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PublishiAgtliickel Source-Sink-Potential theory of Pauli Spin Blockade in molecular electronic

devices
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This paper shows how to include Pauli (Exclusion Pringiple) effects within a treat-
ment of ballistic molecular conduction thatuses the tight-binding Hiickel Hamiltonian
and the source-sink-potential (SSP) method. We take into account the many-electron
ground-state of the molecule and show that we can discuss ballistic conduction for
a specific molecular device in terms of four structural polynomials. In the standard
one-electron picture, these are characteristic polynomials of vertex-deleted graphs,
with spectral representations in terus of molecular-orbital eigenvectors and eigenval-
ues. In a more realistic many-electron picture, the spectral representation of each
polynomial is retained bhut-projected into the manifold of unoccupied spin-orbitals.
Crucially, this projection preserves interlacing properties. With this simple reformu-
lation, selection rules for device transmission, expressions for overall transmission,
and partition of transmission into bond currents can all be mapped onto the formal-
ism previously developed. Inclusion of Pauli Spin Blockade, in the absence of external
perturbations, has a generic effect (suppression of transmission at energies below the
Ferini level) and specific effects at anti-bonding energies, which can be understood

using . our previous classification of inert and active shells. The theory predicts the

“intriguing phenomenon of Pauli Perfect Reflection whereby, once a critical electron

count is reached, some electronic states of devices can give total reflection of electrons

.. at all energies.
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Publishihg INTRODUCTION

Single molecules might be regarded as the ultimate goal in the miniaturisation of the
transistor. The first theoretical paper on conduction through molecules was published by
Aviram and Ratner in 1974,! who suggested that a single molecule/could act as a rectifier.
Many papers have been published since, and the principal tool for theoretical understanding
has been the non-equilibrium Green’s function approach.? A recent/ review of forty years of
progress in the area has been given by Ratner.? The research literature continues to expand
rapidly,*® with frequent special issues of journals”® and-numerous books!®!! dedicated to
the topic.

The present work uses the Hiickel (tight-binding) approximation to study the ballistic
conduction of electrons through molecules, 7.e. elastic scattering with no transfer of energy to
or from the target molecule. We use the soutce-sink-potential method (SSP),'? an approach
that allows the modelling of a device coniprising a molecule and two extra ‘atoms’, the
source and the sink (c.f. Fig. 1). The source mimics the effect of a stream of electrons of
energy ¢ carried by a semi-infinite wire, which is partly reflected and partly transmitted by
the molecule of interest. The sink mimics.a semi-infinite wire carrying away the transmitted

electrons at the same energy.

@
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FIG. 1. a) A molecule attached to infinite left- and right-hand wires, showing the numbering
sc¢heme adopted for the atoms in the wires. b)The corresponding SSP molecular device comprising

¢_-a molecule attached to source and sink atoms L and R via molecular contacts L and R, respectively.

The overall transmission of an SSP device based on a molecular graph, GG, with connec-

tions L and R is!?
9

T (e) = Blar, n) =

W? (1)
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Publishiwfcre € is the energy of the incoming electronsl. The band-pass function, which ensures

that the electron energy is within the conduction band of the wire, is
B(qi, qr) = (2B sinqr,)(28r sin qr) 57, Bzg- (2)
The polynomial occurring in the numerator is
§e) = (=1)F R det (1 — ) (3)

where row L and column R have been removed from the determuinant of the characteristic
matrix €1 — A, in which A is the adjacency matrix of (./ The denominator of Eq. (1)

depends on
D(e) = fre "™ fre” s — e " GE t
- ﬁLe_iqLﬁfgiRu W71 BRR Y (4)

Here, all § integrals are defined in Fig 1. “The wave-vectors ¢, and gg are functions of &

obeying the dispersion relations
e = arf+ 200.7os g1, = ar + 2Bk €OS ¢r. (5)

with Hiickel parameters (ar,, By,) and (ag, fr), for left and right wires, respectively. The

four structural polynomials,'® s, t, 1y and v, are defined as

'5(e) =det (1 — A) |

t(e) = det (1 — A)[&H

u(e) = det (1 — A)RR]

v(e) = det (1 — A)[PRLR]. (6)

The superscripts’in Eq. (6) indicate which rows and columns corresponding to connection
atoms'i and Jor R are to be struck out from the characteristic matrix. The fifth polynomial,
appearing in the numerator of Eq. (1), and defined in Eq. (3) satisfies the Jacobi-Sylvester
« xelation!”

7 = ut — sv, (7)
and so the entire function, 7'(¢) can be reconstructed from characteristic polynomials of four

graphs: those of the molecule, the molecule minus each connection, and the molecule minus

both connections.
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Publishing!sing this approach, we have been able to classify conduction/insulation properties of
molecules in terms of 11 cases depending on the interlacing properties of the structural

polynomials.!5:16

More recently, we have reformulated the SSP method to give a more detailed account,'”
in which the equations are written in the molecular-orbital basis/ In this representation,
conduction through the molecule can be viewed as occurring through parallel molecular-
orbital channels or, more precisely, through shells of orbitals. It is found that individual
shells may be conductively inert, i.e. insulating at all electron energies, . At the eigenvalue
of an active (conducting) shell, all current passes throughthat shell. At the eigenvalue of
an inert shell, current (if any) passes entirely through otlier shells. This rich behaviour
is determined by the rank of the shell connection matrix,that portion of the SSP secular

matrix describing the connection of the molecular orbitals in the shell to the source and sink

atoms.

This molecular-orbital picture is appealing, but has usually been applied to molecules
that are ‘empty’ of electrons, in the sense that all molecular-orbital channels are left open to
the incoming electron. Real molécules; oft the other hand, have occupied molecular orbitals,
and therefore some closed channelsy, This paper explores how the picture can be extended
to include these molecular electrons, while retaining the advantages of the previously defined

formalism.”

