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Summary.

A prevailing viewpoint in paleoclimate science is that a single paleoclimate record contains insufficient

information to discriminate between typical competing explanatory models. Here we show that by us-

ing SMC2 (sequential Monte Carlo squared) combined with novel Brownian bridge type proposals for

the state trajectories, it is possible to estimate Bayes factors to sufficient accuracy to be able to select

between competing models, even with relatively short time series. The results show that Monte Carlo

methodology and computer power have now advanced to the point where a full Bayesian analysis for

a wide class of conceptual climate models is now possible. The results also highlight a problem with

estimating the chronology of the climate record prior to further statistical analysis, a practice which is

common in paleoclimate science. Using two datasets based on the same record but with different esti-

mated chronologies, results in conflicting conclusions about the importance of the astronomical forcing

on the glacial cycle, and about the internal dynamics generating the glacial cycle, even though the dif-

ference between the two estimated chronologies is consistent with dating uncertainty. This highlights

a need for chronology estimation and other inferential questions to be addressed in a joint statistical

procedure.
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1. Introduction

Throughout the Pleistocene the Earth’s climate has fluctuated between cold periods, in which glaciers

expanded, and warm periods in which the glaciers retreated (Shackleton et al., 1984). The prevailing

theory is that these glacial–interglacial (GIG) cycles are driven, or at least partly controlled, by

variations in the obliquity, precession, and eccentricity of the Earth’s orbit around the Sun, which

affect the distribution of incoming solar radiation (or “insolation”). Obliquity, ε, is the angle between

the equator and the orbital plane, and hence affects the distribution of insolation across seasons and

latitudes. Precession is quantified by the angle about the Sun, ϖ, made by the point of perihelion

(the point of the orbit when the Earth is closest to the Sun) and the vernal point (which marks the

Spring equinox). At perihelion the Earth is anomalously close to the Sun when compared to a circular

orbit, and so variation in precession affects the seasonal distribution of insolation. Eccentricity, e,

measures how much the Earth’s orbit deviates from being circular, and so modulates the effect of

precession.

Milankovitch theory (Milankovitch, 1941) suggests that a positive anomaly of summer insolation

in the Northern Hemisphere prevents the growth of ice sheets, a view supported by experiments with

numerical simulations of the climate system (see Abe-Ouchi et al., 2013, for example). Such positive

anomalies occur when perihelion is near the month of June, and/or when obliquity is anomalously

large. As it is the combination of eccentricity, precession and obliquity that lead to high summer

insolation, there is ambiguity about their respective roles (Crucifix, 2011). Consequently, many

studies have examined the period and magnitude of each in order to see if any one can be considered

to be the primary driver of the glacial-interglacial cycle. Opinion is varied and contradictory, with,

for example, Huybers and Wunsch (2005) arguing for obliquity, Lisiecki (2010) for eccentricity, and

Huybers (2011) for a combination of precession and obliquity. These studies each analysed features of

the insolation signal using significance tests to assess whether the phases of each orbital component are

significantly correlated with estimates of the glacial “termination times” (marking where individual

glacial cycles finish), or whether the insolation signal was anomalously large at termination times.

Differences in the details about how these tests were constructed appear to substantially affect the

conclusions, with different studies finding different orbital characteristics being of primary importance.

It has also been recognised that despite the orbital control, the glacial-interglacial cycle is not

entirely predictable (Imbrie and Imbrie, 1980; Raymo, 1997). This lack of predictability may emerge

from interactions between the astronomical forcing and internal dynamics, in part because the quasi-

periodic nature of the astronomical forcing hinders the robustness of the astronomical control (Cru-

cifix, 2013; Mitsui and Aihara, 2014). An approach to study these effects is to model Earth’s climate

as a dynamical system forced by the variation in the astronomical parameters. To some extent the

mechanical causes of the glacial-interglacial cycle have been investigated with numerical simulations

of the physics of the atmosphere, ocean, ice-sheet (Abe-Ouchi et al., 2013), and carbon cycle (Brovkin
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et al., 2012). The computational cost and number of parameters involved in such studies are often

considerable, and in practice only a handful of simulations over the most recent cycles are performed.

For these reasons, efforts to study changes in the regime and stability of the glacial-interglacial cycle

have focused more on conceptual and phenomenological models, which typically involve just a few

differential equations representing hypothesised relationships between different parts of the climate

system. Atmospheric variability can be represented by stochastic processes, resulting in stochastic

differential equation (SDE) models. Differences in the model structure and model parameters may

yield shifts in the timing of the sequence of ice ages, especially if stochastic fluctuations due to at-

mosphere and ocean dynamics are properly accounted for (Mitsui and Crucifix, 2016), and so the

challenge is to identify both what the appropriate forcing of the system is, and which is the best

mathematical representation of the climate’s internal dynamics.

The task of choosing between models is complicated by the nature of the data available. There are

no reliable direct measurements of either the Earth’s climate or of the extent of the glaciers before

the 19th century. Climate proxy records, such as the ratio of oxygen isotopes 18O and 16O (referred

to as δ18O) measured in the calcite shells of foraminifera preserved in temporally stratified layers on

the ocean floor, are instead used to construct estimates of climate and ice extent (Emiliani, 1955;

Shackleton, 1967). These data are noisy, and contain uncertainties on both the measured climate

proxy, and on the date relating to that measurement. Given this noise level, models representing very

different properties or bifurcation structures may all be found to fit the data reasonably well when

judged by eye (see Crucifix, 2012, for a recent account). As a consequence, a common viewpoint is

that the information contained in a single proxy record is not sufficient to distinguish between the

numerous proposed models (see, e.g., Roe and Allen, 1999).

In this paper we develop a fully Bayesian approach that simultaneously estimates model param-

eters, the relative contribution of each aspect of the orbital forcing, and chooses between models by

estimating Bayes factors. The statistical difficulty in making inferences from partially and noisily

observed trajectories of forced non-linear SDEs lies in the computation of various posterior quanti-

ties. Inference for SDEs is particularly challenging because the transition density, and therefore the

likelihood function, is intractable (meaning it is not available in closed form). A powerful tool for

time-structured problems with intractable likelihoods is the particle filter, and in this paper we employ

the SMC2 (sequential Monte Carlo squared) approach recently introduced by Chopin et al. (2013).

This is a pseudo-marginal algorithm that embeds a particle filter within a sequential Monte Carlo

algorithm to do joint state and parameter estimation. A major advantage of SMC2 over competing

methods, such as particle MCMC (Andrieu et al., 2010), is that it allows for easy estimation of the

model evidence, which we exploit to provide estimates of the Bayes factors. A naive implementation

of SMC2 fails due to extreme particle degeneracy, but we show that by utilizing guided Brownian

bridge type proposals more evenly distributed weights can be maintained. This is computationally
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intensive even for phenomenological models, with the results in Section 4 each requiring 3-4 days

on a single core. However, SMC is well suited to run in parallel. For example, using a Tesla K20

GPU these results can be obtained in 3-4 hours. A surprising result is that even though the Bayes

factors are sensitive to both Monte Carlo error and the choice of prior distributions, the Bayes factors

are sufficiently large, even for short time series of data, that we can still distinguish between the

competing models.

Previous authors have also attempted model selection experiments for the GIG cycle, but with

various limitations compared to our approach. Roe and Allen (1999) compared deterministic models

plus autoregressive process noise using an F-test and found no support for any one model over

any other. Feng and Bailer-Jones (2015) used Bayesian model selection to select between competing

forcing functions over the Pleistocene, concluding that obliquity influences the termination times over

the entire Pleistocene, and that precession also has explanatory power following the mid-Pleistocene

transition. Their approach requires a tractable likelihood function, which heavily restricts the class of

models that can be compared, in particular, ruling out the use of SDE models. As in the previously

mentioned hypothesis tests, they also begin by discarding most of the data and using a summary

consisting of just the termination times (∼ 12 over the past 1 Myr), which is necessary as the low-

order deterministic models used do not fit well to the complete dataset. They also only sample

parameter values from the prior, leading to poor numerical efficiency. Finally, Kwasniok (2013)

compares conceptual models over the last glacial period using the Bayesian information criterion.

The likelihood of each model is estimated using an unscented Kalman filter (UKF) (Wan et al.,

2000). Whilst this approach focussed on a smaller time horizon than our application, it can be

applied using the data and models in this paper. However, the Gaussian approximation used by the

UKF, whilst working well for filtering, is unproven for parameter estimation and model selection, and

the particle filter offers a more natural approach for non-linear dynamical systems.

