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Green Saudi National Fibre Network (SNFN)  
Hatem A. Alharbi, Taisir E. H. El-Gorashi and Jaafar M. H. Elmirghani 

School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom 

        
Abstract—In 2015, there were more than 21 million active 

users of the Internet in Saudi Arabia. In the present paper, we 
consider minimizing the power consumption of the Saudi National 
Fibre Network (SNFN) by formulating the problem as a mixed 
integer linear programming (MILP) model. Firstly, we optimize 
the location of single or multiple data centres in the SNFN under 
a traffic profile based on a gravity model where the production 
rate and attractiveness of each node is proportional to the 
population of that node. We evaluate the network power 
consumption considering three scenarios of data centre locations. 
The MILP model results show that identifying the optimum data 
centre locations can save up to 53% of the network power 
consumption compared to the random data centre locations. 
Secondly, we optimize the SNFN physical topology considering 
different data centers locations.  The model results show that 
optimizing the network physical topology can save up to 76% of 
the total power consumption compared to the current topology. 

Keywords—IP over WDM networks, MILP, Data centre, Energy 
efficiency, Physical topology, SNFN. 

I. INTRODUCTION 

Year after year, the number of connected devices to the 
Internet has been increasing dramatically. By the end of 2015, 
there were more than 21 million active users of the Internet in 
Saudi Arabia[1]. This number is expected to soar in the coming 
years calling for new measures to ensure efficient resource 
utilization and energy consumption. Minimizing the power 
consumption of the network will lead to reducing the carbon 
footprint as well as the running cost.  

Nowadays, greening the Internet has attracted many research 
efforts [2], [3]. The authors in [4] developed a MILP model to 
minimize the power consumption of the IP/WDM fiber network 
by optimizing the virtual topology. Also, Dong et al. in [5] and 
[6] built a MILP model to examine the IP/WDM NSFNET 
network with the data center's power consumption as well as 
optimize its physical topology. Moreover, Lawey et al. in [7] 
developed a MILP model to introduce a framework for 
designing energy efficient cloud computing services over non-
bypass IP/WDM core networks. In this paper, we evaluate the 
power consumption of the Saudi optical network's backbone 
(SNFN). We optimise the location of data centres as well as the 
physical topology using the MILP models developed in [5] and 
[6].  

The remainder of this paper is organised as follows. Section 
II briefly reviews the IP over WDM network architecture and 
the data centre architecture. In Section III, we introduce the 
MILP model used to optimise the location of data centres and 
present the results of optimizing data centre locations in the 
SNFN network. In Section IV, we introduce the MILP model 
used to optimise the physical topology. Also, we present the 
results of optimizing the physical topology of the SNFN. 
Finally, section V concludes the paper 

II. IP/WDM NETWORK AND DATA CENTRE 
ARCHITECTURE 

       IP over WDM network is composite of two main layers: IP 
and the optical layer. On the IP layer, the IP router is connected 
to an optical switch in each node. The IP router aggregate the 
traffic from access network. Meanwhile, the optical layer 
provides a large capacity for data communication between the 
IP routers. Optical switch nodes are connected to physical fibre 
links. The transponders provide optical-electronic-optical 
(OEO) processing for full wavelength conversion in each node. 
To enable the optical signals to make a transmission in a long 
distance, the erbium-doped fiber amplifiers (EDFAs) are used to 
amplify optical signals in the fiber links. In case of longer 
transmission, the regenerators are used if the link's length 
exceeds 2500 km [4], [8].  

Multiprotocol Lambda Switching protocol over wavelength 
division multiplexing (MPLS over WDM) is the routing 
protocol on IP over WDM optical core networks that route the 
data packets from source to destination nodes through the 
shortest path with a connection-oriented service. Using MPLS, 
the IP over WDM-routed traffic can be implemented by either 
bypass or non-bypass light paths. In the case of bypass, the 
packets intermediate nodes will not process the packets. The 
packets will take a cut through into the destination node. 
Meanwhile, on a non-bypass path, the packets will be processed 
by every intermediate node during the journey from the source 
to the destination. Implementing a bypass light path can 
significantly reduce the power consumption of the network. 
However, a non-bypass light path allows for scanning, 
inspecting, and monitoring packets to check for any security 
threats  [9], [10] . 

