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Abstract

The Coleman–Mandula (CM) theorem states that the Poincaré and internal symmetries of

a Minkowski spacetime quantum field theory cannot combine nontrivially in an extended sym-

metry group. We establish an analogous result for quantum field theory in curved spacetimes,

assuming local covariance, the timeslice property, a local dynamical form of Lorentz invari-

ance, and additivity. Unlike the CM theorem, our result is valid in dimensions n ≥ 2 and for

free or interacting theories. It is formulated for theories defined on a category of all globally

hyperbolic spacetimes equipped with a global coframe, on which the restricted Lorentz group

acts, and makes use of a general analysis of symmetries induced by the action of a group G

on the category of spacetimes. Such symmetries are shown to be canonically associated with

a cohomology class in the second degree nonabelian cohomology of G with coefficients in the

global gauge group of the theory. Our main result proves that the cohomology class is trivial

if G is the universal cover S of the restricted Lorentz group. Among other consequences, it

follows that the extended symmetry group is a direct product of the global gauge group and S ,

all fields transform in multiplets of S , fields of different spin do not mix under the extended

group, and the occurrence of noninteger spin is controlled by the centre of the global gauge

group. The general analysis is also applied to rigid scale covariance.

Dedicated to the memory of Rudolf Haag

1 Introduction

In the issue of Communications in Mathematical Physics dedicated to Rudolf Haag’s 80th birthday,

Brunetti, Fredenhagen and Verch [4] introduced locally covariant quantum field theory, a formu-

lation of QFT in curved spacetimes that is a far-reaching generalization of Haag’s framework of

local quantum physics [21] (also called algebraic QFT). Locally covariant QFTs are expressed as

functors from a category of spacetimes BkGrnd to a category of physical systems Phys. The mor-

phisms of BkGrnd correspond to embeddings of one spacetime as a subspacetime of another, while

the morphisms of Phys correspond to embeddings of one physical system as a subsystem of an-

other. A functor A : BkGrnd→ Phys therefore associates a physical system to every spacetime

and also specifies how each spacetime embedding gives an embedding of these physical systems.

Thus, A defines the theory on all spacetimes and incorporates the principle of locality from the
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start. Locally covariant QFT has proved to be a fruitful framework for the general analysis of

QFT in curved spacetime and has allowed various structural results or properties of flat space-

time QFT to be transferred to curved spacetimes (see [20] for a review). Examples include the

spin-statistics connection [41], the analysis of superselection sectors [5], Reeh–Schlieder and split

properties [38, 16], punctured Haag duality [37], and modular nuclearity [28]; one can also discuss

the question of whether a theory represents the same physics in all spacetimes [19]. These ideas

also play a central role in constructions of perturbative QFT in curved spacetimes [24, 25, 36].

The aim of this paper is to formulate and prove an analogue of the Coleman–Mandula (CM)

theorem [7] for locally covariant QFT on general parallelizable globally hyperbolic spacetimes of

dimension n ≥ 2. The CM theorem originated as part of an intensive effort in the 1960’s to un-

derstand whether the internal and Poincaré symmetries of a QFT in Minkowski space could be

combined (‘mixed’) in a larger symmetry group other than as a direct product. These investigations

led to a series of no-go theorems of increasing scope based on group theoretic grounds [30, 32, 27]

or, as with the CM result itself (and its generalizations to dimensions n > 4 [34]), on dynami-

cal considerations centred on the S-matrix. Later, supersymmetry offered a potential loophole to

these results, because fermionic charges interchange bosonic and fermionic fields and therefore

also change spin. One of Haag’s most highly cited papers was his joint work with Łopuszański and

Sohnius [22], in which they showed that the structure of the super Lie algebra in theories obey-

ing certain basic requirements is tightly constrained: in the massive case, for example, internal

and Poincaré symmetries commute and the fermionic charges must commute with translations and

transform as rank-1 spinors under the Lorentz group.

The CM theorem concerns a particular spacetime of high symmetry. For a generic spacetime

with trivial isometry group, it is obvious that the internal and geometric symmetries combine as

a direct product, and one might think that the CM theorem has nothing to say except for space-

times of high symmetry (see [8] for a recent CM analogue in de Sitter spacetime). However, the

viewpoint of locally covariant QFT suggests a different approach. Rather than focus on particular

spacetimes, we will prove a result (Theorem 11) that applies to the theory across all spacetimes,

and is expressed in terms of properties of the corresponding functor. We caution that our result

should not be viewed as a direct generalization of the CM theorem, but nonetheless maintain that

it is a natural analogue thereof in the context of locally covariant QFT. Theorem 11 shares with the

CM theorem an emphasis on dynamics, but its method of proof is quite different, and the statement

differs from the CM theorem in important respects: notably, it is valid in all spacetime dimensions

n≥ 2 and it is not assumed that the QFT in question is interacting – whereas there are well-known

free theories and two-dimensional models that evade CM. We comment more on these points below

after first explaining the main ideas of our approach.

It is necessary to recall two ways in which symmetry can be exhibited by a locally covariant

theory A : BkGrnd→ Phys. First, the spacetime symmetries of a spacetime M are just the au-

tomorphisms ψ : M →M in BkGrnd. Any such automorphism is mapped automatically to an

automorphism A(ψ) of the physical system A(M) of the theory on M , and for two such symme-

tries one has A(ψ)◦A(ϕ) =A(ψ ◦ϕ) by functoriality. In this way, the (generically trivial) group

Aut(M) of spacetime symmetries of M is represented in the automorphism group of A(M).
Second, the internal symmetries of the theory have a natural description. Any functor A has an

associated group, Aut(A), consisting of all natural isomorphisms of A to itself. In locally covari-

ant QFT, Aut(A) is the global gauge group of the theory [15]. It follows from the definition that

internal symmetries commute with spacetime symmetries. For this reason we will focus on their

combination with the Lorentz group.

In order to give the Lorentz group some purchase in curved spacetimes, Theorem 11 is formu-

lated for locally covariant theories defined on BkGrnd = FLoc, the category of all n-dimensional

globally hyperbolic spacetimes equipped with a global coframe e = (eµ)n−1
µ=0 for the metric g =

2



ηµνeµ ⊗ eν . Among other requirements, a FLoc-morphism ψ between spacetimes with frames

e and e′ obeys ψ∗e′µ = eµ (see section 2.1). The category FLoc provides a minimal setting for

general locally covariant theories and was introduced in order to discuss the spin-statistics connec-

tion [18, 17]; it has also found use in the perturbative programme [36]. For our purposes the key

point is that the restricted Lorentz group L0 acts on FLoc, by modifying the coframe as e 7→ Λe,

where (Λe)µ = Λ
µ

νeν . This group action leaves the metric and (time)-orientation unchanged, and

physical theories should be covariant with respect to it.

Lorentz covariance in this sense is neither an internal nor a spacetime symmetry (indeed, it

maps between backgrounds that are not generally linked by any morphism of FLoc). A similar

situation occurs for rigid scaling, which also acts on FLoc and the category Loc often used in

locally covariant QFT; not all theories display rigid scale covariance, but it is useful to be able to

distinguish and analyze those that do. We therefore make a systematic analysis of theories that are

covariant under a group action on BkGrnd (section 2) and illustrate it using rigid scaling (section 3)

before passing to the discussion of Lorentz symmetry and our main result (section 4).

The outline is as follows. Suppose a group G acts functorially on the category BkGrnd so

that g ∈ G maps any spacetime M to some gM and each morphism ψ : M → N to some
gψ : gM → gN , with the identity acting trivially and ghM = g(hM), ghψ = g(hψ). Given a

theory A : BkGrnd→ Phys, each element g ∈ G determines a new theory gA obtained by defining
gA(M) = A(gM) and gA(ψ) = A(gψ).1 We say that A is G-covariant if all these theories are

physically equivalent, meaning that there is a natural isomorphism between A and each gA. As will

be shown, these isomorphisms determine a group 2-cocycle of G with coefficients in the (poten-

tially nonabelian) gauge group Aut(A). It turns out (theorem 6) that this 2-cocycle is intrinsic to A;

any other system of isomorphisms between A and the gA results in a cohomologous 2-cocycle; in

other words the G-covariance determines a distinguished cohomology class [A]G ∈H2(G,Aut(A)).
Associated with this class is a canonical group extension E of G by Aut(A), under which the fields

of the theory transform in multiplets (theorem 8). A key question is whether such E-multiplets

might contain inequivalent submultiplets for the action of G that are mixed under the action of E.

This can be excluded (for irreducible G-multiplets) if E is simply a direct product E = Aut(A)×G,

which holds if [A]G is trivial (corollary 9).

Theorem 11 uses this general analysis to prove that any theory defined on FLoc obeying the

timeslice property, additivity and dynamical local Lorentz invariance is S -covariant with a trivial

2-cocycle, where S is the universal covering of the restricted Lorentz group. These conditions will

be described in detail later; the first two are standard and express the existence of dynamics and the

ability to build up the theory from subspacetimes (as expected for a theory of quantum fields). The

third uses relative Cauchy evolution [4], the dynamical response to perturbations in the background

structures, to express invariance with respect to local changes of frame. Theorem 11 is proved by an

explicit geometrical construction, using smooth deformations of the background frame to connect a

given framed spacetime M to ΛM , which differs from M only by a rigid Lorentz frame rotation.

The timeslice property induces an isomorphism between A(M) and A(ΛM) which depends on

the deformation only via its homotopy class (as a result of local dynamical Lorentz invariance)

so the covering group S enters in a manner reminiscent of Dirac’s belt trick. One then shows

these individual isomorphisms implement S -covariance with trivial 2-cocycle. As a consequence,

the extended group is a direct product E = Aut(A)×S , and all fields of the theory transform in

multiplets under true representations of S . Further, the possibility of noninteger spin can be related

to the structure of the centre of the global gauge group. Thus, a theory of observables alone, with

trivial global gauge group, can only admit integer spin; the same is true, for different reasons, of

any theory initially defined on the category Loc of globally hyperbolic spacetimes.

We have mentioned that Theorem 11 drops some crucial assumptions of the CM theorem. For

1 This action is written contravariantly, ghA= h(gA), to avoid a proliferation of inverses.
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example, the CM theorem requires interaction because some free Minkowski theories have sym-

metries that mix fields of different spin. Theorem 11 replaces this by the assumption that the theory

can be formulated in all spacetimes in a locally covariant fashion and that the symmetries under

discussion are present in general spacetimes. To illustrate the point, consider free scalar and Proca

fields φ and A with equal nonzero mass in n = 4 Minkowski space. The current jab = φ
↔

∂ a Ab is

conserved on-shell and generates a group action that mixes φ and A in a nonlocal fashion [29, §5].

