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Abstract We present the first systematic methods for combining different experts’ responses to
equity premium surveys. These techniques are based on the observation that the survey data
are approximately gamma distributed. This distribution has convenient analytical properties
that enable us to address three important problems that investment managers must face. First,
we construct probability density functions for the future values of equity index tracker funds.
Second, we calculate unbiased and minimum least square error estimators of the future value of
these funds. Third, we derive optimal asset allocation weights between equities and the risk-free
asset for risk-averse investors. Our analysis allows for both herding and biasedness in expert
responses. We show that, unless investors are highly uncertain about expert biases or forecasts
are very highly correlated, many investment decisions can be based solely on the mean of the
survey data minus any expected bias. We also make recommendations for the design of future
equity premium surveys.

Keywords Financial surveys · Equity premium · Asset allocation · Gamma distribution
JEL classification G11; G17.

1 Introduction

In recent years a number of surveys have been conducted to solicit informed individuals’ views
on the forward looking equity premium. For example Welch (2000, with updates in 2001, 2007
and 2009) and Fernandez and del Campo (2010a) ask economics and finance professors; Graham
and Harvey (2010) is their latest in a series of studies that has taken data from the Global CFO
Outlook Survey; whilst Fernandez and del Campo (2010b) take forecasts from analysts and com-
panies. This stream of research has generated considerable interest amongst both academics and
practitioners. In this paper we present the first systematic techniques for optimally combining
the conflicting forecasts of the forward looking equity premium presented in any one of these
surveys.

Our methods exploit the observation that estimates of the equity premium are, to good
approximation, gamma distributed. This draws in parallels with Weitzman’s (2001) highly in-
fluential use of survey data on the appropriate long term social discount rate for evaluating
investments with intergenerational consequences. This distribution has the benefit of a well de-
fined moment generating function (mgf) and established numerical techniques for determining
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2 Mark C. Freeman, Ben Groom

the probability density function (pdf) of the population mean conditional on a finite sample of
data.
We use these two features of the gamma distribution to answer questions about the future

value of an equity index tracker fund and optimal asset allocation. The fact that a closed-form
mgf of the distribution exists allows us to determine unbiased and minimum least square error
(MLSE) estimates of the future value, and quantiles of the future value, of the fund. This
extends the analysis of Jacquier et al. (2003, 2005) and Kan and Zhou (2009) to forward-looking
estimates of the equity premium. That we are able to derive a pdf of the true equity premium
based on the survey data also enables us to construct a pdf for the future value of the index
tracker fund. These are issues that are of pressing importance for portfolio managers facing asset
allocation decisions, actuaries who use stochastic asset-liability models when estimating pension
fund solvency, and regulators who prescribe rates of return for illustrating future portfolio values.
We conclude that, unless there is extremely strong herding amongst experts, then any dif-

ference between sample and population mean estimates of the equity premium is unlikely to be
of any significance for asset allocation and future value problems. This result holds because the
standard deviation of survey data is very low; around 1.77% in the case of Welch’s 2009 update.
With over one hundred responses the standard error associated with the population mean of
expert responses is extremely small unless there is very high inter-dependence between forecasts.
If, in addition, the decision maker can estimate with reasonable precision the relationship be-
tween the population mean of expert responses and the true value of the ex-ante equity premium,
then even the presence of uncertain biases does not materially alter the conclusion that, for most
cases considered, practical decisions can be made on the basis of the mean of the survey data
minus the expected bias alone.
We also make three recommendations for the future design of equity premium surveys. First,

researchers should place greater emphasis on obtaining forecasts from a sample of experts who
are by their nature heterogeneous rather than increasing the sample size within one particular
subsection of the population. Second, including a textual question that asks respondents how
they arrived at their answer will help the researcher understand the nature of herding of forecasts.
Third, by also asking a question about short-term growth in a variable with low ex-post noise,
such as GDP, the extent of analysts’ over-optimism (-pessimism) may be revealed, allowing us
to understand something of the nature of the bias in the forecasts.

2 Future value problems

Suppose an investor places FV0 =$1 in an equity index tracker fund with an investment horizon
of H years and wishes to estimate the stochastic distribution of the future value of this fund,
FVH , on this date, or its equivalent annual rate of return RH = H−1 ln (FVH).

There are many areas in finance where it is important to understand the properties of FVH ;
we briefly note three.1 First, the expected returns to different asset classes are central inputs
into asset allocation decisions; we return to this issue in subsection 4.5 below. Second, there
has recently been substantial interest in stochastic asset-liability models. This, in part, has
been caused by major swings in the net funding position of defined benefit pension plans.2

This has led actuaries and pension fund trustees to consider how the funding position of their

1 The equity premium is a parameter that also has a number of applications beyond investment management.
In particular, it is a key input variable in the Capital Asset Pricing Model, which is commonly used in calculating
the cost of equity capital for capital budgeting purposes. The techniques that we discuss below would also be
relevant in these contexts, but we do not explicitly explore these issues in this paper.
2 According to the Pension Protection Fund the net funding position of defined benefit pension plans in the UK

swung from a surplus of £161.2bn (June 2007) to a deficit of £180.2bn (March 2009), back again to a surplus of
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funds might change in the future. Again, the expected return to equity is a critical variable
influencing the output of these models. Third, in some countries regulators prescribe the rates
which investment providers can use when making illustrations of potential future investment
values to retail clients. For example, in the UK, the Financial Conduct Authority (FCA) requires
the inclusion of standard deterministic projections for packaged products that are not covered
by the European Markets in Financial Instruments Directive (MiFID). The rates to be used are
prescribed by the FCA and are justified in documentation that includes detailed reference to the
academic literature on the equity premium. (Financial Services Authority, 2012).

Such parties may potentially be interested in two distinct types of estimator for FVH . First,
they may wish to construct a probability density function for FVH , revealing the mean, standard
deviation, skewness and excess kurtosis of future possible asset values. Alternatively, they may
want a single “best estimator” of FVH itself and for the quantile values of FVH . Here the term
“best estimator” might refer either to an unbiased or a minimum least squared error estimator.
We consider probability density functions in Section 3 and best estimators in Section 4.

The most common method for estimating the future value of tracker funds is to decompose ex-
post equity market returns into three parts. Let rmt denote the single-period realized logarithmic
return to equity over the period [t−1, t]. We divide rmt = rft+λt+et where rft is the compounded
single-period risk-free rate, λt the compounded single-period ex-ante equity premium, and et the
single-period ex-post stock market noise. This implies that FVH = exp (H (rfH + λH + eH))

where rfH = H−1
∑H

t=1 rft, λH = H−1
∑H

t=1 λt, eH = H−1
∑H

t=1 et. The future value of the
fund, FVH , will depend on the individual behavior of these three variables and the interaction
between them. In order to simplify the exposition throughout this paper and also to focus
attention on the equity premium, we assume that rfH is a known scalar at time 0, that λH and
eH are independent random variables, and that the statistical process describing eH is known
with certainty.

There are several methods by which the equity premium, λH , can be estimated. The tra-
ditional approach has been to take an average of long-run historical excess equity returns and
assume that a similar average risk premium will hold into the future. This approach has now
largely fallen out of favor. Stock index returns are highly noisy and therefore, even if the ex
ante equity premium is constant, a very long time period of data is needed to estimate it with
any precision. For example, if excess stock returns are identically and independently normally
distributed (i.i.n.d.) with an annual standard deviation of 16%, then, even with 100 years of
data of any frequency, the 95% confidence interval for the equity premium is approximately the
mean estimate ±3%. To improve accuracy, therefore, most studies in the field that are based
on historic data go back to the nineteenth century. However, there is increasing evidence that
over the past hundred years the equity premium has changed at least once (see, for example, Ja-
gannathan et al., 2000; Fama and French, 2002; Lettau et al., 2008; Freeman, 2011). Identifying
when, and by how much, the ex ante equity premium changed introduces additional complexity
and increases further the estimator’s confidence intervals.

Taking a theoretical approach to estimating the equity premium also has a lengthy tradition.
The problem now is that, as shown initially by Mehra and Prescott (1985), the standard model
produces a risk premium estimate that is considered by most financial economists to be unrealis-
tically low. Voluminous subsequent literature (see, for example, Mehra and Prescott 2003, Hung
and Wang 2005), has failed to produce a new model that has gained widespread acceptance.
This approach, therefore, has never been widely used for practical purposes.

More recently many researchers have returned to the problem of predicting time variations
in the equity premium. The latest available evidence points towards there being predictability

£50.1bn (January 2011) before returning to a deficit of £317.0bn (May 2012). At the time of writing, the deficit
stands at £27.6bn (December 2013).
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that is both statistically significant out-of-sample and relevant for asset allocation purposes;
Rapach and Zhou (2011) provide a recent review. This has influenced recent work on long-run
portfolio construction and asset-liability management problems (e.g., Barberis, 2000; Ferstl and
Weissensteiner, 2011). In parallel to this a substantive literature has also grown up reporting
the results of surveys on the equity premium (Welch 2000 with updates in 2001, 2007 and
2009; Fernandez and del Campo 2010a, 2010b; the Duke/CFO Magazine surveys most recently
reported upon by Graham and Harvey 2010). This approach not only has the advantage of
being explicitly forward-looking but also appeals to investors’ psychological preferences. Önkal
et al. (2009) show in the context of stock market predictions that people place more weight on
forecasts made by human experts than those made by statistical models. Despite this, and in
contrast to the work on predicting time-variation in the equity premium, no previous research
has considered in detail how the data provided by such surveys can be used to address asset
allocation and other investment management problems.
The results that we present are based on the data reported in the 2009 update of Welch

(2000). We concentrate on the variable λi = ln (1 +Gi), where Gi is the ith individuals response
to the question “I expect the average geometric∗ equity premium over the next 30 years to be
(relative to rolling future contemporaneous short-term (3 month) T-Bills). Note: ∗The geometric
equity premium is ‘casual’ usage. Think of it as compounded equity return minus compounded
risk-free.” We choose this response because, as shown by, for example, Jacquier et al. (2005), if
stock returns have a constant expected return, µ, the geometric average return 1+G = exp (µ).3

This drew n =131 responses.
It is important for the purposes of this paper to distinguish between two types of uncertainty.