A traditional data centre consists of a multiple racks which 
host the servers. The servers deliver different services (such as 
content, storage or processing capacity) to the end-users with 
critical infrastructure characteristics. These data centres can 
provide a resource of web servers, storage, databases or even 
processing capacity to the users [3]. Usually, the data centre 
is built close to the core network node so as to take advantage 
of the large bandwidth. Figure 1 illustrates the basic 
architecture of an IP/WDM network connecting to a data 
centre. 

 
 
 
 
 
 
 
 



Figure 1: IP/WDM optical network architecture with data centre. 
 

III. THE OPTIMISATION OF DATA CENTRES 
LOCATION IN SNFN  

 

A. MILP MODEL 

In this section, we re-introduce the MILP model developed 
in [5] to optimize the data centre locations  in IP over WDM 
networks for completeness. 

Parameters and variables of MILP model are defined as 
following: 

Core Network Parameters 

N Set of nodes (cities) in IP over WDM network. 
 

Nm {N}  Set of neighbours’ nodes of node N. 
 

Nodes Total number of nodes in IP over WDM network. 
Erp Power consumption of router port. 

 

Et Power consumption of transponders. 
 

Ee Power consumption of EDFA. 
 

Eo Power consumption of optical switch in IP/WDM core 
network. 
 

Erg Power consumption of regenerator. 
 

W Number of fibre’s wavelength in IP over WDM 
network. 
 

B Total bandwidth of wavelength. 
 

S Maximum distance between the pair of EDFAs on IP 
over WDM network. 

Amn Total number of EDFA on the path between nodes pair 
m and n. 

PUE_n Fixed number that represents the power effectiveness 
of the network [cooling, lighting …etc.]. 
 

 

Core Network Variables: 
Lsd The traffic demand between the sender node s and 

receiver node d of IP/WDM network. 
 

Cij  Number of wavelength used on the virtual link 
between node i and node j. 

Wmn Total number of wavelengths per physical 
connection between node m and node n. 

AggPorti Total number of aggregation ports on router i that 
communicate with other network parts. 
 

Fmn Total number of fibres between node m and node n. Lୱୢ୧୨  Total traffic demand between the sending node s and 
receiver node d, which pass through a virtual path 
from node i to node j. W୧୨୫୬ Total number of wavelength used on the connection 
between node i and node j that pass through physical 
path between node m and node n. 

RGmn ܴ1 = ݊݉ܩ if there is a regenerator within the link 
between node m and node n, otherwise ܴܩmn = 0. 
 

Rsd Total non-data centre traffic from node s to node d. 

Under the non-bypass routing, the IP over WDM network 
power consumption is composed of: 

1) The total power consumption of routers ports:           ̴ܷܲ݊ܧ Ǥ  ൭෍ ேא௜௜ݐݎ݋ܲݎ݃݃ܣ  Ǥ ݌ݎܧ  
൅  ෍ ෍ ேאே௠ǣ௡ஷே௠௠אǤ௡ ݌ݎܧ  ௠ܹ௡൱   

2) The total power consumption of transponders:           ̴ܷܲ݊ܧ  Ǥ  ൭ ෍ ෍ ேאே௠௠אǤ  ௠ܹ௡  ௡ ݐܧ ൱ 

3) The total power consumption of EDFAs:                   ̴ܷܲ݊ܧ  Ǥ   ൭ ෍ ෍ ேאே௠௠א௠௡ ௡ܣ  ௠௡ Ǥܨ  Ǥ݁ܧ ൱ 

4) The total power consumption of optical switches:                   ̴ܷܲ݊ܧ Ǥ   ൭෍ ௜݋ܧ      ௜אே ൱ 

5) The total power consumption of regenerator: 

Ǥ   ቆ  ̴݊ܧܷܲ     ෍ ෍ ௠௡ܩܴ  Ǥ ݃ݎܧ     Ǥ  ௠ܹ௡     ௡אே௠௠אே ቇ 

 

Data centre is represented by the following parameters and 
variables 
 

Data centre parameters 
 

DLrate Download rate per user = 5 Mbps.  

L Large number. 
 

Data centre variables  

Dsdv            Traffic demand of data centre v located in node 
                         s destined to users in node d. 