However, this symmetry does not extend to curved spacetimes2 and so there is no contradiction

with Theorem 11: from a curved spacetime perspective, this higher spin symmetry is a quirk of

the vacuum representation of the Minkowski theory. Similar remarks apply to factorizing models

in n = 2 Minkowski space that evade the CM theorem [33]. Further comments and extensions are

discussed in section 5.

2 G-covariance

2.1 Motivating examples

Three categories of spacetimes will be needed: Loc, FLoc and SpinLoc. Loc is the category of

oriented globally hyperbolic spacetimes [4] with objects M = (M ,g,o, t) comprising a smooth

paracompact manifold M of fixed dimension n≥ 2 and at most finitely many components, a smooth

Lorentzian metric g on M with signature +− ·· ·−, and an orientation o and time-orientation t

represented as equivalence classes of nonvanishing n-forms or time-like 1-forms. It is required that

M be globally hyperbolic: every J+
M

(p)∩ J−
M

(q) is compact (p,q ∈M ) and there are no closed

timelike curves; equivalently M has Cauchy surfaces. Morphisms in Loc are smooth isometric

embeddings, preserving the orientation and time-orientation, and with causally convex image; thus

all causal relations between points in the image of a morphism are already present in its domain.

FLoc is the category of framed globally hyperbolic spacetimes,3 the objects of which are all

pairs M = (M ,e), where M is a smooth n-dimensional manifold with smooth global coframe

e = (eν)n−1
ν=0 such that

FL(M ,e) := (M ,ηµνeµ ⊗ eν , [e0∧·· ·∧ en−1], [e0])

defines an object of Loc. Here ηµνeµ ⊗ eν is the e-metric, where η = diag(+1,−1, . . . ,−1), [e0] is

the equivalence class of nonvanishing e-timelike covector fields containing e0, and [e0∧·· ·∧ en−1]
is the equivalence class of nonvanishing n-forms containing e0 ∧ ·· · ∧ en−1. Thus we form the

spacetime metric and (time-)orientation from the coframe and require the resulting structure to be

globally hyperbolic. A morphism ψ : (M ,e)→ (M ′,e′) in FLoc is determined by a smooth map

ψ : M →M ′ that induces a Loc-morphism FL(M ,e)→ FL(M
′,e′) and obeys ψ∗e′ = e. In this

way, FL is promoted to a functor FL : FLoc→ Loc.

Finally, SpinLoc is the category of globally hyperbolic spacetimes with spin structure, restrict-

ing to those for which the spin bundle is trivial (which includes all orientable globally hyperbolic

spacetimes in n = 4 dimensions [26]). Let S be the universal cover of the restricted Lorentz

group L0 = SO0(1,n− 1), with covering homomorphism π : S → L0. In brief,4 the objects

of SpinLoc are exactly those of FLoc, but a SpinLoc morphism from (M ,e) to (M ′,e′) is a

pair (ψ,Ξ) where the Loc-morphism ψ : FL(M ,e)→ FL(M
′,e′) and map Ξ ∈C∞(M ,S ) obey

ψ∗e′ = π(Ξ)e. Composition of morphisms is given by (ψ ′,Ξ′)◦(ψ,Ξ) = (ψ ′ ◦ψ,(ψ∗Ξ′)Ξ), where

((ψ∗Ξ′)Ξ)(p) = Ξ′(ψ(p))Ξ(p).

2Replacing ∂a by covariant derivatives, ∇a jab = −φRbcAc on-shell, for example; in general there is no conserved

rank-2 combination of φ and A and their derivatives.
3See [18, 17]; a related category appears in [12, Ch. 6].
4 The presentation here is streamlined and will be described in detail elsewhere [13].
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There is a functor FS : FLoc→ SpinLoc given by FS(M) = M, FS(ψ) = (ψ,1), and a func-

tor U : SpinLoc→ Loc given by U(M) = FL(M), U(ψ,Ξ) = ψ , with composition U ◦FS = FL.

Therefore any theory A on Loc induces theories A◦U on SpinLoc and A◦FL on FLoc, while any

theory B on SpinLoc (e.g., the Dirac field [39]) induces a theory B◦FS on FLoc.

The category FLoc has a number of advantages: it is an operationally motivated arena for curved

spacetime physics in which measurements are made with respect to a system of rods and clocks.

Unlike Loc, it admits theories of both integer and noninteger spin; unlike SpinLoc, the objects and

morphisms are given entirely in terms of observable structures.

All three categories admit physically relevant group actions:

Example 1. The multiplicative group R
+ acts on Loc by rigid metric scaling: for each λ ∈ R

+,

there is a functor R(λ ) : Loc→ Loc defined on objects by

R(λ )(M ,g,o, t) = (M ,λ 2g,o, t)

and so that R(λ )(ψ) has the same underlying map of manifolds as ψ for any morphism ψ of

Loc. The length of a curve in R(λ )(M) is λ times its length in M ; alternatively, one may think

of R(λ )(M) as a version of M in which the fundamental unit of length has been divided by λ .

Given a theory A : Loc→ Phys we obtain a new theory A ◦R(λ ) for each λ ∈ R
+; the theory

is (rigidly) scale covariant if all these theories are equivalent, i.e., naturally isomorphic functors

— see section 3 for a specific example. Of course scaling acts in similar ways on both FLoc and

SpinLoc.

Example 2. The Lorentz group L acts functorially on FLoc by T(Λ)(M ,e) = (M ,Λe), where

(Λe)µ = Λ
µ

νeν is the Lorentz-transformed coframe; the action of T(Λ) on morphisms is defined

so as to preserve the underlying map of manifolds. It is clear that T(Λ′Λ) = T(Λ′) ◦ T(Λ). In

the present paper we only consider the action of the restricted Lorentz group L0 (i.e., the identity

component of L ) for which FL(T(Λ)) is the identity; the discrete transformations will be discussed

elsewhere. A theory A : FLoc→ Phys is (rigidly) Lorentz covariant if A and ΛA := A ◦T(Λ) are

equivalent for all Λ ∈L0.

Example 3. The universal cover S of L0 acts on FLoc by means of T ◦ π . It also acts on

SpinLoc, by means of functors S (S) agreeing with (T ◦π)(S) on objects and giving S (S)(ψ,Ξ) =
(ψ,SΞS−1) on morphisms. All theories A : SpinLoc→ Phys are S -covariant via S: to each S ∈S

there is a natural isomorphism η(S) : A
.
→ SA with components η(S)M =A(idFL(M),S), as shown

by the calculation

η(S)M′A(ψ ,Ξ) =A(ψ,SΞ) =A(ψ,SΞS−1)A(idFL(M),S) =
SA(ψ,Ξ)ηM(S)

for any (ψ,Ξ) : M→M
′. The corresponding 2-cocycle is trivial (see below).

2.2 General analysis

The examples above motivate the study of the following situation. Let G be any group and suppose

there is a homomorphism T : G → Aut(C), where C is a category and Aut(C) is the group of

invertible functors from C to itself. Clearly T(g) has inverse T(g−1) and so every morphism of C is

contained in the image of each T(g). For brevity, we will often write the action of T(g) on objects

C and morphisms γ of C by gC := T(g)(C), and gγ := T(g)(γ).

Definition 4. A functor A : C→ C′ is G-covariant5 (via T) if all the functors gA = A ◦T(g) are

naturally isomorphic; any family η(g) : A
.
→ gA (g ∈G) of natural isomorphisms with η(1) = idA

is an implementation of the G-covariance.

5There is an unhappy collision of terminology: A is a covariant functor in the usual category theory sense; G-

covariance is an additional and somewhat different property.
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Here C′ is any category. It will be shown that all implementations of a G-covariance are equiv-

alent in the sense of nonabelian cohomology, and correspond to a uniquely determined element of

the second cohomology set H2(G,Aut(A)).
Let us briefly recall that if G and A are (not necessarily abelian) groups then a 2-cochain of G

with coefficients in A is a pair (ξ ,φ) consisting of maps ξ : G×G→ A and φ : G→Aut(A); (ξ ,φ)
is a 2-cocycle if

φ(g′)φ(g)φ(g′g)−1 = ad(ξ (g′,g)) (g′,g ∈ G), (1)

ξ (g′′,g′)ξ (g′′g′,g) = φ(g′′)(ξ (g′,g))ξ (g′′,g′g) (g′′,g′,g ∈ G) (2)

and the set of such 2-cocycles is denoted Z2(G,A). Two 2-cocycles (ξ ,φ),(ξ̃ , φ̃) ∈ Z2(G,A) are

cohomologous precisely if there is a map ζ : G→ A such that

φ̃(g) = ad(ζ (g))◦φ(g) and ξ̃ (g′,g) = ζ (g′)φ(g′)(ζ (g))ξ (g′,g)ζ (g′g)−1 (3)

for all g′,g ∈ G. The corresponding equivalence classes form the cohomology set H2(G,A), with

the class of the trivial 2-cocycle (1A, idA) as a distinguished element making H2(G,A) a pointed

set. Here 1A(g
′,g) = 1 ∈ A for all g′,g ∈ G. Cocycles of the form (1A,φ), where φ is (necessarily)

a homomorphism are called neutral, as are the corresponding cohomology classes. A 2-cocycle

(ξ ,φ) is normalized if φ(1) = 1 and ξ (g,1) = ξ (1,g) = 1 for all g ∈ G.

With these definitions established, our first result is:

Theorem 5. Any implementation η of a G-covariance of A : C→ C′ determines a normalized

2-cocycle (ξ ,φ) ∈ Z2(G,Aut(A)) given by

ξ (g′,g)g′gC
= η(g′)gCη(g)Cη(g′g)−1

C (g′,g ∈ G,C ∈ C) (4)

φ(g)(α)gC = η(g)CαCη(g)−1
C (α ∈ Aut(A),g ∈ G,C ∈ C). (5)

Proof. Eqs. (4) and (5) are easily seen to define automorphisms ξ (g′,g)C and φ(g)(α)C of A(C)
for every C ∈ C by the properties of T(g) described above. The rest of the proof is broken into

several calculations.

