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We develop further the theory of weak factorization systems and algebraic weak 
factorization systems. In particular, we give a method for constructing (algebraic) 
weak factorization systems whose right maps can be thought of as (uniform) 
fibrations and that satisfy the (functorial) Frobenius condition. As applications, 
we obtain a new proof that the Quillen model structure for Kan complexes is right 
proper, avoiding entirely the use of topological realization and minimal fibrations, 
and we solve an open problem in the study of Voevodsky’s simplicial model of 
type theory, proving a constructive version of the preservation of Kan fibrations by 
pushforward along Kan fibrations. Our results also subsume and extend work by 
Coquand and others on cubical sets.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper studies the Frobenius condition for weak factorization systems (wfs’s), which asserts that 
pullback along a right map preserves left maps [3,13]. One reason for the interest in this condition is that 
it is closely related to the right properness of a Quillen model structure, which requires that pullback along 
a fibration preserves weak equivalences. Indeed, for a Quillen model structure in which the cofibrations 
are stable under pullback, such as the Cisinski model structures [9], right properness is equivalent to the 
Frobenius condition for the wfs of trivial cofibrations and fibrations. Furthermore, when pushforward along 
right maps exists, i.e. pullback along right maps has a right adjoint, the Frobenius condition is equivalent 
to the preservation of right maps by pushforward along a right map. In the category of simplicial sets, this 
amounts to the preservation of Kan fibrations by pushforward along Kan fibrations, a fact that plays an 
important role in Voevodsky’s simplicial model of univalent foundations [29].

For our development, we work in the setting of a category E equipped with an appropriate cofibrantly 
generated wfs (Cof, TrivFib), to be thought of as consisting of cofibrations and trivial fibrations, and a 
functorial cylinder satisfying appropriate assumptions. Building on ideas in [9], we then construct a new 
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wfs (TrivCof, Fib), to be thought of as consisting of trivial cofibrations and fibrations (Proposition 3.5). 
Here, a fibration is defined as a map with the right lifting property with respect to a class of maps called 
here generating trivial cofibrations, which are obtained as (a generalized form of) pushout product between 
the endpoint inclusions of the functorial cylinder and generating cofibrations. We then prove that the wfs 
(TrivCof, Fib) satisfies the Frobenius condition (Theorem 4.8). When applied in the category of simplicial 
sets, with the wfs of monomorphisms and trivial Kan fibrations [34] as (Cof, TrivFib), fibrations in our sense 
are exactly Kan fibrations. Therefore, our results yield a proof that the wfs of trivial cofibrations and Kan 
fibrations satisfies the Frobenius condition, and so give a new proof of right properness of the Quillen model 
structure for Kan complexes. One reason for the interest in this proof is that it avoids entirely the use of 
topological realization, used in [22], and of minimal fibrations, used in [27].

We then obtain analogous results for algebraic weak factorization systems (awfs’s) [16,20]. In an awfs, 
the left and right maps do not just satisfy a lifting property, but are equipped with a natural family of 
solutions for lifting problems. The technical ingredient underpinning this idea is to work not just with 
classes of maps in a fixed category E , but with categories I equipped with a functor u : I → E→ (often an 
inclusion or a forgetful functor), where E→ is the arrow category of E . For example, when E is a presheaf 
category it is natural to define a uniform trivial cofibration to be a right map with respect to the category 
of monomorphisms and pullback squares, considered with the evident inclusion into E→. Unfolding the 
relevant definitions, a uniform trivial fibration is a map equipped with diagonal fillers for lifting problems 
against monomorphisms, with the fillers satisfying a naturality condition with respect to pullback squares 
between monomorphisms. The presence of this algebraic structure remedies some unsatisfactory aspects of 
wfs’s (such as the failure of orthogonality classes to be closed under all colimits), something that has proved 
to be useful for applications (see [2,15,17] or [1,5,11,33,38] for examples). The Frobenius condition has a 
natural counterpart in this context, called the functorial Frobenius condition [3], which requires that the 
pullback along right maps not only preserves left maps but also preserves morphisms between them.

Starting from a suitable awfs (C, Ft), whose left and right maps are to be thought of as uniform cofibrations 
and uniform trivial fibrations, we define uniform fibrations by algebraic orthogonality with respect to a cate-
gory having generating trivial cofibrations as objects. We then show that there exists an awfs (Ct, F) that has 
uniform fibrations as right maps (Theorem 7.5) and that satisfies the functorial Frobenius condition (The-
orem 8.8). Therefore, pushforward along a uniform fibration preserves uniform fibrations (Corollary 8.9). 
An important technical step in this development is the characterization of when an algebraically-free awfs 
(in the sense of [16]) has the functorial Frobenius property (Theorem 6.9), which is more elaborate than its 
counterpart for ordinary wfs’s.

In order to apply our algebraic results in simplicial sets and cubical sets, we show that, given a category of 
monomorphisms and pullback squares satisfying some mild assumptions, it is possible to construct an awfs 
(C, Ft) satisfying the conditions necessary to apply our results (Theorem 9.1). Instantiating our definitions 
we obtain the notion of a uniform Kan fibration, which subsumes the one introduced in [11]. We then 
establish the existence of an awfs that has uniform Kan fibrations as right maps and that satisfies the 
functorial Frobenius property, so that pushforward along a uniform Kan fibration preserves uniform Kan 
fibrations.

These results contribute to the ongoing investigations on whether Voevodsky’s simplicial model of univa-
lent foundations [29] admits a constructive version, i.e. one that can be defined without the law of excluded 
middle or the axiom of choice. In order to do this, it is necessary to overcome the problem that the preser-
vation of Kan fibrations by pushforward along Kan fibrations [29, Lemma 2.3.1], which is necessary for the 
interpretation of Π-types in the simplicial model, cannot be proved constructively [6, Section 6]. Here, we 
solve this problem by working with the notion of a uniform Kan fibration, which is classically equivalent to 
the usual one, but allows us to prove constructively the preservation of uniform Kan fibrations by pushfor-
ward along uniform Kan fibrations. Indeed, the proof of our results in the case of simplicial sets, as well as 
cubical sets, is constructive (see Remark 9.4).
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Furthermore, our results shed some light on the cubical set models of type theory that have been inves-
tigated extensively in recent years [1,5,11,33,38]. Indeed, the independence results in [6] mentioned above 
have led the research community to shift the focus on models based on cubical sets and uniform Kan fi-
brations, since in that setting it is possible to develop a constructive model of univalent foundations [11], 
showing in particular that pushforward along a uniform Kan fibration preserves uniform Kan fibrations. 
But, as our results show, the key aspect that makes it possible to obtain that result on pushforward is the 
idea of using the algebraic notion of a uniform Kan fibration, rather than working with cubical sets. Since 
our results apply to cubical sets, we give also a new proof of the fact that pushforward along a uniform 
Kan fibration preserves uniform Kan fibrations, avoiding entirely the complex calculations with cubical sets 
of [11,23]. Indeed, one of the initial motivations for this work was to explore whether the theory of uniform 
fibrations in cubical sets could be developed at a greater level of generality, so as to make it applicable also 
to simplicial sets.

