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A Hückel Source-Sink-Potential theory of Pauli Spin Blockade in molecular electronic

devices

Barry T. Pickup,1, a) Patrick W. Fowler,1, b) and Irene Sciriha2

1)Department of Chemistry, University of Sheffield, Sheffield, S3 7HF,

UK

2)Department of Mathematics, University of Malta, Msida, MSD 2080,

Maltac)

(Dated: 2016/10/19 at time 10:45:15)

This paper shows how to include Pauli (Exclusion Principle) effects within a treat-

ment of ballistic molecular conduction that uses the tight-binding Hückel Hamiltonian

and the source-sink-potential (SSP) method. We take into account the many-electron

ground-state of the molecule and show that we can discuss ballistic conduction for

a specific molecular device in terms of four structural polynomials. In the standard

one-electron picture, these are characteristic polynomials of vertex-deleted graphs,

with spectral representations in terms of molecular-orbital eigenvectors and eigenval-

ues. In a more realistic many-electron picture, the spectral representation of each

polynomial is retained but projected into the manifold of unoccupied spin-orbitals.

Crucially, this projection preserves interlacing properties. With this simple reformu-

lation, selection rules for device transmission, expressions for overall transmission,

and partition of transmission into bond currents can all be mapped onto the formal-

ism previously developed. Inclusion of Pauli Spin Blockade, in the absence of external

perturbations, has a generic effect (suppression of transmission at energies below the

Fermi level) and specific effects at anti-bonding energies, which can be understood

using our previous classification of inert and active shells. The theory predicts the

intriguing phenomenon of Pauli Perfect Reflection whereby, once a critical electron

count is reached, some electronic states of devices can give total reflection of electrons

at all energies.
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I. INTRODUCTION

Single molecules might be regarded as the ultimate goal in the miniaturisation of the

transistor. The first theoretical paper on conduction through molecules was published by

Aviram and Ratner in 1974,1 who suggested that a single molecule could act as a rectifier.

Many papers have been published since, and the principal tool for theoretical understanding

has been the non-equilibrium Green’s function approach.2 A recent review of forty years of

progress in the area has been given by Ratner.3 The research literature continues to expand

rapidly,4–6 with frequent special issues of journals7–9 and numerous books10,11 dedicated to

the topic.

The present work uses the Hückel (tight-binding) approximation to study the ballistic

conduction of electrons through molecules, i.e. elastic scattering with no transfer of energy to

or from the target molecule. We use the source-sink-potential method (SSP),12 an approach

that allows the modelling of a device comprising a molecule and two extra ‘atoms’, the

source and the sink (c.f. Fig. 1). The source mimics the effect of a stream of electrons of

energy ε carried by a semi-infinite wire, which is partly reflected and partly transmitted by

the molecule of interest. The sink mimics a semi-infinite wire carrying away the transmitted

electrons at the same energy.
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FIG. 1. a) A molecule attached to infinite left- and right-hand wires, showing the numbering

scheme adopted for the atoms in the wires. b)The corresponding SSP molecular device comprising

a molecule attached to source and sink atoms L and R via molecular contacts L̄ and R̄, respectively.

The overall transmission of an SSP device based on a molecular graph, G, with connec-

tions L̄ and R̄ is13

T (ε) = B(qL, qR)
j2

|D|2 , (1)
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where ε is the energy of the incoming electronsl. The band-pass function, which ensures

that the electron energy is within the conduction band of the wire, is

B(qL, qR) = (2βL sin qL)(2βR sin qR)β
2
L̄Lβ

2
R̄R. (2)

The polynomial occurring in the numerator is

ȷ(ε) = (−1)L̄+R̄ det (ε1−A)[L̄,R̄] (3)

where row L̄ and column R̄ have been removed from the determinant of the characteristic

matrix ε1 − A, in which A is the adjacency matrix of G. The denominator of Eq. (1)

depends on

D(ε) = βLe
−iqLβRe

−iqRs− βRe
−iqRβ2

L̄Lt

− βLe
−iqLβ2

R̄Ru+ β2
L̄Lβ

2
R̄Rv, (4)

Here, all β integrals are defined in Fig 1. The wave-vectors qL and qR are functions of ε

obeying the dispersion relations

ε = αL + 2βL cos qL = αR + 2βR cos qR. (5)

with Hückel parameters (αL, βL) and (αR, βR), for left and right wires, respectively. The

four structural polynomials,13 s, t, u, and v, are defined as

s(ε) = det (ε1−A) ,

t(ε) = det (ε1−A)[L̄,L̄] ,

u(ε) = det (ε1−A)[R̄,R̄] ,

v(ε) = det (ε1−A)[L̄R̄,L̄R̄] . (6)

The superscripts in Eq. (6) indicate which rows and columns corresponding to connection

atoms L̄ and/or R̄ are to be struck out from the characteristic matrix. The fifth polynomial,

appearing in the numerator of Eq. (1), and defined in Eq. (3) satisfies the Jacobi-Sylvester

relation14

ȷ2 = ut− sv, (7)

and so the entire function, T (ε) can be reconstructed from characteristic polynomials of four

graphs: those of the molecule, the molecule minus each connection, and the molecule minus

both connections.
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Using this approach, we have been able to classify conduction/insulation properties of

molecules in terms of 11 cases depending on the interlacing properties of the structural

polynomials.15,16

More recently, we have reformulated the SSP method to give a more detailed account,17

in which the equations are written in the molecular-orbital basis. In this representation,

conduction through the molecule can be viewed as occurring through parallel molecular-

orbital channels or, more precisely, through shells of orbitals. It is found that individual

shells may be conductively inert, i.e. insulating at all electron energies, ε. At the eigenvalue

of an active (conducting) shell, all current passes through that shell. At the eigenvalue of

an inert shell, current (if any) passes entirely through other shells. This rich behaviour

is determined by the rank of the shell connection matrix, that portion of the SSP secular

matrix describing the connection of the molecular orbitals in the shell to the source and sink

atoms.

This molecular-orbital picture is appealing, but has usually been applied to molecules

that are ‘empty’ of electrons, in the sense that all molecular-orbital channels are left open to

the incoming electron. Real molecules, on the other hand, have occupied molecular orbitals,

and therefore some closed channels. This paper explores how the picture can be extended

to include these molecular electrons, while retaining the advantages of the previously defined

formalism.17

The phenomenon of Pauli Spin Blockade has been recognised in the field of quantum

dots18,19 as an effect that limits electron current in situations where electrons can jump

between dots that already contain filled electronic levels. Pauli Spin Blockade (PSB) was

identified in Ref. 18. As Perron et al. note, PSB has played a useful role in investigations of

the physics of spin-to-charge conversion.20 PSB has implications for spin relaxation times,21,22

coupling of electron spin to nuclear lattices,23 spin-orbit coupling,24 and spintronics.25–27

The Pauli Spin Blockade effect has also been noted by Ernzerhof et al.28,29 who applied the

SSP method to molecular conduction, introducing electronic interactions by means of the

Hubbard interaction.30 In the present work, we do not consider electron-electron repulsion

directly, but concentrate instead on the effects of Pauli fermion statistics on non-interacting

many-electron states: these lead to the closing down of conduction channels associated with

energies below the Fermi level. Further effects, in which Pauli Spin Blockade may be lifted,

or even reversed, depend on the application of external magnetic fields, not yet included in
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the present treatment.20,31–34

The plan of the remainder of this paper is as follows. Sec. II gives a brief derivation of

the SSP equations for a many-electron molecule in the tight-binding approximation. In Sec.