 



DClocations     DClocations = 1, if there is a data centre in 
                         node s, otherwise DClocations = 0. 
 
 

The model is defined as follows: 

Objective: 

 Minimize ̴ܷܲ݊ܧ Ǥ ൭෍ ேא௦௦ݐݎ݋ܲݎ݃݃ܣ  Ǥ ݌ݎܧ     ൅  ෍ ෍ ேאே௠ǣ௡ஷ௠௠אǤ௡ ݌ݎܧ  ௠ܹ௡  ൅      ෍ ෍ Ǥ  ௠ܹ௡ ݐܧ                 ௡אே௠ǣ௡ஷ௠௠אே൅      ෍ ෍ ே൅אே௠ǣ௡ஷ௠௠א௠௡                                ௡ܣ  ௠௡ Ǥܨ  Ǥ ݁ܧ         ෍ ே൅א௜  ݋ܧ         ෍ ෍ Ǥ ݃ݎܧ ௠௡ܩܴ  Ǥ  ௠ܹ௡        ௡אே௠ǣ௡ஷ௠௠אே                     ൱                 ሺͳሻ 

 

Subject to: 

1) Flow conservation constraint: 

෍ ேǣ௜ஷ௝א௦ௗ௜௝௝ܮ  െ ෍ ேǣ௜ஷ௝א௦ௗ௝௜௝ܮ  ൌ  ൝ ݅          ݀ݏܮ ൌ ݅        ݀ݏܮെݏ ൌ ݀           Ͳ             ݏ ׊    ݁ݏ݅ݓݎ݄݁ݐ݋ǡ ݀ ǡ א ݅ ܰ ׷ ݏ ് ݀                                                    ሺʹሻ   
Constraint (2) represents the flow conservation constraint of the 
traffic flows on the IP/WDM network. It ensures that the total 
incoming traffic equal the total outgoing traffic to the network; 
excluding the source and destination nodes. 
2) WDM capacity constraint: ෍ ௜ܹ௝௠௡ேאே௠  െ   ෍ ௜ܹ௝௡௠ேאே௠ ൌ  ൝ ݉         ݆݅ܥ ൌ ݅െ݆݅ܥ       ݉ ൌ ݆   Ͳ             ׊ ݁ݏ݅ݓݎ݄݁ݐ݋ ݅ǡ ݆ ǡ א ݉ ܰ ׷ ݅ ് ݆                                              (3) 
Constraint (3) represent the optical layer’s flow conservation 
constraint. It ensures that the total number of incoming 
wavelengths in a virtual link exactly equal the outgoing 
wavelengths in a virtual link node excluding the source and 
destination nodes of the virtual link.   

3) IP traffic capacity constraint: ෍ ෍ ேǣ௦ஷௗא௦ௗ௜௝ௗܮ  ൑ ௜௝ܥ   Ǥ  ܤ                        ௦אே  

ǡ ݅ ׊ ݆ א ܰ ׷ ݏ ് ݀                                                         ሺͶሻ 

Constraint (4) represents capacity of virtual link. It ensures that 
transmitting traffic through virtual links does not exceed its 
maximum allocated capacity. 

 

4) WDM capacity constraints: 
 ෍ ෍ ௜ܹ௝௠௡௝אேǣ௜ஷ௝  ൑  ܹ Ǥ  ܨ௠௡                                          ௜אே ǡ݅ ׊  ݆ א ܰ                                                                           ሺͷሻ ෍ ෍ ௜ܹ௝௠௡௝אேǣ௜ஷ௝ ൌ  ௠ܹ௡ ௜אே  

ǡ݅ ׊ ݆ א ܰ                                                                           ሺ͸ሻ 

Constraint (5) and (6) represent the capacity of the physical link. 
Constraint (5) ensures that the number of wavelengths channels 
in virtual links transmitting through the physical link does not 
exceed maximum capacity of fibres. Constraint (6) ensures that 
the number of wavelengths channel in virtual links, which 
transmitting through the physical link is equal to the number of 
wavelengths in that physical link. 