We also provide a characterization of uniform trivial fibrations in terms of the partial map classifierThe-
orem 9.8), as suggested to us by Thierry Coquand and André Joyal. We then use this characterization to 
show in what sense the notion of a uniform (trivial) fibration subsumes the standard notion of a (trivial) 
fibration (Theorem 9.9). In particular, we prove that a map in a presheaf category can be equipped with 
the structure of a uniform (trivial) fibration if and only if it is a (trivial) fibration. As we observe in Re-
mark 9.11, however, the algebraic notion of a uniform fibration is essential for our results in Section 7 to 
hold constructively.

Remark. In order to make the paper more concise, we confine comments on constructivity issues to certain 
remarks and footnotes. However, let us point out here for the interested readers that our development 
does not rely on the law of the excluded middle or the axiom of choice, apart from Proposition 3.5 and 
Theorems 7.5 and 9.1. For Theorems 7.5 and 9.1, we argue that the result holds constructively for simplicial 
sets and cubical sets in Remark 9.4.

Organization of the paper. Section 2 introduces the setting in which we work throughout the paper. The core 
of the paper is then organized in two parts: the first part (Sections 3 and 4) studies wfs’s; the second part 
(Sections 5 to 8) studies awfs’s. In the first part, we introduce fibrations and establish the existence of the 
corresponding wfs in Section 3, and then prove the Frobenius property for this wfs in Section 4. In the second 
part, we begin by establishing basic facts about orthogonality functors (Section 5) and then establishing 
necessary and sufficient conditions for an algebraically-free awfs to satisfy the functorial Frobenius condition 
(Section 6). The rest of the second part then proceeds in parallel with the first part. Section 7 (parallel to 
Section 3) introduces uniform fibrations and establishes the existence of the associated awfs, while Section 8
(parallel to Section 4) proves the Frobenius property for uniform fibrations. We end the paper in Section 9
studying uniform (trivial) fibrations in presheaf categories and relating (trivial) fibrations and uniform 
(trivial) fibrations.

2. Background

Throughout the paper, we work with a category E , assumed to be locally presentable and locally cartesian 
closed. In particular, E is cocomplete as well as finitely complete and pullback preserves all limits and colimits 
since it has both a left adjoint and a right adjoint. For an arrow f : X → Y , we write f∗ : E/Y → E/X for the 
pullback along f , f! : E/X → E/Y for its left adjoint, given by left composition with f , and f∗ : E/X → E/Y
for its right adjoint, which we call pushforward along f . We write E→ for the category of arrows of E and 
E→
cart for the subcategory of E→ of arrows and cartesian squares. Examples of such categories abound; in 

particular, our assumptions are satisfied not just by presheaf categories, but by arbitrary Grothendieck 
toposes.
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Our definitions and results are illustrated in two running examples. The first is the category SSet of 
simplicial sets, defined as usual to be the category of presheaves over the simplex category Δ [19]. The 
second is the category CSet of cubical sets of [11]. This is defined as the category of presheaves over the 
category � with objects of the form �A with A a finite set and morphisms �A → �B given by functions from 
B to the free de Morgan algebra on A. Here, a de Morgan algebra is defined to be a bounded distributive 
lattice (X, ∧, ∨, �, ⊥) further equipped with a unary operation ¬(−) : X → X satisfying ¬¬x = x, for all 
x ∈ X, and de Morgan’s laws: ¬(x ∧ y) = ¬x ∨ ¬y, ¬(x ∨ y) = ¬x ∧ ¬y, for all x, y ∈ X.

Thus, CSet is the category of cubical sets with symmetries, diagonals, connections, and involutions. Note 
that the presence of symmetries precludes � from being a Reedy category. We stress that the only feature 
of the category � relevant for the main results are connections and symmetries. Thus, our results apply 
equally to many other variations of cubical sets, excluding however those considered in [5,23], which do not 
have connections.

Recall from [28] that a functorial cylinder in E is an endofunctor I ⊗ (−) : E → E equipped with natural 
transformations

δ0 ⊗ (−) : IdE → I ⊗ (−) , δ1 ⊗ (−) : IdE → I ⊗ (−) ,

called the left and right endpoint inclusions, respectively. Such a functorial cylinder is said to have contrac-
tions if δ0 ⊗ (−) and δ1 ⊗ (−) have a common retraction ε ⊗ (−) : I ⊗ (−) → IdE , making the following 
diagrams commute:

IdE
δ0⊗(−)

I ⊗ (−)
ε⊗(−)

IdE
δ1⊗(−)

IdE .

(2.1)

Further, a functorial cylinder with contractions as above has connections if, for k ∈ {0 , 1}, there is a natural 
transformation ck ⊗ (−) : I ⊗ I ⊗ (−) → I ⊗ (−) such that the following diagrams commute:

I ⊗ (−)
δk⊗I⊗(−)

ε⊗(−)

I ⊗ I ⊗ (−)

ck⊗(−)

I ⊗ (−)
I⊗δk⊗(−)

ε⊗(−)

IdE
δk⊗(−)

I ⊗ (−) IdE ,
δk⊗(−)

(2.2)

I ⊗ (−)
δ1−k⊗I⊗(−)

I ⊗ I ⊗ (−)
ck⊗(−)

I ⊗ (−)
I⊗δ1−k⊗(−)

I ⊗ (−) .

(2.3)

We adopt the convention of associating the tensor product notation to the right.
If the functor I ⊗ (−) : E → E has a right adjoint,

E
I⊗(−)

⊥ E ,
exp(I,−)

(2.4)
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then we obtain a functorial cocylinder

(exp(I,−), exp(δ̄0,−), exp(δ̄1,−)) ,

i.e. a functorial cylinder in the opposite category Eop [28]. Contractions and connections carry over as well. 
In this case, note also that I ⊗ (−) : E → E preserves colimits. Sometimes we write XI for exp(I, X).