Naturality and automorphism properties of φ : Suppose that γ : C→C′. Then

A(gγ)φ(g)(α)gC = η(g)C′A(γ)αCη(g)−1
C = η(g)C′αC′A(γ)η(g)−1

C

= η(g)C′αC′η(g)−1
C′

A(gγ) = φ(g)(α)gC′A(gγ)

so each φ(g)(α) ∈ Aut(A). It is clear from (5) that φ(g)(αβ ) = φ(g)(α)φ(g)(β ) so φ : g→ φ(g)
is a map from G to Aut(Aut(A)).
Naturality of ξ (g′,g): This is proved by calculating, for arbitrary γ : C→C′,

ξ (g′,g)g′gC′
A(g′gγ) = η(g′)gC′η(g)C′η(g′g)−1

C′
A(g′gγ)

= η(g′)gC′η(g)C′A(γ)η(g′g)−1
C

= η(g′)gC′A(gγ)η(g)Cη(g′g)−1
C

=A(g′gγ)η(g′)gCη(g)Cη(g′g)−1
C

=A(g′gγ)ξ (g′,g)g′gC
.

Cocycle property: Normalization of φ is obvious from (5); ξ (g,1) = ξ (1,g) = 1 is immediate using

η(1) = idA. Let α ∈ Aut(A) and compute

ad(ξ (g′,g))(α)g′gC
= ξ (g′,g)g′gC

αg′gC
ξ (g′,g)−1

g′gC

= η(g′)gCη(g)Cη(g′g)−1
C αg′gC

η(g′g)Cη(g)−1
C η(g′)−1

gC

= φ(g′)(φ(g)(φ(g′g)−1(α)))g′gC

6



for any g′,g ∈ G and C ∈ C, so adξ (g′,g) = φ(g′)φ(g)φ(g′g)−1 as required by (1). Finally, let

g′′,g′,g ∈ G and C ∈ C be arbitrary, then

(ξ (g′′,g′)ξ (g′′g′,g))g′′g′gC
= η(g′′)g′gC

η(g′)gCη(g)Cη(g′′g′g)−1
C

= η(g′′)g′gC
ξ (g′,g)g′gC

η(g′′)−1
g′gC

ξ (g′′,g′g)g′′g′gC

= φ(g′′)(ξ (g′,g))g′′g′gC
ξ (g′′,g′g)g′′g′gC

so the cocycle condition (2) also holds. Thus (ξ ,φ) ∈ Z2(G,A).

For example, the 2-cocycle mentioned in Example 3 is trivial, because η(S′S)M =
A(idFL(SM),S

′)A(idFL(M),S) = η(S′)SMη(S)M, and η(S)MαM = αSMη(S)M by naturality of

α ∈ Aut(A) and the definition of η(S).
The 2-cocycle given by Theorem 5 is intrinsic to A.

Theorem 6. If A is G-covariant, the 2-cocycles of its implementations form a distinguished coho-

mology class [A]G ∈ H2(G,Aut(A)).

Proof. We show that all implementations induce cohomologous 2-cocycles, and all elements of the

corresponding cohomology class arise from implementations.

First, let g :7→ η(g) be an implementation, let ζ : G→ Aut(A) be any map and set η̃(g)C =
ζ (g)gCη(g)C. Then g 7→ η̃(g) also implements the G-covariance, and η and η̃ define cohomolo-

gous 2-cocycles. To see this, note that each η̃(g)C : A(C)→A(gC) is certainly an isomorphism. If

γ : C→C′ then

η̃(g)C′A(γ) = ζ (g)gC′η(g)C′A(γ) = ζ (g)gC′A(gγ)η(g)C =A(gγ)ζ (g)gCη(g)C

=A(gγ)η̃(g)C,

which establishes naturality, so g 7→ η̃(g) implements the G-covariance. The corresponding 2-

cocycle (ξ̃ , φ̃) is computed as follows:

φ̃(g)(α)gC = ζ (g)gCη(g)CαCη(g)−1
C ζ (g)−1

gC = (adζ (g))(φ(g)(α))gC,

while

ξ̃ (g′,g)g′gC
= ζ (g′)g′gC

η(g′)gCζ (g)gCη(g)Cη(g′g)−1
C ζ (g′g)−1

g′gC

= ζ (g′)g′gC
φ(g′)(ζ (g))g′gC

η(g′)gCη(g)Cη(g′g)−1
C ζ (g′g)−1

g′gC

= (ζ (g′)φ(g′)(ζ (g))ξ (g′,g)ζ (g′g)−1)g′gC
.

The conditions in (3) are met so the 2-cocycles are cohomologous.

To prove the result, we suppose that implementations η and η̃ have been given. If the mor-

phisms ζ (g)gC := η̃(g)Cη(g)−1
C form the components of an automorphism ζ (g) ∈Aut(A) for each

g, then the first part of the proof demonstrates that the implementations induce the same cohomol-

ogy class. As the maps ζ (g)gC are clearly isomorphisms it remains to check naturality: if γ :C→C′,

then

ζ (g)gC′A(gγ) = η̃(g)C′η(g)−1
C′

A(gγ) = η̃(g)C′A(γ)η(g)−1
C =A(gγ)η̃(g)Cη(g)−1

C

=A(gγ)ζ (g)gC,

which establishes naturality as every morphism is the image of T(g). Finally, if (ξ̃ , φ̃) ∼ (ξ ,φ)
then one has ζ : G→ Aut(A) obeying (3), whereupon η̃(g), defined using ζ as above, implements

the G-covariance with cocycle (ξ̃ , φ̃).
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If [A]G ∈ H2(G,Aut(A)) is trivial, then one may choose an implementation corresponding to

the trivial cocycle (1A, idA). In this case, one has

η(g)CαC = αgCη(g)C, η(g′g)C = η(g′)gCη(g)C, (g′,g ∈ G,C ∈ C). (6)

Returning to the general case, suppose A : C→ C′ is G-covariant and choose an implementa-

tion g 7→ η(g) with normalized 2-cocycle (ξ ,φ) ∈ Z2(G,Aut(A)). The 2-cocycle induces a group

extension of G by Aut(A), described by a short exact sequence of group homomorphisms

1→ Aut(A)→ E
q
→ G→ 1, (7)

where the extension E = Aut(A)×G as a set, and is equipped with the product

(a′,g′)(a,g) = (a′φ(g′)(a)ξ (g′,g),g′g) (8)

for which (1,1) is the identity. The unlabelled map Aut(A)→ E in (7) is a 7→ (a,1), and embeds

Aut(A) as a normal subgroup of E, while q(a,g) = g and realizes G as the quotient G∼= E/Aut(A).
See, e.g., [11, 1]. The group extension is determined by the cohomology class [A]G up to a suitable

equivalence of extensions. Some familiar cases arise as follows: the trivial cocycle gives the direct

product Aut(A)×G; a neutral cocycle (1,φ) gives the semidirect product Aut(A)⋊φ G; if Aut(A)
is abelian then (ξ ,1) gives a central extension.

A G-covariant theory is also covariant under the corresponding group extension, which almost

trivialises the cocycle (one might say that it is neutralised).

Theorem 7. If A : C→ C′ is G-covariant via T, then A is E-covariant via T ◦ q, with a neutral

cocycle in Z2(E,Aut(A)).

Proof (Sketch). The E-covariance is implemented by (α,g) 7→ ρ(α,g), where ρ(α,g)C =
αT(g)(C)η(g)C. The 2-cocycle is (1,ϕ), with ϕ(α,g) = adα ◦φ(g).

2.3 Multiplets of locally covariant fields for G-covariant theories

Consider a locally covariant QFT given as a functor A : BkGrnd→Alg, where BkGrnd is (Spin)Loc
or FLoc, and Alg is the category of unital ∗-algebras and unit-preserving ∗-monomorphisms. Let

D : BkGrnd→ Set be the functor assigning to each C ∈ BkGrnd the set of smooth complex-valued

compactly supported test functions on the underlying manifold of C, and to each morphism ψ ,

the corresponding push-forward D(ψ) = ψ∗. Let V be the forgetful functor V : Alg→ Set. By

definition, a locally covariant quantum field [41, 24, 4] is a natural transformation Φ : D
.
→ V◦A

and the set of all such fields Fld(A) forms a unital ∗-algebra in a natural way [14]: e.g., (µΦ+
νΨ)C( f ) = µΦC( f ) + νΨC( f ) and (ΦΨ)C( f ) = ΦC( f )ΨC( f ) (µ,ν ∈ C, f ∈ D(C)) define the

linear combination and product of Φ,Ψ ∈ Fld(A). The unit field is 1C( f ) = 1A(M) for all f ∈

D(C).6

An advantage of theories defined on FLoc is that one need only consider single-component

fields in Fld(A), whereas on (Spin)Loc one requires a different functor D for each tensorial field

type. For example, a Proca field theory on Loc describes a field smeared against test one-forms,

AM (ω), whereas the same theory pulled back to FLoc has available four single-component fields

Aµ , given by A
µ
(M ,e)

( f ) := AFL(M ,e)( f eµ). The same can be done for spinor fields on spacetimes in

SpinLoc, because the spin bundle is trivial. Fully worked out examples will be given elsewhere [13].

6Using Set allows for fields depending nonlinearly on the test function. Using the category of vector spaces instead,

one obtains a vector space (rather than ∗-algebra) of linear fields.
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Of course, it is then necessary to discern some structure on the fields, which provides a useful

application of G-covariance.

Now suppose that a group G acts functorially on BkGrnd, and that both A and D are G-

covariant. For simplicity we assume that G-covariance of D is implemented by a family ζ (g)
with trivial cocycle in Z2(G,Aut(D)), i.e.,

ζ (g′g)C = ζ (g′)gCζ (g)C, and ζ (g)CαC = αgCζ (g)C

for all g′,g ∈ G, α ∈ Aut(D) and C ∈ BkGrnd. In this situation, the fields in Fld(A) transform

under both G and Aut(A).

Theorem 8. Suppose A : BkGrnd→ Alg and D : BkGrnd→ Set are G-covariant and that the G-

covariance of A is implemented by η , with 2-cocycle (ξ ,φ), while that of D is implemented by

ζ , with trivial cocycle. Let Φ ∈ Fld(A). Then for each α ∈ Aut(A) there is a transformed field

α ·Φ ∈ Fld(A) defined by

(α ·Φ)C = V(αC)ΦC, (C ∈ BkGrnd) (9)

and for each g ∈ G there is a transformed field g∗Φ ∈ Fld(A) defined by

(g∗Φ)gCζ (g)C = V(η(g)C)ΦC, (C ∈ BkGrnd). (10)

One has 1AutA ·Φ = Φ = 1G ∗Φ for all Φ ∈ Fld(A). The following formulae hold for all α,β ∈
Aut(A), g′,g ∈ G and Φ ∈ Fld(A):

α · (β ·Φ) = (αβ ) ·Φ (11)

g∗ (α ·Φ) = φ(g)(α) · (g∗Φ) (12)

g′ ∗ (g∗Φ) = ξ (g′,g) ·
(
(g′g)∗Φ

)
. (13)

Fld(A) carries a true group action ρ of the group extension E of G by Aut(A) determined by (ξ ,φ),
given by ρ(α,g)Φ = α · (g∗Φ).