The phenomenon/of Pauli Spin Blockade has been recognised in the field of quantum
dots'®1? as an effect that litnits electron current in situations where electrons can jump
between dots that already contain filled electronic levels. Pauli Spin Blockade (PSB) was
identified in Ref. 18. As Perron et al. note, PSB has played a useful role in investigations of

the physies of §pin-to-charge conversion.?’ PSB has implications for spin relaxation times,?!22

4 25-27

coupling of eleciron spin to nuclear lattices,?® spin-orbit coupling,?* and spintronics.
The I;auli Spin Blockade effect has also been noted by Ernzerhof et al.?®? who applied the
SSP method to molecular conduction, introducing electronic interactions by means of the
\ Hubb_ard interaction.®® In the present work, we do not consider electron-electron repulsion
dizectly, but concentrate instead on the effects of Pauli fermion statistics on non-interacting
many-electron states: these lead to the closing down of conduction channels associated with

energies below the Fermi level. Further effects, in which Pauli Spin Blockade may be lifted,

or even reversed, depend on the application of external magnetic fields, not yet included in

4
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Publishitig present treatment 20?1734

The plan of the remainder of this paper is as follows. Sec. II gives a brief derivation of
the SSP equations for a many-electron molecule in the tight-binding approximation. In Sec.
IIT we derive expressions for total transmission and shell currents allowing for the effects of
the Pauli principle. The reader who wishes to skip the details of the derivations, may turn
directly to Sec. IV. The central results given in this section {LV B) are the tables of con-
duction cases in which it is shown that the selection rules for ballistic molecular conduction
extend easily to the new model, giving the possibility of pencil-and-paper calculation of con-
duction/insulation for any given molecular device. The following section on new behaviour
arising from the presence of molecular electrons describes the main physical consequences
of inclusion of Pauli effects, viz. Pauli Spin Blockade, and Pauli Total Reflection. A brief
examples section illustrates the working of the general theory (Sec. VI) in some typical
cases. Finally, conclusions (Sec. VII), are drawn and some directions for extension of the

model are indicated.

II. THE SSP METHOD

Our treatment concentrates attention on the molecule. We allow for a single scattering
electron passing through the wires. There is no explicit electron-electron interaction in the
Hiickel tight-binding model, and so all many-electron effects within the model arise from the
Fermf-._statistics. In this treatment, the many-electron part of the wave-function is localised
oh the moleeule, and the N electrons inside the molecule, apart from their statistical effect,

are passive spectators to ballistic conduction.

Derivation of the SSP equations for the ballistic current proceeds by defining the wave-
function within the molecule (section IT A), and within the leads (Sec. I1B), and then using
complex scattering potentials to enforce the boundary conditions for our finite model of the

device (Sec. I1C).
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Publishiﬁg Wave-functions inside the isolated molecule

We use a set of 2p, atomic basis functions on the atoms of the molecular 7-system, {¢,},

where p = 1,2,...,n. In Hiickel theory, this is taken to be an orthonormal basis

<¢p | ¢q> = 5pq‘ (8)

Assuming, for simplicity, a pure carbon skeleton, the matrix elements over the Hiickel Hamil-

tonian are

hyp =< ¢p | B | ¢p >=a =0,

. Bi=1 forp~q
hyg =< ¢p [ h | Pq >= (9)
0 otherwise
where we have used the convention that o defines the origin and and  the unit of the energy

scale. We can define a set of molecular-orbitals satisfying the one-electron Hiickel secular

equations .
}A?,’lf./,’k = Ekwk- (10)

The molecular orbitals can be expanded in the basis as
wk - Z ¢pUpk- (11)
p=1

where the Uy arethe MQ Coefficients. Without loss of generality, we assume the {Up} to
be real throughout thispaper.
We can‘now censider the many-electron Hamiltonian. Within Hiickel theory this is a sum

of one-electron operators,
{ N
H=> h, (12)
i=1

whexe h; ‘acts upon electron ¢ only.
Toconstruct many-electron states we use spin-orbitals, ¥y, , where the suffix oy indicates
that each pure spin-orbital in the Slater determinant has either o or 3 spin. Arbitrary

electron configurations can be defined as

(I)K - |¢k101wk2(1’2 T wkNO'N‘7 (13)

6
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Publishiwfcre the configuration function is labelled by K = {ky01, ko0, -+, kyon}. The N-electron
states constructed from orbitals satisfying Eq. (10) form an orthonormal set that diagonalises

the many-electron Hamiltonian:

< Pk ’ f{ | Py > = 6K,K’EK,
< Pk | P > = 6K,K’7 (14)

where

EK = Z€k- (15)

keK

Our model for the molecule uses a molecular/ground-state configuration described by a

product of the N molecular spin-orbitals of lowest energy

q)() - |w1¢.71w2crg g ¢N0N|7 (16)
with
N
k=1

In general, the numbers-of o and /3 spins in the molecular ground state configuration are
not equal. In contrast‘with the one-electron picture, therefore, transmission can be different
for incoming electrons ©f each spin: to acknowledge this new feature, the transmission
function T'(¢) in the SSP-model will now be denoted 7T,(¢), where o is the spin of the
electron on the wire. For closed-shell molecules the ground-state will have spin-paired,
doubly-octupied erbitals. We allow arbitrary spin states here, as many molecules have
open-shell ground-states. In the following sections we adopt a notation in which unoccupied

MOs are labeélled ¥y, ¥, . . ..

“B. .Wave-functions inside the wires

We wish to describe a single continuum electron passing down semi-infinite wires, with
N-electrons residing in the molecule. We can write these scattering wave-functions on the

wires in terms of (N + 1)-electron configurations as ®¢-7, ®*” in the left- and right-hand

7
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0
LT = > Cydy7,

LT =" C Dy, (18)
w=1
where
(I)z))va = |¢wa¢1a1¢202 Tt wN0N| (19)

are left- or right-wire configuration functions and the ¢y, ate spin-orbital basis functions
with spin o on the atoms of left and right wires, depending on the index w shown in Fig. 1b.
We note that the energy associated with the scattering states, ®g=7, ®g*7, is required to be

the (N + 1)-electron energy F, where
B = (@07 | 1] o) =@ | i1 | o)
= EQ + & ’ (20)

in terms of the molecular ground-state energy, Ey, and the energy of a single scattering

electron, . Coefficients satisfying-the tight-binding secular equations on the wires are

1 , ,
Cy'= — (e“ZLW + ’I“e_quW) for w= —o00,...,1,0,
Ny,
il .
Cori= —=7e' " for w =1,2,...,00. (21)

R

The left-hand_ wave-function combines a forward-travelling wave (e’™) and a backward-
travelling wave (¢ ‘) with a reflection coefficient, r. The molecule acts as a potential
barrier that produees a reflected wave in the left wire and a forward transmitted wave
(eiqR):' in the right wire, with a transmission coefficient, 7. This corresponds to a flux of
eloctrons with energy ¢, satisfying energy conservation and the Hiickel Schrodinger equation
for infinite wires.

