

solution of the LSE problem (31) has converged.

20

Normalisation is not applied to f̃(w) and g̃(w).

The variation of the norm of the normalised residual rnorm,

rnorm =
r(α, θ, x, z)

‖ck(θ) + hk(θ, α)‖
, (33)

where r(α, θ, x, z) is defined in (24), with the number of iterations required
for the solution of the LSE problem (31) is considered in the examples.

It is assumed that the degrees of the polynomials are known, and thus the
dimensions of the Sylvester matrix and its subresultant matrices are defined.
Furthermore, the polynomials are defined by their roots, and the coefficients of
each polynomial are obtained by the convolution of the linear factors defined
by its roots.

Example 6.1

Consider the polynomials

f̂(y)= (y − 10−5)3(y − 3.1 × 10−3)3(y − 3.2 × 10−3)3(y − 5)15, (34)

ĝ(y)= (y − 3.1 × 10−3)4(y − 3.2 × 10−3)3(y + 3.3 × 106)10, (35)

whose Sylvester matrix is of order 41 × 41, and since their GCD is of degree
6, it follows that rank S(f̂ , ĝ) = 35. Noise with a normwise signal-to-noise
ratio of 108 was added to the polynomials (34) and (35), which were then
normalised, thereby yielding the polynomials f(y) and g(y).

Figure 1 shows the results obtained from STLN for α = θ = 1 and both these
parameters are held constant, that is, the only preprocessing operation is the
normalisation of each polynomial by the geometric mean of its coefficients. It
is seen that

rank S(f̂ , ĝ) = rank S(f, g) = rank S(f̃ , g̃) = 24,

which is incorrect. Although the normalised residual (33) at convergence is
about 10−12, it is seen that a small normalised residual does not imply that
a correct structured low rank approximation of a Sylvester matrix has been
computed.

Figure 2 shows that the preprocessing procedures considered in Section 3 cause
a large reduction in the ratio of the maximum coefficient (in magnitude) to
the minimum coefficient (in magnitude), particularly for g(y).

21

0 10 20 30 40 50
−35

−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1

i=24

i=35

(a)
0 20 40 60 80 100

−14

−12

−10

−8

−6

−4

−2

0

iteration

lo
g 10

 
 r

no
rm

 

(b)

Fig. 1. (a) The normalised singular values of the Sylvester matrices S(f̂ , ĝ) ♦; S(f, g)
2; S(f̃ , g̃) ×, and (b) the normalised residual, for Example 6.1. The preprocessing
operations, apart from normalising each polynomial by the geometric mean of its
coefficients, are omitted.

0 5 10 15 20 25
−20

−10

0

10

20

i

lo
g 10

 |a
i |

(a)

0 5 10 15 20
−20

0

20

40

60

80

i

lo
g 10

 |b
i |

(b)

Fig. 2. The magnitude of the coefficients of (a) f(y) and (b) g(y) before, ♦, and
after, ×, scaling by α and θ, for Example 6.1.

The methods of STLN and SNTLN were then used to compute structured
low rank approximations of S(f, g). Figure 3 shows the results when STLN is
applied and it is seen that the computed numerical rank of S(f̃ , α0g̃) is equal to
24, which is incorrect. Also, the results for the polynomial order (g, f), which
are not shown, are unsatisfactory because the numerical rank of S(g̃, f̃/α0) is
not defined. Figures 4 and 5 show the results when SNTLN is applied, and it is
seen that the numerical rank of S(f̃ , α∗g̃) is not well defined because it could
be equal to either 34 or 35 (Figure 4), but the numerical rank of S(g̃, f̃/α∗)
has the correct value of 35 (Figure 5). These figures show that if the numerical
rank is defined as the index i for which the ratio of singular values σi/σi+1 is
a maximum, then the numerical rank of S(f̃ , α∗g̃) and S(g̃, f̃/α∗) is equal to
39, which is incorrect.

