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Abstract 

The use of untreated seawater or bore water in uranium mineral processing circuits may 

ƌĞƉƌĞƐĞŶƚ Ă ĐŚĞĂƉĞƌ ĂŶĚ ŵŽƌĞ ƐƵƐƚĂŝŶĂďůĞ ǁĂƚĞƌ ƌĞƐŽƵƌĐĞ ĨŽƌ AƵƐƚƌĂůŝĂ͛Ɛ ŵŝŶŝŶŐ ŽƉĞƌĂƚŝŽŶƐ. 

Using present technologies, the increased salinity from these water sources results in 

decreased uranium extraction and increased extraction of impurities. There is incentive to 

overcome these challenges, either through new technologies, or repurposing existing 

technologies. The ion exchange behaviour of U from sulfate media on the weakly basic 

chelating resin Dowex M4195 (bis-picolylamine functionality) and the effect of competing 

chloride and impurity metal ions (Th, Fe, Al, Cu, Ni) has been studied. Experiments to 

determine acid, and sulfate media behaviour, and extraction thermodynamics including the 

effect of increasing chloride concentration upon extraction behaviour were carried out. 

mailto:m.d.ogden@sheffield.ac.uk


Dowex M4195 was found to have pK1 and pK2 values at 4.13 ± 0.04 and 2.1 ± 0.1 determined 

at 1.0 M NaCl. Dowex M4195 shows affinity for U(VI) over Fe
3+

 and Al
3+

 in sulfuric acid media 

with a U(VI) pH50 a full pH unit below that of Fe
3+

 at 0.17 and 1.82 respectively. With 

increasing chloride concentrations U and Th extraction is suppressed but Fe extraction 

increases. At the highest chloride concentrations explored Fe is preferentially extracted over 

U, and Th is not extracted at all. As chloride concentration increases the extraction of U 

passes through a minimum (40%) before increasing to around 60% for 4.0 M chloride at pH 

1.80. Al
3+

 is not extracted by M4195 under any conditions explored. Dowex M4195 does 

show high selectivity for Cu and Ni over everything else. 

 

Keywords; anion exchange, uranium, Dowex M4195, ion exchange resin, mass transfer 

 

1 Introduction 

Solvent extraction (SX) remains one of the most popular techniques used in the extraction 

and recovery of uranium from mineral processing liquors. Despite its wide applicability, SX 

has drawbacks including the low ability for preconcentration, and a number of issues 

associated with the use of organic phases, such as the potential for solvent loss, phase 

disengagement in multiple contact stages, third phase formation and the generation of large 

volumes of liquid aqueous and organic waste streams [1].  

To overcome some of these challenges, the use of strong base (SB) anion exchange resins for 

uranium extraction from sulfate leach liquors was implemented in the 1950s [2]. These 

resins have quaternary amine functionality and a wide operating pH range of 0-13. Ion 

exchange has advantages over traditional solvent extraction [3] in its ability to pre-

concentrate metal species, and eliminates issues associated with use of organic phases. 

Weak base (WB) anion exchange resins were introduced to hydrometallurgical processing in 

ƚŚĞ ŵŝĚ ƚŽ ůĂƚĞ ϭϵϲϬ͛Ɛ [1, 3]. These resins contain tertiary or secondary amine functional 



groups, and have a narrower pH range of operation, (pH 0 to pH 7-9), compared to SB resins, 

and are often more susceptible to silica fouling [1, 5-8]. However, weak base resins generally 

have better selectivity for uranium over iron, and have associated advantages regarding 

reduced levels of poisoning [3, 4]. This makes them potential candidates for use in 

AƵƐƚƌĂůŝĂ͛Ɛ ƵƌĂŶŝƵŵ ƉƌŽĐĞƐƐŝŶŐ ŽƉĞƌĂƚŝŽŶƐ͕ ǁŚĞƌĞ ŝƌŽŶ ŝƐ Ă ƐŝŐŶŝĨŝĐĂŶƚ ĐŽŶƚĂŵŝŶĂŶƚ ĞůĞŵĞŶƚ͘ 

In practice, processes employing IX resins for the separation/concentration of U typically use 

anion exchange resins with either strong base (SBA) or weak base (WBA) functional groups. 

A ĨƵƌƚŚĞƌ ĐŚĂůůĞŶŐĞ ĨŽƌ AƵƐƚƌĂůŝĂ͛Ɛ ŵŝŶŝŶŐ ŽƉĞƌĂƚŝŽŶ ŝƐ ƚŚĞ ƉƌŽǀŝƐŝŽŶ of fresh water for 

processing circuits. With the majority of mines located in arid regions, cost effective water 

treatment and recycling of large quantities of process liquor are integral to the economic 

and environmental success of these operations. The use of untreated bore water and/or 

seawater could significantly reduce the costs associated with U extraction in these 

operations, but the salinity of these types of water is known to have a detrimental effect on 

uranium extraction. 

The effect of high chloride on concentrations on the ion exchange mechanism of uranium is 

two-fold: 1) decreased exchange of the U-sulfato species, likely due to competition by 

chloride; and 2) increased exchange of iron and other impurity elements [9]. For example, 

chloride has been shown to decrease uranium extraction into the solvent or resin phase, 

where concentrations of just 2.5 g L
-1

 Cl, ŝŶ OůǇŵƉŝĐ DĂŵ͛Ɛ ƉƌĞŐŶĂŶƚ ůŝƋƵŽƌ, reduced uranium 

loadings at most by 20% [9].  

However, with water treatment having both economic and environmental implications, it is 

of increasing interest to find new ways of overcoming the decreased extraction associated 

with using saline waters in processing circuits. Our work seeks to identify a commercially 

available ion exchange resin that is adaptable to use under higher chloride conditions, and as 

such could present a pathway for the use of seawater or bore water in uranium recovery 

circuits. This has the potential to reduce the substantial economic and potential 



environmental burden placed on limited freshwater supplies located in places such as 

AƵƐƚƌĂůŝĂ͕ ǁŚĞƌĞ Ă ůĂƌŐĞ ƉƌŽƉŽƌƚŝŽŶ ŽĨ ƚŚĞ WŽƌůĚ͛Ɛ ƵƌĂŶŝƵŵ ŝƐ ŵŝŶĞĚ ĂŶĚ ƉƌŽĐĞƐƐĞĚ͘ 

Rather than focussing on developing new resins to suit high chloride, acidic sulfate 

processing streams, our work seeks to apply current resin technologies to new processes. 

Our reasons are two-fold: Firstly, the mineral processing industry is a very small component 

of the wider industrial applications of ion exchange resins. It therefore represents a 

significant cost to design a new resin technology to serve this type of hydrometallurgical 

separation. Secondly, we suggest that current resin technologies have not been applied to 

their full potential due to an incomplete understanding of the chemistry involved. The 

innovation therefore comes from applying commercially available resins to new processes. 

Weak base anion exchange resins have been effectively used to separate uranium, U(VI), 

from sulfate-based acid processing streams [4, 10-12]. The weak base chelating resin, Dowex 

M4195, with bis-(picolyl)amine functionality, has demonstrated unique separation 

capabilities for first row transition metals. It has been investigated for the extraction of Cu(II) 

[10-13, 16- 18], Ni(II) [13-19], Co(II) [14-16, 18, 19], Cr(III)/(VI) [21, 22], Zn (II) [13, 15], Cd (II) 

[13, 15], Pd(II) [14, 15, 23], Au(III) [15], Pb(II) [14, 19] Fe(III) [14, 19], Mn(II) [14, 19], and 

Pt(IV) [15]. To the best of our knowledge, the application of Dowex M4195 to separate 

uranium from acid-based streams has not been carried out.  However, its properties with 

respect to iron and other elements suggest it may still promote uranium extraction over iron 

with increasing chloride concentration. 

