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Abstract

Signals with irregular sampling structures arise naturally in many fields. In applications
such as spectral decomposition and nonparametric regression, classical methods often assume
a regular sampling pattern, thus cannot be applied without prior data processing. This work
proposes new complex-valued analysis techniques based on the wavelet lifting scheme that
removes ‘one caécient at a time’. Our proposed lifting transform can be applied directly to
irregularly sampled data and is able to adapt to the signal(s)’ characteristics. As our new lifting
scheme produces complex-valued wavelefitcients, it provides an alternative to the Fourier
transform for irregular designs, allowing phase or directional information to be represented.
We discuss applications in bivariate time series analysis, where the complex-valued lifting
construction allows for coherence and phase quantification. We also demonstrate the potential
of this flexible methodology over real-valued analysis in the nonparametric regression context.

Keywords: lifting scheme; wavelets; nondecimated transform; (bivariate) time series; coherence
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1 Introduction

Since the early nineties, wavelets have become a popular tool for nonparametric regression, sta-
tistical image processing and time series analysis. In particular, due to their natural localisation,
wavelets can provide sparse representations for certain functions that cannot be repréented e
ciently using Fourier sinusoids. Reviews of the use of wavelets in statistics include Nason (2008)
and Abramovich et al. (2000).

Until recently, the majority of work in the statistical literature has been based on the discrete
wavelet transform (DWT). However, classical wavelet methodBesfrom some limitations; in
particular, usage is restricted to data sampled at regular time or spatial locations, and a dyadic data
dimension is often imposed. Wavelet lifting (Sweldens, 1996) can be used to overcome many of the
shortcomings of the standard DWT. Specifically, wavelet functions obtained through the wavelet
lifting scheme provide an extension of classical wavelet methods to more general settings, such as
irregularly sampled data.

On the other hand, it is now well-established tbamplex-valuedlata analysis tools can ex-
tract useful information that is potentially missed when using traditional real-valued wavelet tech-
niques, even for real-valued data, see for example Lina and Mayrand (1995); Fernandes et al.
(2003); Selesnick et al. (2005). In particular, using complex-valued multiscale methods has been
advantageous in a range of statistical applications such as nonparametric regression (Barber and
Nason, 2004), image processing (Kingsbury, 1999; Portilla and Simoncelli, 2000) and time series
analysis (Magarey and Kingsbury, 1998; Kingsbury, 2001).

Complex-valued multiscale techniques building upon the lifting scheme as introduced by Sweldens
(1996) have been introduced in the literature by Abbas and Tran (2006), who briefly investigated
their proposed technique in the image denoising context, and by Shui et al. (2003), who focused
on the design of complex filters with desired band-pass properties.

This article introduces a neadaptive complex-valued wavelet lifting schelodt upon the
lifting ‘one codficient at a time’ (LOCAAT) framework of Jansen et al. (2001, 2009nhohdeci-
matedvariant of the proposed transform, which allows for an overcomplete representation of such
data is also introduced. The added benefits of our methodology are: (i) flexibility — it can be ap-

plied to irregularly sampled grids of (possibly) non-dyadic length; (ii) information augmentation —
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through thecomplex-valuedvavelet coéficients, the scheme exploits additional signal information
not used by real-valued transforms; and (iii) applicability — it allows for the analysis of bivariate
nonstationary signals with possiblyfidirent (irregular) sampling structures, previously not directly
possible using methods currently in the literature.

We demonstrate the benefits of our new technique for spectral estimation of irregularly sampled
time series, with a particular focus on coherence and phase quantification for irregularly sampled
bivariate time series. In this context, the methodology can be viewed as a wavelet lifting analogue
to the Fourier transform and can be used for the same purposes. The good performance of our
method is also displayed in the nonparametric regression setting.

The paper is organised as follows. Section 2 introduces the new complex-valued lifting algo-
rithm, including its overcomplete variant. Section 3 details the application of the complex-valued
lifting algorithm to discover local frequency content of irregularly sampled uni- and bivariate time

series. Section 4 tackles nonparametric regression for (real-valued) signals.

2 Thecomplex-valued lifting scheme

The lifting scheme (Sweldens, 1996) was introduced as a flexible way of providing wavelet-like
transforms foirregular data. Lifting bases are naturally compactly supported, and via the recursive
nature of the transform, one can build wavelets with desired properties, such as vanishing moments.
In addition, lifting algorithms are known to be computationally faster than traditional wavelet
transforms since they require fewer computations compared with classical transforms. For an
overview of the lifting scheme, see Solder and Sweldens (1996) or Jansen and Oonincx (2005).

In this section we introduce@mplex-valuedifting scheme for analysing irregularly sampled
signals. The proposed lifting scheme can be thought of as a wavelet lifting analogue to the Fourier
transform. An irregularly sampled signal is decomposed into a set of complex-valued wavelet (or
detail) codficients, representing the variation in the data as a function of location and wavelet scale
(comparable to Fourier frequency).