First, each expert will have his or her own doubts about the true value of the equity premium;
Graham and Harvey (2010) present evidence on this. This is not relevant for the analysis
contained in this paper and is, therefore, not discussed further. Each expert presents a spot
estimate that we interpret as being their best guess as to the true value of the ex-ante equity
premium. The second source of uncertainty is that each expert provides a different answer. Our
focus here is on describing optimal ways of combining these different spot responses.
Our methods are based on the assumption that the world contains a very large number of

experts, E, each of whom has his or her own forecast of the equity premium, λi, i ∈ [1, E]. If we
could observe all of these estimates, the derived population frequency distribution, f

(
λi|i∈[1,E]

)
,

would be a gamma distribution, Γ (α, β) , with shape parameter α and rate parameter β. This
is given by:

f
(
λi|i∈[1,E]

)
≈ Γ (λi;α, β) =

βα

Γ (α)
λα−1i exp (−βλi) , λi ∈ (0,∞) (1)

This is an obvious candidate for consideration for characterizing the range of expert opinions
since the equity premium must be positive. This choice mirrors Weitzman (2001) who took
this distribution for characterizing survey data on the long-term social discount rate in a highly
influential paper in environmental economics; see, for example, Jouini et al. (2010), Weitzman
(2010) and Freeman and Groom (In Press) for recent extensions of this framework. Through the

properties of Γ (α, β), the population average expert forecast, λp = E−1
∑E

i=1
λi = α/β. 4

Through the survey, we access a small fraction of the available opinions; n � E. However,
as n is still a relatively large number in absolute terms, we would expect the sample frequency

3 The raw data are available at at http://www.ivo-welch.info/academics/equpdate-results2009.htm. Our results
are largely insensitive to the choice of survey question used.
4 Of course, since E is finite, f (λi) must be a discrete distribution while Γ (a, β) is continuous. Therefore,

strictly, limE→∞ λp = α/β. However, we assume that E is sufficiently large for this distinction to not be of
relevance.
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distribution, f
(
λi|i∈[1,n]

)
to closely resemble the population frequency distribution f

(
λi|i∈[1,E]

)
.

When we fit the n = 131 survey responses to Γ (a, β), the maximum likelihood estimates of the
parameters values are α̂ = 7.339, β̂ = 148.53.5 In Figure 1, we present a Q-Q plot to demonstrate

the goodness-of-fit between Γ
(
α̂, β̂

)
and f

(
λi|i∈[1,n]

)
. By inspection, this figure suggests that

the fit is good. More formally, we run a Kolmogorov-Smirnov test to quantify the maximum
distance between the cumulative distribution functions of this gamma distribution and that of
the sample data. The test statistic is 0.1078; which lies below the 5% critical level. We are,
therefore, unable to reject at the standard level of statistical significance the null hypothesis that
the raw data are gamma distributed.

[Insert Figure 1 around here]

3 The pdf of the future value of equity portfolios

3.1 The method

The problem that the investor faces is that the “true” value of λH is unknown. To make informed
judgements about this, she turns to the survey data. We denote by λ = n−1

∑n
i=1 λi the sample

mean of the survey responses. Using maximum likelihood methods to estimate the parameters
of the gamma distribution, λ is also given by λ = α̂/β̂; see footnote 5. However, because of
the finite nature of the sample, α̂ and β̂ will not be identical to the “true” parameters of the
gamma distribution, α, β, that describes the population frequency distribution of opinions. The
population mean of expert opinions, λp = α/β, will generally not equal the mean of sample
responses, λ.
Our methods involve using the observed individual responses, λ1, ..., λn, to construct a prob-

ability density function, gp (λp) , for the unobserved value of λp. As we note below, there are
a number of techniques available for this; we use the one proposed by Kulkarni and Powar
(2010). While we assume that the population frequency distribution of expert opinions can be
well characterized through Γ (λi;α, β) , there is no assumption that gp (λp) will also be gamma
distributed; in fact, it will not be. Instead, the properties of this pdf will need to be determined
using numerical methods.

Even if the investor fully knew the population mean estimate, then this would not necessarily
reveal the true value λH . The difference between the population mean and λH is referred to as
the “bias”, ω, where ω = λp− λH . This is motivated by an extensive literature on analysts bias
in areas such as earnings forecasts; see, for example, Ho and Tsai (2004) and Ramnath et al.
(2008). The investor must then distinguish between what she expects the bias to be, µω, from
her uncertainty over the extent of the bias, σω.

Given this, the probability density function, gλ (λH) , that the investor can derive for the
true value of the equity premium based on the observed survey data comprises two elements of
uncertainty. The first arises from the fact that only 131 experts were asked, whose aggregated
views will not fully reflect entire expert opinion even if all responses are drawn from the same
underlying statistical distribution. The second reflects the biasedness of analysts forecasts; even
if we were to ask an infinite number of experts, we would be unlikely to derive the true value

5 The maximum likelihood estimators that we use for α̂ and β̂ given the sample of responses are reported in,

inter alia, Grice and Bain (1980): ln (α̂) − ψ (α̂) = ln
(
λ/λ̃

)
and α̂/β̂ = λ. Here ψ (·) is the digamma function

and λ, λ̃ respectively represent the arithmetic and geometric means of the survey data. We use these estimators
throughout, even when we assume there is correlation between expert forecasts. In unreported results, available
on request from the authors, we demonstrate that our results have low sensitivity to the estimated values of α̂, β̂.
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of λH . Given this, our methods first consider the distribution gp (λp) and then the additional
uncertainty caused by biasedness.
There are a number of known numerical techniques (Grice and Bain 1980; Jensen and Kris-

tensen 1991; Wong 1993) for determining the pdf of the population mean of a gamma distribution,
gp (λp) conditional on observing a finite number of drawings from the distribution. The one that
we employ here involves transforming the data into Yi = λ

p
i for some power p (not to be confused

with the p subscript, which is used throughout to denote “population”). This adapts the un-
derlying distribution from gamma to Gaussian. Wilson and Hilferty (1931) and Hernandez and
Johnson (1980) show that, if the λis are gamma distributed, then for p = 1/3, the transformed
variables Yi will be approximately normally distributed. Hawkins and Wixley (1986) propose
instead p = 1/4. In this paper, we follow the Optimal Power Normal Approximation Method
(OPNAM) method of Kulkarni and Powar (2010) who propose using p = 0.246 when α > 1.5
as is the case for Welch’s data. When we make the transformation Yi = λ0.246i we find that
the sample mean Y = 0.4712, the sample standard deviation σY = 4.40%, the skewness is -0.52
and the excess kurtosis is 1.67. A Kolmogorov-Smirnov test is unable to reject at a 5% level of
significance the null hypothesis that these transformed data are normally distributed.

Now denote by Yp the population mean of the transformed forecasts; Yp = E [λpi ]. By the
properties of a gamma distribution (see the appendix for a proof),

Yp = E [λ
p
i ] = E [λi]

p Γ (α+ p)

αpΓ (α)
= λpp

Γ (α+ p)

αpΓ (α)
(2)

To proceed from here, let gY (Yp) denote the pdf for the value of Yp that the investor can
construct conditional on the sample of transformed responses. Let ui = Yi−Yp be the difference
between expert i’s transformed response and the transformed population mean. Because of
the Gaussian nature of the Yis, we assume that the vector u with elements ui is multivariately
normally distributed with zero mean: u ∼ N (0,Σu) where 0 is an n−vector of 0s and Σu is the
variance-covariance matrix of the elements ui.
We then use the “Unknown Σ” method of Winkler (1981) to construct confidence intervals

for Yp. While we assume that the correlation between expert forecasts is known precisely (we
discuss this further below), the variance of their individual forecast errors, V ar [ui], cannot be
estimated perfectly. This is because the survey sample size of Welch is relatively small, leaving
imprecision in our volatility estimate. Winkler’s method relies on observing that when Σu is
unknown, the pdf of Yp, gY (Yp), is Student’s t−distributed with δ + n − 1 degrees of freedom
with mean m∗ and variance s∗

2

where:

m∗ =
1
′
Σ̂
−1
u Y

1′Σ̂
−1
u 1

, s∗
2

=
δ + (m∗

1−Y)′ Σ̂−1u (m∗
1−Y)

(δ + n− 3)1′Σ̂−1u 1
(3)

δ is a parameter of the Inverse Wishart distribution that is used to describe our Bayesian prior
belief about Σu, Σ̂u is the sample estimate of this variance-covariance matrix, Y is an n−vector
with elements Yi and 1 is an n−vector of 1s. In the appendix we discuss in detail how we
parameterize this model based on Welch’s sample data.
Conditional on Yp being Student’s t−distributed, it is now straightforward to construct Lx,

the lower x/2 quantile value for gY (Yp). Then, by reversing equation 2, the equivalent quantile
value for gp (λp), L∗x, is given by:

L∗x = (Lxα̂
pΓ (α̂) /Γ (α̂+ p))1/p (4)

where α̂ is the maximum likelihood estimator of α. This allows for the numerical construction
of gp (λp). In the appendix we describe the results of simulations that assess the accuracy of
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the combined use of the OPNAM method with Winkler’s technique for combining correlated
forecasts. We find that there is good precision in the estimates L∗x even with high levels of
correlation between expert forecasts.