Our main examples of functorial cylinders with contractions and connections, discussed below, arise 
from a monoidal structure, written (E , ⊗, �), and the presence of an interval object, i.e. an object I ∈ E
equipped with maps δ0, δ1 : � → I, called the left and right endpoint inclusions, respectively. In such a 
situation, a functorial cylinder is given by tensoring with I. It is immediate to isolate what structure on the 
interval object guarantees the presence of contractions and connections on the associated functorial cylinder: 
contractions are induced by a map ε : I → � and connections by maps ck : I⊗I → I, for k ∈ {0 , 1}, provided 
that suitable axioms hold. Note that if the unit � of the monoidal structure is a terminal object, then we 
have contractions in a unique way.

Example 2.1. In SSet, considered as a monoidal category with respect to its cartesian structure, an interval 
object is given by Δ1 with endpoint inclusions δk : {k} → Δ1 given by special cases of horn inclusions, 
δk = h1

k, for k ∈ {0 , 1}. We have contractions since the monoidal structure is cartesian and connections 
ck : Δ1×Δ1 → Δ1, with k ∈ {0 , 1}, given on points by c0(x, y) = min(x, y) and c1(x, y) = max(x, y). These 
are determined uniquely since Δ1 and Δ1 × Δ1 are nerves of posets and min and max are monotone.

Example 2.2. The category � has finite products given by disjoint unions of sets, which makes cubical sets 
into a cartesian monoidal closed category. In CSet, an interval object with contractions is given by �1 with 
endpoint inclusions δk : {k} → �1 given by the maps from a singleton set to the free de Morgan algebra on 
an empty set that pick the bottom element for k = 0 and the top element for k = 1. We have contractions 
since the unit of the monoidal structure is a terminal object. Connection operations ck : �1⊗�1 ∼= �2 → �1

for k ∈ {0 , 1} are given by the maps from a singleton set to the free de Morgan algebra on a two-element 
set {x , y} that pick x ∧ y and x ∨ y, respectively.

For the remainder of this section and the next one, we work with ordinary weak factorization systems 
(wfs’s) [8] and use standard notation and terminology. For example, for a class I of maps in E , we write I�

for the class of maps having the right lifting property with respect to all elements of I. Let us recall the 
definition of the Frobenius property for a wfs.

Definition 2.3. We say that a wfs (L, R) in E has the Frobenius property if the pullback of an L-map along 
an R-map is again an L-map.

See [10] for an explanation of the connection between the Frobenius property for a wfs and Lawvere’s 
Frobenius condition [31]. As mentioned in the introduction, a Quillen model structure (Weq, Fib, Cof) in 
which the cofibrations are stable under pullback (such as Cisinski model structures [9], where the cofibrations 
are the monomorphisms) is right proper, i.e. the pullback of a weak equivalence along a fibration is again a 
weak equivalence, if and only if the wfs (TrivCof, Fib) of trivial cofibrations and fibrations has the Frobenius 
property.

We say that a wfs (L, R) is free on a class of maps I (not necessarily a set) if R = I�. If this is the case, 
then L = �(I�). Of course, a wfs could be free on many different classes of maps. By Quillen’s small object 
argument [34], every set I determines a wfs (L, R) free on I. These are what we call cofibrantly generated 
wfs’s. The next, very simple, proposition provides a convenient way of checking that a cofibrantly generated 
wfs satisfies the Frobenius condition and will be used in the proof of Theorem 4.8.
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Proposition 2.4. Let (L, R) be a wfs that is free on a class of maps I. Then the following are equivalent:

(i) (L, R) has the Frobenius property,
(ii) the pushforward along an R-map preserves R-maps,
(iii) the pullback of an I-map along an R-map is an L-map.

Proof. The claims follow by standard properties of the interaction between lifting properties and adjoint 
functors. �

As we will see in Section 6, the algebraic counterpart of Proposition 2.4, given by Theorem 6.9, is rather 
more complex to prove.

3. Fibrations

From here until the end of Section 4 we assume that our fixed category E is equipped with a functorial 
cylinder I ⊗ (−) : E → E with contractions and connections as well as a right adjoint as in (2.4).

The notion of a fibration that we introduce and study in this section and the next is relative not only 
to E and its functorial cylinder, but also to a wfs on E satisfying some assumptions that we encapsulate in 
the notion of a suitable wfs, given in Definition 3.1 below. In order to state that definition, we need some 
notation. For k ∈ {0, 1} and a map i : A → B in E , we define the Leibniz product [36] of the endpoint 
inclusion δk ⊗ (−) and i to be the map

δk ⊗̂ i : (I ⊗A) +A B → I ⊗B (3.1)

determined uniquely by the following pushout diagram:

A
i

δk⊗A

B

δk⊗B

I ⊗A

I⊗i

(I ⊗A) +A B

δk⊗̂i

I ⊗B.

(3.2)

We shall use Leibniz products with endpoint inclusions throughout the paper. In the next definition and 
afterwards, we write (Cof, TrivFib) to denote a suitable wfs, and refer to maps in Cof as cofibrations and 
maps in TrivFib as trivial fibrations since this helps us to convey some of the basic intuition motivating our 
development.

Definition 3.1. A wfs (Cof, TrivFib) in E is said to be suitable if the following conditions hold.

(S1) (Cof, TrivFib) is cofibrantly generated.
(S2) Every object of E is cofibrant, i.e. for every X ∈ E , the unique map ⊥X : 0 → X is a cofibration.
(S3) Cofibrations are closed under pullback, i.e. for every pullback square
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B

j

q
A

i

Y
p

X,

if i ∈ Cof then j ∈ Cof.
(S4) Cofibrations are closed under Leibniz product with the endpoint inclusions, i.e. for every i ∈ Cof we 

have δk ⊗̂ i ∈ Cof.

Example 3.2. Let E be a presheaf category. By a result of Cisinski [9, Proposition 1.2.27], E admits a 
cofibrantly generated wfs whose cofibrations are the monomorphisms.1 This wfs then satisfies conditions (S1) 
to (S3) of Definition 3.1. For it to be suitable, i.e. to also satisfy condition (S4), it suffices that the endpoint 
inclusions δ0 and δ1 are cartesian natural transformations. This will be the case if the functorial cylinder is 
induced by cartesian product with an interval object as in our main examples.

Let us now fix a suitable wfs (Cof, TrivFib). We let I be a set of maps that cofibrantly generates it, which 
exists by assumption (S1), and refer its elements as generating cofibrations. We wish to define a new wfs, 
to be thought of as consisting of trivial cofibrations and fibrations. For this, we begin by defining the set of 
maps that determines the notion of a fibration. This set is defined by letting

I⊗ =def {δk ⊗̂ i | k ∈ {0 , 1} , i ∈ I} . (3.3)

We refer to elements of I⊗ as generating trivial cofibrations.

Definition 3.3. A fibration is a map with the right lifting property with respect to all generating trivial 
cofibrations.