In a nutshell, the scheme can be conceptualised in two branches: one branch of the trans-

form provides the real-valued part of the detail fmgent and the second branch represents the

ACCEPTED MANUSCRIPT
3



ACCEPTED MANUSCRIPT

imaginary component. Hence by using twdteient (real-valued) lifting schemes, one obtains
a complex-valued decomposition, akin to the dual-tree complex wavelet transform of Kingsbury
(2001). However, our approachdirs from that of Kingsbury (2001) in that it employs two lifting
schemes linked through orthogonal prediction filters, rather than two separate DWTs. The new
scheme is therefore able to extract information from signals via the two filters whilst also natu-
rally coping with the irregularity of the observations. Our approach alfferdifundamentally
from the complex-valued lifting techniques currently in the literature (Abbas and Tran, 2006; Shui
et al., 2003) through the particular filter construction we propose (Section 2.2) in conjunction with
the lifting construction that removes ‘one d¢beient at a time’ (Section 2.1). This allows us to
embed adaptivity in our complex-valued multiscale setup, i.e. construct wavelet functions whose
smoothness adjusts to the local properties of the signal.

In what follows we introduce the proposed scheme using an abstract choice of real and imag-
inary filters, and the subject of filter choice is deferred until Section 2.2, while an overcomplete

version of the complex-valued lifting transform is introduced in Section 2.3.

2.1 Thealgorithm

Suppose a functiori(-) is observed at a set af irregularly spaced locationsg = (Xg,. .., Xp)-

The proposed lifting scheme aims to decompose the data collected over the irregularly sampled
grid, {(x;, i = f(x))}.,, into a set ofR smooth cofficients and 1f — R) complex-valued detail
codficients, withR the desired resolution level. The quantRyis akin to the primary resolution

level in classical wavelet transforms, see Hall and Patil (1996) for more details.

We propose to construct a new complex-valued transform that builds upon the LOCAAT paradigm
of Jansen et al. (2001, 2009), shown fidagently represent local signal features in the fields of non-
parametric regression (Nunes et al., 2006; Knight and Nason, 2009) and spectral estimation (Knight
et al., 2012). We shall therefore refer to our proposed algorithm under the acOhydCAAT.

Similar to the real-valued LOCAAT algorithnG;-LOCAAT can be described by recursively
applying three stepsplit, predictandupdate which we detail below. At the first stage)(of the
algorithm, the smooth cdigcients are set a5, = fx, the set of indices of smooth ddieients is

Sn = {1,...,n} and the set of indices of detail déieients isD, = 0. The (irregular) sampling is
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described using the distance between neighbouring observations, and atwtadefine thespan

of x as s, = 22521, The sampling irregularity is intrinsically linked to the notion of wavelet
scale, which in this context becomes continuous, as opposed to dyadic in the classical wavelet
settings; this results in each dbeient having an associated scale across a continuum. This aspect
will be discussed in detail following the introduction of t6elL OCAAT algorithm.

In the split step, a pointj, to be lifted is chosen. Typically, points from the densest sampled
regions are removed first, but other predefined removal choices are also possible (see Section 2.3).
We shall often refer to the removal order asagectory.

In the predictstep the set of neighboursd,j of the pointj, are identified and used to estimate
the value of the function at the selected pgijntIn contrast to real-valued LOCAAT algorithms,
this is achieved usintyvo prediction schemes, each defined by its respective filtees\dM. The
filter L corresponds to estimation via regression over the neighbourhood, as is usual in LOCAAT.
In order to extract further information from the signal, our proposal is to construct the second
filter (M) orthogonal orl, to ensure that it exploits further local signal information to the filter
Section 2.2 discusses this in detail.

The prediction residuals from using the two filters are given by

ﬂjn = |?nCn,jn - Z |inCn’i, (1)

iedn

Min = 1 Coj = > Micn, (2)

iedy
where(lics,uj. and{m}ics,u. are the prediction weights associated witandM .
The complex-valued detail (wavelet) ¢beient we propose is obtained by combining the two
prediction residuals
dj, = Aj, +1 j,. 3)

In theupdatestep, the smooth céigcients{c,;}ic;, and spans of the neighboyss; }ic;, are updated

according to filter_:

In>

Ch-1,i

Sh-1i Shi + 'S, Vi€ Jp, (4)
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whereb! are update weights. In practice, the update weights are chosen such that the mean of
the series is preserved throughout the transform, thus preserving the characteristics of the original
series (Jansen etal., 2009). One such choice is ti se{s, j,Sv-1i)/ (Zic, sﬁ_l’i). The neighbours’
spans update accounts for the modification to the sampling grid induced by removing one of the
observations. Updating according to thdilter only ensures that there is a unique coarsening of
the signal for both the real and imaginary parts of the transform.

The observatiorj, is then removed from the set of smooth fimxents, hence after the first
algorithm iteration, the index set of smooth and detailf@oents areS,_; = S,\{jn} andD,_; =
{jn} respectively. The algorithm is then iterated until the desired primary resolutionRelvas
been achieved. In practice, the choice of the primary |& LOCAAT lifting schemes is not
crucial provided it is sfiiciently low (Jansen et al., 2009), wifR = 2 recommended by Nunes
et al. (2006).

After observationg,, jn-1,. .., Jri1 have been removed, the function can be represented as a
set ofR smooth cofficients,{C._1}icss, and 61— R) detail codficients,{d}keps (Dr = {jn, ---» Jr+1})-
As in classical wavelet decompositions, the detailfiioents represent the high frequency com-
ponents off (-), whilst the smooth cd&cients capture the low frequency content in the data.