3.2 Unbiased and independent expert forecasts

We begin by presenting results for the case when there are n independent and unbiased (ω = 0
so gp (λp) = gλ (λH)) forecasts of the H−period ex-ante equity premium, λH , each with identical
forecast error variance; V ar [ui] = σ2u for all i. This means that Σ̂−1u|ii = σ̂−2u and Σ̂−1u|ij = 0

for j 6= i, where Σ̂−1u|ij denotes the element in the i
th row and jth column of Σ̂−1u . Under

these assumptions, which are relaxed in the next two subsections, σ̂2u is estimated by the sample
variance of the transformed estimates, σ̂2Y .

6 Applying equation 3 is, in this case, straightforward
and, in Panel A of Table 1, we report the first four moments of gλ (λH) from the combined
application of the Winkler and OPNAM approaches.

[Insert Table 1 around here]

The first column, n = ∞, gives the case when there is no uncertainty over the equity pre-
mium and therefore λH = α̂/β̂ with certainty. The second column, ρ = 0, presents the case of
uncorrelated experts. The moments can be generated here directly from the empirical estimate
of gλ (λH). The presence of uncertainty has slightly increased the mean from 4.941% to 4.947%
and is further seen through the non-zero standard deviation. The skewness and excess kurtosis
remain close to zero as the number of degrees of freedom of the Student’s t−distribution, δ+n−1,
is over 140 in all cases. This distribution is, therefore, very similar to a normal distribution. We
will return to Panel B and the final four columns of Panel A below.

Now consider the future value of an equity portfolio in H = 30 years. In order to focus atten-
tion on the equity premium it is assumed that both rfH and Σe, the H ×H variance-covariance
matrix of stock market noise, et, over the interval [0, H], are known by the investor. The as-
sumption that Σe is known perfectly is common in this stream of literature (Blume 1974; Indro
and Lee 1997; Cooper 1998; Jacquier et al. 2003, 2005). It is considered reasonable as returns
volatility can, in principle, be estimated to within any required confidence interval provided that
historic data can be obtained with sufficiently high frequency and returns are i.i.n.d. Results
are based on rfH = 0 and 1′Σe1 = Hσ2e with σe = 16%, which is broadly consistent with the
observed annual volatility of major stock market indices. Results are generated by randomly
drawing across 10 million simulations independent values of λH , eH from their respective prob-
ability density functions and then calculating FV30 = exp (30 (λH + eH)) for each simulation.
We then calculate the mean value of FV30 across the simulations and also the 5th, 25th, 50th
(median), 75th and 95th quantile values. In Panel A of Table 2 we present equivalent annual
rates of return, R30 = 30−1 ln (FV30), for each of these statistics.

[Insert Table 2 around here]

The first column, n = ∞, presents the case when there is no uncertainty over the equity
premium. In this case FV30 is lognormally distributed and so the mean value and quantiles

6 It is, in general, necessary to distinguish between the observed cross-sectional variance of the transformed
sample data, σ2

Y
, and the variance of ui, σ2u, which reflects the accuarcy of an individual forecast. For example,

if all experts make identical, but equally incorrect, forecasts then σ2
Y
= 0 (all forecasts are the same) but σ2u > 0

(all experts are in error). See Freeman and Groom (In Press) and the appendix to this paper for more detailed
discussions of this point.
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can be calculated directly from the associated normal distribution. The uncertainty over future
values is clear with the 90% confidence interval being [0.136%, 9.746%]. Even the 50% confidence
interval is wide at [2.971%, 6.911%]. This, of course, understates true uncertainty as the volatility
and risk-free rate processes are assumed here to be known with certainty.

The second column, ρ = 0, presents the equivalent statistics based on independent and
unbiased experts using Welch’s data. Our central finding is that the results are highly similar
to the n = ∞ case, although again there is a slight increase in the mean value from 6.221% to
6.231%. Given the practical difficulties associated with accurately estimating the ex-post stock
market noise process, 1′Σe1, these differences seem to be of little economic importance. The
statistical rationale underlying these results is clear. The standard deviation of survey data
on the equity premium is low; 1.77% in the case of Welch’s 2009 questionnaire. The central
limit theorem implies that, when n = 131, the standard error associated with the mean of
the distribution is only 15 basis points. If we were to use historic i.i.n.d. market returns with
standard deviation of 16% per year then we would need over 10,000 years of data to achieve
similar precision. Uncertainty over the true value of the equity premium, λH , is swamped by
the ex-post stock market noise, eH .

3.3 Non-independent expert forecasts

Most financial economists read the same academic papers, textbooks and newspapers and live
within the same professional environment. There are also a number of psychological and incentive-
driven reasons why an individual expert may prefer not to be too far out of line with the overall
consensus. It is, therefore, highly likely that any individual forecast will be influenced by the
opinions of other experts. As Graham (1996, pp.193—194) notes: “economists have a tendency
to ‘clump’ (make similar forecasts) ... (this) simply reveals the high positive correlation in econo-
mists’ predictions that occurs because they all study the same economic fundamentals and, given
similar training, are likely to interpret the inputs in a similar manner. Therefore, clumped fore-
casts are quite natural; as a result, it may be important to account for correlation when combining
more than one forecast”. Clemen and Winkler (1985, p.428) also note, in the context of selective
judgements from different experts: “The different sources might utilize some common data, share
common assumptions, or have access to some of each other’s opinions. We can represent such
redundance stochastically in terms of positive dependence among the information sources.”

This effect of herding, for both informational and non-informational reasons, has been well
documented in both the financial and macroeconomic literature; see, for example, Jegadeesh and
Kim (2010). Herding has also been observed in recent institutional market trading behaviour (e.g.
Singh 2013). If herding also influences equity premium forecasts then the information content
contained with n estimates is less than would be revealed by n truly independent forecasts.
Fernandez and del Campo (2010a) show that this is likely to be the case as approximately
20% (50%) of their respondents justify their answer by “historic data” (“reference to books or
articles”).

To model this, following Kotz and Adams (1964), we assume that the transformed estimates,
Yi, are exponentially correlated. If we rank these in ascending order, it is likely that those that
are closest together are most influenced by the same schools of thought. Therefore, if we use
i, j to denote the rank ordering of two estimates, we model the correlation Corr (Yi, Yj) = ρ|i−j|

for some constant ρ ∈ [0, 1). We continue to assume that the variance of the individual forecast
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error, V ar [ui] = σ2u, is the same for all experts. In this case Freeman and Groom (In Press)
prove that:7

Σ̂
−1
u = κσ̂−2Y




a b 0 ... 0
b c b ... 0
0 b c ... 0
...

...
...

. . .
...

0 0 0 ... a




(5)

a =
1

1− ρ2 , b =
−ρ
1− ρ2 , c =

1 + ρ2

1− ρ2 , κ =
n2 (1− ρ)2 − n

(
1− ρ2

)
+ 2ρ (1− ρn)

n (n− 1) (1− ρ)2

and this can be used in equation 3 as before. The mean is now affected by ρ with:

m∗ = Y +
(n− 2) ρ

n− (n− 2) ρ
(
Y − YR

)
(6)

where YR = (n− 2)−1
∑n−1

i=2 Yi, which is the mean of the transformed forecasts after ignoring the

highest and lowest responses. This means that for ρ 6= 0, m∗ T Y if YR S Y , with the inequality
getting stronger for larger values of ρ. In the case of Welch’s data YR = 0.4715 > 0.4712 = Y ,
resulting in a mean estimate of λH that decreases with increased ρ. This can be seen in the final
four columns of Panel A of Table 1. Results are presented for the first four moments of gλ (λH)
at a horizon H = 30 years based on ρ ∈ {0.25, 0.5, 0.75, 0.9}. These can be broadly interpreted
as equivalent to cases where a survey had been run with N ∈ {79, 44, 19, 7} independent and
unbiased experts respectively.8 As might be expected, the greater the correlation between ex-
perts, the less sure the investor is about the true value of λH . Therefore as ρ increases, so the
standard deviation, skewness and excess kurtosis of gp (λp) all rise. However, these effects are
relatively minor in terms of economic significance.

The final four columns of Panel A of Table 2 present the mean and five quantile values of
R30 when expert opinion is correlated. Again, the results do not differ greatly from the n =∞
case. Even when ρ = 0.9, the mean estimate has only fallen from 6.22% to 6.17% while the 90%
confidence interval widens from 9.61% to 9.69% compared to n =∞.