Before illustrating the notion of a fibration in our running examples, we establish that it is actually 
independent of the choice of the set of generating cofibrations and that fibrations are the right class of 
a wfs. For the first goal, we use the cocylinder structure on the right adjoint exp(I, −) to I ⊗ (−). For 
k ∈ {0 , 1} and a map f : X → Y in E , we define the Leibniz exponential of exp(δ̄k, −) and f to be the map

êxp(δ̄k, f) : XI → Y I ×Y X

determined uniquely by the following pullback diagram:

XI
exp(δ̄k,X)

exp(I,f)

êxp(δ̄k,f)

Y I ×Y X X

f

Y I

exp(δ̄k,Y )
Y .

(3.4)

1 If E is a category of presheaves over an elegant Reedy category [4], it is possible to be more specific: the boundary inclusions 
(i.e. the latching objects inclusions for representables) form a set of generating cofibrations.
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This definition can be extended so as to determine a functor, right adjoint to the Leibniz product functor:

E→
δk⊗̂(−)

⊥ E→.
êxp(δ̄k,−)

(3.5)

The desired characterization of fibrations, stated in the next proposition, now follows from standard ad-
jointness arguments.

Proposition 3.4. For a map p : X → Y in E, the following are equivalent:

(i) p is a fibration,
(ii) êxp(δ̄0, p) and êxp(δ̄1, p) are trivial fibrations. �

We now define a trivial cofibration to be a map with the left lifting property with respect to all fibrations. 
We write Fib for the class of fibrations and TrivCof for the class of trivial cofibrations, so that Fib = (I⊗)�

and TrivCof = �Fib. The next proposition is immediate.

Proposition 3.5. (TrivCof, Fib) is a wfs in E.

Proof. By Quillen’s small object argument, with I⊗ as the generating set. �
Example 3.6. In SSet, let (Cof, TrivFib) be the wfs of monomorphisms and trivial Kan fibrations, which is 
cofibrantly generated by the set of boundary inclusions

I = {in : ∂Δn → Δn | n ∈ N}.

Then a fibration in our sense is a map with the right lifting property with respect to all maps of the form

h1
k ⊗̂ in : (Δ1 × ∂Δn) ∪ ({k} × Δn) → Δ1 × Δn ,

given by the Leibniz product of an endpoint inclusion h1
k : {k} → Δ1 with a boundary inclusion in : ∂Δn →

Δn. This is shown equivalent to the usual notion of Kan fibration in [12, Chap. IV, Sec. 2]. Thus, the wfs 
(TrivCof, Fib) of Proposition 3.5 is the wfs of trivial cofibrations and Kan fibrations associated to the Quillen 
model structure for Kan complexes [34].

Example 3.7. In CSet, let (Cof, TrivFib) be the wfs in which Cof consists of all monomorphisms, which is 
suitable by Example 3.2. A fibration in CSet will be called a Kan fibration. To illustrate the relationship 
with the standard Kan filling condition for cubes, let in : ∂�n → �n, for n ∈ N, denote the boundary 
inclusion of the n-cube �n, which is given by the n-fold Leibniz product of [δ0, δ1] : {0 , 1} → �1. The 
Leibniz product in CSet can be seen to preserve monomorphisms, hence in will be a cofibration. Note 
however that the boundary inclusions in will not form a generating set of cofibrations: for example, the 
inclusion �1 → �2 given by the diagonal does not lie in the saturation of the boundary inclusions. The 
maps

δ0 ⊗̂ in : �1+n
1 → �1+n , δ1 ⊗̂ in : �1+n

1 → �1+n ,

for n ∈ N, are trivial cofibrations. Since the cube category has symmetries, a Kan fibration in CSet has the 
right lifting property also with respect to open box inclusions, which are counterparts in cubical sets of the 
horn inclusions in simplicial sets. However, these will not form a generating set of trivial cofibrations.
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Remark 3.8. Let us also relate the notion of a fibration introduced here with the notion of a naive fibration 
introduced by Cisinski [9]. So let (Cof, TrivFib) be a wfs as in Example 3.2 and let I be a generating set of 
cofibrations. Let m ⊗ (−) : IdE + IdE → I ⊗ (−) be the natural transformation with components

[δ0 ⊗X, δ1 ⊗X] : X + X → I ⊗X

for X ∈ E . A naive Cisinski fibration would be defined as a map with the right lifting property with respect 
to the class

I ′
⊗ =def {(m ⊗̂ (−))n(δk ⊗̂ i) | n ∈ N , k ∈ {0 , 1} , i ∈ I}

= {m ⊗̂ . . . ⊗̂m ⊗̂ δk ⊗̂ i | k ∈ {0 , 1} , i ∈ I}.

Informally, one could think of this set as the closure of the set of generating trivial cofibrations I⊗ under 
Leibniz product with m. Since I⊗ ⊆ I ′

⊗, every naive Cisinski fibration is a fibration in our sense.
Our reason for working with I⊗ instead of this class is that they coincide in a lot of cases. For example, 

assume that the functorial cylinder is induced by tensoring with an interval object in a symmetric monoidal 
category and Cof is closed under Leibniz product with the boundary inclusion [δ0, δ1] : 1 +1 → I, which is the 
case in our main examples, where Cof consists of all monomorphisms, the map [δ0, δ1] is a monomorphism, 
and Leibniz product preserves monomorphisms. Then, by permuting the Leibniz product, one sees that 
every element of I ′

⊗ is isomorphic to an element of I⊗.
To discuss a second case where fibrations and naive Cisinski fibrations coincide, we use some notions 

and results from Section 4. If we assume generalized connections (in the sense of (1 +n + 1)-ary operations 
that behave as connections for fixed middle n arguments), and that Cof is closed under Leibniz product 
with [δ0, δ1] (for example, this is the case if [δ0, δ1] is a monomorphism and the maps in Cof are the 
monomorphisms in a presheaf category), then the maps in I ′

⊗ can still be shown to be strong homotopy 
equivalences. This gives rise to an inclusion I ′

⊗ ⊆ Cof ∩ S (where S is the class of strong homotopy 
equivalences that we define in Section 4). By Lemma 4.5, it then follows that every fibration is a naive 
Cisinski fibration.