Proof. The statements concerning the action of Aut(A) are proved in [15, §3.2]. Turning to the

action of G, we note that (10) defines a transformed field because

V(A(gγ))(g∗Φ)gCζ (g)C = V(A(gγ)η(g)C)ΦC = V(η(g)C′A(γ))ΦC

= V(η(g)C′)ΦC′D(γ) = (g∗Φ)gC′ζ (g)C′D(γ)

= (g∗Φ)gC′D(gγ)ζ (g)C,

for all γ : C→C′ in BkGrnd. As the ζ (g) are isomorphisms, g∗Φ∈ Fld(A). To prove (12), suppose

g ∈ G and α ∈ Aut(A). Calculating

V(φ(g)(α)gC)(g∗Φ)gCζ (g)C = V(η(g)CαCη(g)−1
C η(g)C)ΦC = V(η(g)CαC)ΦC

= (g∗ (α ·Φ))gCζ (g)C,

we again strip off the isomorphism ζ (g)C to obtain the required result. Next,

V(ξ (g′,g)g′gC
)((g′g)∗Φ)g′gC

ζ (g′g)C = V(ξ (g′,g)g′gC
η(g′g)C)ΦC

= V(η(g′)gCη(g)C)ΦC

= V(η(g′)gC)(g∗Φ)gCζ (g)C

= (g′ ∗ (g∗Φ))g′gC
ζ (g′)gCζ (g)C

= (g′ ∗ (g∗Φ))g′gC
ζ (g′g)C,
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for g′,g ∈ G, using the fact that ζ induces a trivial cocycle.

The final statement follows from (12) and (13) by the calculation

ρ(α ′,g′)ρ(α,g)Φ = α ′ ·
(
g′ ∗ (α · (g∗Φ))

)
= α ′ ·φ(g′)(α) ·

(
g′ ∗ (g∗Φ)

)

=
(
α ′φ(g′)(α)ξ (g′,g)

)
·
(
(g′g)∗Φ

)
= ρ((α ′,g′)(α,g))Φ.

For example, the component fields of a Proca field transform in a vector representation of L0,

Λ ∗Aµ = (Λ−1)
µ

νAν . Thus they can be distinguished from the components of a Dirac spinor or

four independent scalars.

In general, Theorem 8 allows one to classify fields by the subrepresentations of ρ in which

they transform. A subspace of Fld(A) (or sometimes, a basis for it) carrying an indecomposable

subrepresentation of ρ will be called an E-multiplet, augmenting the description with attributes of

the subrepresentation (e.g., irreducibility) as appropriate. The same can be done for the actions

of Aut(A) and G (in the latter case, allowing generalized multiplier representations according to

(13)) and referring to Aut(A)- and G-multiplets respectively. One multiplet can be contained in

another, if the latter is reducible. Note also that if ζ (g) commutes with complex conjugation, then

the conjugate field Φ† to Φ ∈ Fld(A) defined by Φ
†
C( f ) = ΦC( f )∗ obeys g ∗Φ† = (g ∗Φ)† and

transforms in the complex conjugate representation of that in which Φ transforms. Thus, self-

adjoint fields transform in self-conjugate multiplets.

The general structure raises the possibility that distinct G-multiplets can be mixed within a

larger E-multiplet. This can be excluded in some circumstances:

Corollary 9. Under the hypotheses of Theorem 8, suppose additionally that [A]G ∈H2(G,Aut(A))
is trivial, so E = Aut(A)×G. Then no inequivalent irreducible nontrivial G-multiplets can be

mixed by the action of E.

Proof. Let (σi,Ui) (i = 1,2) be irreducible G-representations arising as G-multiplets, i.e., there

are linear injections ιi : Ui→ Fld(A) and surjections πi : Fld(A)→Ui so that πiρ(1,g) = σi(g)πi,

ρ(1,g)ιi = ιiσi(g), and πiιi = idUi
. If the multiplets mix, there is e ∈ E, which can be taken without

loss in the form e = (α,1), so that Q = π1ρ(e)ι2 and R = π2ρ(e)ι1 are not both zero. We assume

R 6= 0 without loss, and calculate σ1(g)Q = Qσ2(g) and Rσ1(g) = σ2(g)R, so ImQ and kerR carry

subrepresentations of σ1, while kerQ and ImR carry subrepresentations of σ2. By irreducibility of

σi, R has trivial kernel and cokernel; hence it is an isomorphism giving σ1 ≃ σ2, contradicting the

hypothesis.

Our analysis has been purely algebraic. We comment further on this in section 5; here we

mention that, while there are discontinuous finite dimensional representations of many groups in-

cluding R
+ and SL(2,C), there are also various ‘automatic continuity’ results. For example, all

locally bounded finite-dimensional representations of SL(2,C) are continuous in the Lie group

topology [40].

3 Scaling

As a first illustration we consider the theory of a massless free field with general curvature coupling.

The field equation (✷+ξ R)φ = 0 is invariant under rigid scaling of the metric; we will show that

this induces a R
+-covariance via the group action on Loc of Example 1, and that the local Wick

powers transform in nontrivial multiplets. We work in n = 4 dimensions with h̄ = c = 1, so φ has

dimensions of inverse length. For brevity, we write R(λ )(M) = λM .
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Construction of the theory The locally covariant description of the QFT is a functor W : Loc→
Alg, where each W(M) is the extended algebra of Wick polynomials [24], thereby including the

local Wick powers in Fld(W).
Some preliminaries are required: for each M ∈ Loc, set PM =✷M +ξ RM and let E +/−

M
be the

corresponding retarded/advanced Green operators obeying PME±
M

f = f , suppE±
M

f ⊂ J±
M

(supp f ),
writing also

EM ( f ,g) =
∫

M

f (p)
(
[E−

M
−E+

M
]g
)
(p)dvolM (p).

Further, choose a PM -bisolution WM ∈D′(M ×M) obeying

• reality conditions, WM ( f ,g) =WM (g, f )

• a commutator condition, WM ( f ,g)−WM (g, f ) = iEM ( f ,g)

• a wavefront set constraint, WF(WM )⊂ V+(M)×V−(M),

where V+/−(M) are the closures of the bundles of future/past-pointing causal covectors on M .

Given these definitions, the unital ∗-algebra W(M) can be presented in terms of its generators

and relations (we will be brief, and refer the reader to e.g. [24, 6] for details). There is a unit 1, and

the other generators are symbols :Φ⊗k:M (u), labelled by k ∈ N and

u ∈ T
(k)(M) :=

{
u ∈ E

′
sym(M

×k) : WF(u)∩
(
V+(M)×k∪V−(M)×k

)
= /0

}

so that u 7→ :Φ⊗k:M (u) is linear. Here ‘sym’ denotes the symmetric subspace and E(X) is the

space of smooth densities on X , while D(X) are smooth compactly supported functions, so D(X)
is canonically included in E′(X) without specifying a volume element. The symbols and their

adjoints obey relations that are conveniently expressed in terms of a formal power series

GM [ f ] = 1+
∞

∑
k=1

ik

k!
:Φ⊗k:M ( f⊗k), ( f ∈ T

(1)(M))

with coefficients in W(M). Writing the W(M)-product as ⋆M , the relations are:

• hermiticity, GM [ f ] = GM [− f ]∗

• field equation, GM [PM f ] = GM [0]

• Wick’s formula, GM [ f ]⋆M GM [g] = GM [ f +g]e−WM ( f ,g),

understood as identities between formal Taylor coefficients about f = 0 (or f = g = 0 for Wick’s

formula) under the rule :Φ⊗k:M (u) = i−k〈δ kGM/δ f k| f=0,u〉, which are furthermore required to

remain valid under linearity and taking limits in T(•)(M) with respect to a suitable topology (or

pseudo-topology) – see [9] and [36, §4.4.2] for a discussion of various possible choices.

This completes the description of the extended algebra W(M) (by contrast, the unextended

algebra is the unital ∗-subalgebra A(M) generated by ΦM ( f ) := :Φ:M ( f ), for f ∈D(M)). For

completeness, however, we spell out the relations in more detail. Hermiticity asserts :Φ⊗k:M (u) =
:Φ⊗k:M (u)∗ for all u ∈ T(k)(M),7 while Wick’s formula corresponds to the relations

:Φ⊗k:M (u)⋆M :Φ⊗ℓ:M (v) = (−i)k+ℓ

〈
δ k

δ f k
⊗

δ ℓ

δgℓ
GM [ f +g] e−WM ( f ,g)

∣∣∣
f ,g=0

,u⊗ v

〉

=
min{k,ℓ}

∑
j=0

:Φ⊗(k+ℓ−2 j):M (u⊗ j v)

7Here we use 〈δ kH [ f ]∗/δ f k,u〉= 〈δ kH [ f ]/δ f
k
,u〉∗.
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for all u ∈ T(k)(M), v ∈ T(ℓ)(M). Here, u⊗ j v is the symmetrized j-times WM -contracted ten-

sor product given by u⊗ j v = j!
(

k
j

)(ℓ
j

)
Sym(w), where w ∈ E′(M×(k+ℓ−2 j)) is defined by w( f ⊗

g) = (W
⊗ j
M

vg)(u f ) for f ∈ E(M×(k− j)), g ∈ E(M×(ℓ− j)), regarding W
⊗ j
M

as a map T( j)(M)→

D′(M× j) and denoting u f (·) = u( f ⊗·) ∈ T( j)(M), vg(·) = v(g⊗·) ∈ T( j)(M). The microlocal

conditions on WM and T(•)(M) ensure that all this is well-defined. Lastly, combining the field

equation with Wick’s formula gives GM [ f +PMh] = GM [ f ] and therefore, taking one functional

derivative in h and the rest in f , yields the relations :Φ⊗(k+1):M (w) = 0 for any w in the closure

of span{Sym(u⊗PMv) : u ∈ T(k)(M), v ∈ T(1)(M)} ⊂ T(k+1)(M) for k ∈ N0 (T(0)(M) = C

by convention). The generating function evidently provides a very compact formulation of these

relations and permits efficient computation with them.