III we derive expressions for total transmission and shell currents allowing for the effects of

the Pauli principle. The reader who wishes to skip the details of the derivations, may turn

directly to Sec. IV. The central results given in this section (IVB) are the tables of con-

duction cases in which it is shown that the selection rules for ballistic molecular conduction

extend easily to the new model, giving the possibility of pencil-and-paper calculation of con-

duction/insulation for any given molecular device. The following section on new behaviour

arising from the presence of molecular electrons describes the main physical consequences

of inclusion of Pauli effects, viz. Pauli Spin Blockade, and Pauli Total Reflection. A brief

examples section illustrates the working of the general theory (Sec. VI) in some typical

cases. Finally, conclusions (Sec. VII), are drawn and some directions for extension of the

model are indicated.

II. THE SSP METHOD

Our treatment concentrates attention on the molecule. We allow for a single scattering

electron passing through the wires. There is no explicit electron-electron interaction in the

Hückel tight-binding model, and so all many-electron effects within the model arise from the

Fermi statistics. In this treatment, the many-electron part of the wave-function is localised

on the molecule, and the N electrons inside the molecule, apart from their statistical effect,

are passive spectators to ballistic conduction.

Derivation of the SSP equations for the ballistic current proceeds by defining the wave-

function within the molecule (section IIA), and within the leads (Sec. II B), and then using

complex scattering potentials to enforce the boundary conditions for our finite model of the

device (Sec. II C).
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A. Wave-functions inside the isolated molecule

We use a set of 2pz atomic basis functions on the atoms of the molecular π-system, {ϕp},
where p = 1, 2, . . . , n. In Hückel theory, this is taken to be an orthonormal basis

⟨ϕp | ϕq⟩ = δpq. (8)

Assuming, for simplicity, a pure carbon skeleton, the matrix elements over the Hückel Hamil-

tonian are

hpp =< ϕp | ĥ | ϕp >= α = 0,

hpq =< ϕp | ĥ | ϕq >=





β = 1 for p ∼ q

0 otherwise
(9)

where we have used the convention that α defines the origin and and β the unit of the energy

scale. We can define a set of molecular orbitals satisfying the one-electron Hückel secular

equations

ĥψk = ϵkψk. (10)

The molecular orbitals can be expanded in the basis as

ψk =
n∑

p=1

ϕpUpk. (11)

where the Upk are the MO coefficients. Without loss of generality, we assume the {Upk} to

be real throughout this paper.

We can now consider the many-electron Hamiltonian. Within Hückel theory this is a sum

of one-electron operators,

Ĥ =
N∑

i=1

ĥi, (12)

where ĥi acts upon electron i only.

To construct many-electron states we use spin-orbitals, ψkσk
, where the suffix σk indicates

that each pure spin-orbital in the Slater determinant has either α or β spin. Arbitrary

electron configurations can be defined as

ΦK = |ψk1σ1
ψk2σ2

· · ·ψkNσN
|, (13)
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where the configuration function is labelled by K = {k1σ1, k2σ2, · · · , kNσN}. The N-electron
states constructed from orbitals satisfying Eq. (10) form an orthonormal set that diagonalises

the many-electron Hamiltonian:

< ΦK | Ĥ | ΦK′ > = δK,K′EK,

< ΦK | ΦK′ > = δK,K′ , (14)

where

EK =
∑

k∈K

ϵk. (15)

Our model for the molecule uses a molecular ground-state configuration described by a

product of the N molecular spin-orbitals of lowest energy

Φ0 = |ψ1σ1
ψ2σ2

· · ·ψNσN
|, (16)

with

E0 =
N∑

k=1

ϵk. (17)

In general, the numbers of α and β spins in the molecular ground state configuration are

not equal. In contrast with the one-electron picture, therefore, transmission can be different

for incoming electrons of each spin: to acknowledge this new feature, the transmission

function T (ε) in the SSP model will now be denoted Tσ(ε), where σ is the spin of the

electron on the wire. For closed-shell molecules the ground-state will have spin-paired,

doubly-occupied orbitals. We allow arbitrary spin states here, as many molecules have

open-shell ground-states. In the following sections we adopt a notation in which unoccupied

MOs are labelled ψa, ψb, . . ..

B. Wave-functions inside the wires

We wish to describe a single continuum electron passing down semi-infinite wires, with

N -electrons residing in the molecule. We can write these scattering wave-functions on the

wires in terms of (N + 1)-electron configurations as ΦqLσ
0 ,ΦqRσ

0 in the left- and right-hand
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wires, respectively, i.e.

ΦqLσ
0 =

0∑

w=−∞

CwΦ
wσ
0 ,

ΦqRσ
0 =

∞∑

w=1

CwΦ
wσ
0 , (18)

where

Φwσ
0 = |ϕwσψ1σ1

ψ2σ2
· · ·ψNσN

| (19)

are left- or right-wire configuration functions and the ϕwσ are spin-orbital basis functions

with spin σ on the atoms of left and right wires, depending on the index w shown in Fig. 1b.

We note that the energy associated with the scattering states, ΦqLσ
0 ,ΦqRσ

0 , is required to be

the (N + 1)-electron energy E, where

E = ⟨ΦqLσ
0 | Ĥ | ΦqLσ

0 ⟩ = ⟨ΦqRσ
0 | Ĥ | ΦqRσ

0 ⟩

= E0 + ε (20)

in terms of the molecular ground-state energy, E0, and the energy of a single scattering

electron, ε. Coefficients satisfying the tight-binding secular equations on the wires are

Cw =
1

NL

(
eiqLw + re−iqLw

)
for w = −∞, . . . , 1, 0,

Cw =
1

NR

τeiqRw for w = 1, 2, . . . ,∞. (21)

The left-hand wave-function combines a forward-travelling wave (eiqL) and a backward-

travelling wave (e−iqL) with a reflection coefficient, r. The molecule acts as a potential

barrier that produces a reflected wave in the left wire and a forward transmitted wave

(eiqR) in the right wire, with a transmission coefficient, τ . This corresponds to a flux of

electrons with energy ε, satisfying energy conservation and the Hückel Schrödinger equation

for infinite wires.

The total electron transmission probability is

Tσ(ε) = 1− |r|2 = |τ |2 (22)

Normalisation factors NL and NR have been introduced to obtain the requisite unit electron

flux. Hence, the current density35 from atom (w − 1) to atom w in the left wire, using the
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standard Hückel formulation, is

J left
(w−1)→w =

1

i

(⟨
Φw−1σ

0 |Ĥ|Φwσ
0

⟩
Cw−1Cw − c.c.