We conclude this section with some observations on the wfs’s (Cof, TrivFib) and (TrivCof, Fib). First, 
since Cof is closed under Leibniz products with the endpoint inclusions, we have that I⊗ ⊆ Cof. Therefore, 
since Cof is saturated, we have TrivCof ⊆ Cof, i.e. every trivial cofibration is a cofibration. Second, observe 
that Proposition 3.4 implies, by standard orthogonality arguments, that Fib = (Cof⊗)�, where Cof⊗ =def

{δk ⊗̂ i | k ∈ {0 , 1} , i ∈ Cof }. Finally, we establish a corollary of Proposition 3.4 which will be used to 
prove Lemmata 4.5 and 4.7, which are two of the key steps in establishing the Frobenius property for the 
wfs (TrivCof, Fib) in Section 4.

Corollary 3.9. Let f : X → Y in E. If f ∈ Cof, then δk ⊗̂ f ∈ TrivCof, for k ∈ {0 , 1}.

Proof. Assume f ∈ Cof and let k ∈ {0 , 1}. In order to show that δk ⊗̂ f ∈ TrivCof, it suffices to show that 
δk ⊗̂ f ∈ �(TrivCof�), i.e. δk ⊗̂ f ∈ �Fib. We have

δk ⊗̂ f ∈ �Fib ⇔ (∀p ∈ Fib) δk ⊗̂ f � p

⇔ (∀p ∈ Fib) f � êxp(δ̄k, p)

But we know that if p ∈ Fib, then êxp(δ̄k, p) ∈ TrivFib by Proposition 3.4. �



3036 N. Gambino, C. Sattler / Journal of Pure and Applied Algebra 221 (2017) 3027–3068
4. The Frobenius property for fibrations

We continue to work with our fixed locally presentable and locally cartesian closed category E , equipped 
with a functorial cylinder I ⊗ (−) : E → E with contractions and connections, and with a right adjoint as 
in (2.4), and a fixed suitable wfs (Cof, TrivFib) in E , with generating set I.

Our aim in this section is to show that the wfs (TrivCof, Fib) of Proposition 3.5 satisfies the Frobenius 
property. Our proof of the Frobenius property consists of three main steps. First, we introduce the notion of a 
strong homotopy equivalence (Definition 4.1) and give a characterization of strong homotopy equivalences as 
certain retracts (Lemma 4.3). Second, we show that every generating trivial cofibration is both a cofibration 
and a strong homotopy equivalence and that the cofibrations which are strong homotopy equivalences are 
trivial cofibrations (Lemma 4.5). Third, we show that the pullback of a strong homotopy equivalence along 
a fibration is again a strong homotopy equivalence (Lemma 4.7). With these facts in place, the Frobenius 
condition for (TrivCof, Fib) follows easily (Theorem 4.8).

We begin by introducing strong homotopy equivalences. For this, we need to review some preliminary 
notions. Let f, g : X → Y be maps in E . Recall that a homotopy from f to g, denoted φ : f ∼ g, is a 
morphism φ : I ⊗X → Y such that the following diagram commutes:

X
δ0⊗X

f

I ⊗X

φ

X

g

δ1⊗X

Y .

(4.1)

We say that a map f : X → Y in E is called a left (or 0-oriented) homotopy equivalence if there exist 
g : Y → X and homotopies φ : g ◦ f ∼ idX , ψ : f ◦ g ∼ idY . Dually, we have a right (or 1-oriented) homotopy 
equivalence if there exist g : Y → X and homotopies φ : idX ∼ g ◦ f , ψ : idY ∼ f ◦ g. The notion of a strong 
homotopy equivalence, defined below, is obtained by requiring an additional condition on the homotopies 
φ and ψ.

Definition 4.1. For k ∈ {0 , 1}, a map f : X → Y in E is called a strong k-oriented homotopy equivalence if 
there is a map g and homotopies φ and ψ making f into a k-oriented homotopy equivalence such that the 
following diagram commutes:

I ⊗X
I⊗f

φ

I ⊗ Y

ψ

X
f

Y .

(4.2)

We write Sk for the class of strong k-oriented homotopy equivalences and let S =def S0 ∪ S1. Elements 
of S are called strong homotopy equivalences.

Remark 4.2. The components of the endpoint inclusion δk⊗(−) : IdE → I⊗(−) are strong k-oriented homo-
topy equivalences. In fact, they are strong k-oriented deformation retracts, i.e. strong k-oriented homotopy 
equivalences for which the homotopy φ is trivial, i.e. φ = ε ⊗X, where ε is the contraction of the functorial 
cylinder. To show this, one exploits crucially the assumption that the functorial cylinder has connections. 
For k = 0, the retraction is given by ε ⊗X : I ⊗X → X and the homotopy ψ : (δ0 ⊗X) ◦ (ε ⊗X) ∼ 1I⊗X

is given by the connection c0 ⊗X. The correctness of the left and right endpoints of ψ follow from the left 
sides of (2.2) and (2.3), respectively. The axiom for strength follows from the right part of (2.2). The case 
k = 1 is similar.



N. Gambino, C. Sattler / Journal of Pure and Applied Algebra 221 (2017) 3027–3068 3037
Let us give an alternative characterization of strong k-oriented homotopy equivalences. For this, observe 
that, for k ∈ {0 , 1}, we have the diagram

X
δ1−k⊗X

f

I ⊗X
ι0 (I ⊗X) +X Y

δk⊗̂f

Y
δ1−k⊗Y

I ⊗ Y ,

(4.3)

which commutes by the naturality of δ1−k⊗ (−) since (δk ⊗̂f) ◦ ι0 = I⊗f . This diagram gives us (naturally 
in f) a map θk ⊗̂ f : f → δk ⊗̂ f in E→, which we use in the next lemma to provide a characterization of 
strong homotopy equivalences as retractions.

Lemma 4.3. A map f : X → Y is a strong k-oriented homotopy equivalence if and only if the map θk⊗̂f : f →
δk ⊗̂ f exhibits f as a retract of δk ⊗̂ f , i.e. there are dotted arrows as follows:

X
ι0◦(δ1−k⊗X)

f

(I ⊗X) +X Y

δk⊗̂f

X

f

Y
δ1−k⊗Y

I ⊗ Y Y ,

such that the two horizontal composites are identities.

Proof. First, by a standard diagram-chasing argument, giving the square on the right is equivalent to giving 
maps φ : I ⊗X → X, g : Y → X, ψ : I ⊗ Y → Y such that the following diagrams commute:

X
δk⊗X

f

I ⊗X

φ

Y
g

X,

Y
g

δk⊗Y

X

f

I ⊗ Y
ψ

Y ,

I ⊗X
φ

I⊗f

X

f

I ⊗ Y
ψ

Y .