Returning to the definition of W as a functor, to each morphism ψ : M →N in Loc, there is a

corresponding W(ψ) : W(M)→W(N) which acts on generators by

W(ψ)GM [ f ] = GN [ψ∗ f ]e(WM ( f , f )−WN (ψ∗ f ,ψ∗ f ))/2 (14)

and extends to an Alg-morphism (cf. [24, §3]) ultimately because PNψ∗ f = ψ∗PM f for f ∈
T(1)(M). Although W depends on the choice of WM ’s, different choices result in equivalent

theories. For our purposes we assume without loss that WλM ( f ,g) = λ 6WM ( f , f ′) for all f , f ′ ∈
D(M), λ ∈ R

+. (This is consistent with the commutator condition because ✷λM = λ−2
✷M and

dvolλM = λ 4dvolM , giving E±
λM

f = λ 2E±
M

f and E±
λM

( f , f ′) = λ 6E±
M

( f , f ′).)

Covariance under rigid scaling We now show that W is R
+-covariant under rigid scaling, for

any ξ ∈R, by exhibiting natural isomorphisms η(λ ) :W
.
→ λW for each λ ∈R+, with components

defined as

η(λ )M :Φ⊗k
M

:(u) = λ−3k:Φ⊗k
λM :(u), (u ∈ T

(k)(M), M ∈ Loc).

Equivalently, η(λ )MGM [ f ] = GλM [λ−3 f ], in which form compatibility with the relations may be

verified easily. Hollands and Wald studied these maps in [24, §4.3] (notation differs) and showed

that they are Alg-isomorphisms. Naturality was not proved in [24] but is easily checked: if ψ :

M →N then

η(λ )NW(ψ)GM [ f ] = η(λ )N

(
GN [ψ∗ f ]e(WM ( f , f )−WN (ψ∗ f ,ψ∗ f ))/2

)

= GλN [λ−3ψ∗ f ]e(WM ( f , f )−WN (ψ∗ f ,ψ∗ f ))/2

=W(λ ψ)η(λ )MGM [ f ],

using WλM = λ 6WM . This proves that W is R+-covariant. It is clear that η(λ ′λ )M =η(λ ′)λMη(λ )M ,

so the corresponding 2-cocycle takes the form (id,φ) where φ : R+→Aut(Aut(W)) remains to be

determined.

For illustrative purposes, we restrict to the action of φ on a subgroup of Aut(W) which —

on the basis of an analysis of the ξ = 0 unextended theory [15] — is expected to constitute all

‘regular’ gauge transformations. In the case ξ 6= 0, this subgroup is a Z2, with action defined by

σMGM [ f ] = GM [σ f ] (σ = ±1), while if ξ = 0 it is the nonabelian semidirect product Z2 ⋉R,

with group product (σ ′,µ ′)(σ ,µ) = (σ ′σ ,µ ′σ +µ) and action specified by

(σ ,µ)MGM [ f ] = GM [σ f ]eiµ
∫
M

f dvolM . (15)

Here, µ has dimensions of inverse length, like Φ. One may treat the two cases together by restricting

to µ = 0 if ξ 6= 0. Noting that

η(λ )M (σ ,µ)MGM [ f ] = η(λ )MGM [σ f ]eiµ
∫

f dvolM = GM [σ f/λ 3]ei
µ
λ

∫
f/λ 3dvolλM

= (σ ,µ/λ )λMη(λ )MGM [ f ],
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we have φ((σ ,µ)) = (σ ,µ/λ ), which is consistent with the dimensions of µ . Thus, the 2-cocycle

for rigid scaling is nontrivial for minimal coupling ξ = 0, and (at least its restriction to the regular

subgroup) is trivial for ξ 6= 0.

Action on local Wick powers Scaling induces a group action on Fld(W) because D is also R
+-

covariant, implemented by λ 7→ ζ (α)(λ ), where α ∈R and ζ (λ )
(α)
M

f = λ−4α f (D(M)=D(λM),
because the manifolds coincide). One may check that the corresponding cocycle is trivial for all α;

we take α = 1, so fields transform as densities of weight zero, and now drop the superscript α .

As suggested by the notation, the generators :Φ⊗k:M (u)∈W(M) are (distributionally) smeared

k-multilocal fields, Wick ordered with respect to WM .8 Owing to (14), they do not transform

covariantly for k > 1, because there is no choice of WM such that (ψ ×ψ)∗WN = WM for all

ψ : M →N . However, locally covariant Wick powers can be defined as follows. First, let HM be

the local Hadamard bidistribution, defined near the diagonal in M ×M by

HM (p,q) =
UM (p,q)

4π2σM+(p,q)
+VM (p,q) log(σM+(p,q)/ℓ2)

where ℓ is a fixed length scale, common to all spacetimes, and σM (p, p′) is the signed squared

geodesic separation of p and p′, with a positive sign for spacelike separation. The subscript +
indicates that f (σM+(p,q)) = limε→0+ f (σM (p,q)+2iε(TM (p)−TM (q))+ ε2), where TM in-

creases to the future; UM and VM are smooth, and are fixed by requiring UM (p, p) = 1 and

(PM ⊗ 1)HM (p,q) = O(log(σM (p,q))). At the diagonal, WM −HM is continuous and VM is

a multiple of the Ricci scalar: VM (p, p) = (6ξ −1)RM |p/(96π2) (see, e.g. [10]).

With HM so defined, set HM [ f ] = GM [ f ]e(HM ( f , f )−WM ( f , f ))/2 on f of sufficiently small sup-

port that HM is defined on supp f × supp f . Then

Φk
M

( f ) =
1

ik

〈
δ kHM

δhk

∣∣∣∣
h=0

, f δ
(k)
M

〉
(16)

defines a local k’th Wick power smeared against f ∈D(M), where

( f δ
(k)
M

)(F) =
∫

M

ρM (p)−kF(p, . . . , p) f (p)dvolM (p) (F ∈ E(M×k))

defines f δ
(k)
M
∈ T(k)(M); here ρM is the density induced by dvolM .

Under scaling, the transformed field obeys (λ ∗Φk)M ( f )=η(λ )MΦk
M

(λ 4 f ), given our choice

of ζ (see Theorem 8). Noting that

η(λ )MHM [λ 4 f ] = HλM [λ f ]eλ 8HM ( f , f )−λ 2HλM ( f , f )

= HλM [λ f ]e−λ 2
∫
(HλM (p,q)−λ−2HM (p,q)) f (p) f (q)dvol×2

λM
(p,q)

and using (16) together with the observations that λ 4 f δ
(k)
M

= λ 4k f δ
(k)
λM

and HλM (p, p)−λ−2HM (p, p)

=VλM (p, p) logλ 2, a short calculation gives

λ ∗Φk = λ k
⌊k/2⌋

∑
j=0

k!

j!(k−2 j)!

(
6ξ −1

96π2

) j

(logλ 2) jR jΦk−2 j, (17)

8Indeed, if WM is of positive type, WM ( f , f )≥ 0 for all f ∈D(M), one can define a state on W(M) in which all

such elements have vanishing expectation value.
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where R jΦk ∈ Fld(W) is the field (R jΦk)M ( f ) = Φk
M

(R
j
M

f ). Aside from the special cases k = 1

or ξ = 1/6, in which λ ∗Φk = λ kΦk, all Wick powers obey ‘almost homogeneous scaling’ [24],

and each Φk (k≥ 2) belongs to a ⌊k/2⌋-dimensional indecomposable (and reducible) R+-multiplet.

Wick powers can be redefined within certain parameters [24], but homogeneous scaling cannot be

regained: for example, it is possible to redefine Φ2 by adding a fixed multiple of the Ricci scalar,

but this still transforms inhomogeneously. We emphasise that, nonetheless, the theory W has rigid

scale covariance for all ξ ∈ R.

The above discussion can be compared with [35], which considered theories defined on a cate-

gory CLoc that admits conformal isometries as morphisms. Only the ξ = 1/6 conformally coupled

version of W is defined on CLoc and only locally conformally covariant fields can be discussed

in that setting (these include Wick powers, related to those given above within the allowed renor-

malization freedoms). Our approach allows us to examine a broader class of theories that are scale

covariant alongside theories that are not. By including the mass-squared parameter into the back-

ground category one can even discuss theories with mass (here the background objects are pairs

(M ,m2) and R
+ acts by R(λ )(M ,m2) = (λM ,m2/λ 2)). Elsewhere, it is hoped to explore the

Stückelberg–Petermann renormalization group [3] in our framework.

Summarising, this example demonstrates the need for a cohomological description of G-covar-

iance using nonabelian coefficients, the possibility of a nontrivial action of the group G (R+ for us)

on the global gauge group and the possibility that fields can arise as indecomposable (but reducible)

multiplets.

4 An analogue of the Coleman–Mandula theorem

4.1 Hypotheses, statement of main result and consequences

The purpose of this section is to prove Theorem 11, which shows that any theory A : FLoc→ Phys

obeying mild conditions is covariant with respect to the universal covering group S of the restricted

Lorentz group L0 (i.e., S ∼= SL(2,C) in 4 spacetime dimensions) and has trivial cohomology

class. Accordingly, the Lorentz and internal symmetry groups do not mix, and the fields appear in

S multiplets (if Phys= Alg, for example). Further consequences are discussed below.

To start, let us note that if B : Loc→ Alg, then A := B ◦FL : FLoc→ Alg is certainly L0-

covariant, because FL(ΛM) =FL(M) and FL(Λψ) =FL(ψ) for all M∈ FLoc and all ψ : M→N.

Thus ΛA=A for all Λ∈L0, so the L0-covariance is implemented by Λ 7→ idA. The corresponding

2-cocycle is obviously trivial, and one obtains in a similar way that A is S -covariant with trivial

2-cocycle. We have already shown that any theory A : SpinLoc→ Alg is S -covariant with trivial

2-cocycle.9 The purpose of Theorem 11 is not to describe these cases as such, but rather to show

why all theories on FLoc obeying our conditions, however constructed, have a trivial cocycle for a

common reason. We now proceed to assemble the hypotheses and concepts required in Theorem 11.

Timeslice property Given M= (M ,e)∈ FLoc, we will say that a set Σ⊂M is a Cauchy surface

if it is intersected exactly once by every e-timelike curve. A morphism ψ : M→M
′ is said to be

Cauchy if the image of ψ contains a Cauchy surface of M′. Thus a FLoc-morphism ψ is Cauchy

if and only if FL(ψ) is Cauchy in Loc according to the terminology of [19]. The theory A has the

timeslice property if A(ψ) is an isomorphism for all Cauchy ψ .