)

=
2βL sin qL

N2
L

(
1− |r|2

)
, (23)

where we have used Slater’s rules

< Φw−1σ
0 |Ĥ|Φwσ

0 >=< ϕw−1|ĥ|ϕw >= βL. (24)

The expression in Eq. (23) is independent of the index w, showing that a constant current

flows down the wire. We require this current to be equal to the transmission probability,

Tσ(ε). Hence, the correct flux normalisation is achieved by setting

N2
L = 2βL sin qL, (25)

and, for the right-hand wire,

N2
R = 2βR sin qR. (26)

C. The many-electron SSP equations

The (N + 1)-electron configurations, Φwσ
0 , describe configurations having one electron in

one or other of the wires and N -electrons in the molecule. For electron transmission to

occur, these configuration functions must interact with appropriate configurations in which

all electrons are on the molecule. These configurations must be single excitations relative

to Φwσ
0 . Such configuration functions are of the form

Φaσ
0 = |ψaσψ1σ1

ψ2σ2
. . . ψNσN

| (27)

for a = N + 1, N + 2, . . . , n, and all have an extra electron with the same spin. We write

the many-electron device wave-function as

Ψdev =
0∑

w=−∞

CwΦwσ +
n∑

a=N+1

CaΦ
aσ
0 +

∞∑

w=1

CwΦwσ, (28)

where the three terms describe a scattering electron in the left wire, an extra electron

passing through the molecule, and a scattering electron in the right wire. All terms describe

N passive electrons present in the occupied orbitals of a molecule. This description is

consistent with the absence of two-electron interactions within the Hückel model.
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The secular equations of the device shown in Fig. 1b, for atom 0 in the left-hand wire

and for atom 1 in the right-hand wire, are

H0,−1C−1 + (H0,0 − E)C0 +
∑

a

H0,aCa = 0,

∑

a

H1,aCa +
(
Ĥ1,1 − E

)
C1 +H1,2C2 = 0, (29)

where the CI matrix elements are

H0,−1 = ⟨Φ0σ
0 | Ĥ | Φ−1σ

0 ⟩ = ⟨ϕ0 | ĥ | ϕ−1⟩ = βL,

H0,0 = ⟨Φ0σ
0 | Ĥ | Φ0σ

0 ⟩ = ⟨ϕ0 | ĥ | ϕ0⟩ = αL + E0,

H0,a = ⟨Φ0σ
0 | Ĥ | Φaσ⟩ = ⟨ϕ0 | ĥ | ψa⟩ = βL̄LUL̄a,

H1,a = ⟨Φ1σ
0 | Ĥ | Φaσ⟩ = ⟨ϕ1 | ĥ | ψa⟩ = βR̄RUR̄a,

H1,1 = ⟨Φ1σ
0 | Ĥ | Φ1σ

0 ⟩ = ⟨ϕ1 | ĥ | ϕ1⟩ = αR + E0,

H1,2 = ⟨Φ1σ
0 | Ĥ | Φ2σ

0 ⟩ = ⟨ϕ1 | ĥ | ϕ2⟩ = βR, (30)

and βL̄L, βR̄R are resonance parameters for the connections from the wires to the molecule.

We wish to replace the left wire by a single source atom, L, sited at atom 0 and creating

a flux of electrons corresponding to the wave-function ΦqL
0 in Eqs. (18, 21). Similarly, we

wish to replace the right wire by a single sink atom, R sited at atom 1 and removing the

transmitted flux. This is achieved by definition of complex potentials, ΘL,ΘR,
12 on these

source and sink atoms to replace the effects of all atoms to the left of atom 0, and all to the

right of atom 1, respectively. Hence, we define

βLC−1 = ΘLC0,

βRC2 = ΘRC1. (31)

The potentials can now be derived by using the expressions from Eq. (21) for the orbital

coefficients

ΘL = βL
C−1

C0

= βL
(e−iqL + reiqL)

(1 + r)
,

ΘR = βR
C2

C1

= βRe
iqR . (32)

In the standard SSP formalism13,36,37 these potentials are used directly in the SSP secular

equations. However, when the reflection coefficient r becomes equal to -1, the potential ΘL
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becomes infinite. A more satisfactory approach, avoiding this singularity,17 is obtained by

substituting the explicit form of the orbital coefficient C−1 into Eq. (29), to give

βL
NL

(
e−iqL + reiqL

)
+ (αL + E0 − E)CL + βL̄LCL̄ = 0. (33)

Noting from Eq. (21) that the source coefficient is

CL ≡ C0 =
1 + r

NL

, (34)

we deduce that

r = NLCL − 1. (35)

Substituting for r in Eq. (33), we obtain

(
βLe

iqL + αL + E0 − E
)
CL + βL̄LCL̄ =

2iβL sin qL
NL

= iNL, (36)

where we have placed the inhomogeneity term on the right-hand side. We can carry out the

same procedure using C1 from Eq. (21) in Eq. (29) to give the sink coefficient

CR ≡ C1 =
τ

NR

eiqR , (37)

and hence

C2 = e2iqR
τ

NR

= eiqRCR. (38)

Substitution of this expression into Eq. (29) gives

βR̄RCR̄ +
(
αR + E0 − E + βRe

iqR
)
CR = 0 (39)

which does not contain an inhomogeneity.

With these modifications to the boundary conditions, we can now find the wave-function

for the SSP model device. The wave-function

ΨSSP = CLΦ
Lσ
0 +

n∑

a=N+1

CaΦ
aσ
0 + CRΦ

Rσ
0 (40)

is the solution to the SSP equations in the CI formalism. The Φaσ here are configurations

with N +1 electrons in the molecule, and ΦLσ,ΦRσ have an extra electron on source or sink
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atoms, respectively. The (n+ 2)-dimensional SSP equations for the SSP device depicted in

Fig. 1a can now be written in matrix form as

P




C

CL

CR


 =




0

−iNL

0


 , (41)

where the device matrix is

P =




p −uL −uR

−ũL ε− αL − βLe
iqL 0

−ũR 0 ε− αR − βRe
iqR


 , (42)

and the (n−N)-dimensional diagonal matrix

pab = δab(ε− ϵa), (43)

contains only the energies of unoccupied molecular orbitals arising from the configurations

{Φaσ
0 }. For our single-atom-contact configurations the connection matrix elements, (uLuR),

are expressed in terms of the MO coefficients, U, for the virtual orbitals:

(uL)a = βL̄LUL̄a,

(uR)a = βR̄RUR̄a, (44)

and the source and sink matrix elements are

ε− αL − βLe
iqL = βLe

−iqL ,

ε− αR − βRe
iqR = βRe

−iqR . (45)

Here we have used the dispersion relations Eq. (5) to remove ε from source and sink matrix

elements.