(4.4)

Second, requiring that the two horizontal composites are identities means that the diagrams

X
δ1−k⊗X

I ⊗X

φ

X,

Y
δ1−k⊗Y

I ⊗ Y

ψ

Y

(4.5)

commute. With reference to the diagrams (4.1) and (4.2), the equations in (4.4) provide endpoint k for φ

and ψ as well as strength, respectively, while the equations in (4.5) provide endpoints 1 − k for φ and ψ, 
respectively. �

Note that strong k-oriented homotopy equivalences have better closure properties than strong k-oriented 
deformation retracts. For example, Lemma 4.3 implies that strong k-oriented homotopy equivalences are 
closed under retracts. Indeed, let f be a strong homotopy equivalence and g be a retract of f . Then θk ⊗̂ g

is a retract of θk ⊗̂ f since θk ⊗̂ (−) : E→ → (E→)→ is a functor and functors preserve retracts. Since f is a 
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strong homotopy equivalence, θk ⊗̂ f is a section. But then θk ⊗̂ g is also a section (since sections are closed 
under retracts), and so g is a strong k-oriented homotopy equivalence.

Lemma 4.4. For every map h : X → Y in E, we have that δk ⊗̂h is a strong k-oriented homotopy equivalence.

Proof. This is a diagram-chasing argument, which we outline in the case k = 0. Let us abbreviate f =def

δ0 ⊗̂ h : (I ⊗X) +X Y → I ⊗ Y . We define g as the composite

I ⊗ Y
ε⊗Y

Y
ι1 (I ⊗X) +X Y .

It remains to define homotopies φ : g ◦ f ∼ idX and ψ : f ◦ g ∼ idY such that f ◦ φ = ψ ◦ (I ⊗ f). The 
homotopy ψ : I ⊗ I ⊗Y → I ⊗Y is defined as the connection ψ =def c

0 ⊗Y . The signature of the homotopy 
φ can be equivalently stated as

φ : (I ⊗ I ⊗X) +I⊗X I ⊗ Y → (I ⊗X) +X Y

since I ⊗ (−) preserves pushouts. We then define φ = (c0 ⊗ X) +ε⊗X (ε ⊗ Y ). Standard reasoning, using 
diagrams (2.1), (2.2), (2.3) and naturality, verifies that φ and ψ have the correct endpoints and that the 
0-oriented homotopy equivalence (f, g, φ, ψ) is strong. �

Lemma 4.4 follows also from the more general Lemma 8.4, for which we provide a more conceptual proof.
For our second step, we return to consider a suitable wfs (Cof, TrivFib) with generating set I and the 

induced wfs (TrivCof, Fib) of Proposition 3.5, with generating set I⊗ defined in (3.3). We focus on the class 
Cof ∩ S, i.e. the class of cofibrations that are strong homotopy equivalences. The next lemma relates them 
to the generating trivial cofibrations and to the trivial cofibrations.

Lemma 4.5. We have

(i) I⊗ ⊆ Cof ∩ S,
(ii) Cof ∩ S ⊆ TrivCof.

Proof. For part (i), we have that I⊗ ⊆ Cof since I ⊆ Cof and Cof is closed under Leibniz product with δk

(condition (S4) in Definition 3.1). We also have I⊗ ⊆ S since δk ⊗̂ f is a strong k-oriented homotopy 
equivalence for every map f by Lemma 4.4. For part (ii), let f ∈ Cof ∩ S. Since f ∈ S, Lemma 4.3 implies 
that f is a retract of δk ⊗̂f for some k ∈ {0 , 1}. Because f ∈ Cof, we have δk ⊗̂f ∈ TrivCof by Corollary 3.9. 
The claim then follows since TrivCof is closed under retracts. �
Remark 4.6. By Lemma 4.5, we have that Fib = (Cof ∩S)�, i.e. a map is a fibration if and only if it has the 
right lifting property with respect to the cofibrations that are strong homotopy equivalences.

The next lemma is the third main step of the proof of the Frobenius property for (TrivCof, Fib).

Lemma 4.7. For k ∈ {0 , 1}, the pullback of a strong k-oriented homotopy equivalence along a fibration is a 
strong k-oriented homotopy equivalence.
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Proof. Let g ∈ Sk, p ∈ Fib, and consider a pullback diagram

A

ḡ

B

g

X
p

Y .

(4.6)

We wish to show that ḡ ∈ Sk. Since g ∈ Sk, θk ⊗̂ g : g → δk ⊗̂ g has a retraction ρ : δk ⊗̂ g → g. We show 
that θk ⊗̂ ḡ : ḡ → δk ⊗̂ ḡ has a retraction ρ̄ : δk ⊗̂ ḡ → ḡ. We define ρ̄ so that the diagram

ḡ
θk⊗̂ḡ

σ

δk ⊗̂ ḡ
ρ̄

δk⊗̂σ

ḡ

σ

g
θk⊗̂g

δk ⊗̂ g
ρ

g

in E→ commutes, where σ : ḡ → g is the pullback in (4.6) and the horizontal composites should be identities. 
Since σ is a cartesian arrow with respect to the codomain fibration, it suffices to solve this problem on 
codomains. Again omitting horizontal composites, we need a dotted arrow in

X
δ1−k⊗X

p

I ⊗X
cod(ρ̄)

I⊗p

X

p

Y
δ1−k⊗Y

I ⊗ Y
cod(ρ)

Y .

This is equivalent to finding a diagonal filler in the following square:

X

δ1−k⊗X

X

p

I ⊗X
I⊗p

cod(ρ̄)

I ⊗ Y
cod(ρ)

Y .

But δ1−k ⊗ X ∼= δ1−k ⊗̂ ⊥X , and ⊥X : 0 → X is a cofibration by the assumption that (Cof, TrivFib) is 
suitable (condition (S2) of Definition 3.1). By Corollary 3.9, we have that δ1−k ⊗̂ ⊥X ∈ TrivCof, and hence 
have a diagonal filler since p ∈ Fib. �
Theorem 4.8. The wfs (TrivCof, Fib) has the Frobenius property.

Proof. By Proposition 2.4, it suffices to show that, for a pullback of the form

A

j

B

i

X
p

Y ,

where i ∈ I⊗ and p ∈ Fib, we have j ∈ TrivCof. By part (i) of Lemma 4.5, i ∈ Cof ∩ S. By the closure 
of Cof under pullback (condition (S3) of Definition 3.1) and Lemma 4.7, it follows that j ∈ Cof ∩ S. But 
Cof ∩ S ⊆ TrivCof by part (ii) of Lemma 4.5. �
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Example 4.9. When applied to the category of simplicial sets (see Example 3.6), Theorem 4.8 gives a new 
proof of right properness of the Quillen model structure for Kan complexes. This proof avoids the use of 
topological realization, which is used in [21, Theorem 13.1.13] to deduce the desired result from the right 
properness of the model structure on topological spaces in which the fibrations are the Serre fibrations. It 
also avoids the use of the theory of minimal fibrations, which is used in [26, Theorem 1.7.1] to establish the 
result working purely combinatorially.