9It follows that A◦FS is S -covariant with neutral cocycle (1,φ), where φ is trivial on F∗
S
(Aut(A)), which could a

priori be a proper subgroup of Aut(A◦FS).
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Relative Cauchy evolution & dynamical local Lorentz invariance Relative Cauchy evolution

measures the response of the dynamics of a theory to a variation in the background structures. In

FLoc, variations of M = (M ,e) are parametrized by a smooth function T ∈ C∞
tc(M ;GL+(n;R))

where the subscript indicates that suppT (the closure of the subset of M on which T differs from

the identity) is time-compact. The varied coframe is Te, where (Te)µ |p = T
µ
ν(p)eν |p; we restrict

to those T for which M[T ] := (M ,Te) is an object of FLoc. Coframe variations include, but go

beyond, the metric variations studied in [4, 19, 20] – they can also be used to detect whether a

theory is sensitive to local Lorentz transformations. (Frame variations are required in describing

relative Cauchy evolution in the Dirac case [39, 12] but in an auxiliary role, whereas here they are

primary.)

Let M±= I±
M
(Σ±) where Σ± are smooth spacelike Cauchy surfaces obeying suppT ⊂ I+

M
(Σ−)∩

I−
M
(Σ+). Then M

± = (M±,e|M±) are objects of FLoc and the subset inclusions of M± in M in-

duce Cauchy morphisms ι± : M±→M and ι±[T ] : M±→M[T ]. The relative Cauchy evolution

rceM[T ] is defined by

rceM[T ] =A(ι−)A(ι−[T ])−1
A(ι+[T ])A(ι+)−1

and is clearly an automorphism of A(M), assuming A has the timeslice property. The specific

choice of frame should be irrelevant in physical theories, motivating:

Definition 10. A theory A : FLoc→ Phys with the timeslice property satisfies dynamical local

Lorentz invariance if rceM[Λ̃] = id for all M ∈ FLoc and all Λ̃ ∈ C∞
tc(M ;L0) that are null-

homotopic relative to the complement of a time-compact subset of M .

This condition holds in any theory induced from Loc or SpinLoc of the form A = B ◦FL or

A= C◦FS.10 Note that the restriction to null-homotopic Λ̃ is a conservative assumption; a stronger

definition that dropped the null-homotopy condition would rule out theories with non-integer spin

fields.11

Additivity The theory A is said to be additive if each A(M) can be built from knowledge of the

theory on suitable subregions of M. To make this precise, note first that if M= (M ,e) and O is an

open e-causally convex subset of M , then M|O := (O,e|O) defines the FLoc-object corresponding

to O as a spacetime in its own right, and that the inclusion of O in M induces a FLoc-morphism

ιM;O : M|O→M. Our additivity condition requires that the morphisms A(ιM;D) are jointly epic as

D runs over the set of truncated multi-diamonds (defined below) in M : that is, if α ◦A(ιM;D) = β ◦
A(ιM;D) for all truncated multi-diamonds D, then α = β . This differs slightly from the definition

used in [19, 15] but follows from it if (as is true for Phys=Alg) Phys has unions and equalizers [15,

Lem 2.5].12 A truncated multi-diamond is a subset of the form N ∩DM(B) where N is an open

globally hyperbolic neighbourhood of Cauchy surface Σ in M, while the base B is a finite union

of disjoint subsets of Σ each of which is an open ball in local coordinates, and is called a Cauchy

multi-ball. Images of Cauchy multi-balls under (F)Loc morphisms are again Cauchy multi-balls.

(See Def. 2.5 and the subsequent discussion in [19].)

Given these definitions, our main result can be stated as follows.

Theorem 11. In spacetime dimension n≥ 2, suppose A : FLoc→ Phys obeys the timeslice axiom,

dynamical local Lorentz invariance and additivity. Then A is S -covariant with trivial cocycle (and

hence trivial cohomology class).

10The Loc case is trivial, because FL(M[T ]) = FL(M); SpinLoc needs a short calculation.
11The need to consider homotopy properties of framings in relation to relative Cauchy evolution was noted by

Ferguson [12].
12There is a typographical error in the proof of [15, Lem 2.5]; the calculation in the penultimate line should end with

h◦m, not m.

15



Before giving the proof we make some remarks and draw out some consequences. First, as dis-

cussed in the introduction, Theorem 11 is an analogue of the Coleman–Mandula theorem [7] insofar

as it is based on dynamics (specifically, the timeslice property and dynamical local Lorentz invari-

ance), rather than on a group theoretic analysis such as [30, 32, 27]. However, we re-emphasize that

our result is not a direct generalization of the Coleman–Mandula theorem in either its statement or

its method of proof. It is also worth noting that the proof of Theorem 11 does not utilize special

properties of Minkowski spacetime, or of the theory A restricted to Minkowski spacetime. In this,

it differs from results such as the spin-statistics connection [41].

Second, triviality of the cohomology class implies that the corresponding extended symmetry

group is a direct product E = Aut(A)×S . The single-component fields Fld(A) therefore form

multiplets under the action of E, and the restrictions of this action to Aut(A) or S are also true

representations. Thus fields arise in S -multiplets, just as in Minkowski spacetime. By Corollary 9,

inequivalent irreducible representations of S (or indeed of the gauge group Aut(A)) cannot be

mixed by the action of E, so finite-dimensional multiplets of different spinor-tensor type do not

mix.

Third, the proof of Theorem 11 explicitly constructs an implementation of the S -covariance.

In Minkowski spacetime, this can be connected to the standard action of the Lorentz group in

Wightman theory – see Section 4.3.

Fourth, any S -covariant theory is also L0-covariant with an implementation given by Λ 7→
η(Λ) = ζ (SΛ), where Λ 7→ SΛ is any section of the covering homomorphism π : S → L0 with

S1 = 1. The corresponding cocycle is easily calculated, using triviality of that induced by ζ , and is

(ζ ◦ z,1), where z : L0×L0→ kerπ is given as z(Λ′,Λ) = SΛ′SΛS−1
Λ′Λ

. The restriction of ζ to kerπ
is therefore of interest.

Lemma 12. ζ restricts to a homomorphism from kerπ to the centre Z(Aut(A)).

Proof. For S ∈ kerπ , SM = M for each M and so ζ (S) ∈ Aut(A). Triviality of the S cocycle

induced by ζ (cf. (6)) implies that ζ |kerπ is a homomorphism and that ζ (S)α = αζ (S) for all

α ∈ Aut(A), S ∈ kerπ .

The kernel of π is the homotopy group π1(L0). In spacetime dimensions n ≥ 4, kerπ ∼= Z2,

and ζ (−1) is thus an involutive, central element of Aut(A), while in n = 3, kerπ is the infinite

cyclic group, and in n = 2, it is trivial. The extended group corresponding to L0-covariance is a

quotient of Aut(A)×S ; for example, if n≥ 4, it is (Aut(A)×S )/Z2, where the Z2 is generated

by (ζ (−1),−1). As all fields transform in true L0-representations if (ζ ◦ z,1) is trivial, one has:

Corollary 13. If n≥ 3, let A obey the conditions of Theorem 11. A necessary condition for Fld(A)
to contain multiplets of noninteger spin is that Aut(A) carries a nontrivial homomorphic image

of π1(L0) (induced by ζ ). In particular, ζ (−1) must be a nontrivial involutive central element in

dimension n≥ 4.

The structure of Z(Aut(A)) therefore constrains the possible spins of fields associated with A.

For example, any theory described by algebras of observables (as opposed to possibly unobservable

quantities) has trivial global gauge group and thus can only support multiplets of integer spin. We

will return elsewhere [13] to the role of the univalence ζ (−1) in the spin-statistics connection

(see [17, 18] for brief accounts). Finally, it has already been noted that all theories on FLoc of the

form A=B◦FL are L0-covariant with trivial cocycle. Accordingly the fields in Fld(A) transform

under true L0-representations, proving that no theory with noninteger spin can be constructed on

Loc.
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4.2 Proof of Theorem 11

The proof has three parts: (a) for M ∈ FLoc, S ∈S , we construct isomorphisms ζM(S) : A(M)→
A(SM); (b) we prove that the ζM(S) cohere to form natural isomorphisms and therefore imple-

ment S -covariance of A; (c) we compute the corresponding 2-cocycle. Additivity is used in part

(b) for reasons discussed below, while dynamical local Lorentz invariance is used to show that

ζM(S) is independent of various choices made in its construction, which is important in (b) and (c).

Throughout, we use the fact that elements of S can be regarded as homotopy equivalence classes

of curves in L0 with a base-point at the identity I. We now take these parts in turn.

(a) Construction of ζM(S) Fix M = (M ,e) and S ∈ S . Choose Λ̃ ∈ C∞(M ;L0) obeying

Λ̃ ≡ I on J−
M
(Σ−) and Λ̃ ≡ Λ on J+

M
(Σ+), where Σ± are smooth spacelike Cauchy surfaces with

Σ± ⊂ I±
M
(Σ∓); it is required that Λ̃ has homotopy class S relative to J+

M
(Σ+)∪ J−

M
(Σ−) (in every

component of M).13 Next, define M̃= (M , Λ̃e) (abusing notation, we will sometimes write M̃=
Λ̃M) and also M

±=(M±,e|M±) where M±= I±
M
(Σ±). The obvious Cauchy morphisms induced

by subset inclusions

M
ι−
←−−M

− ι̃−
−−→ M̃

ι̃+
←−− ΛM

+ ι+
−−→ ΛM (18)

(see Figure 1) induce an isomorphism ζ (Λ̃) : A(M)→A(ΛM),

ζ (Λ̃) =A(ι+)A(ι̃+)−1
A(ι̃−)A(ι−)−1 (19)

by the timeslice property. We will describe ζ (Λ̃) as being formed by ‘chasing the arrows’ in (18)

from M to ΛM. Note that if A=B◦FL then, because FL(M) = FL(M̃), we have ι± = ι̃± (recall

that each of these morphisms has an inclusion as its underlying map) and hence ζ (Λ̃) = idB(M) for

any Λ̃.