The approach presented here makes full use of the data rather than just the termination times,

characterises parametric uncertainty rather than using plug-in estimates, and quantifies the evidence

in favour of each model through Bayes factor estimates. We will show that it is possible to jointly

estimate the state trajectory (a three dimensional vector over 800 time points), model parameters (up

to 16 in one of the models), and estimate marginal likelihoods (allowing calculation of Bayes factors)

even using relatively short time series of data, and that there is enough information in the data

to choose between candidate conceptual models, including assessing the importance of the various

orbital characteristics to the glacial–interglacial cycle.

The paper is structured as follows. In Section 2, we describe the data used, and the models of the

astronomical forcing, the Earth’s climate dynamics, and the proxy observations. Section 3 contains

a description of the Bayesian approach, a brief review of the particle-filter, and we introduce our

approach to inference, describing in detail how to avoid particle degeneracy using Brownian bridge
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type proposals. In Section 4 we present a simulation study to assess the performance of the algorithms

on synthetic data, and an analysis of a real δ18O dataset. In Section 5 we offer some thoughts on

the practical implementation of the particle filter methods for such problems, discuss the scientific

conclusions, and suggest some future directions for research.

2. Data and Models

Our approach to understanding the dynamical behaviour of the paleoclimate involves four compo-

nents: data consisting of paleoclimate records; models of the climate; drivers of the climate (such

as CO2 emissions or, more pertinently for paleoclimate, the orbital forcing); and a statistical model

relating the foregoing three components. In this paper we develop the statistical methodology nec-

essary for combining these components, which we hope will allow paleoclimate scientists to study

hypotheses in a statistically rigorous way. That is to say, given some data and a selection of models,

we show how to fit these models, and to assess which model is best supported by the data. Scientific

aspects of the approach can, and we hope will, be improved upon by using different datasets and

richer models.

2.1. Data

The ratio between the oxygen isotopes 18O and 16O, known as δ18O, reflects a combination of ef-

fects associated with changes in ocean temperature and sea-level (Emiliani, 1955; Shackleton, 1967).

Broadly speaking, larger values of δ18O indicate a colder climate with greater ice volume. Time

series of measured δ18O recorded in the calcite shells of foraminifera are used as a proxy record for

temperature and ice-extent, and provide a picture of the Earth’s recent glaciations, particularly when

combined with other information. The data we use are measurements of δ18O from different depths

in sediment cores extracted as part of the Ocean Drilling Programme (ODP). In climatology, a set of

such measurements is known as a “record”, and an average over multiple records is known as a “stack”

(Imbrie et al., 1984). The δ18O in deeper parts of a core correspond to climate conditions further back

in time. Beyond monotonicity, there is unfortunately no simple relationship between core depth and

age. This is because the accumulation of sediment results from a combination of complicated physical

processes, including sedimentation (which occurs at variable rates), erosion, and core compaction. A

model for the relationship between depth and age is known as an “age model”, and application if such

a model to a record is called “dating”. A common strategy in developing an age model is to align

features of records to important events observed in the core, such as magnetic reversals, whose dates

are accurately known from other sources (Shackleton et al., 1990). In Huybers (2007), for instance,

“age-control points” are identified in the core (such as glacial terminations, magnetic reversals, etc),

and then ages for all the measurements are inferred from these control points, while accounting for

compression using an involved heuristic process. Another common approach is to align features of the
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δ18O time series to aspects of the astronomical forcing, a process known as astronomical tuning. For

example, in Lisiecki and Raymo (2005), ice ages are aligned with the predictions of the Imbrie and

Imbrie (1980) model (linear relaxation with different relaxation times for glaciation and deglaciation

forced by summer solstice insolation at 60◦ N).

The result of fitting an age model is a dataset {τm, Ym}Mm=1 in which Ym denotes the measurement

of δ18O at time τm. We use the ODP677 record (Shackleton et al., 1990), shown in Figure 1. The

foraminifera here are of the benthic form, living in the deep ocean and therefore thought to be better

representative of continental ice volume variations (see, though Elderfield et al., 2012). ODP677 has

been dated both as part of an orbitally tuned scheme (Lisiecki and Raymo, 2005), and a non-orbitally

tuned scheme (Huybers, 2007), giving two different dated records. It is widely known that in dating

estimates from age models, the {τm}, are highly uncertain, with accuracy believed to be of the order

of 10 kyr (Huybers, 2007; Lisiecki and Raymo, 2005). Since investigating age models further is beyond

the scope of this paper, here we treat τm as a given, but we discuss this assumption in Section 5.

We will refer to the data from the orbitally tuned scheme as ODP677-f, where the ‘f’ denotes forced,

and from the non-orbitally tuned scheme as ODP677-u, where the ‘u’ denotes unforced. We focus on

the last 780 kyr of this record (the last magnetic reversal occurred 780 kya, allowing us to date the

starting point accurately), which contains 363 observations, and use it to highlight issues surrounding

double counting of the astronomical forcing.

Figure 1 about here.

2.2. The astronomical forcing

The amount of insolation hitting the top of the atmosphere at any point on Earth is a function of

the hour angle (time in the day), the latitude, and the true solar longitude (i.e., time in the year).

It also depends on the obliquity, precession and eccentricity of the Earth’s orbit around the Sun,

which vary over much longer time scales. Obliquity refers to the angle between the equator and the

orbital plane, and controls the seasonal contrast. Precession of the point of perihelion (the point

of the orbit when the Earth is closest to the Sun) with respect to the vernal point marking the

spring equinox is quantified by the angle ϖ made by the two points about the sun. It determines

when in the seasonal cycle the Earth is closest to the Sun, and causes the positive/negative anomaly

insolation patterns sequentially across the different months of the year, thus controlling the length of

the seasons. Eccentricity, e, measures how much the Earth’s orbit deviates from being circular and

modulates the effect of precession. Paleoclimatologists often transform eccentricity and precession,

and refer instead to the climatic precession, e sinϖ, which is proxy for the effect of precession on the

summer insolation in the Northern Hemisphere. By complementing climatic precession with e cosϖ

(proxy for spring insolation, termed here coprecession), insolation may effectively be computed at any

time in the year and for any latitude (Berger, 1978).
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For phenomenological models, which are not typically spatially resolved, the practice is to use some

subset summary of the seasonal and spatial distribution of insolation. For example, Milankovitch

theory (Milankovitch 1941; translation in Milankovitch 1998) asserts that the growth and shrinkage

of ice sheets is controlled by summer insolation, typically at a reference latitude of 60◦ N, a quantity

Milankovitch termed the caloric summer insolation. Other common summaries include the daily-mean

insolation at summer solstice at 60◦ N (Imbrie and Imbrie, 1980), or at different times in the year

(Saltzman and Maasch, 1990). These summaries may all be approximated as a linear combination of

astronomical quantities, giving a forcing function, denoted F (t;γγγ), as follows:

F (t;γγγ) = γPΠP (t) + γCΠC(t) + γEE(t), (1)

where ΠP (t), ΠC(t), and E(t), are the normalised climatic precession (e sinϖ), coprecession (e cosϖ),

and obliquity respectively. The parameter γγγ = (γP , γC , γE)
⊤ controls the linear combination. An

algorithm to compute these quantities with sufficient accuracy for the late Pleistocene is provided in

Berger (1978). More accurate, time indexed data are provided by Laskar et al. (2004) but the gain

in accuracy is not critical in this context.

The geometry of ice sheets and snow line suggest that a positive insolation anomaly may lead

to a greater ice volume change, than a negative one (Ruddiman, 2006). To account for this, some

authors truncate the astronomical forcing to down-weight negative anomalies. Here, we introduce

the truncation operator

f(x) =





x+
√
4a2 + x2 − 2a if x ≤ 0

x otherwise,

where a ≥ 0 is a constant that controls the minimum value. This function is used is used in model

PP12 defined below (Paillard, 1998; Parrenin and Paillard, 2012).