5. Categories of orthogonal maps

This section starts the second part of the paper, in which we are interested in generalizations of the results 
obtained earlier to algebraic weak factorization systems (awf’s) [16,20]. In this section and the next, we will 
need to review and establish some facts about the algebraic setting that are useful for our development. 
Importantly, in the algebraic setting we do not consider just classes of arrows in E , but rather categories I, 
to be thought of as indexing categories, and functors u : I → E→. In the following, we write ui : Ai → Bi

for the result of applying such a functor to i ∈ I. Let us recall the following definition from [16].

Definition 5.1. Let u : I → E→.

(i) A right I-map (f, φ) : X → Y consists of a map f : X → Y in E and a function φ that assigns to each 
i ∈ I and commuting square

Ai
s

ui

X

f

Bi
t

Y ,

a diagonal filler φ(i, s, t) : Bi → X, satisfying the following naturality condition: for every diagram of 
the form

Ai
a

ui

Aj
s

uj

X

f

Bi
b

Bj
t

Y

where the left square is the image of σ : i → j in I under u, we have that

φ(j, s, t) ◦ b = φ(i, s ◦ a, t ◦ b) .

(ii) A right I-map morphism α : (f, φ) → (f ′, φ′) is a square α : f → f ′ in E satisfying an evident compati-
bility condition with respect to the choices of diagonal fillers.

For u : I → E→, we write I� for the category of right I-maps and their morphisms. We then let u� : I� →
E→ be the evident forgetful functor, which we call the right orthogonal of u. Analogously, we can define 
the category �I of left I-maps and their morphisms as well as the forgetful functor �u : �I → E→, which 
we call the left orthogonal of u. As shown in [16, Proposition 3.8], the orthogonality operations extend to 
functors forming an adjunction
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CAT/E→

�(−)

⊥ CATop
/E→ .

(−)�
(5.1)

Even if objects of CAT/E→ are pairs of the form (I, u) where I is a category u : I → E→ and is a functor, 
in the following we shall often refer to them by the domain I of u. A similar convention applies to maps in 
CAT/E→ . For example, we write the components of the unit and counit simply as

ηI : I → �(I�) , εI : I → (�I)� .

In the following, we will see that some familiar equalities between two classes of maps are replaced by 
functors back and forth between two categories over E→, for which we now introduce some notation. Given 
u : I → E→ and v : J → E→, we write

I ↔ J (5.2)

to mean that there are functors F : I → J and G : J → I over E→, not necessarily forming an isomorphism 
or even an equivalence.

The rest of this section is devoted to establishing some facts regarding categories of orthogonal maps, 
describing the interplay between orthogonality functors and retract closure, slicing, adjunctions, Leibniz 
adjunctions, and Kan extensions. These facts are expected generalizations of well-known statements for 
classes of weakly orthogonal classes in the standard setting. Some of them follow from results in [7]; the 
others are probably also known to experts, but we include them since they are used in the remainder of the 
paper and we could not find them in the literature. We omit most proofs, which are straightforward.

Given a functor u : I → E→, we define its retract closure u : I → E→ as follows. An object of I is a 
tuple (i, e, σ, ρ) consisting of an object i ∈ I, an object e ∈ E→, and maps σ : e → ui, ρ : ui → e in E→ which 
exhibit e as a retract of ui in E→, i.e. such that

e
σ

ui

ρ

e.

A map (f, κ) : (i, e, σ, ρ) → (i′, e′, σ′, ρ′) in I consists of a map f : i → i′ in I and a map κ : e → e′ in E→

such that the following diagram in E→ commutes:

e
σ

κ

ui

ρ

uf

e

κ

e′
σ′

ui′
ρ′

e′.

The functor u : I → E→ is then defined on objects by letting u(i, e, σ, ρ) =def e, and on maps by letting 
u(f, κ) =def κ. The operation of retract closure gives a monad in an evident way. The next proposition uses 
the notation introduced in (5.2).

Proposition 5.2. For every u : I → E→, we have pairs of functors

(I)� ↔ I� ,�(I) ↔ �I

over E→. �
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Given u : I → E→ and X ∈ E , we define the slice category I/X and functor u/X : I/X → E→
/X as follows. 

The category I/X has as objects pairs consisting of an object i ∈ I and a commutative triangle in E of the 
form

Ai

ui

Bi

X.

The functor u/X : I/X → E→
/X sends such a pair to ui : Ai → Bi, viewed as a morphism in E/X . There is 

also a coslice category under X, described dually, which we denote u\X : I\X → E→. With these definitions 
in place, the commutation between slicing and orthogonality functors in the algebraic setting can be stated 
as follows.

Proposition 5.3. Let u : I → E→ and X ∈ E.

(i) The right orthogonality functor commutes with slicing, i.e. we have (I/X)� = (I�)/X as categories over 
E→.

(ii) The left orthogonality functor commutes with coslicing, i.e. we have �(I\X) = (�I)\X as categories 
over E→. �

In contrast to the right orthogonality functor, the left orthogonality functor does not commute with 
slicing in general. However, it does under certain assumptions, as described in Proposition 5.4 below.

Proposition 5.4. Let u : I → E→ and assume that

I u

codE ◦u

E→

codE

E

is a morphism of Grothendieck fibrations. Then the left orthogonality functor commutes with slicing on I, 
i.e. for X ∈ E we have �(I/X) = (�I)/X .

Proof. First note that the composite codE/X
◦ u/X is also a Grothendieck fibration. When constructing the 

category of left maps for I or I/X , an application of base change and naturality of diagonal fillers shows 
that it is sufficient to consider lifting problems with the bottom arrow an identity. But this restricted left 
orthogonality functor evidently commutes with slicing. �
Corollary 5.5.

(i) The monad �((−)�) commutes with slicing.
(ii) The monad (�(−))� commutes with coslicing.

Proof. Use Proposition 5.3 and note, for the first statement, that categories of right maps satisfy the 
assumptions of Proposition 5.4. The second statement follows dually. �
Proposition 5.6. The retract closure commutes with slicing and coslicing, in the sense that for every u : I →
E→, we have I/X = I/X and I\X = I\X as categories over E→. �
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Propositions 5.7 and 5.8 below are implied by [7, Proposition 21] with double categories of squares 
specialized to categories of arrows. Proposition 5.7 appears also in the form of the pullback square (6.3) 
in [35].