The resin structure of the Dowex M4195 functional group is shown in Figure 1. From proton 

uptake experiments the apparent pKa for the functionality is predicted to be around pK1 = 

3.5 [15, 16], pK2 = 2.7, pK3 = 1.5 [16]. The weakly basic nature of Dowex M4195 precludes 

use in alkaline carbonate circuits. HowevĞƌ͕ ƚŚĞƐĞ ƉKĂ͛Ɛ ŐƌĞĂƚůǇ ĨĂǀŽƵƌ ƐƚƌŝƉƉŝŶŐ ĂŶd silica 

removal. 
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Figure 1. bis-(picolyl)amine (BPA) functionality of the Dowex M4195 resin 

We present work exploring, for the first time, the extraction of uranium from sulfate media 

in the presence of increasing chloride using the chelating and weakly basic anion exchange 

resin Dowex M4195. Rather than focusing on a single element system, we have investigated 

the impact that the presence of metals commonly encountered in the processing of uranium 

have on the ability of Dowex M4195 to successfully extract uranium. We make conclusions 

as to the suitability of this resin for future use in high salinity uranium extraction circuits 

incorporating ion exchange. 

 

2 Experimental 

2.1 Reagents and stock solutions 

For experimental investigations the commercially available chelating exchanger Dowex 

M4195 was supplied by Sigma Aldrich. The general data for this resin is given in Table 1 [24]. 

Prior to experimentation the resin was preconditioned by bottle rolling with 1 mol·L
-1

 H2SO4 

for 24 hrs at room temperature. The resin was then washed five times with 200 bed volumes 

of deionized water before use, where one bed volume is described as the minimum volume 

of water required to wet the resin. 

 

Table 1: Manufacturers Specifications Dowex M4195 [25] 

Parameter Value 

Cu loading (pH 2, 6 g L
-1

 feed) 35 ʹ 42 g L
-1

 

Commercial equivalent Lewatit TP-220, Purolite S960, 



Particule size 20/50 US Mesh 

Functionality Bis-Picolylamine 

Form Weak base/partial H2SO4 salt 

Moisture 40 ʹ 60% 

 

2.2 Determination of acid dissociation constant for Dowex M4195 

The technique used to titrate the Dowex M4195 was adapted from the literature [25] using a 

Mettler Toledo DL15 Potentiometric Titrator fitted with a Mettler Toledo triple junction glass 

electrode with 3 M NaCl as the filling solution. The experimental and titration solutions 

contained sufficient NaCl to bring the ionic strength to 1.0 mol·L
-1

; the temperature was 

maintained at 21 °C, and a slow stream of nitrogen was passed through the titration vessel 

in order to reduce the interference from CO2. The resin prior to titrating was contacted with 

1 mol·L
-1

 NaOH to generate the free base form, dried at 50 °C for 24 hrs and then ground to 

a fine powder. The resin was then weighed out (0.05 g) and combined with 0.01 mol·L
-1

 HCl 

at 1.0 mol·L
-1

 NaCl (50 mL) and titrated with standardized 0.1 M NaOH (1.0 mol·L
-1

 NaCl). The 

concentration of proton exchange groups were determined by the difference in proton 

concentration per mass of resin after thermodynamic equilibrium (24 hr contact time). All 

potentiometric titrations were performed in triplicate, in both static and dynamic modes. 

The potentiometric curves were fit using PSEQUAD [26] and the last pKa fit by minimization 

of the standard error in the data. PSEQUAD is a comprehensive program for the evaluation 

of potentiometric and/or spectrophotometric equilibrium data using analytical derivatives. 

The calculation of the unknown free concentrations of components is based on the standard 

Newton-Raphson procedure by minimizing the difference between calculated and 

experimental data points for a given number of species affecting free protons in solution. 

The Gauss-Newton method is used for the refinement of these parameters [27]. This makes 



the program capable of fitting polyelectrolytes and solid-liquid systems including metal ion 

precipitation. 

 

2.3 Batch extractions sulfate media 

All batch extractions as a function of acid concentration were carried out as single contacts 

with the contact of 2mL of resin with 50 mL of aqueous simulant feed. It should be noted 

that all contacts were performed under acidic conditions to mimic the use of seawater as 

the diluent for uranium leachate under expected process conditions. The resin and aqueous 

feed were continuously mixed for a period of 24 hrs at room temperature (21 °C) on an 

orbital shaker. A time of 24 hours was chosen to ensure equilibrium had been achieved. It 

has been shown that this period of time is sufficient ensure equilibrium is achieved in these 

types of systems [28]. No attempt was made to control the pH during the course of the 

experiment but it was measured at the conclusion of the experiment. The extraction 

percentage was determined by difference (using Equation 1) and the concentrations of the 

individual metal ions determined by either ICP-MS or ICP-OES. 

Ψܧ  ൌ  ஼೔ି஼ೌ೜஼೔ ൈ ͳͲͲ         (1) 

 

Where Ci is the initial metal concentration before contact and Caq is the concentration of the 

metal ion in the aqueous phase after contact with the resin. pH measurements for solutions 

were determined using a silver/silver chloride reference electrode calibrated from pH 1-10 

using buffers. At higher acid concentrations [H
+
] was determined by titration and verified by 

chloride concentration via ion selective electrode analysis. Error was determined by 

triplicate measurement in aqueous feed solution concentrations prior to contact. 

 

2.4 Determination of loading behaviour under saline conditions 



All loading isotherms were carried out as single contacts with the contact of 2mL of resin 

with 20 mL of aqueous simulant feed. As noted above, all experiments were performed at 

acidic pH values. The resin and aqueous feed were continuously mixed for a period of 24 hrs 

at room temperature (21 °C). As mentioned previously, 24 hours was considered a suitable 

time scale to ensure equilibrium had been reached. As before, no attempt was made to 

control the pH during the course of the experiment. The data were fitted with two 

parameter isotherm models Langmuir and Dubinin-Radushkevich (D-R) [27]. The fitting was 

carried out by using linear regression and by non-linear least squares analysis using SOLVER 

[29]. 

Langmuir isotherm model (Equation 2): 

௘ݍ  ൌ ௄ಽ஼೐ଵା௔ಽ஼೐          (2) 

 

Dubinin-Radushkevich isotherm model (Equation 3): 

 

௘ݍ ൌ ஽ܤ஽exp ሺെݍ  ቂܴ݈ܶ݊ ቀͳ ൅ ଵ஼೐ቁቃଶሻ       (3) 

 

At equilibrium in these models qe denotes the resin metal ion concentration (mmol·g
-1

) and 

Ce is the solution phase metal ion concentration (mmol·L
-1

). In the Langmuir model aL and KL 

are Langmuir isotherm constants and in the Dubinin-Radushkevich model BD is an isotherm 

constant and qD is the maximum surface loading capacity, R is the universal gas constant 

(8.314 J mol
-1

 °K
-1

) and T is the absolute temperature (°K). 

It must be noted that due to the fact that the interaction of uranium anion exchangers 

involves a heterovalent interaction with the resin functionality, the physical assumptions 

underlying the theoretical derivation of most isotherm models are violated [30]. Fitting the 



data to 2 parameter isotherm models whilst purely empirical in nature will allow for 

comparison with previous literature studies in the assessment of how well Dowex M4195 

behaves in the extraction of uranium from saline sulfuric acid media. Error in the isotherm 

constants was calculated from the linearized form of the model using the SOLVER calculated 

values using the deviations of the experimental data from this best fit line. 