Figure 6 shows the variation of the normalised residual (33) for S(f, g), using

22

0 10 20 30 40 50
−35

−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1

i=24

i=35

Fig. 3. The normalised singular values of the Sylvester matrices S(f̂ , ĝ) ♦; S(f, g)
2; S(f̃ , α0g̃) ×, for Example 6.1. The polynomials f̃(w) and g̃(w) are calculated
using STLN.

STLN and SNTLN, and it is seen that the differences in the graphs are minor.
Comparison of these graphs with their equivalents for S(g, f), which are shown
in Figure 7, shows two significant differences:

(1) The normalised residual obtained with S(f, g) is much smaller than the
normalised residual obtained with S(g, f) when STLN is used.

(2) Approximately twice the number of iterations are required to achieve
convergence with S(g, f) with respect to the number of iterations required
to achieve convergence with S(f, g) when SNTLN is used.

2

Example 6.2

The procedures described in Example 6.1, including the addition of noise with
a normwise signal-to-noise ratio of 108, were applied to the polynomials

23

0 10 20 30 40 50
−35

−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1

i=24

i=35

Fig. 4. The normalised singular values of the Sylvester matrices S(f̂ , ĝ) ♦; S(f, g)
2; S(f̃ , α∗g̃) ×, for Example 6.1. The polynomials f̃(w) and g̃(w) are calculated
using SNTLN.

f̂(y)= (y − 1.8722181× 107)5(y − 0.3124444)2

×(y − 4.4199430 × 105)7, (36)

ĝ(y)= (y − 1.8722181× 107)2(y − 0.3124444)6(y − 8.8081342)2

×(y + 1.6888534)7(y + 4.5594954)9. (37)

The Sylvester matrix of these polynomials is of order 40 × 40 and the degree
of their GCD is 4, and thus rank S(f̂ , ĝ) = 36.

Figures 8 and 9 show the results, for the polynomial orders (f, g) and (g, f)
respectively, obtained from STLN when α and θ are constant and equal to
one, such that the only preprocessing operation is the normalisation of each
polynomial by the geometric mean of its coefficients. It is seen that

rank S(f̂ , ĝ) = rank S(f, g) = rank S(f̃ , g̃) = 26,

and

rank S(ĝ, f̂) = rank S(g, f) = rank S(g̃, f̃) = 26,

24

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

i

lo
g 10

 σ
i /σ

1

i=24

i=35

Fig. 5. The normalised singular values of the Sylvester matrices S(ĝ, f̂) ♦; S(g, f)
2; S(g̃, f̃ /α∗) ×, for Example 6.1. The polynomials f̃(w) and g̃(w) are calculated
using SNTLN.

0 20 40 60 80 100
−15

−10

−5

0

iteration

lo
g 10

 
 r

no
rm

 

(a)

0 20 40 60 80 100
−15

−10

−5

0

5

iteration

lo
g 10

 
 r

no
rm

 

(b)

Fig. 6. The variation of the normalised residual with the number of iterations, for
Example 6.1, using (a) STLN and (b) SNTLN, for S(f, g).

all of which are incorrect, and the normalised residuals, shown in Figures
8(b) and 9(b), at convergence are equal to about 10−9 and 10−10, respectively.
This is another example that shows that a small normalised residual does not
guarantee that a structured low rank approximation of a Sylvester matrix has
been computed.

Figure 10 shows that the preprocessing operations summarised in Algorithm

25

0 20 40 60 80 100
−8

−6

−4

−2

0

iteration

lo
g 10

 
 r

no
rm

 

(a)

0 20 40 60 80 100
−10

−5

0

5

10

iteration

lo
g 10

 
 r

no
rm

 

(b)

Fig. 7. The variation of the normalised residual with the number of iterations, for
Example 6.1, using (a) STLN and (b) SNTLN, for S(g, f).