At this stage we have the working equations for the SSP model of a device, stated in terms

of molecular orbital channels and depending entirely on quantities that can be obtained from

a tight-binding calculation.

Physically, the equations describe a steady state current that may be called the ‘ground

state channel’, in which N electrons reside in the molecule in a ground state configuration,

and one electron from the left lead is scattered by the molecule. It is possible to envisage

12



other scattering channels, in which the molecular electrons are present in excited N -electron

states (or even channels with different electron numbers). In the present model, without

electron-electron interactions, the configuration functions describing these other channels

do not interact with those from the ground state channel. All channels, therefore, are

independent, and are uncoupled from each other in our model.

The following section shows how to solve these equations in a way that retains the for-

malism of structural polynomials.

III. SOLUTION OF THE SSP EQUATIONS

We first look at the form of the structural polynomials defined in Eq. (6) when expressed

in terms of MOs and orbital energies. It is clear that we can write

s(ε) =
n∏

k=1

(ε− ϵk) . (46)

The other structural polynomials are obtained by making a general definition in terms of

the inverse of the secular matrix:

ȷ̂pq = (ε−A)−1
pq =

n∑

k=1

UpkUqk

ε− ϵk
. (47)

The structural polynomial related to this reduced ‘hatted’ quantity is

ȷpq(ε) = s(ε)ȷ̂pq(ε). (48)

We recover the structural polynomials for a particular device with source and sink connected

to vertices L̄, and R̄, by recognising that t = ȷL̄L̄, u = ȷR̄R̄, and ȷ = ȷL̄R̄. We can now use

the analogy with Eq. (7) to define the remaining member of the set,

v̂ = ût̂− ȷ̂2, (49)

in terms of the new structural polynomials.

To make the comparison explicit, we note that both the product in Eq. (46) and the

summation in Eq. (48) involve all the MOs in the molecular spectrum. The form of these

equations is important in what follows. We also note that the secular equations in Eqs. (41)

and (42) correspond closely to Eqs. (31) and (32) in Pickup et al.,17 with the exception that
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the latter depend on the full range of molecular orbitals, but the former contain only the

unoccupied set.

Note that in the many-electron model, the structural polynomials have an implicit de-

pendence on spin because the manifold of unoccupied orbitals included in their definition

must be chosen to match the spin of the scattering electron. For simplicity this dependency

will be suppressed in the notation.

A. Solutions away from eigenvalues

We can solve the SSP device equation Eq. (41), for energies ε away from all molecular

eigenvalues, using the formula for a block partitioned inverse,

V W

X Y




−1

=


 Z1 −V−1WZ2

−Y−1XZ1 Z2


 , (50)

where

Z1 =
(
V −WY−1X

)−1
,

Z2 =
(
Y −XV−1W

)−1
, (51)

are Schur complements. We identify the block V as the diagonal matrix p, Y as the two-

dimensional source-sink block, and W as the connection matrix, uLuR. We can simplify

this expression by noting that the matrix XV−1W comprises terms such as

ũL (ε1− ϵun)
−1 uL =

n∑

a=N+1

U2
L̄a

ε− ϵa
,

ũR (ε1− ϵun)
−1 uR =

n∑

a=N+1

U2
R̄a

ε− ϵa
,

ũR (ε1− ϵun)
−1 uL =

n∑

a=N+1

UR̄aUL̄a

ε− ϵa
, (52)

where ϵun is a diagonal matrix of energies of unoccupied orbitals. These equations encapsu-

late the essence of Eq. (48), so we define by analogy

s(ε) =
n∏

a=N+1

(ε− ϵa) ,

ȷpq = s(ε)
n∑

a=N+1

UpaUqa

ε− ϵa
. (53)
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Provided we are at an energy ε that is away from any molecular eigenvalue ϵa, we can now

simplify the solution of Eq. (41) to give

CL = − ıNLs

D

(
βRe

−ıqR − u(ε)
)
,

CR = − ıNLs

D
ȷ(ε). (54)

The solution for the molecule CI coefficients is

Ca = (ε− ϵa)
−1(CLβL̄LUL̄a + CRβR̄RUR̄a). (55)

The quantity D can now be expressed as

D

s
=

(
βLe

−ıqL − t

s

)(
βRe

−ıqR − u

s

)
−
(
j

s

)2

, (56)

so that

D =
(
βLe

−ıqLβRe
−ıqRs

− βRe
−ıqRt− βLe

−ıqLu+ v
)
. (57)

It is clear that Eq. (57) looks exactly like Eq. (4). The final expressions for the solutions are

CL = −ıNL

(
βRe

−ıqRs− β2
R̄R
u
)

D
,

CR = −ıβL̄LβR̄RNL
ȷ

D
. (58)

We can now deduce that

T = |τ |2 = B(qL, qR)
ȷ2

|D|2 . (59)

The current flowing through a configuration function, Ψaσ
0 , can be considered as a current

flowing through an orbital ψaσ with eigenvalue, ϵa. The expression for this current is

JL→a =
1

ı

[
⟨ΦLσ

0 | H | Φaσ
0 ⟩C⋆

LCa − c.c.
]

=
1

ı
[⟨ϕL | h | ψa⟩C⋆

LCa − c.c.]

= B(qL, qR)UL̄aUR̄asa
ȷ

|D|2 , (60)

where

sa = s/(ε− ϵa) =
∏

b ̸=a

(ε− ϵb) (61)

15



is the polynomial s with an extra eigenvalue excluded from the product. The expression for

the orbital current in Eq. 60) is identical to Eq (83) of Pickup et al.17, except for the orbital

restrictions implicit in the definitions of the structural polynomials. In cases where orbitals

belong to degenerate shells, it is more sensible to discuss shell currents

JL→A =
∑

a∈A

JL→a , (62)

where A represents a degenerate eigenspace. It is an invariant quantity, i.e. its value is

independent of the precise choice of MOs inside the shell.

B. Bond currents

We derive expressions for bond currents by noting that the molecule configurations, Φaσ
0 ,

can be re-expressed using the expansion of the molecular orbitals in terms of atomic orbitals

in Eq. (11):

Φaσ
0 =

∑

p

Φpσ
0 Upa, (63)

where, as before,

Φpσ
0 = |ϕpσψ1σ1

ψ2σ2
· · ·ψNσN

| (64)

is a molecular configuration function defined with the occupied MOs plus an extra molecular

atomic orbital ϕp. Hence, we can re-express the SSP wave-function in Eq. (40) as

ΨSSP = CLΦ
Lσ
0 +

n∑

p=1

CpΦ
pσ
0 + CRΦ

Rσ
0 . (65)

The coefficients, Cp, can be derived directly from Eq. (55) using Eq. (63) as

Cp =
n∑

a=N+1

UpaCa

=
n∑

a=N+1

Upa(ε− ϵa)
−1UL̄aCLβL̄L

+
n∑

a=N+1

Upa(ε− ϵa)
−1UR̄aCRβR̄R

= ȷ̂pL̄βL̄LCL + ȷ̂pR̄βR̄RCR. (66)
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The last line of this equation is identical to Eq. (63) of Pickup et al.,17 except that we have

used the definitions of structural polynomials in terms of virtual MOs (c.f. Eq. (53)) appro-

priate to the many electron molecular state implied by the definitions of the configuration

functions in Eqs. (40) and (65). We deduce that the bond current is

Jbond
p→q =

1

i

(
⟨Φpσ

0 |Ĥ|Φqσ
0 ⟩CpCq − c.c.