An attempt was made to fit the isotherm data based on the mass action law for the 

heterovalent exchange of uranium anions in solution with salt counterions from the resin 

functionality. In this study stability constant values for complexation and protonation are 

given in MHL stoichiometric format. Notation K indicates a stepwise equilibrium reaction 

ǁŚĞƌĞĂƐ ɴ Ěenotes the overall equilibrium reaction. That is, a log10 K value for the 

complexation of x metal ions, y protons and z ligands would be denoted as log10 Kxyz. 

 

3 Results 

3.1 Determination of acid dissociation constants 

The titration curve for ground resin at 1.0 M NaCl ionic strength is shown in Figure 2. Fitting 

the potentiometric titration curve using PSEQUAD [27] gives values for the proton 

dissociation constants which are given in Table 2. 
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Figure 2. Potentiometic titration of Dowex M4195 at 21 °C and I = 1.0 mol L
-1

 (NaCl) data 

points shown as grey diamonds (). PSEQUAD program best fit is shown by black line using 

HL
+
, HL2

2+
, and HL2

+
 in the model. 

 

Table 2. Best fit acid dissociation constants for Dowex M4195 at 21 °C and I = 1.0 mol L
-1

 

(NaCl), determined using PSEQUAD 

Species MHL notation log10 ɴ log10 K 

HL2
+ 

012 7.07 ± 0.09  

HL
+ 

011 4.13 ± 0.04 4.13 ± 0.04 

H2L
2+ 

021 6.2 ± 0.1 2.1 ± 0.1 

H3L
3+ 

031 UC
* 

- 

*
unable to calculate from the titration data 

 

[H+] = 0.009876 M 
vol = 48.956 mL 

[L] = 0.002 M 



Best fit of the triplicate titration data was carried out by incorporating 3 protonated species 

on the surface of the resin with a total acid concentration of 0.009876 M in a volume of 

48.956 mL and total BPA functionality present on the resin of 0.002 M. 

Using a singly charged species HL
+
 present on the resin surface and the presence of two 

species of HL
+
 and H2L

2+
, the titration model resulted in poor fitting of the potentiometric 

titration curve in the pH 3-6 region by over predicting free proton in solution in the pH 

region of 4-6 and under predicting in the region of 3-4. It is not clear from the current study 

as to whether the anion exchange species is ܪଶܮሺܵܪ ସܱሻଶതതതതതതതതതതതതതതതത or ܪଶܮሺܵ ସܱሻതതതതതതതതതതതതത but it is most likely, 

from the conditions under which the resin was conditioned, that the pre-contact species is ܪଶܮሺܵܪ ସܱሻଶതതതതതതതതതതതതതതതത. 

 

3.2 Extraction studies as a function of acid and anion concentration 

3.2.1 Extraction studies as a function of acid concentration 

The percentage extraction of uranium and other selected metal ions is shown in Figure 3. It 

is clear that there is a distinct difference in Fe
3+

 extraction behaviour as a function of pH. The 

trend for extraction strength as a function of low pH (around 1 mol H
+
) is as follows; 

 

Cu
2+

 > UO2
2+

 > Fe
3+

 > Ni
2+

 > Th
4+

 > Al
3+

 

 

Dowex M4195 does not extract Al
3+

 under any of the pH conditions tested. It must be noted 

from the data that Fe
3+

 is still extracted at acidic pHs over Th
4+

 and Ni
2+

 with extraction not 

dropping below 20% for the pH region tested. The trend for extraction at higher pH values is 

as follows; 

 

Cu
2+

 > UO2
2+

 > Ni
2+

 > Th
4+

 > Fe
3+

 > Al
3+

 

 



The pH50 value for the extraction of metal ions is given in Table 3 for the metal ions tested. 
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Figure 3. Extraction of selected metal ions as a function of [H
+
] in sulfuric acid media, 21 °C 

after 24 hr. contact time.  = Cu,  = Ni,  = U,  = Al,  = Fe,  = Th. Black line fit is 

present to guide the eye. 

 

Table 3. pH50 values for the extraction of tested metal ions as a function of pH, calculated 

from extraction % curves. 

Element pH50 Element pH50 

Cu
2+

 -0.51
a
 Al

3+
 NC

b 

UO2
2+

 0.17 Fe
3+

 1.82 

Ni
2+

 0.54 Th
4+

 0.97 

a
predicted using non-linear regression of 4 data points, 

b
NC = not calculated 

 

 



3.2.2 Extraction studies as a function of sulfate concentration 

The percentage extraction of uranium and other selected metal ions as a function of 

increasing ammonium sulfate concentration at pH 1.57 is shown in Figure 4. 
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Figure 4. Extraction percentage of metal ions as a function of sulfate concentration at pH 

1.47, 21 °C, and after 24 hr. contact time.  = Cu,  = Ni,  = U,  = Al,  = Fe,  = Th 

 

The trend for extraction strength as a function of high sulfate concentration is as follows; 

 

Cu
2+

 = Ni
2+

 > UO2
2+

 > Fe
3+

 > Th
4+

 > Al
3+

 

 

As sulfate concentration decreases the extraction strength changes to the following; 

 

Cu
2+

 = Ni
2+

 = UO2
2+

> Th
4+

 > Fe
3+

 > Al
3+

 

 



Dowex M4195 does not extract Al
3+

 under any of the sulfate concentrations tested. Fe
3+

 

extraction increases with increasing sulfate concentration, whereas Th
4+

 and UO2
2+

 

extraction is suppressed at higher sulfate concentrations. 

 

3.2.3 Extraction studies as a function of increasing chloride concentration 

In Figure 5 the effect of increasing chloride on metal extraction by Dowex M4195 at pH 1.80 

± 0.05 and 0.15 mol·L
-1

 sulfate is shown. The increasing concentration of chloride in the 

sulfate system has no effect on Ni
2+

 and Cu
2+

 extraction. 
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Figure 5. Extraction percentage of metal ions as a function of increasing chloride ion 

concentration at pH 1.80 ± 0.05 in sulfuric acid, [SO4
2-

] = 0.15 mol·L
-1

 and 21 °C after 24 hr. 

contact time.  = Cu,  = Ni,  = U,  = Al,  = Fe,  = Th 

 

Increasing chloride concentration suppresses the extraction of Th
4+

 and UO2
2+

 initially. As 

chloride concentration increases past 2.0 mol·L
-1

 the extraction of UO2
2+

 increases to reach a 

maximum of 64% extraction at 4.0 mol·L
-1

 chloride. With increasing chloride concentration in 



sulfate media, the extraction of Fe
3+

 increases from 40 to 95% to the point where Fe
3+

 is 

more strongly extracted than UO2
2+

. As for the other systems, Al
3+

 is not extracted. 

 

3.3 Isotherm behaviour under saline conditions 

The result from the fitting of the isotherm data using Langmuir and Dubinin-Radushkevich 

models [27] are shown in Table 4. The fitting using SOLVER was carried out by minimization 

of the sum of square errors. Using the SOLVER correlation coefficient the Langmuir model 

gives the overall better correlation coefficients at low chloride concentration. The D-R 

isotherm gives fairly similar correlation coefficients to that of Langmuir plots and gives an 

insight into the thermodynamics of the exchange mechanism on the surface of the resin. For 

the models tested the trend in surface uptake equilibrium is predicted for increasing 

chloride concentration in that the initial suppression in uptake is observed until at the 

highest concentration of chloride where uptake is increased. The monolayer saturation 

capacity, qm (mol·g
-1

), was calculated from the Langmuir equation using Equation (4). 