3.4 Biased expert forecasts

An additional complication arises from the fact that the population of experts may have a biased
forecast of the true ex-ante equity premium; λp = λH + ω for ω 6= 0.
Panel B of Table 1 reports the first four moment of gλ (λH) when the distribution of the

population mean is independent of the bias and ω ∼ N
(
µω, σ

2
ω

)
. For illustration purposes

we set µω = −1%, σω = 1% which assumes that analysts have an expected negative bias
in estimating the equity premium, possibly as a result of placing too much weight on recent
evidence of a declining cost of equity capital. A standard deviation of σω = 1% implies that the

7 The term σ̂2u = σ̂2Y /κ is the estimated variance of each transformed forecast error. However, it is σ
2
Y
that

is observed and not σ2u, and this is reflected in this formula. When ρ = 0, σ̂2Y = σ̂2u, but this is not true more
generally. See also footnote 6 and the appendix.
8 See Freeman and Groom (In Press) for a discussion on how N is calculated. This is based on the assumption

that Σu is known rather than estimated with error and we do not alter that analysis here. We make this
simplification because N is an indicative number only and is not used in further calculations.
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95% confidence interval for the true value of the bias is approximately 4% in spread which we
subjectively interpret as being reasonably high uncertainty. The first column, n = ∞, presents
the case when there is no uncertainty over the population mean survey response. In contrast
to Panel A the standard deviation of gλ (λH) is no longer zero but is instead equal to σω. The
influence of the bias remains irrespective of how many experts we ask. However, since ω is
normally distributed, there is no skewness or excess kurtosis in gλ (λH). The second column
gives the results for ρ = 0. The first four moments can be derived directly from Panel A and
the first two moments of ω.9 All four moments remain very similar to the n =∞ case, although
again there is a small increase in the mean estimate from 5.941% to 5.947%. This implies that
the effects of the bias dominate the uncertainty over the population mean of opinions on the value
of the ex-ante equity premium. When experts are non-independent as well as biased, as given in
the final four columns of this panel, results remain similar to the n =∞ case. The increases in
standard deviation, skewness and kurtosis caused by correlated forecasts are substantially lower
than in the corresponding cases given in Panel A.
Panel A of Table 3 can be interpreted in the same way as Panel A of Table 2 but now

there is a bias in the sample responses. For n = 131 we again run 10 million simulations and
take independent values of λp, eH and ω from their respective distributions to estimate the
probability density function of FVH . In the n = ∞ case the mean response is substantially
above the equivalent value given in Table 2: 7.371% against 6.221%. There are two reasons for
this. First, the mean is shifted upwards by 1% to compensate for the expected bias. Second, the
uncertainty in the true level of the bias introduces an Itô effect in the mean, again pushing it up
by approximately 0.5Hσ2ω = 0.15%. For the other columns the results are similar to Panel A of
Table 2 when compared against the n = ∞ baseline. There is a small increase in the mean for
ρ = 0 compared to n =∞ (7.383% against 7.371%), but the mean then decreases with increasing
ρ. There is also some widening of the 90% confidence interval as ρ increases, but these effects
do not seem to be of great practical significance. Therefore, in the case of biased forecasts,
understanding the properties of the bias is more important than the nature of the correlation
structure.

4 The unbiased and MLSE estimators of future value

4.1 The method

To calculate unbiased and MLSE estimates of FVH , we adapt the technique of Jacquier et al.
(2003, 2005). We take an average of the n estimates given in the sample, λ = n−1

∑n
i=1 λi, and

choose adjustment factors A1 and A2 as follows:

E
[
exp

(
H
(
λ−A1

))
− exp (HλH)

]
= 0 Unbiasedness

min
A2

E
[(
exp

(
H
(
λ−A2

))
− exp (HλH)

)2]
MLSE (7)

This leads to:

A1 =
ln (I1)

H
− λH (8)

A2 =
1

H
ln

(
I2
I1

)
− λH

9 When x and y are independent, σ2
(x+y)

= σ2x + σ2y , skew (x+ y) =
(
σ3xskewx + σ3yskewy

)
/σ3x+y and

kurt (x+ y) =
(
σ4xkurtx + σ4ykurty

)
/σ4x+y .
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where I1 = E
(
exp(Hλ)

)
and I2 = E

(
exp

(
2Hλ

))
.10

Following Kan and Zhou (2009), the adjustor A1 can also be used to construct the un-
biased estimator of the qth quantile of future wealth, FVq. If λH were known then FVq =
exp

(
λHH + zq

√
1′Σe1

)
, where zq is the qth quantile of a standard normal distribution. If we

replace λH with the sample mean minus the adjustor, λ−A1, then

E
[
exp

(
(λ−A1)H + zq

√
1′Σe1

)
− FVq

]
= 0 (9)

which is again unbiased. It is straightforward to extend this argument to show that A2 is also
the MLSE adjustor for the qth quantile.
Notice that the problem is now different to that presented in the previous section. Here the

analysis centers on understanding the properties of the sample mean of a survey drawn from a
known probability density function, while in the previous section we analyzed the probability
density function of the population mean contingent on survey responses. For a normal distri-
bution the pdf of the population mean around the sample mean is the same as the pdf of the
sample mean around the population mean. This symmetry, though, does not hold more gener-
ally. For this reason, we will need to use an entirely different set of techniques in this section to
the previous one.

Our contribution in this section is to extend this framework to gamma distributed survey
responses. The adjustors A1 and A2 in equation 8 are of the form E[exp

(
Hλ
)
] and E[exp

(
2Hλ

)
].

These expressions are Hth and 2Hth moment generating functions of the probability density
function of λ. One of the main analytical conveniences of the gamma distribution is that its
mgfs are well known so that if conditions arise where the sample mean is also gamma distributed,
λ ∼ Γ (A,B), then:

E[exp
(
xλ
)
] =

(
1− x

B

)−A
, f(λ) = Γ (A,B) , −∞ < x < B (10)

This equation can be used in conjunction with equation 8 to calculate A1 and A2 subject to the
respective regularity conditions B > H and B > 2H when λ ∼ Γ (A,B):

A1 = −
A

H
ln

(
1− H

B

)
− λH (11)

A2 = −
A

H
ln

(
1− H

B −H

)
− λH

4.2 Unbiased and independent expert forecasts

In the case of independent expert forecasts λ = n−1
∑n

i=1
λi is a constant multiplied by the

sum of independently and identically gamma distributed random variables. This means that λ
is also gamma distributed, λ ∼ Γ (nα, nβ). Substituting A = nα and B = nβ into equation 11
gives the MLSE and unbiased adjustors. While the true parameter values, α, β are unknown,
for practical purposes we recommend replacing them with their maximum likelihood estimates,
α̂, β̂ and setting λH = α̂/β̂.
Panels B and C of Table 2 give the equivalent annual rates of return, R30 = 30−1 ln (FV30), for

the unbiased and estimated future value and 5%, 25%, 50%, 75% and 95% quantile values. The

10 Notice that, if the survey data were unbiased, uncorrelated and normally distributed, λi ∼ N(λH , σ
2
λ
), then

λ ∼ N
(
λH , σ

2
λ
/n
)
. In this case, I1 = exp

(
HλH + 0.5H2σ2

λ
/n
)
and I2 = exp

(
2HλH + 2H2σ2

λ
/n
)
. Given this

A1 = Hσ2
λ
/2n and A2 = 3Hσ2λ/2n. These results are reported in Jacquier et al. (2005).
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n =∞ case reflects the situation where there is no uncertainty about the true value of the equity
premium and therefore all statistics are identical across Panels A, B and C. For the independent
errors case, ρ = 0, all statistics are very similar to the equivalent statistics for n =∞ and their
equivalents in Panel A. This again is a consequence of the low standard deviation of the survey
responses and the large number of experts asked, effectively removing ‘all’ uncertainty about the
equity premium value. This contrasts with results presented in Blume (1974), Indro and Lee
(1997), Jacquier et al. (2003, 2005) and Kan and Zhou (2009), where the effects of uncertainty
over the true expected return derived from historic stock returns are of considerable economic
relevance.

4.3 Non-independent expert forecasts

Consider again the case of exponential correlation but now for the untransformed estimates;
Corr (λi, λj) = ρ

|i−j| for ordered survey responses i and j. Kotz and Adams (1964) show that
the sum of n observations drawn from this distribution is also approximately gamma distributed
with parameters Γ (an, βn)

αn =

[
n+

2ρ

1− ρ

(
n− 1− ρ

n

1− ρ

)]−1
n2α (12)

βn =
αn
nα
β

and therefore λ ∼ Γ (αn, nβn). Notice from the previous subsection (and equation 12 for the case
ρ = 0) that if we had instead asked N independent and unbiased experts then λ ∼ Γ (Nα,Nβ).
By equating these two expressions, this means that the equivalent number of independent ob-
servers is given by N = αn/α = nβn/β:

N =

[
n+

2ρ

1− ρ

(
n− 1− ρ

n

1− ρ

)]−1
n2 (13)

Setting ρ ∈ {0.25, 0.5, 0.75, 0.9} gives N ∈ {79, 44, 19, 7}. These are, to the nearest integer, the
same values as given in section 3.3.
Setting A = Nα̂ and B = Nβ̂ and substituting these values into equation 11 gives the new

adjustment parameters. The final four columns of Panels B and C of Table 2 show how this
correlation structure affects the equivalent annual rate of return for the unbiased and MLSE
estimators of the future value and quantile values. With high values of ρ there are some clear
differences against the n =∞ case with the median future value falling from 4.941% to 4.873%
(unbiased) and 4.731% (MLSE). The 90% confidence interval is constant at 9.610% across all
examples, which contrasts with the situation in Panel A where the confidence interval widens as
ρ grows larger.
An additional finding to note from the first rows of panels A, B and C of Table 2 is that as

we introduce uncertainty by moving from n = ∞ to ρ = 0, so the unbiased and MLSE future
values go down while the expected future value taken from the pdf goes up. The former finding
is consistent with Blume (1974), Indro and Lee (1997) and Jacquier et al. (2003, 2005) while the
latter is analogous to that of Gollier (2004). His results are based on the observation that, by
Jensen’s inequality, E [exp (r̃H)] > exp (E [r̃]H) when the cost of capital, r̃, is stochastic. This
again emphasizes the difference between taking an unbiasedness approach and a pdf approach.
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4.4 Biased expert forecasts

When expert forecasts are biased and potentially correlated, by the law of iterated expectations I1
and I2 are given by I1 = E

[
E
(
exp(Hλ)|ω

)]
and I2 = E

[
E
(
exp

(
2Hλ

))
|ω
]
. If λ ∼ Γ (Nα,Nβ)

we note that α = λ2p/σ
2
λ and β = λp/σ

2
λ, where σ

2
λ is the variance of the population estimates.