)

= −iβpq (CpCq − c.c.)

= B(qL, qR)βpq
ȷ

|D|2
ȷpL̄ȷqR̄ − ȷpR̄ȷqL̄

s

= B(qL, qR)βpq
ȷ

|D|2 vpqL̄R̄, (67)

where the quantity vpqL̄R̄ is defined by

vpqL̄R̄ =
ȷpL̄ȷqR̄ − ȷpR̄ȷqL̄

s
, (68)

using a more general version of the Jacobi-Sylvester relation14 as given by Brualdi et al.38

The set of functions, {Φpσ}, used in this derivation of bond currents is over-complete and

non-orthogonal. The expression for ΨSSP in Eq. (65), however, has two essential ingredients

required to derive bond currents. First, it contains the core of occupied molecular orbitals

in each configuration function. Secondly, it has a set of configurations describing an extra

electron passing through the molecule defined in terms of the atomic orbitals required for a

definition of a bond current.

The SSP wave-function in Eq. (65) can be used to derive secular equations analogous to

Eq. (41) and (42), but the non-orthogonality of the configuration functions requires the use

of Löwdin rules for the simplification of CI matrix elements. This derivation and solution

of the equations is a long-winded alternative, but ultimately yields the same result.

At this point, we have explicit expressions for total current and bond current when Pauli

exclusion is taken into account. These can be used directly to calculate T (ε) and map

out conduction pathways in individual cases. The central advantage of a graph theoretical

approach is that it predicts generic features of conduction, embodied in selection rules. To

explore these in the new model requires investigation of some properties of the modified

structural polynomials.
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IV. CONSEQUENCES FOR CONDUCTION BEHAVIOUR AND

SELECTION RULES

The selection rules for conduction derived previously15,17,39 depend crucially on the in-

terlacing properties of the four structural polynomials. In the present section we first check

that these properties are retained by the modified structural polynomials (section IVA) and

then give the selection rules in the form that applies to the new model (section IVB).

A. Interlacing properties of structural polynomials

In adopting the definition of the structural polynomials in Eq. (53), we have lost the

equivalence of the original structural polynomials17 to characteristic polynomials of vertex-

deleted graphs, but have retained their form as sums over states of the molecule, at the

price of simple deletions of a set of occupied orbitals from the sums. As noted above, this

is effectively a projection of spectral representations into the space of unoccupied molecular

orbitals.

In order to use the new interpretation of the equations to derive the behaviour of trans-

mission at specific energies, we need to be confident that these restricted polynomials obey

the same selection rules. The selection rules were originally derived using the interlacing

properties of the original polynomials s, t, u, and v, which follow from their relationship to

vertex-deleted versions of the original graph. Roots of t (and u) interlace those of s, and

the roots of v interlace those of t, and u.40 It is not obvious that the new polynomials have

these same properties. However, the new t and u can be understood through their spectral

definitions

t̂ = t/s =
∑

a

U2
aL̄

ε− ϵa

û = u/s =
∑

a

U2
aR̄

ε− ϵa
(69)

which imply non-positive gradients

dt

dε
≤ 0,

du

dε
≤ 0. (70)

The zeros of the hatted polynomials in Eq. (69) are just the roots of t and u, respectively,

and so the interlacing properties of the roots of these quantities with the roots of s follow
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directly. Interlacing properties of s, t, and u are given more formally by Lemma 1.20 on

page 13 of the book by Fiske.41

Interlacing of the roots of v with those of t and u follows from the argument below. The

Jacobi-Sylvester relation in Eq (7) is equivalent to

v̂(ε) = v/s = ût̂− ȷ̂2. (71)

We can look at the behaviour of v̂ at the zeros ϵt of t̂. It follows from the preceding equation

that

v̂(ϵt) = û(ϵt)t̂(ϵt)− ȷ̂(ϵt)
2 = −ȷ̂(ϵt)2 ≤ 0, (72)

for all roots ϵt. Consider, for simplicity, a case where the roots of s are non-degenerate.

Using the interlacing properties of the roots of s and t, we can write

· · · ≤ ϵa ≤ ϵt ≤ ϵa+1 ≤ ϵt+1 ≤ · · · (73)

It is clear that in the expression

s(ϵ) = (ϵ− ϵa) (ϵ−ϵa+1)
∏

b<a

(ϵ− ϵb)
∏

b>a+1

(ϵ− ϵb) (74)

the terms in the two extended products have the same sign when ϵ = ϵt, and when ϵ = ϵt+1.

The first two terms, on the other hand, are overall negative for s(ϵt), and positive for s(ϵt+1).

It follows that s(ϵ) changes sign over the interval ϵt ≤ ϵ ≤ ϵt+1. The implication is that the

function

v(ϵ) = s(ϵ)v̂(ϵ)

changes sign in that interval, and that there is a root of v between any two roots of t. An

identical argument proves that the roots of v interlace the roots of u.

We now see that the four structural polynomials defined in terms of the restricted set of

unoccupied one-electron states share all the properties of their unrestricted analogues.17

B. Conduction cases for ipso and non-ipso molecular devices

The results derived thus far are for the total transmission, and for currents at values of ε

away from any unoccupied eigenvalue. We can investigate the behaviour of these quantities

at eigenvalues by expanding them in Laurent series and taking limits, exactly as shown in

Pickup et al..17 We do not need to repeat the analysis here.
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Kind rA Case gt gu gv gj T (ϵA) Jbond
p→q (ϵA) JL→A(ε)

Two CFVs 0 1 g+1 g+1 g+2 ≥ g+1 0 0 0

0 2 g+1 g+1 g g ̸= 0 ̸= 0 0

0 3 g+1 g g+1 ≥ g+1 0 0 0

0 4 g+1 g g g ̸= 0 ̸= 0 0

0 6 g g g+1 g ̸= 0 ̸= 0 0

0 7.1 g g g g ̸= 0 ̸= 0 0

0 7.2 g g g ≥ g+1 0 0 0

CV and CFV 1 5 g+1 g−1 g ≥ g 0 0 0

1 8 g g−1 g−1 ≥ g 0 0 0

Two CVs 1 9 g−1 g−1 g g−1 ̸= 0 ̸= 0 ̸= 0

1 10 g−1 g−1 g−1 g−1 ̸= 0 ̸= 0 ̸= 0

2 11.1 g−1 g−1 g−2 g−1 0 0 ̸= 0

2 11.2 g−1 g−1 g−2 ≥ g 0 0 0

− − PSB − − − − 0 0 0

≥ 1 CFV 0/1 PPR − − − − 0 0 0

TABLE I. Conduction cases for non-ipso molecular devices, showing the kind of the vertex pair

for the device, the rank of the connection matrix rA for shell A with eigenvalue ϵA and degeneracy

g, the total transmission T (ϵA), and the bond currents JAO
p→q(ϵA). The numbers of repeated roots

in structural polynomials, t, u, v, and j are gt, gu, gv, and gj , respectively. The shell current