௅ܭ  ൌ  ௠ܽ௅          (4)ݍ

 

The mean free energy of sorption, E, was calculated using Equation (5). 

ܧ  ൌ ଵඥଶ஻ವ          (5) 

 

It must be noted that the D-R isotherm over-predicts the uranium capacity of the resin 

whereas for the Langmuir model there is not enough higher uranium concentration data 

points to accurately predict the monolayer saturation capacity. With the Langmuir isotherm 

it is apparent that, within error, the maximum capacity does not increase until higher 

chloride concentrations are reached. Whereas for the D-R isotherm model the maximum 



uranium capacity predicted follows the isotherm data trend regarding uptake suppression in 

moderate chloride concentrations to increased uptake at high chloride concentration. 

 

Table 4. Isotherm fitting parameter calculated using various models for uranium extraction 

from 0.15 mol·L
-1

 sulfate at pH 1.7 ± 0.1 as a function of chloride concentration at 21 °C and 

24 hr. contact time., using non-linear least squares fitting using SOLVER. 

Langmuir 

[Cl
-
] mol·L

-1
 0.0 1.0 2.0 4.0 

Constant (0.0 g·L
-1

) (35.45 g·L
-1

) (70.90 g·L
-1

) (141.80 g·L
-1

) 

KL 3.1 ± 0.1 0.081 ± 0.005 0.030 ± 0.001 0.047 ± 0.002 

aL (g·mg
-1

) (x10
-3

) 39.8 ± 0.4 0.8 ± 0.1 0.36 ± 0.06 0.82 ± 0.02 

qm (mg·g
-1

) 78 ± 4 100 ± 20 74 ± 8 57 ± 7 

R
2 

0.9977 0.9987 0.9967 0.9965 

Dubinin-Radushkevich 

[Cl
-
] mol·L

-1 
0.0 1.0 2.0 4.0 

Constant (0.0 g·L
-1

) (35.45 g·L
-1

) (70.90 g·L
-1

) (141.80 g·L
-1

) 

BD (x10
-9

) 5.0 ± 0.4 8.7 ± 0.1 9.5 ± 0.1 9.6 ± 0.6 

qD (mol·g
-1

) (x10
-4

) 22 ± 6 9.1 ± 0.5 4.7± 0.2 7 ± 1 

qD (mg·g
-1

) 530 ± 140 216 ± 12 113 ± 5 174 ± 4 

ED (kJ·mol
-1

) 10.0 ± 0.4 7.57 ± 0.05 7.24 ± 0.04 7.2 ± 0.3 

R
2 

0.9931 0.9969 0.9982 0.9967 

 

The divergence in the model predictions means it is difficult to ascertain whether the change 

in isotherm behaviour with increasing chloride in solution is dominated by a reduced 

number of sites for uranium uptake due to chloride competition or to a change in uranium 

speciation. An ED value less than 8 kJmol
-1 

is an indication of a physisorption uptake 



mechanism [24] where above this value chemisorption dominates. In Table 4 it would seem 

that at low chloride concentration the uptake is a chemisorption process (ED = 10.0 ± 0.4 

kJ·mol
-1

) which switches to a physisorption process with the addition of chloride into the 

system with ED values of 7.57 ± 0.05, 7.24 ± 0.04, and 7.2 ± 0.3 kJ·mol
-1

 respectively. 

 

3.4 Fitting isotherm data to an equilibrium model. 

The uranium loading isotherms fitted with an equilibrium uptake model are given in Figure 6 

with resultant R
2
 values of 0.9979, 0.9976, 0.9967 and 0.9947 for 0, 1.0, 2.0, and 4.0 M NaCl 

respectively. It must be noted that in this model chelation of uranium by the M4195 

bispicolylamine is not considered and an anion exchange model utilised.  

 

 

Figure 6. Uranium loading isotherms from 0.15 mol·L
-1

 sulfate at pH 1.7 ± 0.1 as a function of 

chloride concentration at 21 °C and 24 hr. contact time.  = 0.0 mol·L
-1

 Cl
-
, pH 1.87,  = 1.0 

mol·L
-1

 Cl
-
, pH 1.83,  = 2.0 mol·L

-1
 Cl

-
, pH 1.74,  = 4.0 mol·L

-1
 Cl

-
, pH 1.61. Model fitting is 

depicted by the solid black lines. 
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This is due to the observed suppression of U(VI) uptake with increasing chloride (implying 

anionic competition) and the that fact that complexes of uranium with pyridylamine 

functionalities are unfavourable or weak in aqueous and organic solutions [31, 32]. In the 

model it is assumed, based on the most dominant species determined by potentiometry, at 

pH 1.8 that the extracting M4195 functional group is doubly protonated and associated with 

two bi-sulphate moieties. One Uranium complex (UO2Lx
2-

) in solution exchanges with two bi-

sulphates in the following mechanism. 

 ܷܱଶሺܺሻ௡ሺܻሻ௠ଶିሺ௔௤ሻ ൅ ܵܪଶሺܪܮ ସܱሻଶതതതതതതതതതതതതതതതത ֎ ଶܷܱଶሺܺሻ௡ሺܻሻ௠തതതതതതതതതതതതതതതതതതതതതതതܪܮ ൅ ܵܪʹ ସܱିሺ௔௤ሻ 

 

The isotherm was fit to the following expression; 

 

ݕ ൌ ௄೐ೣᇲ ௫ௌଵା௄೐ೣᇲ ௫          (6) 

Where; 

 

Ԣ௘௫ܭ ൌ ௄೐ೣభబమబቀଵାఉభబమబൣௌைరమష൧మቁା௄೐ೣభబభమ൫ଵାఉభబభమൣௌைరమష൧ሾ஼௟ሿమ൯ା௄೐ೣభబబర൫ଵାఉభబబరሾ஼௟ሿర൯ሾுௌைరషሿమ  (7) 

The uranium on the resin surface is given by y, x is uranium in solution and S is the total resin 

functionality available as ܪܮଶሺܵܪ ସܱሻଶ. The full derivation of this model is given in the 

supplementary information. It must be noted that this model is an approximation as there 

are a number of other potential species in solution that produce singular charged species, 

which may also compete for ion exchange sites on the resin. The stability constants used to 

model the uptake of uranium are given in Table 5 along with the ion exchange equilibrium 



ǀĂůƵĞƐ͘ LŽŐ ɴ ǀĂůƵĞƐ ĂǀĂŝůĂďůĞ ĨŽƌ ƵƌĂŶǇů ƐƵůĨĂƚĞ ĂŶĚ ĐŚůŽƌŝĚĞ ĐŽŵƉůĞǆĞƐ ǁĞƌĞ ƚĂŬĞŶ ĨƌŽŵ ƚŚĞ 

NIST database as a function of ionic strength [32]; others were fit using SOLVER by fitting 

Equation 7 to the isotherm data. 

 

Table 5. Solution stability constants and ion exchange equilibrium constants used in fitting 

uranium uptake isotherm behaviour. 