The lifting scheme can be easily inverted by recursively ‘undoing’ the update, predict and
split steps described above for the first filter. Specifically, the update step is first invgyted:
Cr-1i — b'4;,, Vi € J,, then the predict step is inverted by

Aj, = e, IMCnj
Gy = TR g ®
jn
oy, = Mo (6)

in
Undoing either predict (5) or (6) step isfBuaient for inversion. As for real-valued lifting,
inversion can also be performed via matrix calculations due to the transform linearity. However,

using (5) for inversion is generally computationally faster, especially for large

Wavelet lifting scales. The notion of wavelet scale in this context becomes continuous and is
intrinsically linked to the data sampling structure and trajectory (removal order) choice. Denote

the lifting analogue of the classical wavelet scale for a detaffimentd;, by a;, = 109,(Sj,), With
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low a-values corresponding to fine scales. In order to give lifting scales a similar interpretation to
the classical notion of dyadic wavelet scale, we group wavelet functions of siumgaales into
discrete artificial level$(},, as proposed by Jansen et al. (2009), for a chdsefThe further

use of artificial scales is discussed in Sections 2.3 and 3 (under the spectral estimation context)
and in Appendix B (under the nonparametric regression context). Note that the usage of the same
lifting trajectory for the two lifting branches (coupled with the one filter update) ensures that our
proposed lifting transform generates a common scale for both real and imaginary parts. In other
words, at each stage of the algorithm there is just one set of smodfificenes associated to a

unigue set of scales.

2.2 Filter construction

The proposed complex-valued lifting transform is illustrated schematically in Figure 1 in terms of
two general prediction filters andM. As already explained, we construct the second filk&) (
orthogonal orL, thus ensure dlierent signal content extraction.

For clarity of exposition, let us consider a LOCAAT scheme with a prediction step based upon
two neighbours in a symmetrical configuration. The regression over the neighbourhood generates
prediction weights for the two neighbours, let us denote therhh yndls (see equation (1)); this
prediction step can also be viewed as using a three-tap prediction ffiltex (he form (;, 1, 13),
which depends on the sampling of the observatigns (xi,...,X,) (Nunes et al., 2006). We
determine the unique (up to proportionality) three-tap filethat is orthogonal oh and ensures

at least one vanishing moment. Hence we can express the set of filter pairs as having the form

L (I, 1,13), I1,13>0

(my, mp, mg),

M

andlymy +mp + Ismg =0 (i.e.L - M =0) andl; + I3 = 1,m + mg = my, (i.e. ensure one vanishing

1+|3
1+|1

proportionality constant can be determined by bringing both filkeend M to the same scale

m, “=2m, m). The

1+|1

moment). The solution to these constraints can be parameteridé¢d=a6-

|1+1

7

M = (Am (1 + A)m,m) with A = :ﬁ andm = %1 This particular example of the lead filter
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L represents a prediction scheme using linear regression with two neighbours in a symmetrical
configuration. This is a choice that has proved to be successful both for (real-valued) nonparametric
regression (Nunes et al., 2006; Knight and Nason, 2009) and for (real-valued) spectral estimation
(Knight et al., 2012).

SinceL can be viewed as a prediction filter for a real-valued LOCAAT scheme, we can also
employ theadaptiveprediction filter choice of Nunes et al. (2006) in our proposed construction.
The ‘best’ local regression (order and neighbourhood) is chosen at each predict step, subject to
yielding minimising the detail cdicients. Consequently, we obtain adaptive complex-valued
lifting transform with the highly desirable flexibility of being able to adapt to the local charac-
teristics of the data — see Appendix B in the supplementary material for an illustration of this
adaptiveness in the nonparametric regression setting.

The orthogonality of the two filters andL also mirrors the attractive properties of Fourier
sinusoids, hence this choice results in an interpretable quantification of phase, which shall further
be exploited according to the context—by phase alteration when denoising real-valued signals, or
by ensuring phase preservation in the context of spectral estimation.

A further insight and justification of the proposed filter choice is provided in Appendix C in

the context of coherence and phase estimation.

2.3 Thenondecimated complex-valued lifting transform

In the classical wavelet literature, the nondecimated wavelet transform (NDWT) (Nason and Silver-
man, 1995) has properties that make it a better choice than the discrete wavelet transform (DWT)
for certain classes of problems, see e.g. Percival and Walden (2006). The concept is akin to basis
averaging, and has delivered successful results in both nonparametric regression and spectral esti-
mation problems, not only in the classical wavelet setting (NDWT) but also for irregularly spaced
data through the nondecimated lifting transform (NLT) (Knight and Nason, 2009; Knight et al.,
2012).

In this section, we also exploit the benefits of this nondecimation paradigm for irregularly
sampled data and to this end, we shall introducectiraplex-valued nondecimated lifting trans-

form (CNLT). However, note that our use of the term 'nondecimatioiffedls from the classical
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NDWT. Specifically, due to the irregular sampling structure, nondecimation cannot be performed
via decomposing shifts of input data without data interpolation.

Although similar in spirit to the NLT, our transform hinges on the proposed complex-valued
lifting scheme (Section 2.1) and therefore yields an overcomplete complex-valued data represen-
tation, extracting additional signal information. In particular, ®M&LT algorithm results in a
wavelet transform that yields (complex-valued) waveletfitcoents at each grid poini) and at
multiple scalesd).