5) Total number of aggregation ports : ݐݎ݋ܲݎ݃݃ܣ௦ ൌ  ͳ  ܤ ෍ ேǣ ௦ஷௗא௦ௗௗܮ   א ݏ ׊                 ܰ                                                                             ሺ͹ሻ  
Constraint (7) calculates the total number of aggregation ports 
in IP/WDM core router. 

6) Total demand on core network: ܮ௦ௗ ൌ ෍ ஽௔௧௔஼௘௡௧௥௘א௦ௗ௩ ௩ܦ ൅ ܴ௦ௗ ݏ ׊ǡ ݀ א ܰ ׷ ് ݏ  ݀                                                        ሺͺሻ 

Constraint (8) represent the data centre traffic and regular 
traffic on the network. 
 
 

7) Data centre location:  ෍ ௦௩ߜ  ൒ ௦݊݋݅ݐܽܿ݋݈ܥܦ                  ௩א஽௔௧௔஼௘௡௧௥௘  

ݏ ׊ א ܰ                                                                           ሺͻሻ ෍ ௦௩ߜ  ൑ ௦݊݋݅ݐܽܿ݋݈ܥܦ  Ǥ ܮ                      ௩א஽௔௧௔஼௘௡௧௥௘  

ݏ ׊ א ܰ                                                                            ሺͳͲሻ 

Constraint (9) and (10) ensure there is a data centre v will be 
placed on node s, which has more than zero originating 
demand traffic where L is a large number. 

B. THE MODEL RESULT 

       Considering the Saudi National Fibre Network (SNFN) 
[11][12][13] of 28 nodes and 40 links, depicted in Figure 1, we 
optimised the location of a single data centre and multiple data 
centres considering asymmetric data traffic between the users 
and data centres as well as the traffic between regular nodes. 
The asymmetric traffic volumes, depicted in Figure 3, have 
been assumed depending on different cities population The 
cities populations and information about which had been 



collected by the Saudi General Authority of Statistics in 2010  
[14].  

In general, the user-data centre traffic dominates the total 
traffic of the Internet. On our model, we assumed that the user-
data centre traffic is 80% and regular traffic is 20% on the 
network. In our evaluation, the total number of users in the 
network varies throughout the day between 200K at 6 A.M. and 
1.4 million users at 10 P.M. as shown in Fig. 4. The single 
users-data centre download rate is assumed to be at 5 Mbps. 
Moreover, we assumed that the regular traffic between the 
nodes fluctuated depending on the time, between 40 Gbps at 6 
A.M. and 400 Gbps at 10 P.M. The user-data centre traffic, as 
well as the regular traffic volume, is distributed among the 
nodes depending on the different cities' populations, which are 
depicted in Figure 3. Table 1 shows the model input parameters 
of IP/WDM network. The MILP model was solved using 
AMPL/CPLEX software on Xeon, 3.5GHz server with 64GB 
memory.  

     After running the MILP model, we found that the most 
power-efficient location in which to place a single data centre 
is in Riyadh. The location has been chosen by the model due to 
its highest population and central location on the network 
(minimum hop count to other nodes). Optimising the locations 
of two data centres in the SNFN yeilds Riyadh and Jeddah as 
the optimum locations. Jeddah is selected as it has the second-
highest population as well as its central location between the 
nodes in the western region of the country. then,  we  ran  the  
model  to optimise  the  locations  of  three  data  centres.  
Dammam  was chosen  as  the  third  optimum  location,  in  
addition  to  Jeddah and Riyadh. In the case of five data centres, 
Makkah and Jizan were  chosen to  host the replicated content 
data  centres due to their having the fourth- and fifth-highest 
populations. 

 
 
 

 

Figure 2: The SNFN Topology 

Figure 3: the percentage of each node population. 

Figure 4: Number of users during the different time of the day. 