[NaCl] ůŽŐ K͛ex S 

Species 

 ܷܱଶሺܵ ସܱሻଶଶି
 ܷܱଶሺܵ ସܱሻሺ݈ܥሻଶଶି

 ܷܱଶሺ݈ܥሻସଶି
 

MHL 1020 1012 1004 

0.0 3.977 3.01E-04 

LŽŐ ɴ 2.539 N/A N/A 

Log Kex 0.3434 N/A N/A 

1.0 2.447 2.88E-04 

LŽŐ ɴ 2.034 -0.3979 N/C 

Log Kex -1.416 -1.513 N/C 

2.0 2.201 1.84E-04 

LŽŐ ɴ 1.556 -1.003 -3.3045 

Log Kex -2.502 -4.699 -4.5227 

4.0 2.329 2.17E-04 

LŽŐ ɴ 1.556 -0.895 -2.7941 

Log Kex -2.502 -3.584 -3.2019 

 

4 Discussion 

4.1 Determination of acid dissociation constants 

The speciation of Dowex M4195 at 1.0 M NaCl ionic strength as a function of pH (0.002 M 

BPA functionality present) is shown in Figure 8. The acid dissociation constants for Dowex 

M4195 presented in Table 2 give a pK2 that is comparable with values presented previously 

in the literature of 2.2 and 2.7 in chloride and sulfate media respectively [15].  
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Figure 8. Speciation of M4195 as a function of pH with functionality set at 0.002 M and ionic 

strength 1.0 M NaCl. Speciation designated as follows;  = H3L
3+

,  = H2L
2+

,  = HL
+
,  = 

HL2
+
,  = Lfree, where L = BPA 

 

It is not possible to measure the most acidic dissociation constant pK1 using the 

experimental procedure outlined in section 2.2 but is predicted to be around 0.5 and 1.57 in 

chloride and sulfate media respectively [15]. Both of these acidic pKa values are associated 

with the protonation of the pyridyl nitrogens on the BPA functional group. 

The most basic acid dissociation constant for the BPA functional group (pK1) on the M4195 

resin is associated with the pronation of the aliphatic nitrogen in the structure. The 

measured value of 4.13 ± 0.04 using a potentiometric titration methodology is more basic 

than previous values cited in the literature of 3.4 and 3.5 in chloride and sulfate media, 

respectively, at 0.1 M ionic strength [15] and 3.5 at 1.0 M NaCl determined by equilibration 

studies [14]. The results presented at 1.0 M ionic strength in the literature are from 



equilibration studies and are taken from pH50 values and as a result is a combined pH effect 

rather than interpolated behaviour attributed to specific BPA functionality. The existence of 

a HL2 species where a proton is shared between two BPA functionalities has not been seen 

before for Dowex M4195 although this type of behaviour determined by titration has been 

seen for the aminophosphonic acid groups on Purolite S940 [25]. The sharing of protons 

between separate heterocyclic nitrogen groups is evidenced very well in the conformational 

changes of (5,6)-CHIRAGEN(0), which contains two separate (5,6)-pinene-bipyridine 

functionalities [33]. What can be seen from the speciation plot is that above pH 4.6 

approximately 50% of the functionality or greater is present as the fully deprotonated 

ligand. This means that only very benign conditions are required to induce free amine 

functionality. This means that species that interact with the surface of the resin through a 

charged pairing interaction, rather than chelation, can be readily eluted from the resin. 

 

4.2 Distribution studies as a function of acid and anion concentration 

4.2.1 Effect of acid and anion concentration on U(VI) uptake 

The results presented in Figure 3 show uranium uptake increases with decreasing acidity in 

pure sulfuric acid media with 100 % extraction occurring Ăƚ ƉH ш ϭ͘ “ŝŵŝůĂr behaviour has 

been observed in a previous study where the extraction constant was observed to increase 

from pH 0.4 to a maximum at pH 1.4 [34]. The decreased extraction of uranium below pH 1 

is likely due to competition of the HSO4
-
 ion in an anion exchange extraction mechanism. The 

speciation of UO2
2+

 in sulfuric acid media has been shown to exist as neutral UO2SO4 and 

anionic species, UO2(SO4)2
2-

 and UO2(SO4)3
4-

 under different conditions [35, 36]. There is 

disagreement in the literature over the dominant U(VI) speciation in acidic sulfate solutions, 

with a number of studies concluding the UO2(SO4)3
4-

 anion is dominant [36-39]. Various 

other spectroscopic and density function theory (DFT) studies, however, find that U(VI) 

speciation under these solution conditions is dominated by the neutral ion UO2(H2O)3(SO4) 



and the anion UO2(H2O)(SO4)2
2-

 [40-42] and indeed, that in solution 5-fold coordination in 

the UO2
2+

 equatorial plane is preferred [40]. Using stability constants available in the 

literature [32] for the experimental conditions outlined in Figure 4, at low sulfate 

concentration and at pH 1.47 the predominant species in solution is the neutral UO2(SO4). At 

around 0.5 mol L
-1

 of sulfate in solution the ratio of UO2(SO4) is equal to UO2(SO4)2
2-

 and 

above this the dominant species in solution is UO2(SO4)2
2-

. Under experimental conditions 

UO2(SO4)3
4-

 is never present above 2% of the total U concentration. It can be surmised that 

under the experimental conditions, without the presence of chloride, that the dominant ion 

exchange mechanism in sulfuric acid/sulfate media on Dowex M4195 is as follows; 

 ܷܱଶሺܪଶܱሻሺܵ ସܱሻଶଶିሺ௔௤ሻ ൅ ܮଶܪ ή ሺܵܪ ସܱሻଶതതതതതതതതതതതതതതതതതത ֖ ܮଶܪ ή ሺܷܱଶሺܵ ସܱሻଶതതതതതതതതതതതതതതതതതതതതതതതሻ ൅ ܵܪʹ ସܱିሺ௔௤ሻ ൅ ଶܪ  ܱሺ௟ሻ  

 

In acidic chloride media, where 0 < [Cl
-
] < 3 M as for this study, the U(VI) speciation has been 

shown using X-ray absorption spectroscopy (XAS) to be dominated by the UO2(H2O)5
2+

 cation 

with a contribution from UO2(H2O)4Cl
+
 cation [42, 43]. Using X-ray absorption spectroscopy, 

Allen et al. [42] showed that the speciation of U(VI) on the surface of a strong base resin 

(UO2Cl4
2-

) differed from that present in the feed solution (UO2(H2O)Cl4
2-

). Although their 

experiment was conducted under much higher chloride concentrations (10 M Cl
-
) than our 

study (<2 M Cl
-
), it is evident that there can be a change in speciation of U(VI) on uptake by 

the resin, and this can involve a reduction in coordination number in the UO2
2+

 equatorial 

plane, likely through a de-watering process. 

To our knowledge there are no studies concerning U(VI) speciation in mixed sulfate-chloride 

media. As such, it could be surmised that under the experimental conditions at high chloride 

concentrations that the dominant ion exchange mechanism in saline sulfuric acid media on 

Dowex M4195 follows; 

 



ܷܱଶሺܪଶܱሻସሺ݈ܥሻାሺ௔௤ሻ ൅ ሺ௔௤ሻି݈ܥ͵ ൅ ܮଶܪ ή ሺܵܪ ସܱሻଶതതതതതതതതതതതതതതതതതത ֖ ܮଶܪ ή ሺܷܱଶሺ݈ܥሻସതതതതതതതതതതതതതതതതതതതതതሻ ൅ Ͷܪଶܱ ሺ௟ሻ ൅ʹܵܪ ସܱିሺ௔௤ሻ  

 

We propose differing extracted uranium speciation at low and high chloride concentrations 

to account for the extraction behaviour detailed in Figure 5. The initial reduction in uranium 

extraction as chloride concentration increases, followed by an increase in uranium 

extraction as chloride increases further, implies that two different uranium species with 

different affinities for the resin as compared to the chloride ion, are extracted across the 

salinity range investigated here. 