The total electron transmission probability is
Ty(e)=1~r]*=|rf (22)

Normalisation factors Ni, and Ny have been introduced to obtain the requisite unit electron

flux. Hence, the current density®® from atom (w — 1) to atom w in the left wire, using the

8
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Publishistgndard Hiickel formulation, is

1 ~
Ty = = (2471197 ) Cua G = )

231, sin qr,
= N (1—1r), (23)
where we have used Slater’s rules
< DY NH| BT >=< dy1|hlpw >=Pr. (24)

The expression in Eq. (23) is independent of the index w) showing that a constant current
flows down the wire. We require this current to be equal to the transmission probability,

T,(¢). Hence, the correct flux normalisation is achieved by setting
N{ = 20 singy, (25)

and, for the right-hand wire, _
Ny, =28 sin gg. (26)

C. The many-electron SSP equatidns

The (N + 1)-electron configurations, ®}7, describe configurations having one electron in
one or other of the wires and N-electrons in the molecule. For electron transmission to
occur, these configurationfunctions must interact with appropriate configurations in which
all electrons are on the‘molecule. These configurations must be single excitations relative

to ®F7. Such configuration functions are of the form

(I)SU = |waawla1w202 s wNO'N’ (27)

for a =N +1, N+ 2,...,n, and all have an extra electron with the same spin. We write

the many-electron device wave-function as

0 n 00
U= 3" Cyluo+ > Ca® + ) CyPryo, (28)
w=1

w=—00 a=N+1

where the three terms describe a scattering electron in the left wire, an extra electron
passing through the molecule, and a scattering electron in the right wire. All terms describe
N passive electrons present in the occupied orbitals of a molecule. This description is

consistent with the absence of two-electron interactions within the Hiickel model.
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Publishin g'The secular equations of the device shown in Fig. 1b, for atom 0 in the left-hand wire

and for atom 1 in the right-hand wire, are
Hy _1C_1+ (Hop — E)Cy + Z Hy,Co =0,
> HioCo+ (Hig = E) C1 + Hi2C; = (29)
where the CI matrix elements are

Ho 1 = (0 | H | ®5'7) = (¢
@OalH‘CIDOU
(I)OU|H|(I)a0

{

= ) =

= )
Hi, = (0 |H[27) =

= (®y | A | y7) s

= )

O | H | 957 = PR, (30)

and [ir, Bgg are resonance parameters fqr the connections from the wires to the molecule.
We wish to replace the left wire by a siugle source atom, L, sited at atom 0 and creating
a flux of electrons corresponding-to the wave-function QDSL in Egs. (18, 21). Similarly, we
wish to replace the right wire by a.gingle sink atom, R sited at atom 1 and removing the

12

transmitted flux. This"“is achieyed by definition of complex potentials, ©r, Ogr,* on these

source and sink atonis to replace the effects of all atoms to the left of atom 0, and all to the

right of atom 1, respectively. Hence, we define

prLC -1 = O y,
PrCy = OrCY. (31)
The ﬁotentials can now be derived by using the expressions from Eq. (21) for the orbital
coefficients

C_q (e~  pelar)
@ — _— —_— ),
L= 0L o b A1)

C .
Or = 51{52 = Bre'™t. (32)
1

In the standard SSP formalism®3637 these potentials are used directly in the SSP secular

equations. However, when the reflection coefficient » becomes equal to -1, the potential Oy,

10
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Publishihgomes infinite. A more satisfactory approach, avoiding this singularity,!” is obtained by
substituting the explicit form of the orbital coefficient C'"_; into Eq. (29), to give

B

N (7' 4+ re'™) + (o + Ey — E) CL + fB.Cr, = 0. (33)
L

Noting from Eq. (21) that the source coefficient is

147
= = 4
CrL =G, N (34)
we deduce that
r = N.Cp, — 1. (35)

Substituting for  in Eq. (33), we obtain

21 ﬁL sin qr,
Ny

= iNg, (36)

(5L€iqL +ar + Ey — E) CL +600.Ct, =

where we have placed the inhomogeneity term on the right-hand side. We can carry out the

same procedure using C from Eq: (21) in Eq. (29) to give the sink coefficient

T
= — R
Cr =0, NRe , (37)

and hence

Cy = eziqRNi = 'R (. (38)
R

Substitution of this expression into Eq. (29) gives
ﬁﬁRCR + (OéR + Eo — F+ ﬁReiQR) CR =0 (39)

which'does 1ot contain an inhomogeneity.
With these modifications to the boundary conditions, we can now find the wave-function

¢ for the SSP model device. The wave-function
USSP = CLog” + Y Cadf + Crdg” (40)
a=N+1

is the solution to the SSP equations in the CI formalism. The ®*” here are configurations

with N + 1 electrons in the molecule, and ®%?, ®R have an extra electron on source or sink

11
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Publishia@ms, respectively. The (n 4 2)-dimensional SSP equations for the SSP device depicted in

Fig. 1a can now be written in matrix form as

C 0
P CL — —ZNL ) (41)
Cr 0
where the device matriz is
p —urL —Ur
P = —ﬁL E— Q1 — ﬁLeiqL 0 ) (42)
—ug 0 E = QR — /3R€iqR

and the (n — N)-dimensional diagonal matrix

Pab = 5ab<5 - 6a>7 (43)

contains only the energies of unoccupied“nolecular orbitals arising from the configurations
{®37}. For our single-atom-contact configurations the connection matrix elements, (upug),

are expressed in terms of the MO"coefficients, U, for the virtual orbitals:

(uL)a = BELUEM
(uR)a = BRRURav (44>

and the source and sink’ matrix elements are

e -y Pt = freim,

€ — agr — fre'® = Pre MR, (45)

Here e have used the dispersion relations Eq. (5) to remove e from source and sink matrix
elemeﬁts.
At this stage we have the working equations for the SSP model of a device, stated in terms
ot mc:)'_'l'ecular orbital channels and depending entirely on quantities that can be obtained from
atight-binding calculation.
Physically, the equations describe a steady state current that may be called the ‘ground
state channel’, in which N electrons reside in the molecule in a ground state configuration,

and one electron from the left lead is scattered by the molecule. It is possible to envisage

12
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Publishintgl r scattering channels, in which the molecular electrons are present in excited N-electron
states (or even channels with different electron numbers). In the present model, without
electron-electron interactions, the configuration functions describing these other channels
do not interact with those from the ground state channel. All channels, therefore, are
independent, and are uncoupled from each other in our model.

The following section shows how to solve these equations in‘a-way that retains the for-

malism of structural polynomials.