2.3. Phenomenological models of climate dynamics

We consider three models of the climate dynamics. They were each originally proposed as low-

order ordinary differential equations, with state vector XXX(t) =
(
X(1)(t), ..., X(d)(t)

)⊤
, where d is the

dimension of the model, with the first component X(1) representing global ice volume. The other

components represent quantities such as glaciation state, or CO2 concentration. In order to account

for model errors, we convert the models into stochastic differential equations by the addition of a

Brownian motion WWW (t). Note that alternative stochastic drivers (e.g., jump diffusions) could be

considered, but in the absence of evidence that a more complex driver is required, we use Brownian

motion as it is the simplest choice. These models were chosen as each models the glacial–interglacial

cycle using a qualitatively different dynamical mechanism, as explained further below. For notational

convenience we drop the explicit dependence of XXX and WWW on t.
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Model SM91: (Saltzman and Maasch, 1991)

SM91 models glacial–interglacial cycles as a system of three SDEs,

dX(1) = −
(
X(1) +X(2) + vX(3) + F (γP , γC , γE)

)
dt+ σ1dW(1)

dX(2) =
(
rX(2) − pX(3) − sX2

(2) −X3
(2)

)
dt+ σ2dW(2)

dX(3) = −q
(
X(1) +X(3)

)
dt+ σ3dW(3)

in which variables X(2) and X(3) represent CO2 concentration in the atmosphere and deep-sea ocean

temperature, respectively. The model is an expression of the hypothesis that carbon-cycle effects

are critical for the emergence of glacial cycles. Hence the non-linear terms, which are responsible

for the oscillation, are present in the second equation only. It uses basic knowledge about the tem-

perature sensitivity to CO2 and the astronomical forcing (encoded in the equation for dX(1)), but

uses heuristic relationships for the slow feedback loops between CO2, ocean temperature and ice

growth. Uncertainty about sensitivity to CO2 is implicitly accounted for by the scaling relationship

between the variable X(2) and actual CO2, and the uncertainty about forcing effects is encoded in

prior distributions for γP , γC and γE . Parameter v determines the uncertain relationship between

ice growth and ocean circulation (which control ocean temperature) though we will assume it to be

positive (warming oceans cause ice to melt). The parameters r, p and s in equation dX(1) encode

the hypothesis that ice ages cycles are caused by an internal instability of the ocean-carbon cycle

system (Saltzman, 1988). Parameter q sets the response time scale of ocean temperature. SM91 is

non-dimensional with a reference value of 10 kyr for t.

Model T06: (Tziperman et al., 2006)

T06 is an example of a “hybrid” model coupling X(1), which is governed by a stochastic differential

equation, to a binary variable X(2) indicating whether sea ice extent exceeds some critical threshold.

dX(1) =
((
p0 −KX(1)

) (
1− αX(2)

)
− (s+ F (γP , γC , γE))

)
dt+ σ1dW(1)

X(2) : switches from 0 to 1 when X(1) exceeds some threshold Tu

X(2) : switches from 1 to 0 when X(1) decreases below some threshold Tl

When Tu and Tl are suitably chosen, the resulting dynamics are that of a relaxation oscillation: X(1)

tends either to increase or decrease depending on the state of X(2), and the trend reverses as X(1)

crosses a threshold causing X(2) to switch state. As in SM91, the oscillation is further controlled by

the astronomical forcing, allowing for synchronisation effects (Tziperman et al., 2006). The original

motivation for T06 was to suggest a critical role for Arctic sea-ice cover (Ashkenazy and Tziperman,

2004); a positive sea-ice cover anomaly reduces the amount of snow fall on Northern Hemisphere ice

caps, thereby acting negatively on the growth of ice (hence the −X(2) term in the equation for dX(1)),

and vice-versa. Parameter p0 is the precipitation rate with no sea ice, K is a growth rate constant,
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s is an ablation constant, and α is the relative area of sea ice. Ice volume is expressed in units of

1015m3, K in units of kyr−1, and p0 and s in units of 106m3s−1.

Model PP12: (Parrenin and Paillard, 2012)

PP12 is also a hybrid model, with X(2) now representing a hidden climatic state, that may either be

“glaciation” (0) or “deglaciation” (1).

dX(1) = −(γPΠ
†
P + γCΠ

†
C + γEE − ag + (ag + ad +X(1)/τ)X(2))dt+ σ1dW(1),

X(2) : switches from 0 to 1 when F (κP , κC , κE) is less than some threshold vl

X(2) : switches from 1 to 0 when F (κP , κC , κE) +X(1) is greater than some threshold vu

where Π†
P and Π†

C are transformed precession and coprecession components defined to be

Π†
P = (f(ΠP )− 0.148)⧸0.808

Π†
C = (f(ΠC)− 0.148)⧸0.808.

This discrete distinction of climatic states is given an empirical justification in the data analysis by

Imbrie et al. (2011). During the glaciation phase, ice volume trends upwards and is linearly controlled

by the truncated insolation. The deglaciation phase is simply a relaxation towards low ice volume.

The model assumes that the switch from deglaciation to glaciation is controlled by insolation alone,

whereas the glaciation-deglaciation switch is determined by a condition on glaciation and insolation.

This contrasts with T06, where the state changes are determined only by the system state. Conse-

quently, a constant astronomical forcing cannot induce spontaneous oscillations in PP12. Parameters

ag and ad are growth and ablation constants respectively. Ice volume is expressed as sea-level equiv-

alent in meters, γP , γC , γE , ag, and ad in units of m(kyr)−1, τ in kyr, and κP , κC , κE , vl, and vu in

meters.

A comparison of the ice volume generated from the deterministic version of each model is shown in

Figure 2, using the parameters suggested in the original publications. Each model captures the broad

structure of the glacial-interglacial cycle. These plots are not precise reproductions of the figures in

the original publications, due to differences in the initial conditions and astronomical solutions. Note

that each model was tuned using a different dataset, and so, for example, SM91 has seven cycles in

780 kyr rather than eight.

Figure 2 about here.

2.4. Statistical observation model

The final modelling ingredient is a statistical model relating the state variables in the dynamical

climate models, XXX(t), to the dataset. We assume that the data are of the form {τm, Ym}Mm=1, where
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τm is the estimated age and Ym the measured proxy of the mth data point/slice. We use the model

Ym ∼ N (D +HHH⊤XXXm, σ2
y),

where we define XXXm =XXX(τm). As with the choice of stochastic driver, we have assumed the simplest

observation model, and more complex observation models could be considered. Here, we use HHH =

(C, 0, . . . , 0)⊤, so that Ym is a scaled and shifted version of the value X(1)(τm), the ice volume in

the underlying dynamical model. However, vector observations can be used at no additional cost or

complication to the methodology, allowing observations of other proxies if desired.

2.5. Prior distributions

A Bayesian approach requires specification of prior distributions for the parameters in each of the

models. Milankovitch theory suggests that a positive northern hemisphere insolation anomaly in sum-

mer increases ablation over the ice sheets, giving a negative contribution to the ice volume derivative

(Berger and Loutre, 2004). This requires that γP and γE be positive, and so we use exponential prior

distributions on these parameters to allow the system to be weakly forced. Whether having more

insolation in spring at the expense of autumn should result in a positive or negative contribution

to ice accumulation is undetermined, and so we use a zero-mean Gaussian prior distribution for γC ,

as this is symmetric about zero, which indicates Summer solstice insolation. Beyond these choices,

specifying prior distributions on physical grounds is difficult, as many of the model parameters do

not represent measurable quantities. In general we select moderately informative prior distributions

that discourage non-oscillating regimes, excessively small or large periods, and numerical instabilities.

The complete set of prior distributions for all three models is given in Table 1. Sensitivity to the

choice of prior distributions is investigated in Section 4.

Since we are performing model comparison, we have made the prior distributions as consistent

as possible across models. For instance, since we scale the output from each model, the observation

error variance, σ2
y , is comparable, and so we use the same prior distribution for σ2

y in each model.

Care needs to be taken when selecting prior distributions for the astronomical forcing terms as each

model has a different scale for ice volume. From trial runs the range of X(1) in PP12 is approximately

2.5 times that of T06, and 50 times that of SM91. Additionally, SM91 has a reference value for t of

10 kyr (as opposed to 1 kyr in T06 and PP12), suggesting a ratio of 1:2:5 for the astronomical forcing

parameters between SM91, T06, and PP12 respectively. This relationship is represented in the prior

distributions. Since this ratio is only approximate, we investigate sensitivity to this scaling rule in

Section 4.

Table 1 about here.
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3. Methodology

Our primary aim is model comparison, in particular to answer the question: given a collection

of competing models {Ml}Ll=1, which is best supported by the data? The Bayes factor (BF) for

comparing two models, M1 and M2 say, is the ratio of their evidences

B12 =
π(Y1:M | M1)

π(Y1:M | M2)
,

where Y1:M = (Y1, . . . , YM ) and where π(Y1:M | Ml) is the evidence for model Ml (Jeffreys, 1939;

Kass and Raftery, 1995). The Bayes factor summarises the strength of evidence in the data in support

of one model over another, and is the ratio of the posterior to the prior odds in favour of M1 over

M2. If the prior probabilities for each model are equal, then the Bayes factor is the ratio of the

posterior model probabilities. There are many other approaches to model comparison, many of which

are based on measures of predictive accuracy such as cross-validation (see Vehtari and Ojanen (2012)

and Gelman et al. (2014)). Most of these approaches cannot be used in problems with complex data

dependencies, such as serial correlation. Ando and Tsay (2010) describe an approach that can be

used, but which requires calculation of the Hessian matrix of the log-likelihood. Additionally, many

of these methods require evaluation of quantities which may not be available for complex state space

models. For these reasons, and because our focus is on model comparison rather than on evaluating

predictive accuracy, we prefer to use Bayes factors to perform model comparison.