We will assume in this section that this is exactly equal to the sample variance. Then, as
λp = λH + ω, from equation 10:

E[exp
(
xλ
)
|ω] =

(
1− x

N (λH + ω) /σ2λ

)−N(λH+ω)2/σ2λ
, −∞ < x < Nβ (14)

Substituting this into equation 8 gives:

A1 =
1

H
ln

(
E

[(
1− H

N (λH + ω) /σ2λ

)−N((λH+ω)2/σ2λ)])
− λH (15)

A2 =
1

H
ln

(
E

[(
1− 2H

N (λH + ω) /σ2λ

)−N((λH+ω)2/σ2λ)])

− 1
H
ln

(
E

[(
1− H

N (λH + ω) /σ2λ

)−N((λH+ω)2/σ2λ)])
− λH

Panels B and C of Table 3 should be interpreted in the same way as the equivalent panels in
Table 2 but now there is a bias in the population estimate. Because λH is unobservable, we
replace it with λH = α̂/β̂ − µω for estimation purposes. For the case n =∞, the bias adjustors
A1 = µω + 0.5Hσ

2
ω and A2 = µω + 1.5Hσ

2
ω. This means that, in contrast to Table 2, the

statistics in the first column vary between panels. These differences are now of some economic
significance. For example, the median estimate is 5.941% under the probability density function
approach (Panel A), but 5.491% when taking an MLSE estimator (Panel C). Similar results are
seen when ρ = 0. As ρ increases so the differences between approach start to become of real
economic significance. For example, with ρ = 0.9, the pdf approach gives an expected future
value rate of 7.316% while the MLSE estimator is almost a full percentage point lower at 6.561%.
These convert into projected future values of FV30 = $8.98 and $7.16 respectively based on an
initial investment of FV0 =$1. Therefore, when there is both herding and bias in the forecasts,
it is important to be careful when handling the survey data.

4.5 An application to optimal asset allocation

We now follow Jacquier et al. (2005) by considering how uncertainty over the true value of the
equity premium might impact upon the optimal asset allocation for an investor with a power
utility function and an investment horizon of H. This investor must choose an optimal weight,
W , to place in the equity market portfolio with the remainder being placed in the risk-free asset.
Following Merton (1969) we assume that the future value of this mixed equity/Treasury portfolio
evolves in continuous time using a simple geometric Brownian motion process:

dFV/FV =
(
rf +W

(
λH + 0.5σ

2
e

))
dt+Wσedz (16)

Then, by Itô’s lemma:

d (lnFV ) =
(
rf +W

(
λH + 0.5σ

2
e

)
− 0.5W 2σ2e

)
dt+Wσedz (17)
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and integrating out and using the fact that FV0 = 1:11

ln (FVH) = HRH ∼ N
((
rf +WλH + 0.5W (1−W )σ2e

)
H,W 2σ2eH

)
(18)

By settingW = 1, it is clear that this process is consistent with the discrete time model described
above. The optimization is undertaken by maximizing

max
W

E [U(FVH)] = max
W

E

[
FV 1−γH − 1
1− γ

]
= max

W
E

[
exp ((1− γ)HRH)− 1

1− γ

]
(19)

where U (FVH) is the utility of final wealth and γ is the coefficient of relative risk aversion. When
γ = 1, this utility function takes logarithmic form, U (FVH) = ln (FVH). This optimization
problem for γ 6= 1 is equivalent to:

max
W

1

1− γ exp
(
0.5Hσ2e (1− γ) (W −W 2γ)

)
E [exp(HW (1− γ)λH)] (20)

Within the assumptions of this paper:

E [exp(HW (1− γ)λH)] = E [exp(HW (1− γ) (λp − ω))]
= E [exp(HW (1− γ)λp]E [exp(−HW (1− γ)ω] (21)

=

(
1− HW (1− γ)

Nβ

)−Nα
exp

(
−HW (1− γ)µω + 0.5H2W 2 (1− γ)2 σ2ω

)

resulting in the optimization problem:

max
W

1

1− γ exp
(
0.5σ2eH (1− γ) (W −W 2γ)−HW (1− γ)µω+ (22)

0.5H2W 2 (1− γ)2 σ2ω
)(
1− HW (1− γ)

Nβ

)−Nα

Figure 2 presents solutions to equation 22 for H ∈ [1, 50] based on γ = 4, µω = −1% and
σω = 1%. The “no bias or uncertainty” line assumes that λH = α̂/β̂ and therefore there is no
allowance for the mean of the bias, the uncertainty of the bias, or the uncertainty of the population

mean. This leads to W =
(
α̂/β̂ + 0.5σ2e

)
/γσ2e which is a result originally presented by Merton

(1969). This has the lowest initial weight in equity since it ignores the belief that experts are
systematically over-pessimistic in their views. The “no uncertainty” line sets λH = α̂/β̂−µω but
still does not adjust for uncertainty either over the true level of the bias or the population mean.
The “n =infinity” line allows for both µω and σω but not uncertainty in the population mean.
The closed form solution for the weight in equity is now:12

W =
α̂/β̂ − µω + 0.5σ2e
γσ2e −H (1− γ)σ2ω

(23)

Consistent with Jacquier et al. (2005) the optimal holding in equity declines with the investment
horizon.13 This is caused by uncertainty over the true value of the equity premium. The

11 As this utility function has constant relative risk aversion, the proportion invested in the risky asset is invariant
to the level of initial wealth.
12 The result of Jacquier et al. (2005) emerges when N =∞, µω = 0 and σ

2
ω = σ2e/T .

13 Although Tsai and Wu (In Press) find an inverted U-shaped weighting for equity with time to retirement in
a model with non-constant income growth and time-varying investment opportunities.
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“correlation= 0.9” line is based on numerical optimization of the full model, equation 22, with
N taken from equation 13 when ρ = 0.9. The increased uncertainty over the true value of the
equity premium again reduces the optimal holding in equity. At long time horizons, H = 50
years, the results are moderately sensitive to the choice of model. The “n =infinity” line, which
allows for uncertainty in the level of bias, recommends a holding in equity that is 9% lower than
the “no uncertainty” case; 61.5% against 70.5%. The complete model, which also allows for
uncertainty in the population mean, is a further 3% lower at 58.4%.

[Insert Figure 2 around here]

5 Designing equity premium surveys

Our empirical results allow us to make some recommendations for the future design of equity
premium surveys. Our key finding is that when experts are independent there is a striking
similarity between the results obtained either when using the population mean or the sample
mean even from a small survey. There seems to be little advantage to be gained from increasing
the sample size beyond 10—25 respondents if expert responses are independently drawn from the
same distribution. However, many surveys have very large samples; Fernandez and del Campo
(2010b) have over two thousand respondents, for example.

There appear to be two potential justifications for requiring such a large sample size. First,
we may believe that different opinions are drawn from the same distribution but with very
high levels of herding. Alternatively it is possible that there are separate “schools of thought”
on the equity premium. It may then be necessary to have a large sample to ensure that all
important opinions are solicited in a way that is broadly proportional to their influence in the
overall population. If this is the case, then we find it somewhat surprising that current research
tends to concentrate only on one particular sub-set of experts in the area; Graham and Harvey
(2010) on practitioners and Welch (2001 and updates) from academics, for example. This is
despite the fact that Fernandez and del Campo (2010b) show that academics, companies and
practitioners tend to give different average expert responses. Taking a more holistic approach to
sampling would appear more advantageous than increasing the sample size taken from a broadly
homogenous subpopulation.

A potential way to design the survey so as to address issues of non-independence and schools
of thought is to add a textual question that asks respondents to briefly explain how they arrived
at their answers. We then might reasonably hypothesize that cluster analysis would reveal a rela-
tionship between the numerical estimates and the textual responses. Fernandez and del Campo
(2010a), who ask the question “Books or articles that I use to support this number”, provide
graphical evidence that is consistent with this view. They find that those citing Damodaran
as a key influencing reference have a noticeably lower average equity premium than those using
Morningstar-Ibbotson. A detailed quantitative analysis of the relationship between the empirical
and written response would help enable the researcher to gain a more thorough understanding
of the nature of the correlation structure that underlies the survey data. In addition the re-
searcher could consider whether the textual responses represent all the main opinions on the
equity premium or whether important schools of thought might be missing from, or potentially
under-represented in, the sample of respondents. Finally, the textual responses may give the
researcher some view on how ‘expert’ each respondent is, with the potential to remove noise-
respondents on the basis of their reply.

While this textual question would help us better understand the relationship between the
sample mean and the population mean it would not provide any further understanding of the
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population bias. As the ex-ante equity premium is not even observable ex-post, the issue of
calibrating the bias does not obviously lend itself to direct empirical analysis. We see two possible
solutions to this. The first is a purely literature-based approach that would draw inferences from
existing studies on biases in macroeconomics and finance. The second is to ask a connected
question in an equity premium survey that could be empirically verified ex-post. While both
Graham and Harvey (2010) and Welch ask questions about short-term stock market movements,
the volatility of realized market returns is so great that identifying the true drift parameter over
such a short period of time is impossible. Given this, we would recommend a question about
a variable such as GDP growth which has a much lower standard deviation. Assuming there
is some correlation between over-optimism (-pessimism) with respect to short-term economic
variables and long-term financial ones, this may enable the researcher to understand something
of the properties of the equity premium bias.