JL→A(ε) applies for any energy. CV and CFV stand respectively for core and core-forbidden

vertices (defined with respect to the eigenspace A). Case PSB is Pauli Spin Blockade. Case PPR

(Pauli Perfect Reflector) occurs when the structural polynomial ȷ(ε) is zero for all values of ε.
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The classification of conduction/insulation cases for non-ipso devices is shown in Table I,

and for ipso devices in Table II. The tables give information about conduction or insulation

(in terms of the total transmission and bond currents) when the incoming electron energy,

ε, coincides with a molecular eigenvalue. They also give information about the shell current

(at any energy) for the shell belonging to that eigenvalue.

The cases are classified by the rank of the matrix block in the SSP equations that describes

the connection from source and sink to the molecule, and also by the nature of the graph

vertices representing the link atoms L̄ and R̄. There are two categories of vertex: core (CV)

and core-forbidden(CFV). A core-forbidden vertex (with, say index p) for an eigenspace

(shell) with eigenvalue ϵA has Upa = 0, for all a ∈ A. Core vertices are just those vertices

that are not core-forbidden. Terms CV and CFV are normally used for the case with ϵA = 0,

but here we allow the classification of a vertex to be specified for each eigenspace.

The cases are further subdivided by the behaviour of the structural polynomials t, u,

and v, in terms of multiplicities of the specific eigenvalue. There are 11 cases for non-ipso

devices as shown in Table I. The polynomial ȷ shows more complex behaviour, because it is

not constrained by interlacing. Some cases (2, 4, 6, 9, and 10) have their gj root behaviour

determined exactly through relationships dictated by the Jacobi-Sylvester relation shown

in Eq. (7). In the remaining cases (1, 3, 7, 5, 8, and 11), the Jacobi-Sylvester relation

dictates only a minimum value of gj. This behaviour makes a difference to the prediction

transmission only in cases 7 and 11, where we distinguish sub-cases. In the others, an

increase in gȷ does not affect conduction or insulation. It does, however, affect the shape

of the dip in transmission at the eigenvalue. There are many small molecules where these

effects may be seen in the predicted transmission curve.

The ipso connection exhibits simpler behaviour, as there is only a single connection site

(L̄ = R̄) and a single structural polynomial t. If the connection site is a CFV (a rank 0

connection matrix for the shell), gt is limited by interlacing to two possible values, namely

g + 1, or g. Connection via a CV requires gt = g. Hence there are just three ipso cases.

In both tables we have added two additional cases: ‘PSB’, which is the insulating Pauli

Spin Blockade, and ‘PPR ’, which is Pauli Perfect Reflection. These are described in the

next section.
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Kind rA Case gt T (ϵA) Jbond
p→q (ϵA) JL→A(ε)

CFV 0 I1 g+1 0 0 0

I2 g ̸= 0 0 0

CV 1 I3 g−1 ̸= 0 0 ̸= 0

− − PSB − 0 0 0

CFV 0 PPR − 0 0 0

TABLE II. Conduction cases for ipso molecular devices, showing the kind of the vertex pair for the

device, the rank of the connection matrix rA for shell A with eigenvalue ϵA and degeneracy g, the

total transmission T (ϵA), and the bond currents JAO
p→q(ϵA). The number of repeated roots in the

structural polynomial, t, is gt. CV and CFV stand respectively for core and core-forbidden vertices

(defined with respect to the eigenspace with eigenvalue ϵA). The shell current JL→A(ε) applies for

any energy. Case PSB is Pauli Spin Blockade. Case PPR (Pauli Perfect Reflector) occurs when

the structural polynomial ȷ(ε) is zero for all values of ε.

V. BEHAVIOUR ARISING FROM THE MOLECULAR ELECTRONS

The presence of a space of occupied spin-orbitals with the same spin as the scattering

electron introduces new behaviour in three different ways.

A. Pauli Spin Blockade

The first effect arises because only virtual spin-orbitals with spin σ appear in the SSP

equations. Occupied orbitals, and orbitals of opposite spin to the scattering electron do not

appear at all. It follows that there can be no shell currents involving these orbitals for any

connection pattern and for any energy ε. We refer to this situation as Pauli Spin Blockade

(case PSB) in tables I and II.

A natural outcome of inclusion of Pauli effects in the Hückel/SSP formalism is the re-

moval of transmission peaks at energies below the molecular Fermi level. Occupation of
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molecular spin-orbitals removes energy levels from consideration in the all-important struc-

tural polynomials. Transmission below the Fermi energy is not removed altogether, but the

curve typically tails off smoothly towards to the low energy side of the first active shell.

B. Pauli Perfect Reflection

There is a second consequence of inclusion of Fermi statistics: at certain orbital occu-

pancies for certain molecules, conduction is suppressed for all energies; systems can become

Pauli Perfect Reflectors (case PPR in Tables I and II).

The rationale for this claim is as follows. The form of the structural polynomial ȷ̂L̄,R̄ is

ȷ̂L̄R̄ =
∑

A

∑

a∈A

UL̄aUR̄a/(ε− ϵa), (75)

where the sum runs over eigenspaces A from LUMO (lowest unoccupied molecular orbital) to

HUMO (highest unoccupied molecular orbital). (We allow only Hund’s Rule configurations,

so every shell is filled, half-filled with all electrons of the same spin, or empty.) If the sum

∑

a∈A

UL̄aUR̄a

vanishes for every eigenspace A included in the spectral representation of ȷ̂ for electrons

of spin σ, the device with connection vertices L̄, R̄ in molecular graph G will be a perfect

reflector for incoming electrons of that spin, with Tσ(ε) = 0 for all ε in the range of wire

energies. If the molecule has a closed shell within the model, then conduction of electrons

of both spins will be blocked at all energies.

Vanishing of ȷ̂ may seem to be a strong or even outrageous requirement, but in fact it

is met for many shells of many small chemical graphs. We need only that either L̄ or R̄ or

both will be a CFV in each of the unoccupied shells; this can often be arranged by selecting

shells with particular symmetries. Hundreds of molecular graphs for which the HUMO-shell

has CFVs are found by simple search of chemical graphs with 5 ≤ n ≤ 14, for example.