Secondary aims of our analysis include parameter estimation and filtering, which in this context

are often called calibration and climate reconstruction. Calibration is the process of finding the

posterior distribution of the model parameters π(θθθl | Y1:M ,Ml), where θθθl is the parameter for model

Ml, and filtering is finding the distribution of the state variables π(XXX1:M | Y1:M , θθθl,Ml). These three

problems are of different levels of difficulty. Filtering is the most straightforward, but is not simple as

for non-linear or non-Gaussian models, direct calculation of the filtering distributions is not possible,

and so we must instead rely upon approximations. Calibration requires that we integrate out the

dependence on the state variables XXX1:M ,

π(θθθl | Y1:M ,Ml) =

∫
π(θθθl,XXX1:M | Y1:M ,Ml)dXXX1:M ,

and hence, is considerably more difficult than filtering. Finally, model selection requires integrating

out the dependence on θθθl,

π(Y1:M | Ml) =

∫
π(θθθl | Ml)

∫
π (XXX1:M | θθθl,Ml)π(Y1:M | θθθl,XXX1:M ,Ml)dXXX1:Mdθθθl,

and is thus even more difficult than calibration.

The development of Monte Carlo methodology for solving these three problems for state space

models reflects this hierarchy of difficulty. Particle filter methodology, first proposed in the 1990s

(Gordon et al., 1993), is able to solve the general filtering problem adequately as long as the dimension
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ofXXX1:M is not too large. Whereas the calibration problem has only begun to be satisfactorily answered

more recently, with the development of pseudo-marginal methods such as particle-MCMC (Andrieu

et al., 2010). Calculating the model evidence is, however, still very much an open problem.

Here, we demonstrate how the recently introduced SMC2 algorithm (Chopin et al., 2013) can be

used to estimate model evidences. The approach relies upon the following identities decomposing the

evidence:

π(Y1:M ) = π(Y1)

M∏

m=2

π(Ym | Y1:m−1), (2)

and

π(Ym | Y1:m−1) =

∫
π(Ym | Y1:m−1, θθθ)π(θθθ | Y1:m−1)dθθθ, (3)

where we have dropped the dependence on Ml from the notation. SMC2 can be used to sample from

π(θθθ | Y1:m−1), find unbiased estimates of π(Ym | Y1:m−1, θθθ), and, by plugging these estimates into

Equations (2) and (3), obtain an estimate of the model evidence, from which we can estimate the

Bayes factors.

3.1. Estimating Model Evidence Using SMC2

Sequential Monte Carlo algorithms (SMC) (Del Moral et al., 2006) are population-based sampling

methods that aim to sample from some target distribution, πM , by sampling from a series of interme-

diary distributions, {πm}Mm=1, that are chosen to gradually ‘close-in’ on the target distribution. SMC

uses a weighted collection of particles to approximate each distribution, and sequentially updates the

weights and the particles in such a way that the normalising constant of each distribution can be

estimated. A common choice for the sequence of distributions is to add a single data point at a time,

so that the intermediary distributions are π(θθθ | Y1:m) or π(XXX1:m | Y1:m), for example.

One of the earliest SMC algorithms is the particle filter (PF) (Gordon et al., 1993), which sam-

ples from the sequence of filtering distributions πm(XXX1:m) = π(XXX1:m | Y1:m, θθθ), and is described in

Algorithm 1. The basic idea is that at initialisation, a sample of Nx particles are sampled from some

initial proposal density r1(XXX1 | Y1, θθθ), and given importance weight π(XXX1, Y1 | θθθ)⧸r1(XXX1 | Y1, θθθ).
These particles are then repeatedly resampled using a multinomial scheme, propagated via some ar-

bitrary proposal distribution rm(XXXm |XXX1:m−1, Y1:m, θθθ), and reweighted accordingly, so that for each

successive iteration the particles are a weighted sample of the posterior π(XXX1:m | Y1:m, θθθ). Details of

the resampling and the proposal distributions, rm, are discussed in Section 3.2, and further details

can be found in Doucet and Johansen (2009).

An important aspect of the PF is that an unbiased estimate of the normalising constant π(Y1:m | θθθ)
can be estimated from the unnormalised weights in each iteration of the algorithm, using

π̂(Ym | Y1:m−1, θθθ) =
1

Nx

Nx∑

k=1

ω(k)
m (XXX

(k)
1:m)
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Algorithm 1 Particle filter targeting π (XXX1:M | Y1:M , θθθ).

for k = 1, ..., NX do

Sample XXX
(k)
1 ∼ r1 (XXX1 | Y1, θθθ).

Set the importance weight

ω
(k)
1 =

π
(
XXX

(k)
1 | θθθ

)
π
(
Y1 |XXX(k)

1 , θθθ
)

r1

(
XXX

(k)
1 | Y1, θθθ

) .

end for

Normalise the weights. For k = 1, ..., NX

Ω
(k)
1 =

ω
(k)
1∑NX

i=1 ω
(i)
1

.

for m = 2, ...,M do

for k = 1, ..., NX do

Sample ancestor particle index a
(k)
m−1 according to weights Ω

(1:NX)
m−1 .

Sample XXX
(k)
m ∼ rm

(
XXXm |XXX(a(k)

m−1)
m−1 , Ym, θθθ

)
.

Extend particle trajectory XXX
(k)
1:m =

{
XXX

(a
(k)
m−1)

1:m−1 ,XXX
(k)
m

}
.

Set the importance weight

ω(k)
m =

π

(
XXX

(k)
m |XXX(a(k)

m−1)
m−1 , θθθ

)
π
(
Ym |XXX(k)

m , θθθ
)

rm

(
XXX

(k)
m |XXX(a(k)

m−1)
m−1 , Ym, θθθ

) . (4)

end for

Normalise the weights. For k = 1, ..., NX

Ω(k)
m =

ω
(k)
m

∑NX

i=1 ω
(i)
m

.

end for
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as an approximation to Equation (3), and then plugging these estimates into Equation (2) (Del Moral,

2004)

π̂(Y1:M | θθθ) = π̂(Y1)

M∏

m=2

π̂(Ym | Y1:m−1, θθθ). (5)

In Andrieu and Roberts (2009), it was shown that using these unbiased estimates of the likelihood

in other Monte Carlo algorithms can lead to valid Monte Carlo algorithms (termed pseudo-marginal

algorithms) for performing parameter estimation. For example, PMCMC (Andrieu et al., 2010) uses

the PF within an MCMC algorithm, and SMC2 (Chopin et al., 2013) uses a PF embedded within an

SMC algorithm, both with the aim of finding π(θθθ | Y1:M ). We concentrate on the latter as it allows

for estimation of BFs.

The SMC2 algorithm (Chopin et al., 2013) embeds the particle filter within an SMC algorithm

targeting the sequence of posteriors

π0 = π(θθθ), πm = π(θθθ,XXX1:m | Y1:m),

for m = 1, . . . ,M . This is achieved by initially sampling Nθ parameter particles, {θθθ(n)}Nθ

n=1, from the

prior. To each θθθ(n), we attach a PF of Nx particles, i.e., at iteration m the PF {XXX(k,n)
1:m ,Ω

(k,n)
m }Nx

k=1 is

associated with θθθ(n), where Ω
(k,n)
m are the normalised weights in Algorithm 1. From this PF we can

obtain an unbiased estimate of the marginal likelihood π(Y1:m | θθθ(n)) via Equation (5). To assimilate

the next observation Ym+1, we first extend the PF for the state particles to {XXX(k,n)
1:m+1,Ω

(k,n)
m+1}Nx

k=1, and

then estimate π(Y1:m+1 | θθθ(n)) and so on. Particle degeneracy occurs when the weighted particle

approximation is dominated by just a few particles (i.e., a few have comparatively large weights), and

is monitored by calculating the effective sample size (ESS)

ESS =

(
Nθ∑

i=1

(
W (i)

m

)2
)−1

,

where
{
W

(i)
m

}Nθ

i=1
are the normalised weights in population m. When the ESS falls below some thresh-

old (usually Nθ/2) the particles are resampled to discard low-weight particles. However, resampling

can lead to too few unique particles in the parameter space. Particle diversity is improved by run-

ning a PMCMC algorithm that leaves π(θθθ,XXX1:m | Y1:m) invariant, specifically the particle marginal

Metropolis-Hastings (PMMH) algorithm (Andrieu et al., 2010). The full details of the SMC2 algo-

rithm are presented in Algorithm 2, with theoretical justification in Chopin et al. (2013).