Next we shall describe our proposed univariate and biva€ibliel techniques. We shall show
that in the nonparametric regression setting, our univariate proposal significantly outperforms cur-
rent wavelet and non-wavelet denoising techniques (see Section 4 and Appendix B), while its

bivariate extension allows for estimation of the dependence between pairs of series (see Section 3).

2.3.1 Univariate CNLT

So far, the proposed complex-valued lifting scheme decomposes the original gign&l =
f(x))}L, into a set ofR smooth cofficients and if — R) complex detail (wavelet) cdiécients,
with each detail coficientd;, corresponding to exactlynescalea;, .

We now aim to construct a new scheme that transforms the original signal into a collection of
smooth and detail cdigcients, with eaclx-location associated to a collection of several wavelet
codficients spread over all scales, rather than just one. The key to our proposal is to note that if an
observation is removed early in the LOCAAT algorithm, its associated detdliceat has a fine
scale; conversely, if a point is removed later in the algorithm, it is associated with a larger scale.

We therefore propose to repeatedly apfly OCAAT using randomly drawn trajectorie$,
for p = 1,..., P, where each removal ord&y, is generated by sampling ¢ R) locations without
replacement fromx, . .., X,); we refer to this algorithm aSNLT.

Following this procedure, a set Bfdetail coél‘icients{d)'?k}E,’:l is generated at each locatigg
whered}, denotes the wavelet cigient at location obtained using-LOCAAT with trajectory
Tp. At any given locationx,, the set ofP detail codficients will be associated with fiierent
scales{affk}g’:l; note that this diers from the classical NDWT which produces exactly one detail

codfticient at each location and dyadic scale.
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Similar to the NLT, the number of trajectoriésshould be ‘large enough’ to ensure that an
ample number of cdicients is produced at as many scales and locations as possible, subject to

computational constraints (Knight and Nason, 2009; Knight et al., 2012).

2.3.2 BivariateCNLT

We now consider the extension©NLT to the analysis of bivariate series.

Sameirregular grid. Let us first assume we have observati¢ixs f!, £2)}", on two functions
f1 andf?, measured on theame xgrid. Apply the univariateeNLT (Section 2.3.1) to each signal,
using the same set of trajectorl{é'q,} for both series.

The identical sampling grids results in an exact correspondence between fheies of
each series, i.e. for each dheient of the first series there is a ¢eient of the second series at
exactly the same location and scale (see Figure 2a). In other words, after applicatio@NlLihe
to both series, for each time poing, we obtain two sets of complex-valued detail fimgents
(d”)P_, and{dh)E .

Different irregular grids. Let us now assume we have the dde, X2, f1, £2)}", on two func-
tions f1 and f2, measured on théifferent xgrids.

As the scale associated with each detailfioent is determined by the trajectory choice, we
partition thex-grid into a set ofartificial )dntervals{x(j)}JT:*l, whereT* is chosen to provide the
desired resolution level on theaxis. As illustrated in Figure 3, the result can be visualised in
terms of forming a grid over the area of the resulting detaifibtents.

Formally, for each artlflclak-lnterval{x(J)}T and artificial scaleé"}I _;» the set of detail cd&-

cients for each grid square (using traJectOI{'é§}p:1) is given by

Dip() = Gu(dFflorf € ¢, x5 e x) ™
Di(f) = Gn(dFloy e £, € x), 8)

whered1 P /11 Pt ; andd2 P = /12 " +i 427 are the complex-valued wavelet ¢heients from
k

fl and f2, andGm isa random sampllng procedure selecting = min(#(d*), #(d%)) coeficients.
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Recall thata;’%p and ai’&p represent the scales (lpgf span) associated to the ctﬁeientsd)l(ip and
di;zp. Thus for each artificiak-interval and scale, we obtain the same number of detatficants
(although the exact coordinates of the fm&ents may dier).

We term these constructions as theariate complex nondecimated lifting transfo¢bivariate
CNLT) on the samgalifferent grid(s), as appropriate. Section 3 will discuss applications where
the proposed bivariateNLT construction provides a framework for estimation of the dependence
between pairs of series.

3 Complex lifting analysisof irregularly sampled time series

Spectral analysis is an important tool in describing content in time series data, complementary
to time domain analysis. In particular, the Fourier spectrum allows a decomposition in terms of
sinusoidal components atftérent frequencies, giving a description of the strength of periodic
behaviour within the series. Such traditional methods are based on the assumption of second-order
stationarity, although extensions to deal with non-stationarity exist, such as the short-time Fourier
transform (STFT, Allen (1977); Jacobsen and Lyons (2003)) or more sophisticated time-frequency
analysis methods (e.g. locally stationary time series, Nason et al. (2000); SLEX, Ombao et al.
(2002)). Similarly,cross-spectrahnalysis of multivariate time series can be used to describe and
study the interrelationships between many variables of interest observed simultaneously over time,
see Reinsel (2003) orilitkepohl (2005) for comprehensive introductions to the area, or Park et al.
(2014) for a multivariate locally stationary wavelet approach.