What is not clear from our results is whether at initially low chloride concentrations the 

suppression of uranium uptake is due to competition between Cl
-
 and UO2(H2O)(SO4)2

2-
 for 

the ion exchange sites, or changing uranium speciation in solution to a uranium species with 

a lower affinity for the ion exchange site. The reduction of U(VI) extraction from 100% to 

40% as solution chloride concentration increases to ~70 g L
-1

 and then subsequent increase 

in extraction to 65% as chloride concentrations approach 100 g L
-1

  would imply there is a 

change to the dominant U(VI) speciation in solution and hence a change in the uranium 

species extracted by the resin. With the aim of fully understanding the extraction of U(VI) 

under increasing chloride conditions we have conducted a full XAS study of U(VI) solution 

and resin speciation, on a WB resin, which will be the subject of a forthcoming publication 

along with uranium XAS speciation on a variety of chelating resins used in hydrometallurgy 

under sulfuric acid and acidic saline extraction conditions. 

 

4.2.2 Effect of acid and anion concentration on impurity uptake 

The pH50 values for the percentage extraction of copper, iron (III), nickel, thorium and 

uranium (IV) from sulfate media of varying acidity are presented in Table 3. The trend of 

copper, cadmium, nickel, zinc, loading has been previously studied from [H
+
] of 1 x 10

-6
 to 



0.1 M [44, 45]. The general trend of nickel loading increasing from 0.1 M [H
+
] to 0.01 M [H

+
] 

agrees with the increase in percentage extraction observed in the present study, where 

nickel is extracted at 88 % and 100 % respectively. Copper loading was observed to increase 

over the range studied, 0.1 M [H
+
] ʹ 1 x 10

-5
 M [H

+
] [41] in contrast to the 100 % extraction 

for the range 0.1 M [H
+
] to 0.01 M [H

+
] achieved in this study. This difference was attributed 

to the difference of the initial chloride concentration feed to the systems, which is 0.12 

mmol g
-1

 in the present study opposed to 1.2 mmol g
-1

, in the literature study, which could 

compete for the ion exchange sites on the resin [45]. The extraction trends as a function of 

sulfate concentration are presented in Figure 4. Copper and nickel show quantitative 

extraction across all sulfate concentrations which is evidence that the mechanism is not 

anion exchange, rather it is chelating, as supported by conclusions by Wolowicz and Hubicki 

[46]. 

The behaviour of iron uptake, as shown in Figure 3, shows that ferric iron is increasingly 

taken up with decreasing acidity on Dowex M4195. However, in a previous study, when the 

resin was loaded from a mixed solution where the molar concentration of metals in solution 

was greater than the capacity of the resin available, ferric iron uptake was suppressed to less 

than 20 % extraction at acidities of 0.1 and 0.01 M [H
+
] and decreased even further with 

decreasing acidity, compared to the 32 and 84 % extraction for this study respectively [45]. 

These results show that although ferric iron was present at almost 30 times the molar 

concentration of copper, the resin has a much higher affinity for copper over ferric iron. This 

ŝƐ ĐŽŶĨŝƌŵĞĚ ŝŶ GƌŝŶƐƚĞĂĚ͛Ɛ ƐƚƵĚǇ ǁŚĞƌĞ Ăƚ ƐŝŵŝůĂƌ ƉH͕ ƚŚĞ ĂĚƐŽƌƉƚŝŽŶ ĐŽŶƐƚĂŶƚ ĨŽƌ ĐŽƉƉĞƌ ŝƐ ϳ 

times greater than that of ferric iron [34]. This is consistent with copper being extracted via a 

chelation mechanism, and iron by an anion exchange mechanism. Using stability constants 

available in the literature the most dominant species at low acidity is Fe(SO4)2
-
 as well as a 

few hydrolysed sulfato species [32]. At high acidity the dominant species in solution is most 

probably Fe(HSO4)(SO4), a charge neutral complex. However it should be noted that in the 



speciation calculations in this study ƚŚĞ ůŽŐ ɴ121 was predicted to be 6.84, which is somewhat 

lower than the 8.10 from another recent study [47]. Ferric iron extraction increases 

marginally with increasing sulfate concentration. This is predominantly due to there being 

nearly equal concentrations of charge neutral Fe(HSO4)(SO4) in solution with Fe(SO4)2
-
 

(46.7%:48.9% from speciation calculations) with approximately 4.4% being Fe(SO4)
+
 in 

solution. The increase in extraction trend could be predominantly due to activity effects. The 

extraction behaviour for Fe
3+

 also correlates with the amount of HL
+
 present on the surface 

of the resin implying a Fe sulfato anion with a weak affinity for the surface is present in 

acidic sulfate solutions. Speciation studies indicate that this is likely to be Fe(SO4)2
-
 [48]; 

ሺܵ݁ܨ  ସܱሻଶିሺ௔௤ሻ ൅ ܮܪ ή ሺܵܪ ସܱሻതതതതതതതതതതതതതതതത ֖ ܮܪ ή ሺ݁ܨሺܵ ସܱሻଶതതതതതതതതതതതതതതതതതതതሻ ൅ ܵܪ ସܱିሺ௔௤ሻ 

 

Iron uptake by the resin increases with increasing chloride concentration, suggesting that a 

ferric chloride anion has a strong affinity for the surface; 

ሻସିሺ௔௤ሻ݈ܥሺ݁ܨ  ൅ ܮܪ ή ሺܵܪ ସܱሻതതതതതതതതതതതതതതതത ֖ ܮܪ ή ሺ݁ܨሺ݈ܥሻସതതതതതതതതതതതതതതതതതሻ ൅ ܵܪ ସܱିሺ௔௤ሻ 

 

Aluminium extraction was found to be low over all pHs tested and similar results are 

reflected in other studies [45]. Thorium uptake increases with decreasing acidity, yet does 

not reach 100 % extraction at any pH examined and also decreases with increasing sulfate 

concentration. Thorium can exist as cationic ThSO4
2+

, neutral Th(SO4)2 and anionic Th(SO4)3
2-

 

and Th(SO4)4
4-

 sulfato species in solution [49]. Using stability constants from the literature 

[32, 41], the predominant species for thorium in solution is both the Th(SO4)2 neutral 

complex and Th(SO4)3
2-

. With increasing pH and sulfate in solution the predominant thorium 

species becomes the tris-sulfato anion but HSO4
-
 effectively out-competes the complex for 

surface sites on the resin. 



Under increasing chloride conditions Th extraction somewhat follows the trend of U in that 

extraction initially decreases (in the case of Th from 40% to 10% as chloride increases from 0 

ʹ 20 g/L), again implying direct competition between a Th sulfato anionic species and Cl
-
 in 

solution. Th differs from U however in that the extraction remains low across the chloride 

range of this experiment, implying that Th does not form an anionic species with greater 

affinity for the surface than the chloride ion. Increasing the chloride concentration of feed 

solutions to >20 g/L may therefore be a useful way of eluting Th from U when extracted 

from sulfuric acid media. 