The model evidence π(Y1:M ) can be decomposed according to Equation (2), and in each iteration

of the SMC2 algorithm, the term

π̂(Ym | Ym−1) =

Nθ∑

n=1

W (n)π̂(Ym | Y1:m−1, θθθ
(n))

provides an estimate of π(Ym | Ym−1). An estimate of the model evidence π(Y1:M ) is then obtained

from (2) with π̂(Ym | Y1:m−1) substituted for π(Ym | Y1:m−1).
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Algorithm 2 SMC2 algorithm targeting π (θ,X1:M | Y1:M ).

for n = 1, ..., Nθ do

Sample θθθ(n) from the prior distribution, π (θθθ).

Set the importance weight

W
(n)
0 =

1

Nθ

.

end for

for m = 1, ...,M do

if ESS< Nθ

2 then

for n = 1, ..., Nθ do

Sample θθθ∗(n) and XXX
∗(1:NX ,n)
1:m−1 from θθθ(1:Nθ) and XXX

(1:NX ,1:Nθ)
1:m−1 , according to weights W

(1:Nθ)
m−1 .

Sample θθθ∗∗(n) and XXX
∗∗(1:NX ,n)
1:m−1 from a PMMH algorithm targeting π (θθθ,XXX1:m−1 | Y1:m−1) ini-

tialised with θθθ∗(n) and XXX
∗(1:NX ,n)
1:m−1 .

end for

Set θθθ(1:Nθ) = θθθ∗∗(1:Nθ) and XXX
(1:NX ,1:Nθ)
1:m−1 =XXX

∗∗(1:NX ,1:Nθ)
1:m−1 .

Set the importance weights

W
(n)
m−1 =

1

Nθ

for n = 1, ..., nθ.

end if

for n = 1, ..., Nθ do

Sample XXX
(1:NX ,n)
1:m by performing iteration m of the particle filter, and record estimates of

π̂
(
Ym | Y1:m−1, θθθ

(n)
)
and π̂

(
Y1:m | θθθ(n)

)
.

Set the importance weights

w(n)
m = W

(n)
m−1π̂

(
Ym | Y1:m−1, θθθ

(n)
)
.

end for

Evaluate

π̂ (Ym | Y1:m−1) =

Nθ∑

i=1

w(i)
m

Normalise the weights

W (n)
m =

w
(n)
m

∑Nθ

i=1w
(i)
m

for n = 1, ..., Nθ.

end for
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3.2. Guided proposals

A further difficulty arises as the transition densities π(XXXm | XXXm−1, θθθ) are not available in closed

form for the models of interest, suggesting that we need to choose the particle proposal distributions,

{rm}, so that the transition density cancels from the importance weights. This can be achieved by

setting rm = π(XXXm |XXXm−1, θθθ) in Equation (4), so that proposals are just simulations from the model.

However, this choice will typically lead to particle degeneracy if too many of the proposals end up

being far from the observations, due to the light Gaussian tails in the observation model. Resampling

the state particles ensures that important particles are propagated forward, which can improve the

approximation in later iterations. Multinomial resampling is the most commonly used resampling

scheme, but alternatives such as stratified resampling give improvements in sample variance (Liu and

Chen, 1998; Douc et al., 2005).

For the SDE models considered here, resampling is not sufficient to overcome the degeneracy

problem. Our solution is to avoid using the model as the proposal distribution, and to instead build

novel Brownian bridge type proposals, based on the proposals developed in Golightly and Wilkinson

(2008), that guide the particles toward the next data point (thus decreasing degeneracy). The key

is to exploit the Euler-Maruyama approximation we use to simulate from the underlying SDE, in

order to condition the proposal distribution on the next observation, thus increasing the number of

proposals with large weights. Each of our models are SDEs of the form

dXXX (t) = µµµ (XXX (t) , θθθ) dt+ Σ
1

2

X (XXX (t) , θθθ) dWWW (t) .

The Euler-Maruyama approximation simulates from the SDE over time interval ∆t by partitioning

the interval into J sub-intervals of length δt = ∆t
J
, and using the discrete time equation

XXX
(
t′ + δt

)
= µµµ

(
XXX
(
t′
)
, θθθ
)
δt+ Σ

1

2

X

(
XXX
(
t′
)
, θθθ
)
δt

1

2ϵϵϵt,

where ϵϵϵt is a vector of independent standard Gaussian random variables. Simulating from the dis-

crete time equation between two observation times, τm and τm+1, introduces (J − 1) × d latent

variables, XXXm−1,1, ...,XXXm−1,J−1, where we let XXXm,j = XXX (τm + j · δt). We can extend the parti-

cle filter to also sample from these latent variables, by using a proposal distribution of the form

r̃m+1 (XXXm,1, ...,XXXm,J | Ym+1,XXXm, θθθ). The importance weight calculation in the particle filter is then

ω
(k)
m+1 =

∏J
j=1 π (XXXm,j |XXXm,j−1, θθθ)π (Ym+1 |XXXm+1, θθθ)

r̃m (XXXm,1, ...,XXXm,J | Ym+1, θθθ)
,

where the π (XXXm,j |XXXm,j−1, θθθ) are now assumed to be Gaussian densities.

We can guide the particles into regions of high likelihood by conditioning the value of XXXm,j+1 on

future observation, Ym+1. This can be done by approximating the distribution of Ym+1 conditional

on XXXm,j using a single Euler-Maruyama step of size ∆̃t = ∆t − jδt. To do this conditioning, note

that under an Euler-Maruyama step of interval size ∆̃t,

XXXm+1 |XXXm,j , θθθ ∼ Nd

(
XXXm,j +µµµm,j∆̃t,Σm,j∆̃t

)
,
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where µµµm,j = µµµ (XXXm,j , θθθ) and Σm,j = ΣX (XXXm,j , θθθ). We can then see that the joint distribution of

XXXm,j+1 and Ym+1, given XXXm,j , is


XXXm,j+1

Ym+1


 |XXXm,j , θθθ ∼ Nd+1




 XXXm,j +µµµm,jδt

HHH
(
XXXm,j +µµµm,j∆̃t

)
+D


 ,


 Σm,jδt Σm,jHHH

⊤δt

HHHΣm,jδt HHHΣm,jHHH
⊤∆̃t+ σ2

y




 .

Conditioning this distribution on Ym+1 (Eaton, 1983), then suggests proposals of the form

XXXm,j+1 |XXXm,j , Ym+1, θθθ ∼ Nd (MMMm,j ,SSSm,j) ,

where

MMMm,j =XXXm,j +µµµm,jδt+BBB⊤AAA−1
(
Ym+1 −HHH

(
XXXm,j +µµµm,j∆̃t

)
−D

)
,

and

SSSm,j = Σm,jδt−BBB⊤AAA−1BBB,

with

AAA =
(
HHHΣm,jHHH

⊤∆̃t+ σ2
y

)
and BBB =HHHΣm,jδt.

In our experiments, we have found that using these guided proposals dramatically reduces particle

degeneracy. This improves the likelihood estimates, thus increasing the efficiency of the algorithm.

Consequently, smaller value of Nx (fewer state particles) can be used, and the PMMH rejuvenation

step has better mixing properties, allowing for shorter chains.

3.3. Further details

The tuning parameters are the number of particles, Nθ and Nx, and the proposal distributions for the

PMMH rejuvenation steps. Typically, Nθ will be decided by the available computational resource. A

low value of Nx can be used for early iterations, but must be increased when using longer time series of

data in later iterations. An insufficient number of state particles has a negative impact on the PMCMC

acceptance rate, leading to fewer acceptances. This will be reflected in a low particle diversity (the

number of unique particles), which needs to be monitored throughout. Automatic calibration of Nx

is discussed in Chopin et al. (2013), where it is suggested that Nx is doubled whenever the acceptance

rate of the PMCMC step becomes too small. We use Nx = Nθ = 1000 throughout. The fact that we

have a collection of particles in each iteration allows automated calibration of the PMMH proposals.

For example, using the sample mean and variance to design a random-walk proposal, or using a

Gaussian independence sampler. We use independent Gaussian proposals using the sample mean

and covariance, with a chain length of 10 to maintain a high particle diversity. In the first iteration,

the proposal r1 (XXX1 | Y1, θθθ) in the particle filter is taken to be the state prior distributions. In later

iterations, for the continuous state variables we again use independent Gaussian proposals using

the sample mean and covariance, and for the discrete state variables we use independent Bernoulli

proposals where the success probability is empirically estimated using the current sample up to a
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maximum (minimum) of 0.95 (0.05). Finally, we check if the algorithm has converged by ensuring

that the results are consistent between independent runs.