We now show that the construction of ζ (Λ̃) is independent of the choice of Σ± and depends

only on the homotopy class of Λ̃. Starting with the Cauchy surfaces, note that whenever Σ and

Σ′ are smooth spacelike Cauchy surfaces, there is a smooth spacelike Cauchy surface Σ′′ in their

common future (or past). Hence it is enough to show that ζ (Λ̃) is also obtained if smooth spacelike

Cauchy surfaces Σ̂± ⊂ I±
M
(Σ±) are used in place of Σ±, leaving Λ̃ unchanged. Defining M̂± by

analogy with M
±, the Cauchy morphisms of M̂− into M and M̃ factor via the Cauchy morphism

j− : M̂−→M
−, i.e., ι̂− = ι− ◦ j−, and ˜̂ι− = ι̃− ◦ j−. Thus

A(˜̂ι−)A(ι̂−)−1 =A(ι̃−)A( j−)A( j−)−1
A(ι−)−1 =A(ι̃−)A(ι−)−1; (20)

a similar argument applies to A(ι+)A(ι̃+)−1 and establishes the required independence. Similarly,

the isomorphism ζ (Λ̃) is also unchanged if we replace M± by causally convex subsets thereof that

contain Cauchy surfaces of M.

Next, let Λ̂ ∈ C∞(M ;L0) obey the same conditions as Λ̃ (relative to a common choice of

Cauchy surfaces Σ± without loss of generality), thus also having homotopy class S. Then we have

the following diagram of Cauchy morphisms

M̃

M M
− ΛM

+ ΛM

M̂

ι−
ι̃−

ι̂−

ι+
ι̃ +

ι̂+

(21)

and the isomorphism ζ (Λ̂) : A(M)→A(ΛM) is formed by chasing arrows along the lower branch

from M to ΛM. Now, Λ̂Λ̃−1 acts trivially outside a timelike-compact set and is by assumption

13In each component, every timelike curve from the past of Σ− to the future of Σ+ induces a curve connecting I to Λ

in L0, and these curves must have common homotopy type.
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M M̃ ΛMΛM
+

M
−

Figure 1: Diagram of spacetimes involved in constructing ζ (Λ̃).

null-homotopic relative to the complement of the time-compact subset of M bounded by Σ±. Dy-

namical local Lorentz invariance then implies that rce
M̃
[Λ̂Λ̃−1] is trivial, so the diamond in (21)

commutes and ζ (Λ̃) = ζ (Λ̂). As the isomorphism depends only on the homotopy class S, it will

henceforth be denoted ζM(S).

(b) Naturality of ζ (S) Let ψ : M→N be arbitrary. We must show that

ζN(S)◦A(ψ) =A(Sψ)◦ζM(S) (22)

holds for the isomorphisms defined in part (a). The obstruction to a straightforward proof of (22)

is that the interpolating spacetime M̃ used to construct ζM(S) (see Fig. 1) might not embed in an

interpolating spacetime for the construction of ζN(S). Indeed, the function Λ̃ ∈C∞(M;L0) might

not be the pull-back of a function in C∞(N;L0) – for example, ψ(M) might have boundary points

to which the push-forward ψ∗Λ̃ cannot be extended continuously. We circumvent this problem

using an argument based on additivity.

A further definition is required: Given open subsets R± of a spacetime M ∈ FLoc, µ ∈C∞(M,
[0,1]) is a temporal mollifier for the ordered pair (R−,R+) if there exist smooth spacelike Cauchy

surfaces Σ± for M so that R± ⊂ I±
M
(Σ±), and µ vanishes identically on J−

M
(Σ−) (hence on R−) and

is identically unity on J+
M
(Σ+) (hence on R+). Temporal mollifiers exist for (R−,R+) if and only

R+/− lie to the future/past of a smooth spacelike Cauchy surface.

The proof of (22) falls into two parts: first, in Lemma 14 we show that it holds on subspacetimes

of M provided suitable temporal mollifiers can be found; second, in Lemma 15, we show how such

mollifiers may be constructed on a sufficiently large class of subspacetimes to establish naturality

if A is additive.

Lemma 14. Fix S ∈S and also a smooth path σ : [0,1]→S with σ(0) = 1, σ(1) = S. (i) Let

M ∈ FLoc and suppose morphisms ρ± : R±→M and υ : U→M are given with image regions

obeying Imρ±⊂ Imυ ⊂DM(Imρ+) (see Fig. 2(a)). If µ is a temporal mollifier for (Imρ−, Imρ+)
in M, then

ζM(S)A(ρ−) =A(Sρ+)A(κ+)−1
A(κ−), (23)

where the morphisms R−
κ−
−−→ υ∗(σ◦µ)U

κ+

←−− SR
+, of which κ+ is Cauchy, are uniquely determined

by the requirement that FL(υ)◦FL(κ
±) = FL(ρ

±).
(ii) If, additionally, ψ :M→N, suppose that a temporal mollifier ν exists for (Imψ ◦ρ−, Imψ ◦

ρ+) in N that obeys ψ∗ν = µ on υ(U). Then

ζN(S)A(ψ)A(ρ−) =A(Sψ)ζM(S)A(ρ−). (24)

Proof. (i) Select smooth spacelike Cauchy surfaces Σ± in M so that µ vanishes to the past of Σ−

and is identically unity on the future of Σ+, arranging also that Imρ± ⊂ I±
M
(Σ±). Using these

Cauchy surfaces to define M
± as in part (a), and building the interpolating spacetime M̃ using
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M
+

M
0

M
−

M

Imρ−

Imρ+

Imυ

(a) (b)

Figure 2: (a) The arrangement of image regions Imρ± ⊂ Imυ ⊂ DM(Imρ+) used in Lemma 14.

(b) The spacetimes used to compute the cocycle. The map Λ̃T (resp. Λ̃S) is locally constant outside

the chequered (resp., dotted) region.

Λ̃ = π(S̃) where S̃ = σ ◦µ , we construct ζM(S) by chasing arrows from left to right along the top

line of

M M
−

M̃ SM
+ SM

R
−

Ũ SR
+

cc cc

ρ−

κ−

υ̃

κ+

c

Sρ+

in which Ũ = υ∗S̃U and υ̃ = υ∗S̃υ . We now establish the existence of the dashed and dotted mor-

phisms and show that the diagram commutes, from which (23) follows by functoriality and the

timeslice property. As Imρ± ⊂ I±
M
(Σ±), there are unique dashed morphisms as shown, making the

two triangles commute, and inducing morphisms from R
− and SR

+ to M̃ via M− and SM
+; these

morphisms have the same underlying functions as ρ±. The conditions on Imρ± and Imυ entail

that there are (unique) morphisms κ± making the squares commute and with κ+ Cauchy, with un-

derlying functions obeying υ ◦κ± = ρ±; more formally we may write FL(υ)◦FL(κ
±) = FL(ρ

±),
and this relation determines κ± uniquely because their codomain Ũ is fixed. Part (i) is thus proved.

(ii) We apply part (i) to ψ ◦ ρ± : R± → N, and ψ ◦ υ : U→ N using π(σ ◦ ν) to build an

interpolating spacetime for the construction of ζN(S). Note that (ψ ◦υ)∗ν = υ∗ψ∗ν = υ∗µ , so

(ψ◦υ)∗(σ◦ν)U= υ∗(σ◦µ)U= Ũ.

Therefore one has ζN(S)A(ψ ◦ρ−) =A(S(ψ ◦ρ+))A(κ+)−1A(κ−) with the same morphisms κ±

as in the original application of part (i), because those morphisms obviously satisfy the character-

ising equation FL(ψ ◦υ)◦FL(κ
±) = FL(ψ ◦ρ±) and have the same codomain Ũ. Combining this

with (23) gives

ζN(S)A(ψ)A(ρ−) =A(Sψ)A(Sρ+)A(κ+)−1
A(κ−) =A(Sψ)ζM(S)A(ρ−).

The above circumstances can be achieved for sufficiently many ρ− to form a jointly epic set of

morphisms A(ρ−).

Lemma 15. Suppose ψ : M→N in FLoc and let S ∈S . For any truncated multi-diamond D of

M, we have

ζN(S)A(ψ)A(ιM;D) =A(Sψ)ζM(S)A(ιM;D). (25)

The additivity assumption on A entails that the A(ιM;D) are jointly epic as D runs over the

truncated multi-diamonds. Therefore one has ζN (S)A(ψ) = A(Sψ)ζM(S), and as ψ : M→ N

was arbitrary naturality of ζ (S) is established.

19



Proof of Lemma 15. Let D be based on a Cauchy multi-ball B− ⊂ Σ, where Σ is a smooth spacelike

Cauchy surface. By [2, Thm 1.2], we may find a Cauchy temporal function foliating M as R×Σ

so that D has base {0}×B− and the e-metric splits orthogonally as β ⊕−ht , where ht is a smooth

Riemannian metric on Σ for each t ∈ R and β ∈C∞(M ) is nonnegative. The significance of this

splitting is that each {t}×Σ is a smooth spacelike Cauchy surface and all curves t 7→ (t,σ) for fixed

σ ∈ Σ are timelike. This facilitates bounds on Cauchy developments, e.g., DM({t}×B)⊂ R×B.

The form of the e-metric allows us to choose another Cauchy multi-ball {0}×B+ containing

the closure of {0}×B− and ε > 0 such that {0}×B− ⊂ DM({t}×B+) for all 0 < t < ε (cf. [16,

Lem. 2.5]). Choosing t+ ∈ (0,ε) and setting t− = 0, we define truncated multi-diamonds

R± = {(t,σ) ∈ DM({t±}×B±) : |t− t±|< t+/3}

based on the Cauchy multi-balls {t±}×B±. Setting

U = {(t,σ) ∈ DM(R+) :−t+/3 < t < 4t+/3},

it is evident that R± ⊂U ⊂ DM(R+). We may choose a temporal mollifier µ for (R−,R+) so that

µ vanishes on (−∞,4t+/9]×Σ and µ is unity on [5t+/9,∞)×Σ.

Supposing that ψ : M→N, we now construct a temporal mollifier ν for (ψ(R−),ψ(R+)) so

that ψ∗ν and µ agree on L. Choose Cauchy surfaces Σ− (resp., Σ+) in N containing the Cauchy

multi-ball ψ({4t+/9}×B+) (resp., ψ({5t+/9}×B+)) and so that Σ± ⊂ I±
N
(Σ∓).14 Owing to the

split form of the e-metric, R± ⊂ I±×B±, where I± = {t ∈ R : |t − t±| < t+/3}. Accordingly,

R+ ⊂ (2t+/3,4t+/3)× B+ ⊂ I+
M
({5t+/9} × B+) and hence ψ(R+) ⊂ I+

N
(Σ+); similarly R− ⊂

(−t+/3, t+/3)×B− ⊂ I−
M
({4t+/9}×B+) so ψ(R−) ⊂ I−

N
(Σ−). Let F be the closed set formed

as the union of J±
N
(Σ±) and the closure of ψ(U). Due to the properties of µ and Σ±, we may

choose a smooth function ν on F that vanishes on J−
N
(Σ−), is identical to unity on J+

N
(Σ+), and

agrees with µ ◦ψ−1 on ψ(U). Every point p ∈ F has a neighbourhood in which ν can be extended

to a smooth function taking values in [0,1] – for p ∈ J±
N
(Σ±) this is obvious, while for p in the

closure of ψ(U) one may use µ ◦ψ−1. By the smooth Tietze extension theorem (a partition of

unity argument) one may obtain an extension of ν in C∞(N, [0,1]). In particular, ν is a temporal

mollifier for (ψ(R−),ψ(R+)) and ψ∗ν agrees with µ on U .