III. SOLUTION OF THE SSP EQUATIONS

We first look at the form of the structural polynomials.defined in Eq. (6) when expressed

in terms of MOs and orbital energies. It is clear that we can write

s(e) =J] e 4 (46)

k=1
The other structural polynomials are ebtained by making a general definition in terms of

the inverse of the secular matrix:

" _ “~ UpUgi
Joa= (& A)p; = gp_ eq . (47)
k=1 k

The structural polynomial related to this reduced ‘hatted’ quantity is

Jpa(€) = 5(€)Jpq(€)- (48)

We recover the structural polynomials for a particular device with source and sink connected
to vertices L, and“R, by recognising that ¢t = 7rr, © = Jgg, and 7 = jrg. We can now use

the analogy with'Eq. (7) to define the remaining member of the set,
0 =ut — 7, (49)

in téims of the new structural polynomials.

To make the comparison explicit, we note that both the product in Eq. (46) and the
summation in Eq. (48) involve all the MOs in the molecular spectrum. The form of these
equations is important in what follows. We also note that the secular equations in Eqgs. (41)

and (42) correspond closely to Eqgs. (31) and (32) in Pickup et al.,'" with the exception that

13
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Publishitig latter depend on the full range of molecular orbitals, but the former contain only the
unoccupied set.

Note that in the many-electron model, the structural polynomials have an implicit de-

pendence on spin because the manifold of unoccupied orbitals included in their definition

must be chosen to match the spin of the scattering electron. For simplicity this dependency

will be suppressed in the notation.

A. Solutions away from eigenvalues

We can solve the SSP device equation Eq. (41), for energies € away from all molecular

eigenvalues, using the formula for a block partitiened inverse,
-1

VW Zn. —V 'WZ,
= : (50)
XY “YUXZ Z
where
7y = (V-WY 'X) "
Zo= (Y- XV'W) (51)

are Schur complements. We identify the block V as the diagonal matrix p, Y as the two-
dimensional source-sink/block, and W as the connection matrix, upug. We can simplify

this expression by nofing that the matrix XV-IW comprises terms such as

n 2
U+
4 —1 L
ur, (1 — €un)” up = E —2
€ — €,
a=N+1
n 2
JE:
~ -1 R
URr (81 - eun) Ur = E _a)
€ — €,
a=N+1
n
~ —1 URaUEa
UR (61 — €un) up = E —_— (52)
€ — €,
a=N+1

where €4y, is a diagonal matrix of energies of unoccupied orbitals. These equations encapsu-

_late the essence of Eq. (48), so we define by analogy

n

s@)= I e
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PublishiRgovided we are at an energy € that is away from any molecular eigenvalue €,, we can now

simplify the solution of Eq. (41) to give

O = = (e — u(e))
N,
Cr = =206, (54)

The solution for the molecule CI coefficients is
Ca = (¢ — €2) " (CLBiLULa + CrBrnlra)- (55)
The quantity D can now be expressed as
D t u i\’
D= (aem =) (2= (1) (56)
s S 5 s
so that

D= (/BLG_’LQLBRe*ZQRS

— Pre“It = Pre " Tu +v) . (57)

It is clear that Eq. (57) looks exactly like Eq. (4). The final expressions for the solutions are

(re=ms ~ Gy

CL = —ZNL D )
Ch =~ Brn N3 (58)
We can now dedtiee that
2
T = |r]® = Blaw, ar) oy (59)

| D>
The current flowing through a configuration function, W5, can be considered as a current

flowing through an orbital 1,0 with eigenvalue, €,. The expression for this current is

Jisa =~ [(®F7 | H| ®§)C;Cy — c.c]

(o1 | b | ¥a)CFCy — c.c.]

(SN S

(qu, 4r)UraUrasa (60)

J
| D[’
where

sa=s/e—ea)=][(e—a) (61)

b#a

15
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Publishing 1e polynomial s with an extra eigenvalue excluded from the product. The expression for
the orbital current in Eq. 60) is identical to Eq (83) of Pickup et al.}”, except for the orbital
restrictions implicit in the definitions of the structural polynomials. In cases where orbitals

belong to degenerate shells, it is more sensible to discuss shell currents
JLHA = Z JL—)& ) (62)
acA

where A represents a degenerate eigenspace. It is an invariamt quantity, i.e. its value is

independent of the precise choice of MOs inside the shell.

B. Bond currents

We derive expressions for bond currents by noting that the molecule configurations, ®§°,
can be re-expressed using the expansion of the molecular orbitals in terms of atomic orbitals

in Eq. (11):

O = D P8 Upa, (63)
p

where, as before,

;I)ga N |¢p0¢101¢202 T ¢N0N| (64)

is a molecular configuration fune¢tion defined with the occupied MOs plus an extra molecular

atomic orbital ¢,. Hence, we can re-express the SSP wave-function in Eq. (40) as

U = CLOpT + ) CL®8 + Cr®p”. (65)

p=1

The coefficients, ¢, can be derived directly from Eq. (55) using Eq. (63) as

Cp = z": UpaCla

a=N+1
- Z Upa(E - Ea)_lUI:aCL/QEL
a=N+1
+ Z Upa(g - ea)_lURaCRBRR
a=N+1
= Jpi.BiLCL + JprPrrCR- (66)
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Publishififc last line of this equation is identical to Eq. (63) of Pickup et al.,'" except that we have
used the definitions of structural polynomials in terms of virtual MOs (c.f. Eq. (53)) appro-
priate to the many electron molecular state implied by the definitions of the configuration

functions in Eqs. (40) and (65). We deduce that the bond current is

1
?

= —ifpq (CpCq — c.c.)

bond __
‘]p%q o

(<q>g“|mc1>go>cpcq . c.c.)

J  JpLJqR/ JpRJqL
:B(qIﬂQR)ﬁpq’D‘Q = . S p{ =

J
- B(QL; QR)ﬁququEfb (67)

where the quantity v, ;g is defined by

pal

qu]:f{ _ Jpﬁ]qR : .7pquI:7 (68)

using a more general version of the Jacobi-Sylvester relation!'® as given by Brualdi et al.®®

The set of functions, {PP?}, used in this derivation of bond currents is over-complete and
non-orthogonal. The expressionfor ¥ in Eq. (65), however, has two essential ingredients
required to derive bond currents. First, it contains the core of occupied molecular orbitals
in each configuration/function. ‘Secondly, it has a set of configurations describing an extra
electron passing through the.molecule defined in terms of the atomic orbitals required for a

definition of a bond current.