4. Results

4.1. Simulation study

In order to gain confidence in the ability of our SMC2 algorithm for both model selection and calibra-

tion, we begin with a simulation study. We simulate a single random trajectory from a given model

and parameter setting and draw observations from the observation process. We then show that the

posterior distributions recover the true value of the parameters (Figure 3) and the true underlying

state (Figure 4), and that the Bayes factors correctly identify the true generative model (Table 2).

Further simulation studies and details are available in Carson (2015).

We present results from two datasets simulated from SM91: one in which data are from an

unforced version, denoted SM91-u, in which parameters γP = γC = γE = 0 so that F = 0, and a

forced version, SM91-f, for which these parameters and F are non-zero. The parameter values used

were: p = 0.8, q = 1.6, r = 0.6, s = 1.4, v = 0.3, σ1 = 0.2, σ2 = 0.3, σ3 = 0.3, D = 3.8, S = 0.8,

σy = 0.1, and additionally for SM91-f γP = 0.3, γC = 0.1, γE = 0.4, which are comparable with those

estimated from real data. We simulate observations every 3 kyr over the past 780 kyr to give 261

observations in each dataset, comparable to a low resolution sediment core. From these datasets we

calculated the model evidence and posteriors for each of five models: the forced and unforced versions

of SM91 and T06, and the forced model PP12. We do not consider an unforced PP12 model because

the deglaciation-glaciation transition depends only on the astronomical forcing (whereas SM91 and

T06 both oscillate in the absence of any external forcing). The models contain between 10 and 16

parameters. The priors used for each model are given in Table 1.

The estimated log10 Bayes factors (log10 BF) are given in Table 2. A common interpretation sug-

gests that log10B12 > 0.5 is substantial evidence in favour of model M1 over model M2, log10B12 > 1

is strong evidence that M1 is superior, and log10B12 > 2 is very strong evidence (Kass and Raftery,

1995). Conversely, a negative score indicates the same strength of evidence but in the other direction

(for M2 over M1). In each column, the log10 BF is with respect to the true generative model, so

that positive values indicate support for that model over the true model, and negative values indicate

support for the true model. Because the log10 BF is just the difference between the log evidences,

we can reconstruct the evidences by noting that the log10 evidence (log10 π(y1:M |M)) is 29.8 for the

unforced version of SM91 on the SM91-u dataset, and 40.7 for the forced SM91 model on the SM91-f

dataset.

Table 2 about here.

For both simulated datasets, we find a strong preference for the correct model. When applied to
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SM91-f, the correct model (the forced SM91 model) is overwhelmingly favoured. The log10 BF to

the next most supported model (the forced T06 model) is estimated to be 10.2, indicating decisive

evidence in favour of the true model. It is interesting to note that if we remove the forced SM91 model

from the analysis, we find decisive evidence in favour of the forced T06 model over any of the other

unforced models (a log10 BF of at least 11), showing that the astronomical forcing has explanatory

power even in the wrong model (to find other BFs, note that logBij = logBi0 − logBj0). This is not

particularly surprising, because in both models the astronomical forcing acts as a synchronisation

agent, controlling the timing of terminations, and has a strong effect on the likelihood. This is a

reassuring finding: it suggests that paleoclimate scientists can implicitly rely upon this effect when

arguing for the importance of the astronomical forcing, as it allows us to infer its importance even

when using an incorrect model (for we surely are).

When applied to SM91-u the log BF again correctly identifies the correct generative model, al-

though the support for the unforced and forced SM91 models is now much closer (with a log10 BF of

2.1 in favour of the unforced model). In cases where the forcing does not add any explanatory power

this is an expected result, as the unforced version of SM91 is nested within the forced version, and

can be recovered by setting γP = γC = γE = 0. This effect is also noticeable when comparing the

forced and unforced T06 models, with the unforced version being preferred with a log10 BF of 1.8.

The marginal posterior distributions for the parameters for the forced SM91 model applied to the

SM91-f dataset are shown in Figure 3. We are able to recover the parameters used to generate the

data, with the true values lying in regions of high posterior probability. The posteriors for q and σ3

do not deviate much from the prior, suggesting that a wide range of values explain the data equally

well.

Figure 3 about here.

Finally, the sequence of 95% highest density regions (HDRs) for the state estimates for the forced

SM91 model applied to the SM91-f dataset are shown in Figure 4. For each of the three states, most

of the true values lie within the HDRs, demonstrating that we are able to recover the state of the

system, despite only having noisy observations of a single state.

Figure 4 about here.

4.2. ODP677

We now analyse dataset ODP677 from the ocean drilling programme (ODP). The estimated log10

BFs for each model are given in Table 3. We use ODP677-u to refer to age model estimates derived

by Huybers (2007) using a depth derived model, and ODP677-f to the astronomically tuned age

model estimates described in Lisiecki and Raymo (2005). The BFs are given in comparison to the

best model for each dataset. For ODP677-u, the unforced T06 model is best supported with a log10
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evidence of 28.2. The results suggest strong evidence in favour of the unforced models over the forced

models, which are penalised for containing extra parameters with little explanatory power. That the

unforced model is preferred may be surprising compared to earlier works based on similar records

(Raymo, 1997; Huybers, 2011); this is discussed further in the conclusions.

Table 3 about here.

When we analyse ODP677-f, the astronomically tuned data, the results are reversed. We now find

strong evidence in favour of the PP12 model (with a log10 evidence of 33.7), and that the three forced

models are all decisively preferred to the two unforced models, i.e., we find overwhelming evidence

using these data that astronomical forcing is necessary to explain the data. The orbital tuning of

ODP677-f is the most likely explanation for this. There is some evidence that T06 is more strongly

supported than SM91 with a log10 BF of 0.8.

This result is our second key finding. Namely, that inference about the best model is affected by the

age model used to date the data. It is vital that modelling assumptions in the dating methods should

be understood when performing inference on paleoclimate data. Given that the two chronologies,

ODP677-f and ODP677-u, are considered consistent once we account for dating uncertainties, we

suggest that this formally demonstrates that the approach of first dating the data, and then carrying

out down-stream analyses given this dating (ignoring the uncertainty) may undermine any subsequent

inference about the dynamic mechanisms at play.

Whilst these results demonstrate that the age model strongly influences the conclusions in model

comparison experiments, care must be taken to not over-interpret the results. Bayes factors are

sensitive to changes in the prior distributions, and in this case, are subject to Monte Carlo error. It

is possible that selecting new prior distributions consistent with our approach in Section 2.5, or even

keeping the same prior distributions and reinitialising the algorithm with a different seed could result

in different conclusions. This is investigated in the next section.

The marginal posterior distributions of the parameters in the SM91 model when fit to the ODP677-

f data are shown in Figure 5. The astronomical forcing scaling parameters γP and γE have very small

posterior support at 0, suggesting that both precession and obliquity are important.

Figure 5 about here.

Figure 6 provides the density of the ratios

√
γ2
P
+γ2

C

γE

, and the argument of the complex number

γP + iγC for SM91 and T06. PP12 is omitted as the truncation of the forcing makes the parameters

incomparable. The rationale for using arg(γP + iγC) can be made clear by noting that the forcing

(Equation 1) can be reformulated as

F (t;γγγ) = Γ sin(ϖ(t) + ϕ) + γEE(t),

where Γ ∝ |γP + iγC | and ϕ = arg(γP + iγC) (the proportionality is straightforwardly set by the

normalisation constants). Hence, Γ controls the amplitude of the effects associated with the physical
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process of precession of equinoxes, while ϕ controls the phase. It follows that the ratio Γ
γE

=

√
γ2
P
+γ2

C

γE

measures the relative weight in the forcing of two different physical effects: the precession of equinoxes,

and the changes in the tilt of the Earth’s equator (obliquity). The results in the left plot of Figure 6

are consistent across models, with a ratio lower than one, suggesting that the control of obliquity

dominates. Translated in terms of paleoclimate dynamics, this means that ice age dynamics are

controlled by insolation integrated over a season length, rather that just the maximum insolation over

the year. The right plot in Figure 6 shows the argument of the complex number γP + iγC . Here, zero

means that phase of the precession forcing matches that of the June solstice insolation. A phase of π/2

would mean that the system is controlled by March insolation, while −π/2 would point to September

insolation. All densities are broadly centred on zero, suggesting a summer insolation control in

the Northern Hemisphere (this is also consistent with a winter control in the Southern Hemisphere,

but this is less plausible). The nominal uncertainty of approximately 0.8 radians translates into an

uncertainty of about 2 months in calendar time. Physically, it is reasonable to assume that the

driving effect changes as ice sheets grow and melt, and that these changes contribute to the variance

of the density curves. We acknowledge that dating assumptions will also presumably be crucial in

determining this quantity.