Letting R
± = M|R± , ρ± = ιM;R± , U = M|U , and υ = ιM;U , parts (i) and (ii) of Lemma 14

apply and give (24). By the timeslice property, A(ιM;D) =A(ιM;R−)◦ϑ for some isomorphism ϑ ,

because D and R− are truncated multi-diamonds with a common base (there are Cauchy morphisms

from M|D∩R− to each of M|D and MR−). Therefore (25) holds.

(c) Computation of the 2-cocycle The construction of S 7→ ζ (S) shows that A is S -covariant;

we now show that the corresponding cocycle (ξ ,φ) is trivial. Starting with φ , let α ∈ Aut(A) and

consider the diagram

A(M) A(M−) A(M̃) A(SM
+) A(SM)

A(M) A(M−) A(M̃) A(SM
+) A(SM)

αM
α
M− α

M̃
αSM+ αSM

in which unlabelled arrows are isomorphisms arising as images of Cauchy morphisms in (18) and

each arrow on the bottom row is identical to the one vertically above it. Each square commutes by

14As ψ({4t+/9}×B+) is a Cauchy multi-ball it lies in a smooth spacelike Cauchy surface Σ− of N. Similarly, there

exists Σ+ in the (globally hyperbolic region) I+
N
(Σ−) containing ψ({5t+/9}×B+). As Σ± are Cauchy surfaces, one

also has Σ− ⊂ I−
N
(Σ+).
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naturality of α and one has ζ (S)MαM = αSMζ (S)M by definition of ζ (S). Thus φ(S)(α) = α , for

all S and α .

It remains to prove that

ζM(ST ) = ζTM(S)ζM(T ) (S,T ∈S , M ∈ FLoc). (26)

Fix M = (M ,e) ∈ FLoc and choose a Cauchy temporal function τ ∈C∞(M ,R) for M – i.e., ∇τ
is everywhere e-timelike and future-pointing, and the level sets of τ are smooth spacelike Cauchy

surfaces. Also choose disjoint open bounded intervals I−, I0, I+ of R such that 0 ∈ I0 and I± ⊂R
±,

and define submanifolds M−/0/+ = τ−1(I−/0/+). Finally, choose S̃, T̃ ∈C∞(M ,S ) so that S̃≡ 1

on J−
M
(M 0) and S̃ ≡ S in J+

M
(M+) while T̃ ≡ 1 on J−

M
(M−) and T̃ ≡ T on J+

M
(M 0). Then

Λ̃S = π(S) and Λ̃T = π(T ) have the homotopy types of S and T relative to J−
M
(M 0)∪ J+

M
(M+)

and to J−
M
(M−)∪J+

M
(M 0) respectively. Evidently Λ̃SΛ̃T ∈C∞(M ,L0) takes the constant values

1 on J−
M

(M−), π(T ) on M 0 and π(ST ) on J+
M

(M+), and has the homotopy type of ST relative to

J−
M
(M−)∪ J+

M
(M+). Given these choices, we define various spacetimes: M−/0/+ =M|M−/0/+

are slabs of M sandwiching the regions where Λ̃S and Λ̃T can vary (see Fig. 2), while

M̃T = (M , Λ̃T e), M̃S = (M , Λ̃Sπ(T )e) and M̃ST = (M , Λ̃SΛ̃T e)

are interpolating spacetimes used in the constructions of ζM(T ), ζTM(S) and ζM(ST ) respectively.

Now consider the following diagram of Cauchy morphisms:

M M
−

M̃T

M̃ST
TM0

TM

STM STM
+

M̃S

(27)

all of which are induced by inclusion morphisms. (The dashed morphism is well-defined because

Λ̃SΛ̃T takes the constant value π(T ) in M 0.) The isomorphism ζM(T ) is obtained by chasing the

images under A of the arrows, left to right, on the upper line from M to TM; ζTM(S) is obtained

by chasing the arrows on the lower line, right to left, from TM to STM, while ζM(ST ) is obtained

by chasing from M to STM along the shortest route. One sees that the identity (26) can be proved

by focussing on the central portion of diagram (27) (deleting the external legs) and establishing that

the isomorphism from A(M−) to A(STM
+) induced by chasing via TM

0 is equal to that obtained

by chasing vertically downwards. Using the dashed arrow the task splits into two problems, with

diagrams

M
−

M̃T

M̃

M̃ST
TM

0

and

M̃ST
TM

0

M̂

STM
+

M̃S

where again we must show the equivalence of the chase around the right-hand portions to that

obtained by passing vertically down from M
− or M̃ST respectively. In these diagrams, the solid

and dashed morphisms are those in the previous diagram, M̃ = M̃T |J−
M

(M 0), M̂ = M̃ST |J+
M

(M 0),

and the dotted morphisms are defined by inclusion maps. Every small triangle in these diagrams is a

commuting triangle of Cauchy morphisms induced by an inclusion. Taking images under A, every

small triangle is a commuting triangle of isomorphisms and therefore the isomorphisms induced by

chasing along the right-hand portions of the diagrams coincide with the isomorphism induced by

the left-hand vertical line. This concludes the proof of (26) and hence of Theorem 11.

21



4.3 Minkowski space

Define n-dimensional Minkowski space to be the object M0 = (Rn,(dX µ)n−1
µ=0) of FLoc, where

X µ : Rn→R are the coordinate functions X µ(x0, . . . ,xn−1) = xµ . The corresponding object M 0 :=
FL(M0) of Loc has the restricted Poincaré group as its group of automorphisms. In FLoc, however,

Lorentz symmetry is broken by the choice of frame and M0 only admits spacetime translations

as automorphisms. Instead, Lorentz transformations map between distinct objects: each Λ ∈L0

induces an active Lorentz transformation ψΛ : Rn→R
n by matrix multiplication, X µ ◦Λ = Λ

µ
νXν ;

as ψ∗ΛdX µ = Λ
µ

νdXν , ψΛ induces an morphism ψΛ : M0→ Λ−1
M0 in FLoc. Given a second Λ′ ∈

L0, the morphism Λ−1
ψΛ′ :

Λ−1
M0→ (Λ′Λ)−1

M0 has underlying map Λ′, and therefore Λ−1
ψΛ′ ◦ψΛ

has underlying map Λ′Λ, giving the equality of morphisms

ψΛ′Λ = Λ−1
ψΛ′ ◦ψΛ. (28)

As ψΛ has inverse Λ−1
ψΛ−1 it is therefore an isomorphism in FLoc. Of course, FL(ψΛ) is simply

the Lorentz transformation Λ as an automorphism of M 0. To economize on notation we also write

ψS for ψπ(S) if S ∈S .

Whereas a functor on Loc automatically represents Lorentz transformations in the automor-

phism group of A(M 0), the same is not true of functors on FLoc. This is remedied precisely by

S -covariance: for each S ∈S , we may define

Ξ(S) =A(SψS)◦ζ (S)M0
= ζ (S)S−1

M0
◦A(ψS), (29)

an automorphism of A(M0) with some important properties. First, it is clear that Ξ(1) = idA(M0)

and more generally that, if S ∈ kerπ covers the identity Lorentz transformation, then Ξ(S) =
ζ (S)M0

. For example, in n≥ 4 spacetime dimensions, Ξ(−1) = ζ (−1)M0
. Second, note that

Ξ(S′)Ξ(S) =A(S′ψS′)ζ (S
′)M0

A(SψS)ζ (S)M0

=A(S′ψS′)A(SψS)ζ (S
′)SM0

ζ (S)M0

=A(S′SψS′S)ζ (S
′S)M0

= Ξ(S′S), (30)

where, in the penultimate step, we use the fact that ζ has a trivial cocycle, and also the identity

(28). Third, the action on fields is

Ξ(S)ΦM0
( f ) =A(SψS)ζ (S)M0

ΦM0
( f ) =A(SψS)(S∗Φ)SM0

( f )

= (S∗Φ)M0
(π(S)∗ f )

for all f ∈C∞
0 (R

n) (D is S -covariant with a trivial implementation).

Fourth, given a state ω0 on A(M0) that is invariant under these automorphisms, i.e., ω0 ◦
Ξ(S) = ω0 for all S, the corresponding GNS representation (H0,D0,π0,Ω0) will carry a unitary

implementation of the Ξ(S), so that

π0(Ξ(S)A) =U(S)π0(A)U(S)−1, U(S)Ω0 = Ω0

for all S ∈S , recovering the standard transformation laws of fields in Minkowski QFT. The use

of FLoc has distinguished two aspects of the Lorentz transformation: the active transformation of

points and algebra elements under A(ψS), and the passive relabelling of field multiplets arising

from S -covariance.
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5 Conclusion

We have given a general analysis of G-covariance of locally covariant theories in terms of non-

abelian cohomology. Among the general features uncovered are the existence of an associated

canonical cohomology class, and the structure of field multiplets. As well as discussing rigid scale

covariance, we have established a no-go theorem on mixing of internal and Lorentz symmetries

analogous to the Coleman–Mandula theorem. Our approach here is completely new and makes no

use of Minkowski spacetime structures. This gives a new perspective on results of this type and

further demonstrates the utility of relative Cauchy evolution.

Directions in which this work could be extended include the following. First one could study

smooth G-covariance using, e.g., the smooth nonabelian cohomology of [31]. Topologies on

Aut(A) and Fld(A) can be given in terms of suitable state spaces [15, §3.2]. Second, the proof

of Theorem 11 would apply to other rigid group actions that can be achieved by smooth defor-

mation (e.g., the conformal group). Finally, an obvious question is whether an analogue of the

Haag–Łopuszański–Sohnius theorem [22] can be proved for theories on a suitable category of su-

permanifolds, perhaps using the enriched category methods of [23].
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