The SSP. wave-function in Eq. (65) can be used to derive secular equations analogous to
Eq. (41) @nd (42), but the non-orthogonality of the configuration functions requires the use
of Lowdin rules for the simplification of CI matrix elements. This derivation and solution

of the:'equations is a long-winded alternative, but ultimately yields the same result.

At this point, we have explicit expressions for total current and bond current when Pauli

\ exchj_éion is taken into account. These can be used directly to calculate T'(¢) and map
out conduction pathways in individual cases. The central advantage of a graph theoretical
approach is that it predicts generic features of conduction, embodied in selection rules. To
explore these in the new model requires investigation of some properties of the modified

structural polynomials.

17



E I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishifg. CONSEQUENCES FOR CONDUCTION BEHAVIOUR AND
SELECTION RULES

The selection rules for conduction derived previously>!”3? depend crucially on the in-
terlacing properties of the four structural polynomials. In the present section we first check
that these properties are retained by the modified structural polynomials (section IV A) and

then give the selection rules in the form that applies to the new. model (section IV B).

A. Interlacing properties of structural polynomials

In adopting the definition of the structural polynemials in Eq. (53), we have lost the
equivalence of the original structural polynomials'? to eharacteristic polynomials of vertex-
deleted graphs, but have retained their form as.gums over states of the molecule, at the
price of simple deletions of a set of occupied orbitals from the sums. As noted above, this
is effectively a projection of spectral representations into the space of unoccupied molecular
orbitals. 0

In order to use the new interpretation of the equations to derive the behaviour of trans-
mission at specific energies, we need\to bé confident that these restricted polynomials obey
the same selection rules. The selection rules were originally derived using the interlacing
properties of the original polynomials s, ¢, u, and v, which follow from their relationship to
vertex-deleted versions of the oOriginal graph. Roots of ¢ (and u) interlace those of s, and
the roots of v intérlace those of ¢, and u.%° It is not obvious that the new polynomials have

these same properties.«“However, the new ¢ and u can be understood through their spectral

definitions
t=t/s= Za: gU_SLea
U=uls= Ea: 5(]_322 (99)
N\ Which_'imply non-positive gradients

The zeros of the hatted polynomials in Eq. (69) are just the roots of ¢ and u, respectively,

and so the interlacing properties of the roots of these quantities with the roots of s follow
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Publishidigectly. Interlacing properties of s, ¢, and u are given more formally by Lemma 1.20 on
page 13 of the book by Fiske.!
Interlacing of the roots of v with those of ¢t and u follows from the argument below. The

Jacobi-Sylvester relation in Eq (7) is equivalent to
o(e) = v/s = at — j>. (71)

We can look at the behaviour of ¢ at the zeros ¢ of ¢. It follows from the preceding equation

that
() = alen)t(er) — J(er)* = —j(e)>/ <0, (72)

for all roots €. Consider, for simplicity, a case where the‘roots of s are non-degenerate.

Using the interlacing properties of the roots of s and ¢, we can write
S € S €6 L a1 S 61 S (73)

It is clear that in the expression
se) = (e —ea) (ceart) [ (e —en) ] (6= o) (74)
b<a b>a+1
the terms in the two extended products have the same sign when € = ¢, and when € = ¢,,4.
The first two terms, on the other hand, are overall negative for s(e;), and positive for s(e;,1).
It follows that s(e) changes sign over the interval ¢, < e < ¢;,1. The implication is that the
function |
v(e) = s(e)v(e)
changes sign it that interval, and that there is a root of v between any two roots of . An
identical argument proves that the roots of v interlace the roots of w.
We now-sée that the four structural polynomials defined in terms of the restricted set of

unoccupied one-electron states share all the properties of their unrestricted analogues.!”

B." Conduction cases for ipso and non-ipso molecular devices

The results derived thus far are for the total transmission, and for currents at values of e
away from any unoccupied eigenvalue. We can investigate the behaviour of these quantities
at eigenvalues by expanding them in Laurent series and taking limits, exactly as shown in

Pickup et al..!” We do not need to repeat the analysis here.
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Kind ra Case g gu G 9 T(ea) Jp%l(ea) Ju-ale)

Two CFVs 0 1 g+1 g+1 g+2 >g+1 0O 0 0
0 2 g+1 g+1 g g #0 #0 0
0 3 g+l g g+l >g+1 0 0 0
0 4 g+1 g g g #0 #0 0
0 6 g g g+l G 20 £0 0
0 71 g g g gFEL #0 0
0 7.2 g g g g+l 0 0 0

CV and CFV 1 5 g+1 g—lt g >g 0 0 0
1 8 g. g=1 g—=1 >g 0 0 0

Two CVs 1 9 g=1 ¢-1 g g-1 +#0 £0 £ 0
1 10 g—1 ¢g—1 g—1 g—1 #0 #0 #£0
2 11.1 g—1 g—1 g—2 g¢g—1 0 0 #0
2. 112 g—-1 g—1 g2 >g 0 0 0

- - PSB - - - - 0 0 0

= 1CEFV 0/t PPR - - - - 0 0 0

TABLE 1."Genduction cases for non-ipso molecular devices, showing the kind of the vertex pair
for the device, the rank of the connection matrix ra for shell A with eigenvalue €5 and degeneracy
g, thetotal transmission 7T (ea ), and the bond currents Jﬁgq(eA). The numbers of repeated roots
in Structural polynomials, ¢, u, v, and j are g, gu, gv, and gj, respectively. The shell current
Jr—a(g) applies for any energy. CV and CFV stand respectively for core and core-forbidden
vertices (defined with respect to the eigenspace A). Case PSB is Pauli Spin Blockade. Case PPR

(Pauli Perfect Reflector) occurs when the structural polynomial j(¢) is zero for all values of ¢.
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Publishing' “he classification of conduction/insulation cases for non-ipso devices is shown in Table I,
and for ipso devices in Table II. The tables give information about conduction or insulation
(in terms of the total transmission and bond currents) when the incoming electron energy,
g, coincides with a molecular eigenvalue. They also give information about the shell current

(at any energy) for the shell belonging to that eigenvalue.

The cases are classified by the rank of the matrix block in the’SSP equations that describes
the connection from source and sink to the molecule, and alse by the nature of the graph
vertices representing the link atoms L and R. There are €wo categories of vertex: core (CV)
and core-forbidden(CFV). A core-forbidden vertex (with, say index p) for an eigenspace
(shell) with eigenvalue €5 has Up, = 0, for all a € A."Core vertices are just those vertices
that are not core-forbidden. Terms CV and CFEV ‘are normally used for the case with ey = 0,

but here we allow the classification of a vertex tobe specified for each eigenspace.