 

4.3 Isotherm behaviour under acidic saline conditions 

It is clear from comparing the sorption/retention capacities of Dowex M4195 with published 

values for other solid phase extractants (SPE) available in the literature that Dowex M4195 

out performs the majority. For example, the retention capacity calculated from the Langmuir 

constant for uranium on Dowex M4195 is 78 ± 4 mg g
-1

, which is significantly higher than 

other SPE materials such as Amberlite XAD-4 functionalized with succinic acid (12.33 ± 0.02 

mg g
-1

), bicine (0.90 ± 0.01 mg g
-1

), quinolone-8-ol (2.74 ± 0.02 mg g
-1

) and o-vanilline 

semicarbazone (2.89 ± 0.02 mg g
-1

) [50-53]. 

When comparing the sorption/retention capacities with ion exchange materials Dowex 

M4195 is better than EDTMP functionalised chelating resin (41.76 mg g
-1

 under optimum 

conditions) [54] and Amberlite IRA-910 (64.26 mg g
-1

) [55], comparable with a polyester 

resin functionalised with acrylic acid (80.93 mg g
-1

) [56] and performs less well when 

compared with strong base resins Amberlite IRA-910U (108 mg g
-1

) [57]. 

Loading isotherm data for Dowex M4195 was converted from mols U g
-1

 resin to g U3O8 mL
-1

 

wet settled resin and Langmuir fitting carried out. This data was used for comparison with 

previous literature data [50, 51] at a resin loading from an aqueous barren concentration of 

150 mg L
-1

 U3O8 as a function of chloride concentration (g·L
-1

) in Figure 9. 
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Figure 9. Predicted loading of various resins using Langmuir model parameters at a barren 

concentration of 150 mg·L
-1

 U3O8 lines fitted by best fit to guide the eye only.  = polyamine 

WB (PA) resin;  = Dowex M4195;  = WB tertiary amine (TA) resin;  = SB quaternary 

amine (QA) resin 

 

When comparing a polyamine (PA), a tertiary amine (TA) and a quaternary amine (QA) with 

Dowex M4195, using a general line of best fit, at concentrations < 5 g L
-1

 and > 2 g L
-1

 the 

assumption can be made that; 

 

TA > M4195 > QA > PA 

 

At approximately 25 g L
-1

 chloride it is possible to assume that; 

 



PA > M4195 > TA > QA 

 

There is a limit to the validity of the data to make these assumptions but what is clear is that 

M4195 performs comparably with the polyamine resin at high concentrations of chloride. 

The advantage to the comparison with the polyamine resin (in this case most probably 

Purolite S984) is that M4195 does not suffer from the same oxidative degradation problems 

over time [48]. This makes the Dowex M4195 resin a viable option for use at higher salinities 

when compared with other amine based resins. It is clear that Dowex M4195 does not 

outperform classic strong and weak base resins in sulfuric acid media with chloride 

concentrations below 20 g L
-1

 [50-52, 57-59]. 

TŽ ƚŚĞ ĂƵƚŚŽƌƐ͛ ŬŶŽǁůĞĚŐĞ͕ ƚŚĞ ƵƐĞ ŽĨ ŵĂƐƐ ƚƌĂŶƐĨĞƌ ĂŶĚ ƐŽůƵƚŝŽŶ ĞƋƵŝůŝďƌŝƵŵ ƚŽ ŵŽĚĞů 

uptake of uranium to M4195 is a novel approach, and thus provides insights into the 

uranium extraction process not seen in other studies. The overall stability constants found 

for the uranium sulfato species are comparable to those available in the literature [32] at 0-2 

M ionic strength conditions, and thus we have confidence in the application of this novel 

approach to this system. At the higher chloride conditions, however, there is lower 

confidence in the output of the model as high order stability constants for chloride 

complexes have not been determined in solution, and indeed, there are only a handful of 

spectroscopic studies addressing uranium speciation in high ionic strength chloride media 

[42, 43].  

 

The modelling is further complicated by the presence of both sulfate and chloride ions in the 

ĂĐŝĚŝĐ ŵĞĚŝĂ͘ TŽ ƚŚĞ ĂƵƚŚŽƌƐ͛ ŬŶŽǁůĞĚŐĞ ƚŚĞƌĞ ŚĂǀĞ ďĞĞŶ ŶŽ ƐƚƵĚŝĞƐ ĂĚĚƌĞƐƐŝŶŐ ƵƌĂŶŝƵŵ 

speciation in mixed sulfate-chloride media. Stability constants for low chloride ionic strength 

would suggest that uranium sulfato species are more likely, however, as mentioned above, 

there is a lack of thermodynamic data for uranium in high chloride systems, and as such it is 



difficult to predict whether uranium chloro complexes will dominate in high chloride systems 

in which sulfate is present. 

The final complicating factor is that the speciation of uranium on the resin surface may not 

reflect the dominant solution speciation. Work by Allen et al. [42] showed that showed that 

the (UO2(H2O)Cl4
2-

) complexes in the feed solution undergoes a reorganisation at the resin 

surface through a dewatering process, and (UO2Cl4
2-

) is adsorbed by the resin. It is therefore 

difficult to predict the uranium species taken up by the resin, even if the solution speciation 

can be predicted from stability constants.  

Given these complexities, it is important to remember that the resultant model fits have a 

large degree of uncertainty built into them. This points to the need for a targeted 

spectroscopic study into both the solution speciation of uranium in mixed sulfate-chloride 

media, and the resin speciation of the uranium extracted from the mixed media. This would 

allow much tighter constraints to be placed on the model, increasing the confidence, 

particularly for the higher chloride conditions. An X-ray absorption spectroscopy study of 

this kind is currently underway by this team. 

 

 

5 Conclusions 

Most commercial weak-base resins have a pKa (defined as the pH value at which 50 per cent 

of the functional groups of the resin are protonated) in the range 6 to 8. This study shows 

that Dowex M4195, taking into account the most basic pKas in Figure 8, has a pKa in the 

range of 4.0-4.5. Although this almost weak acid characteristic pKa will not make this resin 

amenable to alkaline extraction processes but will make the resin more easily eluted of ions 

taken up through anion exchange, and less problematic in resin regeneration after silica 

fouling [5-8] 



Under sulfate conditions with little to no chloride present the most probable mechanism for 

the extraction of uranium by Dowex M4195 in solution is as follows; 

 ܷܱଶሺܵ ସܱሻଶଶି ൅ ଶܪܮ ή ሺܵܪ ସܱሻଶതതതതതതതതതതതതതതതതതത ֎ ଶܪܮ ή ܷܱଶሺܵ ସܱሻଶതതതതതതതതതതതതതതതതതതതതത ൅ ܵܪ ʹ ସܱି 

 

Where L is the bispicolylamine functionality and the straight line accent denotes extraction 

onto the surface of the resin. This mechanism would account for both the suppression of 

uranium uptake as a function of both pH and sulfate concentration under the conditions 

tested. 

The extraction mechanism of uranium from mixed chloride-sulfate media is not 

straightforward and cannot be fully explained by chloride anion competition. Of particular 

interest is the initial reduction in uranium extraction as chloride increases, and then the 

subsequent increase in uranium extraction as chloride continues to increase. This may 

suggest a change in uranium speciation taken up by the resin, from a sulfato species that is 

outcompeted by chloride ion uptake, to a chloro species that outcompetes chloride ion 

uptake. A study into this specific behaviour is underway by this group. 

It is clear that Dowex M4195 has slightly better loading behaviour in the mixed media than 

conventional strong base type I and weak base resins. However, it should be noted that the 

loadings are still low, and are likely to be below those required of the uranium processing 

industry for cost effective resource recovery. This study therefore suggests that for uranium 

processing streams incorporating seawater or bore water rather than fresh water Dowex 

M4195 represents a better option than currently available ion exchange technologies, but 

still falls short of the necessary performance criteria of >95 % extraction. 