0 10 20 30 40
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1

i=26

i=36

(a)
0 20 40 60 80 100

−10

−8

−6

−4

−2

0

2

iteration

lo
g 10

 
 r

no
rm

 

(b)

Fig. 8. (a) The normalised singular values of the Sylvester matrices S(f̂ , ĝ) ♦; S(f, g)
2; S(f̃ , g̃) ×, and (b) the normalised residual, for Example 6.2. The preprocessing
operations, apart from normalising each polynomial by the geometric mean of its
coefficients, are omitted.

3.1 reduce considerably the ratio of the maximum magnitude of the coefficients
to the minimum magnitude of the coefficients, for both polynomials.

Figures 11 and 12 show the results using STLN and SNTLN, respectively, for
the order (g, f). Figure 11 shows that STLN does not compute a structured
low rank approximation because the numerical rank could be equal to either
26 or 36, and Figure 12 shows that SNTLN does not compute a structured
low rank approximation because the computed numerical rank is equal to 35.
The graphs shown in these figures are very similar to their equivalents when
the order (f, g) is used.

Figure 13 shows that the variation of the normalised residual (33) is the same
for STLN and SNTLN. In particular, the normalised residual at convergence
is the same for both methods, and the number of iterations required to achieve

26

0 10 20 30 40
−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1

i=26

i=36

(a)

0 20 40 60 80 100
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

iteration

lo
g 10

 
 r

no
rm

 

(b)

Fig. 9. (a) The normalised singular values of the Sylvester matrices S(ĝ, f̂) ♦; S(g, f)
2; S(g̃, f̃) ×, and (b) the normalised residual, for Example 6.2. The preprocessing
operations, apart from normalising each polynomial by the geometric mean of its
coefficients, are omitted.

0 5 10 15
−20

0

20

40

60

80

i

lo
g 10

 |a
i |

(a)
0 5 10 15 20 25 30

−5

0

5

10

15

20

25

i

lo
g 10

 |b
i |

(b)

Fig. 10. The magnitude of the coefficients of (a) f(y) and (b) g(y) before, ♦, and
after, ×, scaling by α and θ, for Example 6.2.

convergence is the same for both methods. 2

Theoretical bounds for the approximations obtained by STLN and SNTLN
have not been obtained, and thus a posteriori checks on the computed solu-
tions are required. These checks are performed in Examples 6.1 and 6.2 by
plotting the singular values of the Sylvester matrix S(f̃ , g̃) of the corrected
polynomials f̃(w) and g̃(w), and verifying that it is numerically singular, which
implies that these polynomials have a non-constant common divisor.

27

0 10 20 30 40
−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1

i=26

i=36

Fig. 11. The normalised singular values of the Sylvester matrices S(ĝ, f̂) ♦; S(g, f)
2; S(g̃, f̃ /α0) ×, for Example 6.2. The polynomials f̃(w) and g̃(w) are calculated
using STLN.

7 Summary and discussion

This paper has considered the use of STLN and SNTLN for the calculation of
an AGCD of two inexact polynomials. The preprocessing operations discussed
in Section 3 introduce the parameters α and θ, and the examples suggest they
are important for the calculation of a structured low rank approximation of
the Sylvester matrix of f(y) and g(y).

The examples show that the results obtained for S(f, g) are not guaranteed
to be equal to the results for S(g, f), and in particular, STLN and/or SNTLN
may compute a structured low rank approximation of one of these Sylvester
matrices, but not the other Sylvester matrix. If both methods are able to
compute a structured low rank approximation of S(f, g) and S(g, f), then
the numerical rank obtained with SNTLN is more clearly defined than the
numerical rank obtained with STLN, and fewer iterations are, in general,
required to achieve convergence. The method of SNTLN therefore yields, in
general, better results, which is expected because a wider class of perturbations
is allowed by this method than is allowed by STLN. In particular, the optimal

28

0 10 20 30 40
−30

−25

−20

−15

−10

−5

0

i

lo
g 10

 σ
i /σ

1
i=26

i=36

Fig. 12. The normalised singular values of the Sylvester matrices S(ĝ, f̂) ♦; S(g, f)
2; S(g̃, f̃ /α∗) ×, for Example 6.2. The polynomials f̃(w) and g̃(w) are calculated
using SNTLN.