The cases are further subdivided by the behaviour of the structural polynomials ¢, u,
and v, in terms of multiplicities of the specific eigenvalue. There are 11 cases for non-ipso
devices as shown in Table I. The polynoniial 7 shows more complex behaviour, because it is
not constrained by interlacing: Some cases (2, 4, 6, 9, and 10) have their g; root behaviour
determined exactly through relationships dictated by the Jacobi-Sylvester relation shown
in Eq. (7). In the remaining cases (1, 3, 7, 5, 8, and 11), the Jacobi-Sylvester relation
dictates only a minimum value of gj. This behaviour makes a difference to the prediction
transmission only/in eases 7 and 11, where we distinguish sub-cases. In the others, an
increase in g, does net affect conduction or insulation. It does, however, affect the shape
of the dip in transmission at the eigenvalue. There are many small molecules where these

effects may be seenin the predicted transmission curve.

The 7pso ¢onnection exhibits simpler behaviour, as there is only a single connection site
(L = R) and a single structural polynomial ¢. If the connection site is a CFV (a rank 0
connection matrix for the shell), g is limited by interlacing to two possible values, namely

g + L;or g. Connection via a CV requires g; = g. Hence there are just three ipso cases.

In both tables we have added two additional cases: ‘PSB’, which is the insulating Pauli
Spin Blockade, and ‘PPR ’, which is Pauli Perfect Reflection. These are described in the

next section.
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Kind ryn Case g T (ea) Jgﬂf(eA) Jr—al(e)

CFV 0 II  g+1 0 0 0

12 g #0 0 0
CV 1 I3  g-1 #£0 0 £ 0
- - PSB - 0 0 0
CFV 0 PPR - 0 0 0

TABLE II. Conduction cases for ipso molecular deyices, showing the kind of the vertex pair for the

device, the rank of the connection matrix ra for shell A with eigenvalue ep and degeneracy g, the

JAO

total transmission 7' (ex ), and the bond currents. J*5

(ea). The number of repeated roots in the
structural polynomial, ¢, is g;. CV and CFV stand respectively for core and core-forbidden vertices
(defined with respect to the eigenspace with'eigenvalue €, ). The shell current Ji,_, A (€) applies for
any energy. Case PSB is Pauli Spin Blockade. Case PPR (Pauli Perfect Reflector) occurs when

the structural polynomial j(e) is zero for-all values of €.
V. BEHAVIOUR ARISING FROM THE MOLECULAR ELECTRONS

The presence Of a space‘of occupied spin-orbitals with the same spin as the scattering

electron introduees new _behaviour in three different ways.

A. Pauli Spin Blockade

Thé first effect arises because only virtual spin-orbitals with spin ¢ appear in the SSP

equations. Occupied orbitals, and orbitals of opposite spin to the scattering electron do not

\ appeé'r at all. It follows that there can be no shell currents involving these orbitals for any

counection pattern and for any energy . We refer to this situation as Pauli Spin Blockade
(case PSB) in tables I and II.

A natural outcome of inclusion of Pauli effects in the Hiickel/SSP formalism is the re-

moval of transmission peaks at energies below the molecular Fermi level. Occupation of
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Publishi:nlg)ﬁ ecular spin-orbitals removes energy levels from consideration in the all-important struc-
tural polynomials. Transmission below the Fermi energy is not removed altogether, but the

curve typically tails off smoothly towards to the low energy side of the first active shell.

B. Pauli Perfect Reflection

There is a second consequence of inclusion of Fermi statisties: /at certain orbital occu-
pancies for certain molecules, conduction is suppressed for.all energies; systems can become
Pauli Perfect Reflectors (case PPR in Tables I and II).

The rationale for this claim is as follows. The form of the structural polynomial ji 5 is

=YY Utallna/(e — €), (75)
A a€cA
where the sum runs over eigenspaces A from LUMO (Jlowest unoccupied molecular orbital) to
HUMO (highest unoccupied molecular grhital), (We allow only Hund’s Rule configurations,
so every shell is filled, half-filled with all electrons of the same spin, or empty.) If the sum
> UrUra
acA
vanishes for every eigenspace Aiucluded in the spectral representation of j for electrons
of spin o, the device with connection vertices L, R in molecular graph G will be a perfect
reflector for incoming electrons. of that spin, with T,(¢) = 0 for all € in the range of wire
energies. If the molecule has a closed shell within the model, then conduction of electrons
of both spins will be blocked at all energies.

Vanishing of j'may seem to be a strong or even outrageous requirement, but in fact it
is met forunafiy shells of many small chemical graphs. We need only that either L or R or
both will be a €FV in each of the unoccupied shells; this can often be arranged by selecting
shells ..With particular symmetries. Hundreds of molecular graphs for which the HUMO-shell
has CFVs are found by simple search of chemical graphs with 5 < n < 14, for example.

C:o_nstruction of a case of PPR based on such graphs solely on Aufbau electronic con-
figurations, 7.e., where all occupied spin-orbitals have lower energy than all unoccupied
spin-orbitals of the same spin, often leads to implausibly high molecular charges, but Pauli
Perfect Reflection is also predicted for excited states, which could be achieved by, for exam-

ple, photo-excitation.
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FIG. 2. Pauli Perfect Reflection in devices based on pentalene. The pentalene molecular graph has
characteristic polynomial s = (e <'1)(e + 23(52 —2)(e® — &2 — 4e + 2), which gives the spectrum
shown on the left. All eigenvectors except the three corresponding to the irreducible factor of s
have CFVs (as shown with black dotsin the diagram). The 107 excited configuration of the dianion
connected as shown by the red ‘dots, is therefore a Pauli Perfect Reflector, with {=1 = 4(g + 2),

™! = 3(c + v/2), © =i, and 5.0,

A small chemical example of this type based on pentalene is shown in Fig. 2. The
molecﬁlar oraph of pentalene has eight eigenvectors, five of which have CFVs, in positions
determined by the mirror planes of the point group, as illustrated in the figure. As a

\ 0011s¢duence, the only transmission predicted for a device based on the neutral pentalene
niglecule and with one connection in each mirror plane (as shown in red in the figure) is via
the highly antibonding shell 7. However, excitation of the pentalene molecular dianion into
the configuration illustrated in the figure would give T'(¢) = 0, and hence perfect reflection.