This work aims to deal with a further additional challenge, that of irregular sampling. Irregu-
larly sampled time series arise in many scientific applications, e.g. finance (Engle, 2000; Gencay
et al., 2001), astronomy (Bos et al., 2002; Broerson, 2008) and environmental science (Witt and
Schumann, 2005; Wil 2005) to name just a few. Many applications deal with the sampling ir-
regularity either by means of a time-frequency Lomb-Scargle approach under the assumption of
time series stationarity (Vatek, 1971; Lomb, 1976; Scargle, 1982), or process the data prior to
analysis, restoring it to a regular grid then suitable for analysis by standard methods, see for exam-

ple Erdogan et al. (2004) or Broerson (2008). Although it is convenient to work within a regularly
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spaced time series setting, a typical result will amount to signal smoothing, leading to information
loss at high frequencies and estimation bias (Frick et al., 1998; Rehfeld et al., 2011).

Many time series observed in practice will exhibit (second-order) nonstationary behaviour as
well as being irregularly sampled. Although the literature does currefiy (albeit few) options
for the analysis of irregularly sampled nonstationary series (see e.g. Foster (1996); Frick et al.
(1998); Knight et al. (2012)), there is no well established method for estimating the dependence
between pairs of such signals. In the next section, we propose to describe the local frequency
content of irregularly sampled time series by making use of the proposed complex-valued lifting

scheme and introducing a complex-valued cross-periodogram and associated measures.

3.1 Thecomplex lifting periodogram

Recall that theCNLT provides a set of detail céigcients and associated scald§, cy)'i’k}f)’zl, where
the scale associated with each detailfio@nt o, is a continuous quantity. In a spirit similar
to that of Knight et al. (2012), this information will allow a time-scale decomposition (typically
termed the (wavelet) periodogram) of the variability in the data, with the crudigreince that
the wavelets cd@cients are now complex-valued and therefore contain more information. In con-
structing the periodogram, we use a set of discrete artificial sc{dieggl, which patrtitions the
range of the continuous lifting scalés; } for all p andk, with J* chosen to provide a desired peri-
odogram ‘granularity’. Each scaig, will fall into one unique level' for eachp and observation
X letPiy={p: afjk e ('} denote the set of trajectories such thais associated with a scale in the
setf', andn;y = |P;,| denote the size of the set. For each time paink = 1,...,n and artificial
scaled', i = 1,...,J%, we introduce the&omplex lifting periodograntalso referred to in text as
CNLT periodogram)

()= == Y=o YRR ) )

" PpePik ™ PpePik " PpePik

where| - | denotes the complex modulus.
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3.2 Thecomplex lifting cross-periodogram

Similar to other complex wavelet transforms (Portilla and Simoncelli, 2000; Selesnick et al., 2005),
the complex-valued nature of the bivarialélLT coefficients (see Section 2.3.2) provides both
local phase and spectral information. In order to estimate the dependence between pairs of time
series, we first define theomplex lifting cross-periodogranthe cross-spectral analogue of the
periodogram. As in Section 2.3.2, our discussion will be split based on whether the data has been

sampled over the same offfdirent grids.

Bivariate time series observed on the same grid. For each time poink, k = 1,...,n and
artificial scalef', i = 1,...,J*, define the complex lifting cross-periodogram (also referred to as
CNLT cross-periodogram) for series observed on the same grid as

1896y = — Z dLPA2P, 9)

pePl k

whered;” = AxP + i kP anddz? = A5P + i uZP are the detail cdicients fromf! and f2. The
CNLT cross-periodogram consists of combinations offioients from each series and provides
information about the relationship between the signals. Note that unlikéNth& periodogram,
the cross-periodogram is complex-valued.

Similar to classical Fourier cross-spectrum methodology (see e.g. Priestley (198®)\like
cross-periodogram can be separated into its real and imaginary parts to defigblltfieco-

periodogramand theCNLT quadrature periodograjmespectively resulting in

Cull) = oo DAL Y A,
peP,k peP.k
Y = i 1,p/12,p_i ﬂlp 2,p
k() = — M M . Hx -
ik pePik i, pePik

These quantities, together with the individual lifting spectra of each process, can be used to calcu-
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late the measures phaseandcoherencéetween the two seriels and f2:

_qu (fi))

ex(l) = tam (= (10)
oty = YolOP 0TV (1)

/ (1)(f|)|(2)(g|)

The CNLT cross-periodogram provides a measure of the dependence between series, but its mag-
nitude is dected by the individuaCNLT periodograms of the signals. Hence as in the regularly
sampled setting, it is preferable to normalise this quantity, providing a coherence measure that sat-
isfies 0< py (£') < 1 (asin (11)). This is similar to the coherence measure for regularly sampled
signals introduced in Sanderson et al. (2010). TNeT phase as defined in (10) provides an indi-
cation of any time lag between the signals. Several examples examining the coherence and phase

between signal pairs are given in Section 3.3.

Bivariate time series observed on different grids. Closer to real data scenarios, we now con-
sider time series that were sampled ovefaient irregular grids, with one such real data example
being discussed in Section 3.3.3. In order to obtain the cross-spectral quantities, we combine the
appropriate sets of detail cheients for each grid, corresponding té and f2, i.e. D)l((j)(fi) and
D?,(¢") introduced in equations (7) and (8). For each artificial time pen@d,j = 1,...,T* and
artificial scale/', i = 1,..., J*, we define the complex lifting cross-periodogram for series observed
on different irregular grids as

i,

182" = Zordel{D o(C)}sordeq D2 (£)}s, (12)

x(1)
M =1

wheren; j is the number of pairs in the grid square defined at titheand scale’, and ordefD}s
indicates thesth time-ordered detail.