6 Conclusion

Recent literature has presented the results of several surveys that ask a sample of experts for
forecasts of the forward looking equity premium. The summary statistics of these responses have
generated considerable interest. To our knowledge, though, no previous work has considered how
optimally to combine all the data contained in any one survey. This paper bridges this gap for
investors interested in investment management and optimal asset allocation problems.
We focus on two questions; what is the probability density function for the future value of an

equity index tracker fund and what are the unbiased and minimum least square error (MLSE)
estimates of the future value, and quantiles of the future value, of this fund? The first of these
questions revolves around understanding the density function of the true mean of a distribution
conditional on the given sample. The second, in contrast, involves understanding the density
function of the mean of a random sample drawn from the population.
Following Weitzman (2001) and others we argue that equity premium survey data are well

approximated by a gamma distribution. This allows us to use the numerical OPNAM technique
of Kulkarni and Powar (2010) to understand the probability density function of the future value.
In addition, we derive closed-form solutions for unbiased and MLSE estimates of future value,
and quantiles of future value, thus extending the work of Blume (1974), Indro and Lee (1997),
Jacquier et al. (2003, 2005) and Kan and Zhou (2009) when forecasts are unbiased. This is then
generalized numerically for cases when expert opinions are biased.
By applying these methods to questions of future value and optimal asset allocation our

central conclusion is that, unless the sample is small or expert opinions are highly correlated,
then uncertainty over the population mean of forecasts is of little practical significance. As a
consequence, if analysts are unbiased, working with the sample mean of the survey data alone is
sufficiently accurate in most instances. If analysts are biased then the sample mean should be
adjusted by the expected level of the bias but in most, if not all, cases further adjustments for
uncertainty over the level of bias are small. Given the forward-looking nature of equity premium
surveys and the low levels of uncertainty that they contain, we conclude that the benefits from
using surveys to address future value problems significantly outweigh their costs when compared
to techniques based on historical average returns.
We also make three recommendations for the future design of equity premium surveys.

Greater benefit can often be derived from drawing opinions from different groups of experts
rather than from increasing the sample size within a particular part of the population. A brief
textual question about how the respondents arrived at their answers may help the researcher
understand the nature of the inter-dependence between different expert opinions. Finally incor-
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porating a quantitative question about a verifiable short-term economic variable with low ex-post
noise may enable the researcher to draw inferences about the nature of equity premium forecast
biases.
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7 Appendix

In this appendix, we present further details of the Kulkarni and Powar (2010) OPNAM method
for estimating the density function of the mean of a gamma distribution conditional on a finite
sample, the Winkler (1981) method for combining correlated expert forecasts, and the application
of these two methods to the problem at hand. We also, by simulation, demonstrate the accuracy
of these two techniques.

7.1 Transforming the data

The OPNAM method relies on the fact that if the underlying data λi ∼ Γ (α, β) then Yi = λpi
will be approximately normally distributed for p = 0.246 provided that α > 1.5. The first
four moments of Yi are known in closed form – we derive the first two here and note that the
equivalent equations for skewness and kurtosis are given on page 437 of Kulkarni and Powar
(2010). The pdf of a gamma distribution is given by:

g (λi) ∼ Γ (a, β) =
βα

Γ (a)
λα−1i e−βλi (24)

So, the expectation of Yp = E [λ
p
i ] is given by

Yp =

∫ ∞

0

λpi
βα

Γ (a)
λα−1i e−βλidλi =

∫ ∞

0

βα

Γ (a)
λp+α−1i e−βλidλi (25)

=
Γ (a+ p)

βpΓ (a)

∫ ∞

0

βp+α

Γ (a+ p)
λp+α−1i e−βλidλi

The transformation in the last line is ‘trivial’ in the sense that it is just multiplying both the
numerator and denominator by βpΓ (a+ β) and then rearranging. The purpose of this trivial
transformation is to ensure that the term within the integral is identical to the probability density
function of a gamma distribution with parameters α + p and β. Clearly as this is the integral
over the whole support of well-defined pdf, it must equal one. Therefore:

Yp =
Γ (a+ p)

βpΓ (a)
=

(
α

β

)p
Γ (a+ p)

apΓ (a)
= E [λi]

p Γ (a+ p)

apΓ (a)
(26)

and this is equation 2 in the body of this paper.

The cross-sectional variance of the forecasts is given by σ2Y = E
[
λ2pi

]
−E2 [λpi ], which follows

directly from the preceding argument:

σ2Y =

(
1

βpΓ (α)

)2 [
Γ (α+ 2p)Γ (a)− Γ 2 (α+ p)

]
(27)

Similar expressions follow for the skewness and excess kurtosis and Kulkarni and Powar note
that these depend on α and p but not β. Therefore the choice of p depends on α only. For
α > 1.5, they select p = 0.246 so as to get the skewness and excess kurtosis jointly close to
zero. Their method is an approximation, though, and therefore the Yis are only approximately
normally distributed even if the λis are perfectly gamma distributed.
A key feature to notice is that this transformation from gamma to normal does not depend on

the generating process for the underlying λis. Therefore this applies equally well to correlated as
uncorrelated forecasts. To explicitly demonstrate this, we simulated correlated gamma distrib-
uted random variables as follows. First, using a Cholesky decomposition approach, we generate
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131 normally distributed N(0, 1) and exponentially correlated random variables. We then con-
vert these to correlated uniform random variables using the cumulative density function of the
standard normal distribution. Finally, we take an Inverse Gamma function to convert again into
correlated gamma distributed random variables, λi.14 We then construct the transformations
Yi = λ

0.246
i and calculate the first four moments of the transformed forecasts.

In Table A, we report our results. In Panel A we present information on the initial correlation
structure that is put into the Cholesky decomposition and the estimated correlations between
λi and λi+1 and Yi and Yi+1 across the simulations (where i = 50 is chosen at random for
illustrative purposes). This clearly demonstrates that the correlation structure remains almost
entirely unaffected by the transformations that we undertake – we discuss this point further
below. In Panel B we present the median values of the first four moments of the Yis across these
simulations, along with lower 2.5% and upper 97.5% simulated values. These are compared
against the theoretical values given above and in Kulkarni and Powar (2010).

[Include Table A around here]

For all values of ρ considered, the theoretical predictions lie within the 95% confidence interval
and close to the observed median values. This shows the robustness of the power transformation
to correlation in the experts’ forecasts.

7.2 Constructing confidence intervals for α/β

The purpose of using the OPNAM method is to construct confidence intervals, L∗x, for the
population mean (rather than survey mean), λp, of expert responses. To do this, we first construct
confidence intervals, Lx for the population mean, Yp (as given in equation 26) of the transformed
responses and then use equation 4 to construct L∗x. We do this using the “Unknown Σ” method
described in Winkler (1981). While we assume that the correlation between experts, ρ|i−j|, is
known perfectly, the sample cross-sectional variance of transformed forecasts, σ̂2Y , will differ from
the population cross-sectional variance of transformed forecasts, σ2Y . As Σu|ij = σ

2
Y ρ

|i−j|, this

introduces sampling error into our estimate Σ̂u.
To overcome this problem, following Winkler (1981), we form a Bayesian prior that the “true”

variance-covariance matrix is Inverse Wishart distributed with parameter value δ:

f
(
Σ|Σ̂, δ

)
∝
∣∣Σ−1

∣∣ δ+2n2 exp

(
−δ
2
tr
(
Σ
−1
Σ̂

))
(28)

where |·| is a matrix determinant and tr (·) is a matrix trace. In this case, as discussed in the
body of the paper, Yp is Student’s t−distributed conditional on the transformed sample data,
with δ+ n− 1 degrees of freedom and mean m∗ and variance s∗

2

, as given in equation 3. In the
case of exponential correlation, Σ̂−1u is given in equation 5 and, from here, the expressions for

14 As discussed in early footnotes, it is necessary to distinguish between the cross-sectional variation of responses,
σ2
Y
, and the variance of individual forecast errors, σ2u; σ

2
u = σ2

Y
/κ where κ = 1 when ρ = 0. To account for this

distinction, the Inverse Gamma function is calibrated to α∗ and β∗, where α∗ = ακ−1 and β∗ = βκ−1. The
formula for κ in the case of exponential correlation is given in equation 5. We discuss this distinction in more
detail below.
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m∗ and s∗
2

can be simplified by noting that:

1
′
Σ̂
−1
u 1 = κσ̂−2Y

n(1− ρ) + 2ρ
1 + ρ

, Y
′
Σ̂
−1
u 1 =κσ̂−2Y

nY − ρ (n− 2)YR
1 + ρ

Y
′
Σ̂Y =κσ̂−2u

nV + ρ2 (n− 2)VR − 2ρ (n− 1)Z
1− ρ2 (29)

V =
1

n

n∑

i=1

Y 2i , VR=
1

n− 2

n−1∑

i=2

Y 2i , Z=
1

n− 1

n−1∑

i=1

YiYi+1

Therefore the only complexity that arises when operationalizing equation 3 is identifying the
parameter δ.