Table-1 Input Parameter of the Model 
 

Router port average power consumption (݌ݎܧ) 
 

825 W [8] 
40 Gbps transponder power consumption (ݐܧ) 167 W, reach 2500 

KM [8] 
40 Gbps regenerator power consumption (݃ݎܧ) 334 W, reach 2500 

KM [8] 
EDFA power consumption (݁ܧ) 55 W [8] 

IP/WDM switch power consumption (݋ܧ) 85 W [8] 
Number of wavelengths in a fibre (ܹ) 16 
Bit rate of each wavelength  (ܤ) 40 Gbps 
Span distance between two EDFAs (ܵ) 80 km 

User download rate (DLrate) 5 Mbps 
Network power usage effectiveness (̴ܷܲ݊ܧ) [15] 1.5 
Total number of users (Clients) 200K, 400K, 700K, 

1M and 1.4M 
 

Figure 5 shows the total power consumption of the SNFN 
with different data centre locations at different time of the day. 
Compared to the randomly chosen data centre location (in 
Yanbu), the optimised single data centre location in Riyadh 
saves 47% of the total network power consumption. Also, 
compared to three randomly chosen data centres locations (in 
Yanbu and Tabuk and madina), the three optimised data centre 
locations in Riyadh and Jeddah and dammam saves 51% of the 
total network power consumption. Moreover, compared to five 
randomly chosen data centres location (in Yanbu, Tabuk, 
Madina, Qassim and Abha), the five optimised data centre 
locations in Riyadh, Jeddah, Dammam, Makkah and Jizan 
saves 53% of the total network power consumption.  

 



Figure 5: Total SNFN Network power consumption. 

IV. THE OPTIMISATION OF SNFN PHYSICAL 
TOPOLOGY 

A. MILP MODEL 

Given the nodes locations (cities) of the SNFN, we optimize 
the physical links connecting them so the network power 
consumption is minimized. 

We re-introduce the MILP model developed in [6] for 
completeness. In addition to the sets, parameters, variables and 
constraints defined in the previous section, we define the 
following:  

Node connection parameters NodalDegree  Minimum number of links connecting a 
node.  NOfLinks                          Total number of network links. 

 

Node connection Variable 

Linkmn     Linkmn = 1 if there is a link connection between 
node m and node n, otherwise Linkmn = 0.  

The model is defined as follows: Objective: 

Minimize: ̴ܷܲ݊ܧ Ǥ ሺ෍ ேא௦௦ݐݎ݋ܲݎ݃݃ܣ  Ǥ ݌ݎܧ     ൅  ෍ ෍ ேאேǣ௡ஷ௠௠אǤ௡ ݌ݎܧ  ܹ݉݊ ൅      ෍ ෍ Ǥ  ௠ܹ௡ ݐܧ                 ௡אே௠אே൅      ෍ ෍ ே൅אே௠א௠௡                                ௡ܣ  ௠௡ Ǥܨ  Ǥ ݁ܧ         ෍ ே൅א௜  ݋ܧ         ෍ ෍ Ǥ ݃ݎܧ ௠௡ܩܴ  Ǥ  ௠ܹ௡         ሻ       ௡אே௠אே                   ሺͳͳሻ 
 

 

 

Subject to: 

1) Physical link capacity constraint ෍ ෍ ௠ܹ௡௜௝௝אேǣ௜ஷ௝  ൑  ܹ Ǥ ௠௡݇݊݅ܮ                             ௜אே ǡ݅ ׊  ݆ א ܰ                                                                         ሺͳʹሻ 

Constraint (12) represents physical link’s capacity constraint. It 
ensures that the total number of wavelength in virtual links 
traversing a physical link does not exceeded the maximum 
capacity of fibres in the physical link if the physical link exists.  

2) The minumum Nodal Degree ෍  Link୫୬ ൒    NodalDegree                          ୬א୒ǣ୫ ஷ ୬  

݉ ׊ א ܰ                                                                             ሺͳ͵ሻ 

Constraint (13) represent the minimum nodal degree. 

3) Total number of network links 
 ෍ ෍ Link୫୬௡אேǣ௠ஷ௡ ൌ ேאሺͳͶሻ ௠                            ݏ݇݊݅ܮ݂ܱܰ   

Constraint (14) represents the total number of links in the 
network. 

4) Node’s Links                ݇݊݅ܮ௠௡ ൌ ǡ݉ ׊ ௡௠݇݊݅ܮ ݊ א ܰ                                                                ሺͳͷሻ 

Constraint (15) ensures that there are a bidirectional link 
between node n and node m. 