A mass transfer and equilibrium solution modelling approach was able to account for the 

uranium uptake from mixed sulfate-chloride media across the salinity range tested, however 

it should be noted that due to a lack of thermodynamic date for uranium in strongly saline 



solutions, and the uncertainty surrounding uranium speciation in mixed sulfate-chloride 

media, there is reduced confidence in the model output as chloride concentration increases.  

It can be inferred from the model that to increase the extraction of uranium, when moving 

to higher NaCl concentrations, a strong chelating effect would be a preferred interaction and 

at lower concentrations a large number of polyamine sites would benefit. Both of these 

aspects are currently being explored. 

Thorium extraction behaviour on M4195 is interesting and warrants further investigation. 

Results indicate that under high chloride conditions in a mixed media solution, U(VI) can be 

readily separated from Th(IV) and could be beneficial in the partitioning of waste generated 

from mining and mineral processing.  

Most evident from the data is that Dowex M4195 is more suitable for the extraction of 

͞ƐŽĨƚĞƌ͟ ƚƌĂŶƐŝƚŝŽŶ metals such as Cu and Zn as it is clearly a strong chelate for these types of 

metal ions, and represents an efficient option for removing these contaminants from a U(VI) 

stream. 
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Appendix ʹ Supplementary material 

 

Isotherm Derivation 

Assume amine functional group is protonated and each N is associated with a bis-sulphate 

moiety. One Uranium complex (UO2Lx
2-

) exchanges with 2 bis-sulphates in the following 

mechanism.  ܷܱଶሺܺሻ௡ሺܻሻ௠ଶିሺ௔௤ሻ ൅ ܵܪଶሺܪܮ ସܱሻଶതതതതതതതതതതതതതതതത ֎ ଶܷܱଶሺܺሻ௡ሺܻሻ௠തതതതതതതതതതതതതതതതതതതതതതതܪܮ ൅ ܵܪʹ ସܱିሺ௔௤ሻ 

The formation of the extracted species in solution is as follows; 

ܷܱଶଶା ൅ ʹܵ ସܱଶି ֖ ܷܱଶሺܵ ସܱሻଶଶି
ଵ଴ଶ଴ߚ  ൌ ሾ௎ைమሺௌைరሻమమషሿሾ௎ைమమశሿሾௌைరమషሿమ 

ܷܱଶଶା ൅ ܵ ସܱଶି ൅ ି݈ܥʹ ֖ ܷܱଶሺܵ ସܱሻሺ݈ܥሻଶଶି
ଵ଴ଵଶߚ  ൌ ሾ௎ைమሺௌைሻሺ஼௟ሻమమషሿሾ௎ைమమశሿሾௌைరమషሿሾ஼௟ሿమ 

ܷܱଶଶା ൅ Ͷି݈ܥ ֖ ܷܱଶሺ݈ܥሻସ ߚଵ଴଴ସ ൌ ሾ௎ைమሺ஼௟ሻరሿሾ௎ைమమశሿሾ஼௟షሿర 

Where the extraction of these species follows the reaction equilibrium ሾܴ ଶܰܪଶሺܵܪ ସܱሻଶሿ ൅ ሾܷܱଶሺܵ ସܱሻଶଶିሿ ֖ ሾܴ ଶܰܪଶሺܷܱଶሺܵ ସܱሻሿ ൅ ʹሾܱܵܪସି ሿ 
௘௫భబమబܭ ൌ ሾܴ ଶܰܪଶሺܷܱଶሺܵ ସܱሻሿሾܵܪ ସܱି ሿଶሾܴ ଶܰܪଶሺܵܪ ସܱሻଶሿሾܷܱଶሺܵ ସܱሻଶଶିሿ ሾܴ ଶܰܪଶሺܵܪ ସܱሻଶሿ ൅ ሾܷܱଶሺܵ ସܱሻሺ݈ܥሻଶଶିሿ ֖ ሾܴ ଶܰܪଶܷܱଶሺܵ ସܱሻሺ݈ܥሻଶሿ ൅ ʹሾܵܪ ସܱି ሿ 
௘௫భబభమܭ ൌ ሾܴ ଶܰܪଶሺܷܱଶሺܵ ସܱሻሺ݈ܥሻଶሿሾܵܪ ସܱି ሿଶሾܴ ଶܰܪଶሺܵܪ ସܱሻଶሿሾܷܱଶሺܵ ସܱሻሺ݈ܥሻଶଶିሿ ሾܴ ଶܰܪଶሺܵܪ ସܱሻଶሿ ൅ ሾܷܱଶሺ݈ܥሻସଶିሿ ֖ ሾܴ ଶܰܪଶܷܱଶሺ݈ܥሻସሿ ൅ ʹሾܵܪ ସܱି ሿ 
௘௫భబబరܭ ൌ ሾܴ ଶܰܪଶሺܷܱଶሺܵ ସܱሻሺ݈ܥሻଶሿሾܵܪ ସܱି ሿଶሾܴ ଶܰܪଶሺܵܪ ସܱሻଶሿሾܷܱଶሺ݈ܥሻସଶିሿ  

If the overall extraction is the summation of these three processes then; 

ሾܷሿ௥௘௦௜௡ ൌ ሾܷܱଶଶାሿ௔௤ ቆሾܪܮଶሺܵܪ ସܱሻଶሿതതതതതതതതതതതതതതതതതതሾܵܪ ସܱିሿଶ ቇ ൬ܭ௘௫భబమబ ቀͳ ൅ ଵ଴ଶ଴ൣܵߚ ସܱଶି൧ଶቁ൅ ௘௫భబభమ൫ͳܭ ൅ ଵ଴ଵଶൣܵߚ ସܱଶି൧ሾ݈ܥሿଶ൯ ൅ ௘௫భబబరሺͳܭ ൅  ሿସሻ൰݈ܥଵ଴଴ସሾߚ

If we consider that S = initial ligand concentration (resin functionality) then resin 

functionality = S-y. If we assign [U]resin = y, [U]t = x and resin functionality = S-y then and then 

ƌĞƐƚ ŝƐ ŝŶĐŽƌƉŽƌĂƚĞĚ ŝŶƚŽ ƚŚĞ ĞǆƚƌĂĐƚŝŽŶ ĐŽĞĨĨŝĐŝĞŶƚ K͛ex then; ܵݕ െ ݕ ൌ  Ԣ௘௫ܭݔ



ݕ ൌ ሺܵ െ ݕ ሻݕ ൌ ௘௫ᇱܭ ܵݔ െ ௘௫ᇱܭ ݕ ݕݔ ൅ ௘௫ᇱܭ ݕݔ ൌ ௘௫ᇱܭ ሺͳݕ ܵݔ ൅ ௘௫ᇱܭ ሻݔ ൌ ௘௫ᇱܭ  ܵݔ

ݕ ൌ Ԣݔ݁ܭ ͳܵݔ ൅ Ԣݔ݁ܭ  ݔ

Where; ܭԢ௘௫ൌ ௘௫భబమబܭ ቀͳ ൅ ଵ଴ଶ଴ൣܵߚ ସܱଶି൧ଶቁ ൅ ௘௫భబభమ൫ͳܭ ൅ ଵ଴ଵଶൣܵߚ ସܱଶି൧ሾ݈ܥሿଶ൯ ൅ ௘௫భబబరሺͳܭ ൅ ܵܪሿସሻሾ݈ܥଵ଴଴ସሾߚ ସܱିሿଶ  

 