7.3 Estimating δ

To estimate δ, we draw upon the commonly observed parallel between the Inverse Wishart dis-
tribution and the Inverse Gamma distribution. We start with the standard assumption that the
relationship between the cross-sectional sample variance and cross-sectional population variance

is given by a Chi-squared distribution with v − 1 degrees of freedom; (v − 1)
(
σ̂2Y /σ

2
Y

)
∼ χ2v−1.

We explain below how v is estimated. This means that:

σ̂2Y
σ2Y

∼ χ2v−1
v − 1 = Γ

(
v − 1
2
,
v − 1
2

)
(30)

which is a gamma distribution with both shape and rate parameters equal to (v − 1) /2. It then

follows that σ2Y ∼ Γ−1
(
v−1
2 ,

v−1
2 σ̂

2
Y

)
, where Γ−1 (·, ·) is an inverse gamma function and the

second parameter is now the scale parameter. Then, by the properties of the Inverse Gamma
distribution:

V ar
[
σ2Y
]
=

2(v − 1)σ̂2Y
(v − 3)2 (v − 5)

(31)

To link this to the Inverse Wishart distribution that forms the basis for the “Unknown Σ”
method of Winker, we note σ2Y = Σu|ii, and therefore the variance of this variable is given by
V ar

[
Σu|ii

]
. For an Inverse Wishart distribution, the relationship between the precision of our

estimate of Σu|ii and σ̂
2
Y is given by:

V ar
[
Σu|ii

]
=

2δσ̂2Y

(δ − 2)2 (δ − 4)
(32)

and by comparison of equations 31 and 32 it is clear that δ = v − 1.
To estimate v we take a numerical approach. We run 100,000 simulations for all ρ ∈

{0, 0.25, 0.5, 0.75, 0.9}. In each case, we draw 131 exponentially correlated Normal random error
terms ui ∼ N

(
0, σ2Y

)
, where for simulation purposes, σ2Y = σ̂

2
Y . For each simulation, s, we then

calculate the cross-sectional variance of the error term, σ̂2sY . We then take the maximum likeli-
hood estimator of (v − 1) /2, the shape parameter of the gamma distribution, across the 100,000
simulations.15 The values that emerge for v for ρ ∈ {0, 0.25, 0.5, 0.75, 0.9} are, to the nearest
integer, v = {131, 115, 81, 40, 17}. These results are reported in more detail in Table B. This
15 See, for example, Grice, J.V. and J.T.Bain, 1980, Inferences Concerning the Mean of the Gamma Distribution,
Journal of the American Statistical Association, Vol. 75, No. 372, pp. 929-933
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table also compares the first four moments of σ̂2Y /σ
2
Y against those of a Γ ((v − 1) /2, (v − 1) /2)

distribution.

[Include Table B around here]

7.4 Accuracy of the method

To demonstrate the accuracy of our joint use of the OPNAM method and Winkler’s “Unknown
Σ” technique for combining correlated forecasts, we run a further set of simulations. Within each
of 100,000 simulations, for each value of ρ ∈ {0, 0.25, 0.5, 0.75, 0.9} we draw 131 values of Yi from
an exponentially correlated normal distribution N (E[Yi], V ar [Yi]). As discussed above, both
E [Yi] and V ar [Yi] are known in closed form as functions of α, β. For simulation purposes, we
use the values of α and β that are empirically estimated from Welch’s data. For each simulation,
we use a combination of the Winkler (1981) “Unknown Σ” method described above with the
Kulkarni and Powar method to derive one-sided upper and lower 0.5%, 1%, 1.5%,..., 9.5% and
10% confidence intervals for α/β. We then count the proportion of simulations where the initial
value of α/β lies outside the estimated confidence interval. These results are reported in Table
C.

[Include Table C around here]

As can be see, in all cases there is very close agreement between the estimated confidence
level and the proportion of simulations where α/β lies outside the estimated confidence interval.
This demonstrates the robustness of the method that we use to correlation in the forecasts.

7.5 The correlation structure

Finally, we turn to the correlation structure and demonstrate again that there is close agreement
between the assumed correlation structure for the untransformed and transformed estimates (see
also Panel A of Table A above). For the case of ρ = 0.9, we simulate 131 correlated Yis using

the standard Cholesky decomposition approach and then construct values of λi = Y
1/0.246
i . We

repeat these simulations 10,000 times. In Figure 1 we present the correlation between λ1 and λj
for j ∈ [2, 131] across the 10,000 simulations. This is compared against Corr(Y1, Yj) and ρ|i−j|,
which is the theoretical value under exponential correlation.

[Include Figure A around here]

It is clear that the correlation structure of the λis is also very close to being exponentially
correlated with ρ = 0.9 even though we are modelling errors on the transformed values Yi.
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Table 1: The first four moments of the pdf of the equity premium

n =∞ ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9

Panel A: No bias
Mean 4.941% 4.947% 4.944% 4.937% 4.918% 4.865%
Standard Deviation 0.00% 0.17% 0.19% 0.22% 0.28% 0.37%
Skewness 0.000 0.075 0.088 0.103 0.128 0.176
Excess Kurtosis 0.000 0.012 0.015 0.027 0.042 0.069

Panel B: With bias
Mean 5.941% 5.947% 5.944% 5.937% 5.918% 5.865%
Standard Deviation 1.00% 1.01% 1.02% 1.03% 1.04% 1.07%
Skewness 0.000 0.001 0.001 0.000 0.004 0.008
Excess Kurtosis 0.000 0.000 -0.001 -0.002 -0.002 0.001

This table describes the first four moments of the pdf of the equity premium gλ(λH). The
horizon is 30 years. The model is calibrated using the 2009 updated data of Welch (2000) and
the assumption that experts are unbiased in Panel A and biased in Panel B with a mean bias
of -1% and a bias standard deviation of 1%. The risk-free rate is assumed to be 0% and ex-
post annual stock market volatility is 16%. The n = ∞ case is the situation where there is no
uncertainty over the population mean estimate of the ex-ante equity premium. The ρ = 0 case
presents results where there are n = 131 independent experts. The different values of ρ in the
other columns correspond to the degree of correlation between the experts’ forecast errors.
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Table 2: Mean and quantile estimates of future value returns at H = 30 years with
unbiased experts

n =∞ ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9

Panel A: From the probability density function
Mean 6.221% 6.231% 6.229% 6.227% 6.209% 6.165%
5% quantile 0.136% 0.133% 0.128% 0.116% 0.092% 0.021%
25% quantile 2.971% 2.975% 2.970% 2.964% 2.939% 2.877%
50% quantile (Median) 4.941% 4.947% 4.946% 4.938% 4.919% 4.864%
75% quantile 6.911% 6.921% 6.920% 6.916% 6.898% 6.850%
95% quantile 9.746% 9.759% 9.756% 9.757% 9.744% 9.709%

Panel B: Unbiased estimators
Expected Future Value 6.221% 6.217% 6.215% 6.210% 6.195% 6.153%
5% quantile 0.136% 0.132% 0.130% 0.125% 0.110% 0.068%
25% quantile 2.971% 2.967% 2.964% 2.959% 2.945% 2.902%
50% quantile (Median) 4.941% 4.937% 4.935% 4.930% 4.915% 4.873%
75% quantile 6.911% 6.908% 6.905% 6.900% 6.885% 6.843%
95% quantile 9.746% 9.742% 9.740% 9.735% 9.720% 9.678%

Panel C: MLSE estimators
Expected Future Value 6.221% 6.210% 6.202% 6.187% 6.142% 6.011%
5% quantile 0.136% 0.125% 0.117% 0.102% 0.057% -0.074%
25% quantile 2.971% 2.959% 2.952% 2.937% 2.892% 2.760%
50% quantile (Median) 4.941% 4.930% 4.922% 4.907% 4.862% 4.731%
75% quantile 6.911% 6.900% 6.892% 6.877% 6.832% 6.701%
95% quantile 9.746% 9.735% 9.727% 9.712% 9.667% 9.536%

This table presents information related to the mean, median and four other quantile future
value estimates, FV30, at an investment horizon of H = 30 years when expert opinions are
unbiased. The table presents equivalent annual rates of return, R30 = 30−1ln(FV30), for each
of the future values. Panel A presents estimates from the probability density function, Panel
B presents unbiased estimates and Panel C presents MLSE estimates. The n = ∞ case is the
situation where there is no uncertainty over the true value of the equity premium. The ρ = 0
case presents results where there are n = 131 independent and unbiased experts. The different
values of ρ in the other columns correspond to the degree of correlation between the experts’
forecast errors.
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Table 3: Mean and quantile estimates of future value returns at H = 30 years with
biased experts

n =∞ ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9

Panel A: From the probability density function
Mean 7.371% 7.383% 7.380% 7.374% 7.360% 7.316%
5% quantile 0.862% 0.863% 0.857% 0.846% 0.820% 0.750%
25% quantile 3.858% 3.862% 3.859% 3.850% 3.826% 3.767%
50% quantile (Median) 5.941% 5.949% 5.945% 5.937% 5.920% 5.865%
75% quantile 8.024% 8.033% 8.032% 8.025% 8.010% 7.963%
95% quantile 11.020% 11.034% 11.032% 11.029% 11.018% 10.981%

Panel B: Unbiased estimators
Expected Future Value 7.071% 7.067% 7.065% 7.060% 7.045% 7.002%
5% quantile 0.986% 0.983% 0.980% 0.975% 0.960% 0.917%
25% quantile 3.821% 3.817% 3.815% 3.809% 3.795% 3.752%
50% quantile (Median) 5.791% 5.787% 5.785% 5.780% 5.765% 5.722%
75% quantile 7.761% 7.758% 7.755% 7.750% 7.735% 7.693%
95% quantile 10.596% 10.592% 10.590% 10.585% 10.570% 10.527%