If the sampling schemes coincide for the two series}( = {xZ}) and the same trajectories
are used to generate the detad:igp}p,k, respectivelydip}p,k, then equations (9) and (12) coincide,
except for the quantities being also averaged over the defined artificial time period. The co- and
guadrature periodograms may be obtained in the same fashion as above, and subsequently used to

yield the lifting phase and coherence in this setting.
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Figures 2 and 3 provide a visual representation for the complex lifting cross-periodogram con-
struction under the assumption of the same, respectivérent sampling grids.

We now make some remarks about the proposed periodogram constructions.

Scale interpretation. The relationship between artificial scalé)(and classical Fourier fre-
guency can be described in terms of the scale which maximises the coherence for a Fourier wave
of periodT. Definingp(£') = 2 3'i_; px(€'), the design of the filters outlined in Section 2.2 is such

We emphasise that this relationship is dictated by the choice of filter pairsCNhé& peri-
odogram and co-periodogram (as defined above) are composed of the sum of the watieélet coe
cients from the two schemes, while the quadrature periodogram contains products offthe coe
cients. Hence to ensure that the resulting estimates are interpretable, the two filters are specified
so that combinations of c@ecients (either through multiplication or summation) provide the same
scale-frequency relationship (see Sanderson (2010), Sections 5.3 and 6.2.1). The provided map-
ping between wavelet lifting scale and Fourier frequency can be used to compare our results to

those of classical Fourier-based methods (see Section 3.3 next).

Periodogram smoothing over time. As is customary, th€NLT periodogram will be smoothed

1 i
W Zjemi 1x (£,

whereML ={j % -M < x < x+M} and M' denotes the width of the averaging window,

over time using simple moving average smoothing, i.e. we combgﬁé) =
permitted to take dierent values for each scale,

3.3 Examples

We now illustrate the proposed methodology by application to both simulated and real irregular
time series. The results were produced inR&atistical computing environment (R Core Team,
2013), using modifications to the code from #dift package (Nunes and Knight, 2012) and the

nlt package (Knight and Nunes, 2012).
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3.3.1 Simulated data

Signalssampled on thesameirregular sampling grid. In this example, the methods of Section

3.2 are applied to bivariate series observed on the same sampling(gid;’, f2)}2%, where

fl = sin(%) + sin(%) + sin(%) + 4,

2 (% —
f2 = sm(%)+{§,

wherer = 0 for x, < 200 andr = 6 for x, > 200, and the quantitie§ andZ are independent,
identically distributed Gaussian variables with mean zero and varia@&€eThe observations are
irregularly sampled such that {1 — ) € {n/10 :n=10,11,...,30} and(nTll) St (X1 — %) = 2.

Estimates for coherence and phase are computed using the complex-valued lifting scheme using
a sample ofP = 1500 randomly sampled trajectories, discretising usihg 20 artificial scales
and smoothing over time using a window of width = 60, V i. The coherence estimate (Figure
4, right) provides a clear visualisation of the dependence between the two series, with a peak
occurring at scale 10g§30/3) = 3.3 (equivalent to a Fourier period of 30). The time lag that
is introduced halfway through the second signal is also clearly captured by the phase estimate
(Figure 5, left), which is approximately zero for the first half of the series, then shows a marked
increase for the second half.

For comparison, the estimated coherence using a real-valued bivariate scheme (Sanderson,
2010) is also reported (Figure 4, left). It is interesting to note that although this method also
clearly estimates a dependence for the first half of the series, it does not continue to detect it
following the time delay. This again emphasises the advantage of using a second filter, present in

the complex-valued lifting transform.

Signals sampled on different irregular sampling grids. The methods described in Section 3.2
are now demonstrated by revisiting the same simulated data example, but with the two series ob-
served on dterent irregularly spaced sampling gridéx, X2, fl, £2)}29. Aside from the sampling,
the series satisfy the same properties as previously described.
The estimates were obtained using a discretisatiodi* of 15 artificial scales and* = 60

artificial time points, while a smoothing window of widti' = 60 was applied at all scales as
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in the previous example. The resulting estimated coherence and phase are shown ir?Eigure
respectively Figure 5, right. It is interesting to note that while estimates broadly agree with those
corresponding to sampling using the same (irregular) grid (Figure 4 and Figure 5, left), the price
to pay for the diferent sampling schemes is the reduced clarity of the estimator. This is point is
further reinforced by the phase estimate corresponding to a regular sampling situation, see Figure
5, bottom.

Coherence and phase analysis comparison with Fourier-based methods. For comparison

with established Fourier-based techniques, we also performed coherence analysis of stationary,
regularly sampled vector autoregressive (VAR) processes, as well as phase analysis of the signals
described above. For regularly sampled stationary processes, we compared our estimates to the
well-behaved Fourier estimates, while in the presence of sampling irreg(rianstationarity, we
compared our method to the short-time Fourier transform (STFT) and the Lomb-Scargle method.
For brevity, we do not include the coherence and phase comparison plots here, but they can be
found in Appendix A of the supplementary material.