Figure 6 about here.

4.3. Robustness

The simulation studies show that there is sufficient information in the observations to easily detect

the correct parametric form of the model in each case. However, the Bayes factors are sensitive to

both Monte Carlo error in the evidence estimates, the choice of prior distributions, and model mis-

specification, and so care needs to be taken when using real data in order to avoid over-interpretation.

To investigate the Monte Carlo error in the Bayes factor estimates, we calculate the model ev-

idences for the forced models on ODP677-f using ten randomly generated seeds for each model.

The log10 evidences were in the range [28.4, 29.0] for SM91, [29.4, 31.5] for T06, and [33.3, 34.2] for

PP12. Over all repeats PP12 is still strongly favoured, but not necessarily decisively favoured (as the

log10 BF is as small as 1.8). Likewise, T06 is favoured over SM91, but not necessarily substantially

favoured (as the log10 BF is as small as 0.4). Forced models are still decisively favoured over unforced

models. The implications for the experiment on ODP677-u are that each of the forced models are

plausibly equally well supported by the data, and further confirming that the difference between the

forced and unforced version of the same parametric model is small. The magnitude of the estimation

error can be decreased by using more particles in the SMC2 algorithm, but this will require very long

computational runs. Using Nx = Nθ = 1000 takes 3-4 days on a standard desktop depending on the

model. However, SMC algorithms are well suited to run in parallel, and we were able to obtain a

∼25× speed-up on a Tesla K20 GPU.
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To test the robustness of our conclusions to changes in the prior distributions, we performed a

sensitivity analysis using the two ODP-677 datasets. Kass and Raftery (1995) advocate recomputing

the Bayes factors with perturbed hyperparameters, for example by halving/doubling scale and vari-

ance parameters. Given the computational expense of our experiments, it is not feasible to do this

one parameter at a time. Instead we conducted the following two experiments for the forced models.

In the first we maintained the 1:2:5 cross-model rules for the forcing prior construction (as discussed

in Section 2.5), but each of the other hyperparameters we halve or double with equal probability. For

the gamma distributions we maintain the prior means by doubling or halving the shape parameter

(exponential distributions are treated as gamma distributions with a shape parameter of 1 for this

purpose). In the second experiment we halve the hyperparameters for the astronomical forcing pa-

rameters only, and compare the results to those obtained in the initial experiment in order to violate

the 1:2:5 ratio. The aim of the first experiment is to investigate the sensitivity of our conclusions to

changes in the prior distributions for the model parameters, whereas the aim of the second is to test

the sensitivity to the cross-model assumptions made in Section 2.5.

Table 4 about here.

The estimated log10 BFs of the new experiments are shown in Table 4, given with respect to

the best model from the first analysis for each dataset. We have denoted results from the first

sensitivity analysis as MP, to indicate that our focus is on the model parameters, and results from

the second sensitivity analysis as FP, as our focus is on the forcing parameters. It is difficult to

decouple the effect of changing the prior distributions from the Monte Carlo error, but the combined

change is within ±2 in each case. Taken together with the suggested interpretation of BFs in Kass

and Raftery (1995), this suggests the conservative rule-of-thumb that the log10 BF should be at least

5 to constitute strong evidence for one model over another if we are not confident about our choice of

prior distributions. If we revisit the results from the first analysis with this in mind, we find broadly

the same model comparison conclusions, i.e., unforced T06 is favoured in ODP677-u, and PP12 is

favoured in ODP677-f, even when the prior scaling rules designed in Section 2.5 are violated, but we

can no longer be confident that these results constitute strong evidence in favour of these models.

We still have strong evidence against unforced models for ODP677-f.

As our primary focus is on selecting between phenomenological models, we also need to consider

the impact of the modelling assumptions used for the stochastic driver and observation errors. In

particular, if these components are mis-specified, what will the effect be on the Bayes factors? To

test the robustness of the Bayes factors we revisit the simulation study datasets from Section 4.1 and

simulate additional sets of observations as follows. Firstly, we simply redraw observations (Y1:T ) from

the trajectory generated for SM91-f (XXX1:T ) in order to give a baseline for the Bayes factor variability

under a redrawing of the observation errors. We term this dataset SS-2. We then draw observations,
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again from the same trajectory, using the AR1 process

ϵt+1 = ρϵt +N
(
0, σ2

)
,

with σ = 0.1, and ρ = 0.6 (termed SS-AR06) and ρ = 0.9 (termed SS-AR09). The purpose of this is

to test the robustness of the Bayes factors under a mis-specification of the observation error model.

We also generate two new trajectories from SM91-f, SS-JD78 and SS-JD780, using a jump-diffusion

instead of a Brownian motion as the stochastic driver of the SDE. The jump times are drawn from a

Poisson process with intensity 0.1 kyr−1 in SS-JD78, and 1 kyr−1 in SS-JD780, giving the expected

number of jumps as 78 and 780 respectively. The jump intensity is multivariate Gaussian with mean 0

and covariance matrix diag(0.22, 0.32, 0.32). This is 100 times the variance of a single Euler-Maruyama

integration step of the Brownian motion, and equivalent to about 7-10% of the range of each state

variable. This allows us to test the robustness of the Bayes factors under a mis-specification of the

stochastic driver. Finally, we generate two datasets where we expect the Bayes factors to be weak,

in order to ensure that the results are not overconfident. In the first, termed SS-LE, we generate

observations using the same trajectory as SM91-f, but with large observation errors (increasing the

variance of the error 100-fold). In the second, termed SS-OU, we generate a trajectory using an

Ornstein-Uhlenbeck process (i.e., not using any of the phenomenological models). The datasets are

shown in Figure 7.

Figure 7 about here.

The estimated log10 Bayes factors (with respect to the best model) for our five models in each

of the seven new datasets are given in Table 5. We emphasise that care needs to be taken when

interpreting Bayes factors between different datasets: Bayes factors only indicate relative model

performance, and so we may obtain larger Bayes factors in instances where the correct model is not

in our library. This should not be interpreted as the preferred model being good in an absolute sense.

For SS-2, the model evidences change by a factor of 106 (cf. Table 2) and the Bayes factors change

by up to 2.6 on the log10 scale (some of this variability will be due to the Monte Carlo error), but

our conclusions are fundamentally unchanged. The exception is that the unforced SM91 model is

now preferred over PP12, but the Bayes factor between the two models is relatively small in both

simulation studies. In the AR1 datasets, T06 seems to perform poorly (the Bayes Factor between

SM91 and PP12 seems to be consistent with the original simulation study). A potential reason for this

is that the interglacial-glacial switches in T06 occur at some constant threshold for the state-variable,

whereas in the data there is greater variation in the local minima (particularly in SS-AR09). SM91

and PP12 seem to be more robust to this behaviour. For SS-JD78, the Bayes factors seem consistent

with the initial simulation study. This can partially be explained by the nature of oscillators such as

SM91, where trajectories following perturbations converge rapidly to a limit cycle, and so the overall

trajectory might be robust to large jumps. However, we can see in Figure 7 that the cycles seem
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less predictable, indicating that the jumps have had some effect. For SS-JD780 the Bayes factors are

much weaker, and we can see in Figure 7 that the cycles are far less regular than the SM91 model

forced by Brownian motion. However, we still favour the forced SM91 model, suggesting that enough

information is preserved to allow us to pick out the correct model. For SS-LE (large observation error)

the order of the models is consistent with the previous simulation studies, but the Bayes factors are

much weaker, as expected. For SS-OU (data generated from an Ornstein-Uhlenbeck process), none

of our five candidate models are close to being useful, and consequently we find relatively small BFs

compared to previous simulation studies, but with the models ordered by their complexity (in terms

of the number of parameters), demonstrating Occam’s razor type behaviour of the Bayes factor.

Table 5 about here.

These are reassuring findings, in that the order of the models seem to be robust to moderate mis-

specifications of the stochastic driver and observation error model. In the limit where no model has

explanatory power, the Bayes factors favour the less complex models. It is plausible that significant

model mis-specification could bias the model selection to a significant extent, e.g., by favouring more

complex models to account for the mis-specification. Ideally alternative drivers and observation error

models would be considered, with Bayes factors used to select between candidates. However, each

would require the design of new proposal mechanisms in the particle filter, which is a non-trivial task.