Panel C: MLSE estimators
Expected Future Value 6.771% 6.760% 6.752% 6.737% 6.692% 6.561%
5% quantile 0.686% 0.675% 0.667% 0.652% 0.607% 0.476%
25% quantile 3.521% 3.509% 3.502% 3.487% 3.442% 3.311%
50% quantile (Median) 5.491% 5.480% 5.472% 5.457% 5.412% 5.281%
75% quantile 7.461% 7.450% 7.443% 7.427% 7.382% 7.251%
95% quantile 10.296% 10.285% 10.277% 10.262% 10.217% 10.086%

This table is similar to Table 2, except now there is bias in the experts’ forecasts. The mean
value of the bias is -1% and the standard deviation of the bias is 1%. This means that, even in
the n =∞ case, uncertainty remains over the true value of the equity premium.
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Table A: The first four moments of the transformed forecasts, Yi

Panel A: The correlation structure
Input ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9
λi, λi+1 ρ = −0.0001 ρ = 0.2423 ρ = 0.4960 ρ = 0.7347 ρ = 0.8921
Yi, Yi+1 ρ = −0.0005 ρ = 0.2515 ρ = 0.5039 ρ = 0.7437 ρ = 0.8995

Panel B: The first four moments of the Yis
Theory Simulations

Mean 0.4711 0.4712 0.4711 0.4709 0.4710 0.4704
[0.4634, 0.4786] [0.4616, 0.4808] [0.4583, 0.4840] [0.4508, 0.4903] [0.4370, 0.5038]

Standard Deviation 0.0436 0.0435 0.0435 0.0434 0.0431 0.0422
[0.0383, 0.0488] [0.0380, 0.0492] [0.0370, 0.0506] [0.0343, 0.0539] [0.0299, 0.0601]

Skewness -0.0909 -0.0891 -0.0835 -0.0818 -0.0796 -0.0650
[-0.5154, 0.3237] [-0.5033, 0.3291] [-0.5404, 0.3613] [-0.6571, 0.4931] [-0.8153, 0.6391]

Excess Kurtosis -0.0040 -0.1103 -0.1137 -0.1439 -0.2102 -0.3662
[-0.6613, 0.9074] [-0.6600, 0.9285] [-0.6826, 0.9121] [-0.7985, 0.9090] [-1.0130, 0.9729]

We run 10,000 simulations. In each 131 correlated gamma distributed random variables, λi are generated. We then construct the
transformed variables Yi = λ

0.246
i and calculate the first four moments of Yi within each simulation. In Panel A we present the inputted

correlation into the simulations and the estimated values of Corr(λi, λi+1) and Corr(Yi, Yi+1) across the 10,000 simulations (where
i = 50 is chosen at random). This demonstrates the similarity between the correlation structure on the original and transformed
estimates. Panel B then presents the median values of these moments, together with lower 2.5% and upper 97.5% confidence intervals,
across the 10,000 simulations. The theoretical figures are constructed in closed form using equations either in this appendix or Kulkarni
and Powar (2010).
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Table B: Estimates of the degrees of freedom of the Chi-squared distribution

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9

Degrees of freedom
MLE estimate of v 131.54 116.83 80.98 39.66 16.94

Moments
Observed mean 1.0003 1.0004 1.0004 1.0005 1.0011
Theoretical mean 1.0000 1.0000 1.0000 1.0000 1.0000
Observed standard deviation 0.1239 0.1317 0.1590 0.2313 0.3709
Theoretical standard deviation 0.1238 0.1314 0.1581 0.2275 0.3542
Observed skewness 0.2483 0.2935 0.4146 0.6743 1.1395
Theoretical skewness 0.2476 0.2628 0.3163 0.4549 0.7084
Observed excess kurtosis 0.0969 0.1127 0.2490 0.7128 2.1294
Theoretical excess kurtosis 0.0919 0.1036 0.1500 0.3104 0.7528

For all values of ρ ∈ {0, 0.25, 0.5, 0.75, 0.9} we run 100,000 simulations. Within each, we generate 131 exponentially normally distributed
error terms ui ∼ N(0, σ2u), where the value of σ2u is chosen so that the expected cross-sectional variance is the same as that observed in
Welch’s data. We then calculate the ratio of the sample cross-sectional variance, σ̂2Y over the true value of σ

2
Y for each simulation. This

ratio is approximately gamma distributed. Panel B reports the estimated first four moments of the ratio against the theoretical values
as given by a gamma distribution based on the maximum likelihood estimator of the shape parameter. This is then used to estimate v,
where v − 1 is the degrees of freedom for the χ2-distribution, which is reported in Panel A.
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Table C: Examining the confidence intervals of gp(λp)

One-sided ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9
C.I. Above Below Above Below Above Below Above Below Above Below

0.50% 0.50% 0.46% 0.50% 0.46% 0.49% 0.45% 0.47% 0.44% 0.46% 0.45%
1.00% 0.99% 0.93% 0.97% 0.93% 0.96% 0.90% 0.95% 0.91% 0.93% 0.89%
1.50% 1.48% 1.39% 1.48% 1.40% 1.47% 1.39% 1.45% 1.37% 1.44% 1.37%
2.00% 1.98% 1.87% 1.96% 1.86% 1.95% 1.89% 1.93% 1.88% 1.92% 1.83%
2.50% 2.44% 2.38% 2.45% 2.36% 2.43% 2.33% 2.44% 2.35% 2.42% 2.32%
3.00% 2.95% 2.85% 2.95% 2.84% 2.95% 2.83% 2.90% 2.82% 2.94% 2.79%
3.50% 3.44% 3.35% 3.43% 3.35% 3.42% 3.33% 3.41% 3.31% 3.43% 3.26%
4.00% 3.95% 3.84% 3.94% 3.84% 3.93% 3.84% 3.92% 3.77% 3.95% 3.72%
4.50% 4.47% 4.31% 4.48% 4.31% 4.47% 4.29% 4.45% 4.24% 4.42% 4.22%
5.00% 4.98% 4.81% 4.99% 4.78% 4.97% 4.73% 4.94% 4.73% 4.91% 4.70%
5.50% 5.48% 5.27% 5.48% 5.27% 5.48% 5.25% 5.44% 5.20% 5.40% 5.20%
6.00% 5.97% 5.73% 5.95% 5.73% 5.95% 5.76% 5.94% 5.69% 5.87% 5.67%
6.50% 6.43% 6.20% 6.44% 6.22% 6.44% 6.20% 6.42% 6.19% 6.34% 6.15%
7.00% 6.92% 6.68% 6.90% 6.66% 6.93% 6.67% 6.91% 6.65% 6.83% 6.64%
7.50% 7.43% 7.20% 7.41% 7.19% 7.38% 7.15% 7.36% 7.13% 7.33% 7.15%
8.00% 7.92% 7.70% 7.90% 7.68% 7.85% 7.64% 7.85% 7.65% 7.82% 7.67%
8.50% 8.38% 8.18% 8.35% 8.16% 8.32% 8.14% 8.33% 8.16% 8.31% 8.19%
9.00% 8.85% 8.67% 8.85% 8.67% 8.83% 8.66% 8.80% 8.67% 8.79% 8.69%
9.50% 9.36% 9.16% 9.34% 9.16% 9.34% 9.16% 9.29% 9.15% 9.29% 9.19%
10.00% 9.82% 9.65% 9.83% 9.65% 9.84% 9.67% 9.80% 9.65% 9.79% 9.66%

For all values of ρ ∈ {0, 0.25, 0.5, 0.75, 0.9} we run 250,000 simulations. Within each, 131 exponentially correlated transformed estimates,
Yi ∼ N(E[Yi], σ

2[Yi]) are created, where both E[Yi] and σ2[Yi] are functions of α and β, as shown in this appendix. The OPNAM
method of Kulkarni and Powar (2010), and the “Unknown Σ” method of Winkler (1981) are then used to create 0.5%, 1%, 1.5%, ... ,
10% one-sided upper and lower confidence intervals (C.I.) for the value of α/β. The table presents the proportion of simulations where
the true value of α/β lies outside the estimated confidence interval.
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Figure 1: Q-Q plot of Welch’s 2009 data against a gamma distribution

This figure gives a Q-Q plot of Welch’s 2009 data against a gamma distribution with parameters
estimated by maximum likelihood based on the same data.
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Figure 2: Optimal asset allocation in equity

This figure gives the optimal asset allocation in equity based on γ = 4, µω = −1% and σω = 1%.
The “no bias or uncertainty” line treats the sample average as the true value of λH and the
optimal allocation in equity is given by Merton (1969). The “no uncertainty” line treats λH =
α/β−µω using the sample estimates of α and β. The “n = infinity” line assumes that λp = α/β
using the sample estimates of α and β but now allows for both the mean and uncertainty of the
bias. The full model is given by the “correlation =0.9” line, which allows for uncertainty in both
the population mean and the bias. This is based upon an exponential correlation structure with
ρ = 0.9.
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Figure A: The correlation between raw forecasts, Corr(λ1, λj)

From 131 exponentially correlated normally distributed random variables, Yi, we estimate the
correlation of λi = Y

1/0.246
i against λ1 = Y

1/0.246
1 for all i ∈ [2, 131] across 10, 000 simulations.

These correlations are then compared against the theoretical value ρ|i−1| and the correlation of
Yi with Y1. This graph is constructed with ρ = 0.9.