Many other examples can be constructed.
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There is a third, more technical, effect arising from the presence of the molecular electrons,
and that is migration between selection-rule cases as electronic occupation increases. When
a shell is removed from the sums that define the polynomials s, ¢, w'and v, the multiplicity
of a root corresponding to another eigenvalue may change. The allowed changes of case are
limited by the fact that the rank is a property of the shell independently of occupation of
other shells. Other shell invariants include the leading terms in the Laurent expansions of
the structural polynomials around the shell eigenvalue.!” Detailed considerations of this kind
lead to the following ‘propensity rules’. For rank 2,/cases 11.1 and 11.2 cannot exchange.
For rank 1, insulating cases 5 and 8 may exchange, as ean conducting cases 9 and 10. For
rank 0, various exchanges are possible, including eonversions from insulating to conducting
cases. Conversion to case 7.1 is common, for example. A shell may change case several times

before its own occupation by electrons ultimately. réemoves it from the SSP equations.

VI. EXAMPLES

We show results calculated \from the l'equations presented above, using the computer-
algebra package Maple.*? All calculations have been carried out with Hiickel parameters
a=a, =ar =0, fp= Br = 1403, and all energies are in units of 5. The consequence
is that occupied orhitals(positive values of §/¢) are shown on the left of the figures below,
and unoccupied erbitals.on4he right. With these parameters, this is a zero-bias device with

conduction bands for the leads that are wide enough to access all molecular states.

A. The five-membered chain

Re.é'ults are shown in Fig. 3 for a five-membered chain, with the source and sink atoms
connected to terminal atoms.

Thé upper panel shows conduction in the hypothetical case of the molecule with all
melecular-orbital channels open, which is formally equivalent to a calculation in which N,
the number of electrons in the molecule, is set to zero. It has five peaks in transmission
corresponding to the five non-degenerate orbitals (= shells). Each orbital provides a channel

for conduction, such that the total transmission at electron energy ¢ is the sum of the currents
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FIG. 3 A five-membered chain with terminal connections to source and sink. Upper, middle,

and lewer-diagrams show transmission and shell currents for the device with 0, 2, and 3 molecular

electrons having the same spin as the incoming electron. Orbital energies are shown for reference

as black circles above the curves.
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Publishipgssing through the individual orbitals. In this example, all current passes through a single
orbital when the input electron stream has an energy equal to the eigenvalue of that orbital.
Individual orbitals have zero conduction at eigenvalues other than their own.

The middle panel shows the conduction pattern when the molecule has a ground-state
of four spin-paired electrons in the lowest two orbitals. The peaks from shells 1 and 2 are
missing, and are examples of Pauli Spin Blockade. Conduction catreccur enly through empty
orbitals 3, 4, and 6. We emphasise, however, that there isstill'some conduction through
the virtual orbitals at energies below the Fermi energy. The exclusion principle closes shells
occupied by electrons of spin ¢ to conduction electrons of that spin. If we assume that the
ground-state of the m-system has five electrons, comprising 4¢wo pairs in MOs 1 and 2, and
a single a-spin electron in orbital 3, then this diagram weuld describe the conduction of
a (-spin electron down the left-hand wire. Such an electron would not be excluded from
passing through orbital 3. The passage of an electron of a-spin, however, would be excluded
from this orbital, and therefore the bottom panel would be an appropriate description for
a-spin conduction. Naturally, one would have to sum up appropriately the diagrams to get
overall transmission, if neither the spin/of the molecular state, nor that of the incoming
electron, is selected.

Note that orbital/shell currents cairbe negative, or can exceed unity, whereas 0 < T, () <
1. Individual shell currents of active shells vary, if sometimes only slightly, with occupation
of other shells. In the present' simple example, all orbitals are conducting (case 10) and
active. Orbital 5 is case 9 which is also conducting and active. Orbital 5 changes to case 10

in the middle panel (¢.f. section V).

B. Anthtacene in a symmetrical non-ipso device

Shéll currents for an anthracene-based device with source and sink atoms connected to

the central apical atoms, are shown in Fig. 4. The point group of anthracene is Ds;, and

the sh'ell currents reflect this symmetry. In particular shells 2, 4, 7 and 9 have a node on the

ceutral apical atoms that renders them inert to conduction. The transmission profile has

peaks corresponding to the six shells that are symmetric with respect to the mirror plane
through the connection atoms (c.f. table III).

The lower panel of the figure shows the conduction pattern for a molecule with a 14-
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FIG. 4. Anthracene with central apical atems connected to source and sink. The upper diagram
shows the transmission for a molecule with all channels open, and the lower diagram shows the

transmission for the 14 electron ground-state.

electron ground-state (¢.e. séven orbitals occupied by a pair of electrons). The three peaks
represent transmission through the remaining three unoccupied symmetrical MOs. The
detailed cages for'the shells are not necessarily constant as orbital occupancy changes, as
noted in“section V.. An example of this is shell 7 which migrates to case 7.1, and shell 9
whicly changes {rom case 6 to 7.1.

Thé elosed-shell ground-state implies that there will be no difference in transmission for
an _o- ora [-spin electron. One would need still need to sum over both possibilities to get

the t:(_'_)'tal transmission for an unpolarised stream of electrons.

.The bond currents in Fig. 5 also reflect the existence of peaks in the overall transmission,
six for N = 0, and three for N = 14. Note that currents through particular orbitals may
be negative, but currents through available bond paths must sum to the total transmission.

The bond currents shown represent only two of the four paths that would contribute to the
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Publishing Shell Symmetry Eigenvalue Case(0) Case(14)
2 Bsy 2 6 PsB
3 Ag+ By V2 1.1 PR
4  Big+Bs, 1 1 b
5 By —1+v2 ¢ PSB
6 By 1-V2 10 10
7 Big+ By 1 - Tl
8  Ag+ By —V2 21 111
9 Bs, —2 6 71
10 A, Y 10 10

#

TABLE III. Conduction cases at the.molecular eigenvalues (in units of ) of anthracene for two
different electron occupancies. €ase(0) and éase(?) are the cases for molecular electron counts of 0
(i.e., all channels open) and 14, res\pectively. The device is formed by connections to atoms at apical
points of the middle ring.“Shells 1 to 5 are insulating for 14-electron ground-states because of Pauli
Spin Blockade. Shells 2, 4. 7 and 9, are inert for all ground-states owing to their antisymmetry

with respect to the yertical mirror plane through connection atoms.

total current for anthracene.