5. Conclusions

We have two key conclusions. The first is that Monte Carlo methodology and computer power are

now sufficiently advanced that with work, it is possible to fully solve the Bayesian model selection

problem for a wide class of phenomenological models of the glacial-interglacial cycle. Using only 261

observations, we are able to learn up to 16 parameters, state trajectories containing 261 × 3 values,

and calculate the model evidence. Moreover, these evidences are sufficiently different (and able to

be estimated with sufficient accuracy) that we can discriminate between the ability of the models to

explain the data. However, care needs to be taken so as to not over-interpret the results from these

experiments. Firstly, Bayes factors are known to be sensitive to the prior distributions, and so the

conclusions might not be robust to changes in the priors. Fortunately, our analysis indicates that

useful results can still be obtained when the prior distributions are carefully elicited. Secondly, that

one dynamical system is more supported by the data than another does not necessarily imply that the

physical interpretation of that model is valid. At this level of conceptual modelling, different physical

interpretations may produce similar equations. This point has been made before (Tziperman et al.,

2006) and we add here that the stochastic differential equations emerge as a combination of judgements

on physical processes and model discrepancy, embedded in the stochastic parameterisations. On the

other hand, the Bayesian formalism for choosing between models offers a natural starting point for
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developing a physical interpretation, and knowledge of physical constraints can be incorporated within

the parameter prior distributions. Physical disambiguation will also arise as the complexity of the

model is increased, and as more diverse datasets are used in the inference process.

Our second conclusion concerns the need to avoid “theory-laden” data. The results from analysing

the ODP677 data, show that the age model used to date the core become critical when the data

are subsequently used to make scientific judgements. The astronomically-tuned age model gives

support for a model in which ice ages are driven by the astronomical forcing (that is, without an

underlying autonomous limit cycle), while the age model which was not tuned on astronomical forcing

favours models explaining ice ages as an autonomous limit cycle. These are two qualitatively different

explanations of ice ages. Admittedly, fifty years of climate research have established beyond doubt

that the astronomical forcing affects the climate system enough to interfere with ice ages dynamics:

the rejection of astronomical forcing here must presumably be explained by errors in the ODP677-u

time scale. On the other hand, we observed that both time scales were compatible with uncertainties

provided by the respective authors. This suggests that analysing the data in stages, cutting feedbacks

between uncertainties, does not only affect the conclusion about the role of the astronomical forcing,

it also affects inferences about the internal system dynamics. We believe that this is the first time the

effect of the age model on subsequent analyses has been so clearly demonstrated. Given the coupling

between the model parameters and the age estimates, instead of first dating the core and then using

those dates (with or without uncertainties), we need to jointly estimate the age model at the same

time as testing further hypotheses, accounting for all the joint uncertainties (Carson, 2015).

The experiments included in this paper can be extended in several ways. Firstly, we considered

only a handful of models, and both the number and complexity of models can be increased. With

the approach described here, extra models can be included by running the SMC2 algorithm for each

model. This has the benefit that the entire experiment does not need to be redesigned/repeated

for different combinations of models. Different astronomical forcings can also be considered. For

example, the astronomical forcing terms are often tested independently. This can easily be achieved

by setting undesired astronomical scaling terms to 0 in our forced models. Making the forcing term

state dependent, so that an increase in sea-ice increases albedo, which in turn alters the influence of

variation in insolation, is also a possibility.

Finally, we do not need to limit ourselves to a single dataset. The observation model can be

extended to compare the state of the system to multiple cores. Likewise, multivariate observations

could be used; SM91 models both ice volume and CO2 concentration, and records exist for both of

these quantities.

Overall, we hope that this work acts as a proof of concept. Careful statistical analysis combining

data and models can lead to insights in paleoclimate science.
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6. Supplementary Information

The programs and data that were used in this article can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets.
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Table 1. Prior distributions used for each model in both the simulation study and the

analysis of ODP677.

SM91 T06 PP12

γP ∼ Exp(1/0.3) γP ∼ Exp(1/0.6) γP ∼ Exp(1/1.5)

γC ∼ N (0, 0.32) γC ∼ N (0, 0.62) γC ∼ N (0, 1.52)

γE ∼ Exp(1/0.3) γE ∼ Exp(1/0.6) γE ∼ Exp(1/1.5)

p ∼ Γ(2, 1/1.2) p0 ∼ Exp(1/0.3) a ∼ Γ(8, 0.1)

q ∼ Γ(7, 1/3) K ∼ Exp(1/0.1) ad ∼ Exp(1)

r ∼ Γ(2, 1/1.2) s ∼ Exp(1/0.3) ag ∼ Exp(1)

s ∼ N
(
0, 1.52

)
α ∼ Beta(40, 30) κP ∼ Exp(1/20)

v ∼ Γ(2, 1/0.3) xl ∼ Exp(1/3) κC ∼ N (0, 202)

σ1 ∼ Exp(1/0.3) xu ∼ Γ(90, 0.5) κE ∼ Exp(1/20)

σ2 ∼ Exp(1/0.3) σ1 ∼ Exp(1/2) τ ∼ Exp(1/10)

σ3 ∼ Exp(1/0.3) vl ∼ Exp(1/5)

vu ∼ Γ(220, 0.5)

σ1 ∼ Exp(1/5)

D ∼ U(3, 5) D ∼ U(2.5, 4.5) D ∼ U(2.5, 4.5)

S ∼ U(0.25, 1.25) S ∼ U(0.02, 0.05) S ∼ U(0.01, 0.03)

σy ∼ Exp(1/0.1) σy ∼ Exp(1/0.1) σy ∼ Exp(1/0.1)

X(1)(τ1) ∼ U(−1.5, 1.5) X(1)(τ1) ∼ U(3, 45) X(1)(τ1) ∼ U(0, 120)

X(2)(τ1) ∼ U(−1.5, 1.5) X(2)(τ1) ∼ Bernoulli(0.5) X(2)(τ1) ∼ Bernoulli(0.5)

X(3)(τ1) ∼ U(−1.5, 1.5)
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Table 2. Log Bayes factors for comparing

five different models on the two simulated

datasets. SM91-u is data generated from an

unforced version of SM91, whereas SM91-f

is generated from an astronomically forced

version of SM91.

Model Dataset

SM91-u SM91-f

SM91 Forced −2.1 0

Unforced 0 −22.2

T06 Forced −9.5 −10.2

Unforced −7.7 −26.0

PP12 Forced −20.4 −21.2
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Table 3. Log Bayes factors for comparing five dif-

ferent models on ODP677. ODP677-u uses ob-

servation ages from the non-orbitally tuned H07

stack, and ODP677-f takes observation ages from

the orbitally tuned LR04 stack.

Model Dataset

ODP677-u ODP677-f

SM91 Forced −3.6 −4.8

Unforced −2.2 −16.1

T06 Forced −2.9 −4.0

Unforced 0 −12.2

PP12 Forced −3.8 0
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Table 4. Log Bayes factors for the sensitivity analy-

sis on ODP677 compared to the best model in Table

3 (forced models only).

Model Dataset

ODP677-u ODP677-f

SM91 Forced MP −4.1 −5.7

FP −2.8 −5.0

T06 Forced MP −2.3 −3.4

FP −1.5 −2.9

PP12 Forced MP −5.5 −1.2

FP −3.0 1.4
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Table 5. Log Bayes factors for comparing five different models on seven simulated datasets.

Model Dataset

SS-2 SS-AR06 SS-AR09 SS-JD78 SS-JD780 SS-LE SS-OU

SM91 Forced 0 0 0 0 0 0 −1.4

Unforced −22.0 −25.6 −20.0 −24.0 −7.2 −3.2 −0.5

T06 Forced −12.1 −14.8 −16.9 −12.1 −3.2 −2.5 −1.1

Unforced −28.4 −32.3 −33.9 −28.0 −9.7 −4.0 0

PP12 Forced −23.8 −22.9 −20.1 −22.1 −3.9 −3.0 −1.7
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Fig. 1. Observed δ18O from ODP677 (Shackleton et al., 1990) corresponding to the past 780 kyr with the H07

chronology (Huybers, 2007).
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Fig. 3. Marginal posterior distributions for the parameters of the forced SM91 model when fit to the SM91-f

dataset. Vertical lines show the parameter values used to generate the data, and dashed lines represent the

prior distribution.
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the grey lines show the 95% HDRs, and the points show the true generated values. Note that only X(1) is
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Fig. 5. Marginal posterior distributions for the fully forced SM91 model on ODP677-f. Dashed lines represent

the prior distributions.
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Fig. 6. Posterior density of the relative contribution between precession and obliquity in the astronomical

forcing (left), and the phase of the precession (right) for the SM91 model (solid line), and T06 model (dashed

line).
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Fig. 7. Observed values in the forced simulation study datasets.