Specifically, in the supplementary material we illustrate the coherence estimates obtained through
both a classical Fourier-based approach and our lifting-based method on two bivariate VAR pro-
cesses. The resulting estimates agree very well, with the lifting-based estimate displaying a slight
depreciation when compared to the well-behaved Fourier estimates, suited for regular sampling
and stationary process behaviour. However, in general if the data is believed to be amenable to
be analysed with standard methodology, Fourier-based estimation should be preferred to the pro-
posed method which was specifically designedffera solution for the challenging situations that
include irregular sampling.

As already highlighted, traditional methods do not readily handle data that feature both po-
tential nonstationarities and irregular sampling, thus STFT required further intervention while the
Lomb-Scargle method failed to account for nonstationarity. Thus in order to obtain the desired
phase analysis, we mapped the irregular data to a regular grid (by e.g. interpolation) and then used
STFT in order to capture the nonstationary time-frequency content of the data. The Lomb-Scargle
analysis naturally dealt with the sampling irregularity, but assumed stationarity and therefore it did

not provide time-localisation information. The phase estimation plots of the STFT method exhibit
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little resolution in time or frequency, possibly due to the spectral blurring induced by the over-
lapping windows in the STFT as noted in Shumway andf&tq2013). Furthermore, for signals
sampled over dierent irregular grids, the method creates additional blurring in the phase plot. By
contrast, the Lomb-Scargle method is able to deal naturally with the irregular sampling structure
of the signals, but it does not contain any time-phase information. In addition, there is no marked
distinction in frequency where the phase is large, unlike for that of our complex lifting method (see

Figure 5). These features yet again highlight the appeal of our technique.

3.3.2 Simulated data with varying time delay

The next example explores thé&exct of increasing the time delay between two signals. For each

value ofr = 1,..., 15, the serie§(x, !, f2)}2% are simulated following

fl = sin(%) + e

f2 = sin(—Zﬂ();fo_ T)) + 22,

where (.1 — %) € {n/10 : n = 10,11,...,30} and l5 Ski(%e1 — %) = 2, & and 7 are
independent, identically distributed Gaussian variables with mean zero, vari@hce 0

Just as in the classical (Fourier) analysis, it is interesting to inspect the coherence and phase
across frequencies (here, scales) in order to relate the common behaviour of the two series and pos-
sible time delays, respectively. The estimated coherence and phase corresponding to the increasing
t=1,...,15 are shown in Figure 7. To give an overall sense of the coherence and phase magni-
tude over time, the estimates are averaged over the full time range tp(diyve: 2—30 3299 5 ().

We usedP = 750 randomly sampled trajectories and discretised uirg20 artificial scales.

Whent = 0, the coherence is 1 and the phase is 0. #~¢r 0 the coherence is greatest at a
scale of 1og(30/3), corresponding to the period of variatioh € 30) in the data. The coherence
intensity and response over scale dife@ed by the magnitude of the time delay. The coherence
is lowest at time delays around57(T /4), and at these shifts the peak at scalg(®@/3) is also
more pronounced. At = 15 (T/2) the signals are sign reversed versions of each other and, again,

the observed coherence is 1 at all scales. The phase is also greatest at $20¢3pdrhe phase
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response varies as a function of time delay and alternates between positive and negative values,
with |¢(£')| maximised at' = T/4. This is displayed in Figure 8 which shows the estimated phase
at scale log(30/3) as a function of time delay.

For completeness, we also provide a direct comparison with classical Fourier coherence and
phase estimation when the signals are regularly sampled (see Figure 9). Whilst the overall be-
haviour is similar for both the classical aG#NLT methods, the Fourier method displays less vari-
ability across coherence estimates with the changing time delay (Figure 9, left), as well as more
localised phase-frequency information (Figure 9, right). However, in general, note that if the data
is believed to be amenable to be analysed with standard methodology, this should be preferred to
the proposed@NLT method which was specifically designed tbes a solution for the challenging

situations that include irregular sampling.

3.3.3 Financial timeseries

In this section we demonstrate the use of the proposed complex-valued lifting transform through an
application to financial data consisting of prices of all trades on 1 March 2011 (in normal trading
hours) for two IT companies, Baidu and Google, both traded on the NASDAQ stock exchange.
Comparison of the two companies is of interest as the main product of both is a search engine, but
they are based in flerent geographical regions.

Often several trades per second occur and in this case the last quoted value for each second is
selected. Thus the finest sampling interval is one second, but as there are seconds with no trades,
the time series are not equally spaced. For the analysis we consider the returns of each series— for
Google, the series contains 7984 observations with an average sampling distance of 2.93 seconds
and range 1 to 48; for Baidu, the series contains 6535 observations with an average sampling gap
of 3.58 seconds and range 1 to 52.

The data was analysed using the methodology described in Section 3.2usirid artificial
scales and* = 390 artificial time intervals (each time interval has a width of 60 seconds). The
estimates were smoothed over time using a window widthbf= 60 minutes at the finest scale
and increasing by a factor of 1.05, to provide a larger smoothing window for each subsequent

scale. The coherence estimate is shown in Figure 10a) for scales up to 10. The main feature of the
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resulting coherence estimate is an increased coherence around scale 6, corresponding to a Fourier
frequency ofT ~ 3 minutes. The magnitude of the coherence at this scale is seen to be more
pronounced towards the end of the day. There is also a period of higher coherence observed in the
middle of the day, at low wavelet scales (corresponding to high frequency information).