C. Anthracene in a symmetrical ipso device

Ipso devices have source and sink linked to the same atom in the molecule. In this case we

\ havci_%:hosen a central apical atom through which the mirror plane passes. The hypothetical
N.= 0 example in the upper panel of Fig. 6 shows the six peaks we expect, owing to mirror
symmetry. The lower panel shows the transmission for the molecular ground-state (N = 14),
where again, the occupied orbitals show the effects of Pauli Spin Blockade. There are no bond

currents for ipso devices, as no currents pass through the molecular framework. The MOs,

29



E I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishing — —
1 | L] L] L] L] L] Ld L] L] L] L]
5§ 05
B .
g ........ " \I R N N
I : '
— it
-05
2 1 0 -1 2
Energy/B
Current1to8  ----- Transmission
Current3to10 - Eigenvalues o
1 | L] L] L] L] L] L] . .' L2 L]
§ 05} d
B
& -
g 0 )
|_
-05
2 1 0 -1 2
Energy/3
Current1t0 8 f - Transmission
Current3t0 10 . -------- Eigenvalues .

FIG. 5. Anthracene transmission and bond c:urrents with central apical atoms connected to source
and sink. The upper diagram is {‘:or a.molecule with all channels open, equivalent to NV = 0, and
the lower diagram is for the molecule with a 14-electron ground-state. The currents in edges 1 to 8
and 3 to 10 are, respectively, in«the leftmost and rightmost edge of an end hexagon of anthracene,

both taken in a ditection towards the sink connection atom.

however, transfer/current from source to sink, depending on the vanishing, or otherwise, of
MO coefficients on“the connection atom. The N = 0 example shows insulation at ¢ = 0,
wheretis the melecular ground state shows a sizeable transmission. The j polynomial has a
root_ at'e = 0 causing insulation in the one-electron model, whereas the removal of half the

orbitals contributing to j for the many-electron case suppresses this root.

VII. CONCLUSION

We have derived a consistent formalism for ballistic conduction that includes Fermi statis-

tics in the SSP model at the Hiickel level of treatment. It turns out that the new formalism
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FIG. 6. Anthracene transmissioh and shell.currents for an ipso device with a single central apical
atom connected to source and sink. “LThe upper diagram is for a molecule with all channels open,

and the lower diagram shows is for the molecule with a 14-electron ground-state.

117, in which electron interaction was ne-

maps exactly ontg theprevious Hiickel-SSP mode
glected. The conversion is achieved by changing some definitions: in the new formalism, all
structural polynomials are projected onto the space of unoccupied orbitals.

In this.yversion of the SSP model, the device wave-function is generated from a ‘source’
configuration function (determinant), representing a single electron of fixed spin on the
sourcé atom, and a product of spin-orbitals occupied in the molecule. This source config-
uration is a fixed eigenfunction of the S, operator with some eigenvalue Mg. The device

\ Wave}_'function comprises a limited set of configuration functions formed from a set of sin-
gle excitations derived by allowing the source electron to progress through the unoccupied
orbitals of the molecule from source into sink. The tight-binding approximation does not

include the effects of electron correlation, and so the energies of all states corresponding to

a given orbital occupancy are equal, irrespective of the spin, within this model.
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Publishing' "he z-component of spin is relevant in so far as it dictates which configurations will inter-
act. The situation is different as soon as there is two-electron interaction, such as that in the
Hubbard Hamiltonian,>**3 or in more complicated cases, such as the PPP Hamiltonian**%°.

In such a case, singlets and triplets with the same orbital occupancy will differ in energy.
In addition, more configuration functions, beyond single excitations, will contribute to the
expression for the device wave-function. One method for incoerporating electron-electron
interactions that uses parametrised electron repulsion and correlation is the scattering ap-
proach described by Subotnik and Nitzan.3*

The present Hiickel/Pauli/SSP model gives information about orbital (shell) and bond
currents, which are both valuable from the point of'view of interpretation. This is made
possible solely because the molecular configuration functions contain a single electron in an
unoccupied MO (or AO for bond currents), allowing them to be identified by that orbital. In
models that include electron-electron interactions, and that couple higher excitations, this
will no longer be possible.

Even within the Hiickel approxiniation, there may be a need to sum over different spin
orientations to obtain a total trafsmissidn. Tt is also possible that other channels for scat-
tering may be available within the‘energy range dictated by the width of the bands in the
wires. One possibility is that an-electron from the highest occupied level of the molecule
could hop into the sinkd This scenario suggests that there might be conduction using an
N-electron model, as opposed to the (N + 1)-electron version we have used in this paper.
The electron removed from the molecule could then be replaced by an electron appearing on
the source, and hopping onto the molecule. Ernzerhof? has based his model of correlation
effects on conduction on a model of this sort, although much of his emphasis is upon the
effects of‘two-tlectron interactions via the introduction of a Hubbard potential between the
electrons. The present model recovers Ernzerhof’s results? for T(F) in the limit of a zero
Hubbérd interaction; this is simply achieved by subtracting one from the count of molecular
electrons with the same spin as the incoming electron. The transmission curves in this case

“_will show extra structure at energies below the Fermi level compared to T'(E) in the present

approéch. As discussed in Ref 29, such structure may indicate an exaggeration of the effects
of electron occupancy.

All of these possible scattering channels are uncoupled in the tight-binding model, and

all such channels that are energetically available must be summed to provide a full under-
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Publishi:ﬂ;gJ ding of molecular conduction. In particular, subtle effects such as the collapse!® and
even reversal?’ of Pauli Spin Blockade are explained by the opening of new channels as their
energies are tuned by external fields. We note that the tight-binding SSP approach used
in the present paper can easily be extended to admit external fields, such as an applied
electric or magnetic field; electric fields can be included by modifying diagonal terms in the

4647 and magnetic fields by use of a London modificationof the off-diagonal

Hamiltonian,
terms. Hyperfine terms that change the spin can also be/ncluded in phenomenological
Hamiltonians of the tight-binding form. Such extensions to the model could predict, for
example, molecular analogues of the significant changes in“transmission with magnetisation
that have been observed in spin-polarised STM expetiments,3!:33

Finally, it should be noted that the Hiickel-SSP model with Fermi statistics remains res-
olutely graph-theoretical. In order to calculate'device transmission as a function of electron
energy within this approach, all that is reguired is the molecular graph, an identification of
connection vertices and a molecular electron coeunt. Diagonalisation of the adjacency matrix
gives the rest. The nature of the madel is that it can give predictions of global types of be-
haviour for classes of molecular conductofs, as we have seen here with the examples of Pauli

Spin Blockade and Pauli Perfect Reflection, acting as a complement to more sophisticated

calculations on specific systems.
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