B. THE MODEL RESULT 

We redesign the physical topology of the SNFN network 
considering the same number of links of the current topology 
(40 links). In order to optimize the physical topology, we 
obtained the geographic distance between the set of 28 nodes 
using Google Maps [16]. The minimum nodal degree is set to 
be either 1 or 2. However, having a node connected to the 
network with a single link is not desirable. In the case of link 
failure, this node will be totally isolated from the network. 
Then, we investigated the optimized physical topology by 
assuming the same traffic pattern of the previous section. 

The MILP model is solved using AMPL/CPLEX software 
on University of Leeds high performance computer (Polaris) 
using 16 nodes (256 cores) with 16 GByte of RAM per core. 
Each node comprises two eight cores of the Intel 2.6 GHz 
Sandy Bridge E5-2670 processors [16]. 

We optimized the physical topology using three data centre 
locations scenarios. Under the non-bypass approach, the 
optimized topology of SNFN with a minimum nodal degree of 
1 and 2 is depicted in Fig. 6 for (a) a single data centre in Riyadh, 
(b) two data centers in Riyadh and Jeddah with replicated 
content, and (c) three different data centers locations in Riyadh, 
Jeddah, and Dammam with replicated content. In general, since 
the majority of the traffic is users-datacenter based, the 



optimized topology shows that for the model, we chose to build 
a direct link between the nodes and their closest node hosting a 
data centre. In addition to saving on total network power 
consumption, the topology will reduce the delay in accessing 
the data centre. Compared to the current topology depicted in 
Figure 2, our optimized topology will minimize the hop count 
by establishing a direct link connection between the users' 
nodes and data centre's node. 

     Figure 7 illustrates the power consumption of the different 
SNFN topologies in Figure 6. Significant power savings are 
achieved through optimizing the physical topology compared 
to the original SNFN topology. With a single data centre, as 
shown in Figure 7 (a), optimizing the physical topology has 
saved 76% of the total power consumption on nodal degree = 1 
and nodal degree = 2, compared to the original one. Then, as 
shown in Figure 7 (b), the optimised physical topology with two 
data centres has resulted in saving of 72% of the total power 
consumption in both nodal degree cases compared to the 
original topology. After that, with three data centres, as shown 
in Figure 7 (c), the optimised topology has achieved power 
saving by 70% in the both cases.  

     In the three scenarios, the second link in nodal degree = 2 is 
set but not used.  Because of that the both nodal degree cases 
show identical power saving. The data centre traffic will be sent 
through a direct link. While, if the two communicated nodes are 
not hosting a data centre, the non-data centre traffic will be 
groomed through an intermediate node instead of a direct link. 

 
Figure 7: a) SNFN with Riyadh serving as data centre with different 
physical topologies. b) SNFN with Riyadh and Jeddah serving as data 
centres with different physical topologies. c) SNFN with Riyadh, 
Jeddah and Dammam serving as data centres with different physical 
topologies. 

Figure 6: (a) The optimised physical topology of SNFN with Riyadh hosting data centre. (b) The optimised physical topology of SNFN with 
Riyadh and Jeddah hosting data centres. (c) The optimised physical topology of SNFN with Riyadh, Jeddah and Dammam hosting data centres. 



V. CONCLUSION 

    In the present paper, we investigated the Saudi National Fibre 
Network (SNFN) power consumption by formulating the 
problem as a mixed integer linear programming (MILP) model. 
The SNFN was evaluated under different volumes of users' data 
centre traffic and regular traffic at different times of the day. 
Firstly, we optimized the data centre locations in the SNFN. 
The MILP result showed that the most energy-efficient location 
for one data centre is in Riyadh. Also, we found that the 
optimum locations for two data centres with replicated content 
are in Riyadh and Jeddah, three data centres with replicated 
content are in Riyadh, Jeddah and Dammam and five data 
centres with replicated content are in Riyadh, Jeddah, 
Dammam, Makkah and Jizan. Moreover, the results showed 
that we can save up to 53% of the network power consumption 
by finding the optimum data centre locations compared to the 
random ones. Secondly, we redesigned the SNFN network 
physical topology with energy-efficiency awareness. The 
network nodal degree was set to be either one or two. On the 
model result,  we  found  that  there  was  a  large  margin  in  
which savings could be made to minimise the SNFN power 
consumption. By applying energy-efficient topology, the model 
results showed that we can save up to 76% of the power 
consumption compared to the current physical topology.   
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