One usual treatment of such irregular data would be to consider it in terms of the one minute
average returns. The estimated coherence using the aggregated data is shown in Figure 10b),
whereJ* = 10 artificial scales and@* = 78 artificial time intervals (each representing a range of 5
minutes) were used. Notice that finer behaviour details are erased, reflecting the coarser sampling

rate of the averaged data, and that spurious coherence is unsurprisingly induced by aggregation.

4 Real nonparametric regression using complex lifting

As with the traditional wavelet and lifting transforms, our proposed complex nondecimated lifting
transform can be used for nonparametric regression problems, including those with nonequispaced
sampling design. In a nutshell, the proposed smoothing procedure can be described as (i) perform
the complex lifting transform of the original data, (ii) combine the real and imaginafjiceats

into a statistic to undergo thresholdjsgrinkage and (iii) take the inverse lifting transform to
obtain the estimated unknown signal. A detailed description and estimator properties are provided
in Appendix B (supplementary material).

We briefly illustrate the application of this technique to the ethanol data example from Brinkman
(1981) that has been analyzed extensively, see for instance Kovac and Silverman (2000) and Cleve-
land et al. (1992). The data consist of 88 measurememM£ofexhaust emissions from an automo-
bile test engine, together with corresponding engine equivalence ratios, a measure of the richness
of the aiyethanol mix (Kovac and Silverman, 2000; Loader, 1999). Because of the nature of the
experiment, the observations are not available at equally-spaced design points, and the variability
is larger for low equivalence ratios.

We estimate the ratio-dependent (heteroscedastic) variance using a wavelet domain local esti-
mation procedure similar to that of Kovac and Silverman (2000) and Nunes et al. (2006).

Note that our complex adaptive lifting estimate is very similar to the smoothing spline, and
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both identify changes in slope around 0.7 and 0.9. However, the magnitude and duration of these
effects appear to befiierent between the two estimates. The real-valued adaptive lifting estimate
has an overall similar appearance albeit being less smooth and featuring more abrupt changes that
are unlikely to be true features of the process. In this example, the true shape of the ethanol curve
is of course unknown, however we believe that it is more likely to be smooth. Hence it is pleasing

to see that even visually our estimator does a good job in this case.
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Figure 1: The complex-valued lifting schem@-LOCAAT). Solid lines correspond to the steps

of the standard LOCAAT lifting scheme whereas dotted lines indicate the extra prediction step
required for the complex-valued scheme. After R) applications, the function can be represented
as a set oR smooth cofficients{c,_j}ics, » and 1 — R) detail codficients{1;, + iuj Jkep, »» €ach
associated with a particular SC&tg, Jkep, «-

ACCEPTED MANUSCRIPT
27



ACCEPTED MANUSCRIPT

Figure 2: Construction of bivariateNLT transform for time series observed on the same sampling
grid (x refers to time here): a) univaria@\LT is applied using the same set of trajectories for both
series and yields two sets of detail €igients{dy;"} ,x and{d%?} ,x; b) theCNLT transform consists

of combinations of co@cients from each series; ¢) the detail ffia@ents are averaged within each
scale.
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Figure 3: Construction of bivaria@NLT transform for time series observed ottdrent sampling
grids (x refers to time here): a) each series is lifted individually as described in Section 2.3; b)
the sets of ca@cients in each grid square. The @daents are sampled so that there is the same
number in the grid square of each series; c) thefoments of each series are combined to form
the appropriate bivariate quantities, producing ondftment to represent each grid square.
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Figure 4: Coherence estimation for data observed on the same irregular sampling grid: using the
real-valued bivariate lifting scheme (left); using the complex-valued lifting scheme (right). Scale
gets coarser from bottom upwards.
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Figure 5: Phase estimation using the complex-valued lifting scheme: data observed on the same
irregular sampling grid (left); data observed orffelient irregular sampling grids (right); data
observed on the same regular grid (bottom). Scale gets coarser from bottom upwards.
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Figure 6: Coherence estimation for data observed fiarént irregular sampling grids. Scale gets
coarser from bottom upwards.

ACCEPTED MANUSCRIPT
32



ACCEPTED MANUSCRIPT

ssssssssss

Figure 7: a) Coherence and b) Phase betwigeand f2? (Section 3.3.2) as a function of scale and
7 € 0,15. Forr # 0 the coherence and (absolute) phase are greatest at Sc&B9/3GY.
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Figure 8: Estimated phase betweEnand f2 (Section 3.3.2) at scale lg@0/3) (equivalent to a
Fourier period of 30), as a function of
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requancy

Figure 9: a) Coherence and b) Phase betwideand f2 (Section 3.3.2) as a function of frequency
andr € 0, 15 using classical Fourier methods.
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Figure 10: Coherence between Google and Baidu using methods from Section 3.2: a) computed
on different irregular sampling grids; b) computed using one minute averages. Scale gets coarser
from bottom upwards.
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Figure 11: Ethanol data and estimates. Small ciratidéda; solid line-estimate. Top-left: smooth-

ing spline with cross-validated smoothing parameter; top-right: multiple observation adaptive lift-
ing usingR-lift with heteroscedastic variance computation dffahyesThreslposterior median
thresholding; bottom:C-AP1S with heteroscedastic variance computation and level-dependent
soft thresholding.
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