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

iteration

lo
g 10

 
 r

no
rm

 

(a)

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

iteration

lo
g 10

 
 r

no
rm

 

(b)

Fig. 13. The variation of the normalised residual with the number of iterations, for
Example 6.2, using (a) STLN and (b) SNTLN, for S(g, f).

values of α, θ and z are computed by SNTLN, but only the optimal value of
z is computed by STLN, and α and θ are constants whose values α0 and θ0,

29

respectively, are defined by the given inexact data.

The results show it is necessary to determine the best matrix, S(f, g) or
S(g, f), to use for the computation of a structured low rank approximation
of the Sylvester matrix of f(y) and g(y). A criterion that enables the optimal
matrix, S(f, g) or S(g, f), to be determined will improve the quality of this
structured low rank approximation.

References

[1] D. A. Bini and P. Boito. Structured matrix-based methods for ǫ-gcd: Analysis
and comparisons. In Proc. Int. Symp. Symbolic and Algebraic Computation,
pages 9–16. ACM Press, New York, 2007.

[2] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt. The singular
value decomposition for polynomial systems. In Proc. Int. Symp. Symbolic and

Algebraic Computation, pages 195–207. ACM Press, New York, 1995.

[3] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring to compute the
GCD of univariate approximate polynomials. IEEE Trans. Signal Processing,
52(12):3394–3402, 2004.

[4] D. K. Dunaway. A Composite Algorithm for Finding Zeros of Real Polynomials.
PhD thesis, Southern Methodist University, Texas, 1972.

[5] S. Ghaderpanah and S. Klasa. Polynomial scaling. SIAM J. Numer. Anal.,
27(1):117–135, 1990.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins
University Press, Baltimore, USA, 1996.

[7] J. T. Kajiya. Ray tracing parametric patches. Computer Graphics, 16:245–254,
1982.

[8] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a
Sylvester matrix, 2005. Preprint.

[9] N. Karmarkar and Y. N. Lakshman. Approximate polynomial greatest common
divsior and nearest singular polynomials. In Proc. Int. Symp. Symbolic and

Algebraic Computation, pages 35–39. ACM Press, New York, 1996.

[10] B. Li, Z. Yang, and L. Zhi. Fast low rank approximation of a Sylvester matrix
by structured total least norm. J. Japan Soc. Symbolic and Algebraic Comp.,
11:165–174, 2005.

[11] V. Y. Pan. Computation of approximate polynomial GCDs and an extension.
Information and Computation, 167:71–85, 2001.

30

[12] S. Petitjean. Algebraic geometry and computer vision: Polynomial systems, real
and complex roots. Journal of Mathematical Imaging and Vision, 10:191–220,
1999.

[13] J. Ben Rosen, H. Park, and J. Glick. Total least norm formulation and solution
for structured problems. SIAM J. Mat. Anal. Appl., 17(1):110–128, 1996.

[14] J. Ben Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear
problems. SIAM J. Mat. Anal. Appl., 20(1):14–30, 1998.

[15] J. R. Winkler and J. D. Allan. Structured low rank approximations of the
Sylvester resultant matrix for approximate GCDs of Bernstein polynomials.
Electronic Transactions on Numerical Analysis, 31:141–155, 2008.

[16] J. R. Winkler and J. D. Allan. Structured total least norm and approximate
GCDs of inexact polynomials. Journal of Computational and Applied

Mathematics, 215:1–13, 2008.

[17] J. R. Winkler and X. Y. Lao. The calculation of the degree of an approximate
greatest common divsior of two polynomials, 2009. Submitted.

[18] C. J. Zarowski, X. Ma, and F. W. Fairman. QR-factorization method for
computing the greatest common divisor of polynomials with inexact coefficients.
IEEE Trans. Signal Processing, 48(11):3042–3051, 2000.

31

	1.pdf
	Winkler_non-linear