Construction of a case of PPR based on such graphs solely on Aufbau electronic con-

figurations, i.e., where all occupied spin-orbitals have lower energy than all unoccupied

spin-orbitals of the same spin, often leads to implausibly high molecular charges, but Pauli

Perfect Reflection is also predicted for excited states, which could be achieved by, for exam-

ple, photo-excitation.
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FIG. 2. Pauli Perfect Reflection in devices based on pentalene. The pentalene molecular graph has

characteristic polynomial s = ε(ε − 1)(ε + 2)(ε2 − 2)(ε3 − ε2 − 4ε + 2), which gives the spectrum

shown on the left. All eigenvectors except the three corresponding to the irreducible factor of s

have CFVs (as shown with black dots in the diagram). The 10π excited configuration of the dianion

connected as shown by the red dots, is therefore a Pauli Perfect Reflector, with t̂−1 = 4(ε + 2),

û−1 = 3(ε+
√
2), v̂ = ût̂, and ȷ̂ = 0.

A small chemical example of this type based on pentalene is shown in Fig. 2. The

molecular graph of pentalene has eight eigenvectors, five of which have CFVs, in positions

determined by the mirror planes of the point group, as illustrated in the figure. As a

consequence, the only transmission predicted for a device based on the neutral pentalene

molecule and with one connection in each mirror plane (as shown in red in the figure) is via

the highly antibonding shell 7. However, excitation of the pentalene molecular dianion into

the configuration illustrated in the figure would give T (ε) = 0, and hence perfect reflection.

Many other examples can be constructed.
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C. Case migration

There is a third, more technical, effect arising from the presence of the molecular electrons,

and that is migration between selection-rule cases as electronic occupation increases. When

a shell is removed from the sums that define the polynomials s, t, u and v, the multiplicity

of a root corresponding to another eigenvalue may change. The allowed changes of case are

limited by the fact that the rank is a property of the shell independently of occupation of

other shells. Other shell invariants include the leading terms in the Laurent expansions of

the structural polynomials around the shell eigenvalue.17 Detailed considerations of this kind

lead to the following ‘propensity rules’. For rank 2, cases 11.1 and 11.2 cannot exchange.

For rank 1, insulating cases 5 and 8 may exchange, as can conducting cases 9 and 10. For

rank 0, various exchanges are possible, including conversions from insulating to conducting

cases. Conversion to case 7.1 is common, for example. A shell may change case several times

before its own occupation by electrons ultimately removes it from the SSP equations.

VI. EXAMPLES

We show results calculated from the equations presented above, using the computer-

algebra package Maple.42 All calculations have been carried out with Hückel parameters

α = αL = αR = 0, βL = βR = 1.4β, and all energies are in units of β. The consequence

is that occupied orbitals (positive values of β/ε) are shown on the left of the figures below,

and unoccupied orbitals on the right. With these parameters, this is a zero-bias device with

conduction bands for the leads that are wide enough to access all molecular states.

A. The five-membered chain

Results are shown in Fig. 3 for a five-membered chain, with the source and sink atoms

connected to terminal atoms.

The upper panel shows conduction in the hypothetical case of the molecule with all

molecular-orbital channels open, which is formally equivalent to a calculation in which N ,

the number of electrons in the molecule, is set to zero. It has five peaks in transmission

corresponding to the five non-degenerate orbitals (= shells). Each orbital provides a channel

for conduction, such that the total transmission at electron energy ε is the sum of the currents
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FIG. 3. A five-membered chain with terminal connections to source and sink. Upper, middle,

and lower diagrams show transmission and shell currents for the device with 0, 2, and 3 molecular

electrons having the same spin as the incoming electron. Orbital energies are shown for reference

as black circles above the curves.
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passing through the individual orbitals. In this example, all current passes through a single

orbital when the input electron stream has an energy equal to the eigenvalue of that orbital.

Individual orbitals have zero conduction at eigenvalues other than their own.

The middle panel shows the conduction pattern when the molecule has a ground-state

of four spin-paired electrons in the lowest two orbitals. The peaks from shells 1 and 2 are

missing, and are examples of Pauli Spin Blockade. Conduction can occur only through empty

orbitals 3, 4, and 6. We emphasise, however, that there is still some conduction through

the virtual orbitals at energies below the Fermi energy. The exclusion principle closes shells

occupied by electrons of spin σ to conduction electrons of that spin. If we assume that the

ground-state of the π-system has five electrons, comprising two pairs in MOs 1 and 2, and

a single α-spin electron in orbital 3, then this diagram would describe the conduction of

a β-spin electron down the left-hand wire. Such an electron would not be excluded from

passing through orbital 3. The passage of an electron of α-spin, however, would be excluded

from this orbital, and therefore the bottom panel would be an appropriate description for

α-spin conduction. Naturally, one would have to sum up appropriately the diagrams to get

overall transmission, if neither the spin of the molecular state, nor that of the incoming

electron, is selected.

Note that orbital/shell currents can be negative, or can exceed unity, whereas 0 ≤ Tσ(ε) ≤
1. Individual shell currents of active shells vary, if sometimes only slightly, with occupation

of other shells. In the present simple example, all orbitals are conducting (case 10) and

active. Orbital 5 is case 9 which is also conducting and active. Orbital 5 changes to case 10

in the middle panel (c.f. section V).

B. Anthracene in a symmetrical non-ipso device

Shell currents for an anthracene-based device with source and sink atoms connected to

the central apical atoms, are shown in Fig. 4. The point group of anthracene is D2h, and

the shell currents reflect this symmetry. In particular shells 2, 4, 7 and 9 have a node on the

central apical atoms that renders them inert to conduction. The transmission profile has

peaks corresponding to the six shells that are symmetric with respect to the mirror plane

through the connection atoms (c.f. table III).

The lower panel of the figure shows the conduction pattern for a molecule with a 14-
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FIG. 4. Anthracene with central apical atoms connected to source and sink. The upper diagram

shows the transmission for a molecule with all channels open, and the lower diagram shows the

transmission for the 14 electron ground-state.

electron ground-state (i.e. seven orbitals occupied by a pair of electrons). The three peaks

represent transmission through the remaining three unoccupied symmetrical MOs. The

detailed cases for the shells are not necessarily constant as orbital occupancy changes, as

noted in section V. An example of this is shell 7 which migrates to case 7.1, and shell 9

which changes from case 6 to 7.1.

The closed-shell ground-state implies that there will be no difference in transmission for

an α- or a β-spin electron. One would need still need to sum over both possibilities to get

the total transmission for an unpolarised stream of electrons.

The bond currents in Fig. 5 also reflect the existence of peaks in the overall transmission,

six for N = 0, and three for N = 14. Note that currents through particular orbitals may

be negative, but currents through available bond paths must sum to the total transmission.

The bond currents shown represent only two of the four paths that would contribute to the
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Shell Symmetry Eigenvalue Case(0) Case(14)

1 Ag 1 +
√
2 10 PSB

2 B3u 2 6 PSB

3 Ag +B2u

√
2 11.1 PSB

4 B1g +B3u 1 1 PSB

5 B2u −1 +
√
2 10 PSB

6 B2u 1−
√
2 10 10

7 B1g +B3u −1 1 7.1

8 Ag +B2u −
√
2 11.1 11.1

9 B3u −2 6 7.1

10 Ag −1−
√
2 10 10

TABLE III. Conduction cases at the molecular eigenvalues (in units of β) of anthracene for two

different electron occupancies. Case(0) and Case(7) are the cases for molecular electron counts of 0

(i.e., all channels open) and 14, respectively. The device is formed by connections to atoms at apical

points of the middle ring. Shells 1 to 5 are insulating for 14-electron ground-states because of Pauli

Spin Blockade. Shells 2, 4, 7 and 9, are inert for all ground-states owing to their antisymmetry

with respect to the vertical mirror plane through connection atoms.

total current for anthracene.

C. Anthracene in a symmetrical ipso device

Ipso devices have source and sink linked to the same atom in the molecule. In this case we

have chosen a central apical atom through which the mirror plane passes. The hypothetical

N = 0 example in the upper panel of Fig. 6 shows the six peaks we expect, owing to mirror

symmetry. The lower panel shows the transmission for the molecular ground-state (N = 14),

where again, the occupied orbitals show the effects of Pauli Spin Blockade. There are no bond

currents for ipso devices, as no currents pass through the molecular framework. The MOs,
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FIG. 5. Anthracene transmission and bond currents with central apical atoms connected to source

and sink. The upper diagram is for a molecule with all channels open, equivalent to N = 0, and

the lower diagram is for the molecule with a 14-electron ground-state. The currents in edges 1 to 8

and 3 to 10 are, respectively, in the leftmost and rightmost edge of an end hexagon of anthracene,

both taken in a direction towards the sink connection atom.

however, transfer current from source to sink, depending on the vanishing, or otherwise, of

MO coefficients on the connection atom. The N = 0 example shows insulation at ε = 0,

whereas the molecular ground state shows a sizeable transmission. The ȷ polynomial has a

root at ε = 0 causing insulation in the one-electron model, whereas the removal of half the

orbitals contributing to ȷ for the many-electron case suppresses this root.

VII. CONCLUSION

We have derived a consistent formalism for ballistic conduction that includes Fermi statis-

tics in the SSP model at the Hückel level of treatment. It turns out that the new formalism

30



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2-1 0 1 2
T

ra
ns

m
is

si
on

Energy/β
  

Shells 1 and 10
Shells 3 and 8
Shells 5 and 6

Transmission
Eigenvalues

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2-1 0 1 2

T
ra

ns
m

is
si

on

Energy/β
  

Shell  6
Shell  8
Shell  10

Transmission
Eigenvalues

FIG. 6. Anthracene transmission and shell currents for an ipso device with a single central apical

atom connected to source and sink. The upper diagram is for a molecule with all channels open,

and the lower diagram shows is for the molecule with a 14-electron ground-state.

maps exactly onto the previous Hückel-SSP model17, in which electron interaction was ne-

glected. The conversion is achieved by changing some definitions: in the new formalism, all

structural polynomials are projected onto the space of unoccupied orbitals.

In this version of the SSP model, the device wave-function is generated from a ‘source’

configuration function (determinant), representing a single electron of fixed spin on the

source atom, and a product of spin-orbitals occupied in the molecule. This source config-

uration is a fixed eigenfunction of the Sz operator with some eigenvalue MS. The device

wave-function comprises a limited set of configuration functions formed from a set of sin-

gle excitations derived by allowing the source electron to progress through the unoccupied

orbitals of the molecule from source into sink. The tight-binding approximation does not

include the effects of electron correlation, and so the energies of all states corresponding to

a given orbital occupancy are equal, irrespective of the spin, within this model.
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The z-component of spin is relevant in so far as it dictates which configurations will inter-

act. The situation is different as soon as there is two-electron interaction, such as that in the

Hubbard Hamiltonian,30,43 or in more complicated cases, such as the PPP Hamiltonian44,45.

In such a case, singlets and triplets with the same orbital occupancy will differ in energy.

In addition, more configuration functions, beyond single excitations, will contribute to the

expression for the device wave-function. One method for incorporating electron-electron

interactions that uses parametrised electron repulsion and correlation is the scattering ap-

proach described by Subotnik and Nitzan.34

The present Hückel/Pauli/SSP model gives information about orbital (shell) and bond

currents, which are both valuable from the point of view of interpretation. This is made

possible solely because the molecular configuration functions contain a single electron in an

unoccupied MO (or AO for bond currents), allowing them to be identified by that orbital. In

models that include electron-electron interactions, and that couple higher excitations, this

will no longer be possible.

Even within the Hückel approximation, there may be a need to sum over different spin

orientations to obtain a total transmission. It is also possible that other channels for scat-

tering may be available within the energy range dictated by the width of the bands in the

wires. One possibility is that an electron from the highest occupied level of the molecule

could hop into the sink. This scenario suggests that there might be conduction using an

N -electron model, as opposed to the (N + 1)-electron version we have used in this paper.

The electron removed from the molecule could then be replaced by an electron appearing on

the source, and hopping onto the molecule. Ernzerhof29 has based his model of correlation

effects on conduction on a model of this sort, although much of his emphasis is upon the

effects of two-electron interactions via the introduction of a Hubbard potential between the

electrons. The present model recovers Ernzerhof’s results29 for T (E) in the limit of a zero

Hubbard interaction; this is simply achieved by subtracting one from the count of molecular

electrons with the same spin as the incoming electron. The transmission curves in this case

will show extra structure at energies below the Fermi level compared to T (E) in the present

approach. As discussed in Ref 29, such structure may indicate an exaggeration of the effects

of electron occupancy.

All of these possible scattering channels are uncoupled in the tight-binding model, and

all such channels that are energetically available must be summed to provide a full under-
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standing of molecular conduction. In particular, subtle effects such as the collapse18 and

even reversal20 of Pauli Spin Blockade are explained by the opening of new channels as their

energies are tuned by external fields. We note that the tight-binding SSP approach used

in the present paper can easily be extended to admit external fields, such as an applied

electric or magnetic field; electric fields can be included by modifying diagonal terms in the

Hamiltonian,46,47 and magnetic fields by use of a London modification of the off-diagonal

terms. Hyperfine terms that change the spin can also be included in phenomenological

Hamiltonians of the tight-binding form. Such extensions to the model could predict, for

example, molecular analogues of the significant changes in transmission with magnetisation

that have been observed in spin-polarised STM experiments.31,33

Finally, it should be noted that the Hückel-SSP model with Fermi statistics remains res-

olutely graph-theoretical. In order to calculate device transmission as a function of electron

energy within this approach, all that is required is the molecular graph, an identification of

connection vertices and a molecular electron count. Diagonalisation of the adjacency matrix

gives the rest. The nature of the model is that it can give predictions of global types of be-

haviour for classes of molecular conductors, as we have seen here with the examples of Pauli

Spin Blockade and Pauli Perfect Reflection, acting as a complement to more sophisticated

calculations on specific systems.
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