Proposition 5.7. Let u : I → E→ and v : J → F→. For an adjunction F � G between E and F , the following 
are equivalent, naturally in I and J :

(i) the functor F : E→ → F→ lifts to a functor ˜F : I → �J making the following diagram commute:

I
˜F

u

�J
�v

E→
F

F→,

(ii) the functor G : F→ → E→ lifts to a functor ˜G : J → I� making the following diagram commute:

J

v

˜G I�

u�

F→
G

E→. �
Proposition 5.8. Let u : I → E→ and v : J → F→. Let F1 � G1 and F2 � G2 be adjunctions between E
and F satisfying the equivalent conditions of Proposition 5.7. Let m : F1 → F2 and n : G2 → G1 be natural 
transformations forming mates. Then the following are equivalent:

(i) the natural transformation m lifts as follows:

I
˜F1

˜F2

m̃

u

�J
�v

E→
F1

F2

m F→,

(ii) the natural transformation n lifts as follows:

J
˜G2

˜G1

ñ

u

I�

�v

F→
G2

G1

n E→. �

We generalize Proposition 5.7 to Leibniz adjunctions [36]. Let us fix functors F : K×E → F and G : Kop×
F → E related, for k ∈ K, by an adjunction:
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E
F (k,−)

⊥ F .
G(k,−)

Let ̂F : K→ × E→ → F→ and ̂G : (Kop)→ × F→ → E→ denote the Leibniz constructions for F and Gop, 
using pullback instead of pushout for ̂G. Here and below we assume that the categories under consideration 
have sufficient structure to carry out the relevant Leibniz constructions. The following proposition is a 
generalization of [35, Theorem 6.5].

Proposition 5.9. Let u : I → E→, v : J → F→ be functors. Then the following are equivalent for h : X → Y

in K, naturally in I and J :

(i) liftings F ′ : I → �J of ̂F (h, −) : E→ → F→ making the following diagram commute:

I F ′

u

�J
�v

E→
̂F (h,−)

F→,

(ii) liftings G′ : J → I� of ̂G(h, −) : F→ → E→ making the following diagram commute:

J

v

G′

I�

u�

F→
̂G(h,−)

E→. �

Corollary 5.10. For a functor u : I → E→ and a map h : X → Y in K, there is a pullback of categories of 
the form

I�

( ̂F (h,−)◦u)�

I�

u�

F→
̂G(h,−)

E→.

Proof. By the Yoneda lemma and the universal property of pullbacks, it suffices to show that diagrams of 
the form

J

v

I�

( ̂F (h,−)◦u)�

F→.

are in natural bijective correspondence with diagrams as in item (ii) of Proposition 5.9. But by the 
adjunction (5.1), the former are in natural bijective correspondence with diagrams as in item (i) of Propo-
sition 5.9. �
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The next results spell out a special case of Proposition 5.9 and Corollary 5.10 which will be used in Sec-
tions 7 and 8. Fix categories E and F , and let Adj(E , F) be the category of adjunctions U � V (with 
U : E → F and V : F → E) and maps of adjunctions [30, Chapter IV, §7]. We then have functors

evL : Adj(E ,F) × E → F , evR : Adj(E ,F)op ×F → E

defined by evaluation of the left and right adjoint, respectively.

Proposition 5.11. Let u : I → E→ and v : J → E→ be functors. For a map of adjunctions α : (U, V ) →
(U ′, V ′), the following are equivalent:

(i) liftings of êvL(α) making the following diagram commute:

I

u

�J
�v

E→
êvL(α,−)

F→,

(ii) liftings of êvR(α) making the following diagram commute:

J

v

I�

u�

F→
êvR(α,−)

E→.

Corollary 5.12. For a functor u : I → E→ and a map of adjunctions α : (U, V ) → (U ′, V ′), there is a pullback 
of categories of the form

I�

(êvL(α,−)◦u)�

I�

u�

F→
êvR(α,−)

E→.

Remark 5.13. Recall the adjunction between the cylinder and cocylinder functors in (2.4) and write 
δ̄k : exp(I, −) → Id for the mate of δk : Id → I ⊗ (−), for k ∈ {0 , 1}, so that α =def (δk, ̄δk) is a map 
of adjunctions from Id � Id to I ⊗ (−) � exp(I, −). Inspecting (3.2), we see that the left adjoint δk ⊗̂ (−)
in (3.5) is êvL(α, −). Similarly, inspecting (3.4), we see that the right adjoint êxp(δ̄k, −) in (3.5) is êvR(α, −). 
This shows that the adjunction (3.5) fits into the setting of Proposition 5.11 and Corollary 5.12.

Next, we record some facts about the interaction between orthogonality functors and Kan extensions 
along fully faithful functors. These follow immediately from [7, Lemma 24].

Proposition 5.14. Let F : I → J be a fully faithful functor.

(i) Assume that the pointwise left Kan extension of u : I → E→ along F exists:
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I

u

F J

LanF u

E→.

Then the functor F� : J � → I�, fitting in the diagram

I�

u�

J �F�

(LanF u)�

E→,

is an isomorphism.
(ii) Assume that the pointwise right Kan extension of u : I → E→ along F exists:

I

u

F J

RanF u

E→.

Then the functor �F : �J → �I, fitting in the diagram

�I

�u

�J
�F

�(RanF u)

E→,

is an isomorphism.

We conclude this section by proving two results in the special case that E is a presheaf category, say 
E = Psh(C) for C a small category. We write y: C → E for the Yoneda embedding. Recall from Section 2
that we write E→

cart for the category of arrows and pullback squares in E .

Lemma 5.15. Let J be a full subcategory of E→
cart closed under base change to representables, i.e. closed under 

pullback along morphisms with domain a representable presheaf. Let I denote its restriction to arrows into 
representables,

I J

E→.

Then the inclusion J → E→ is the left Kan extension of I → E→ along I → J .

Proof. Since E→ is cocomplete, we can verify the claim using the colimit formula for left Kan extensions. 
All of the following will be functorial in an object j : A → B of J . We consider the diagram d : S → E→, 
where S is the set of pullback squares of the form
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A′

i

A

j

y(x)
b

B

with i : A′ → y(x) in I, and the function d maps such a square to i ∈ E→. Our goal is to show that its 
colimit is j. Using the assumption that J is closed under base change to representables, the given diagram 
can be described equivalently as the diagram indexed by maps b : y(x) → B and valued b∗(j). The claim can 
then be restated as colimb : y(x)→B b∗(j) ∼= j, which holds since pullback commutes with colimits in presheaf 
categories, and colimb : y(x)→B y(x) ∼= B. �
Proposition 5.16. Let J be a full subcategory of E→

cart closed under base change to representables. Let I
denote its restriction to arrows into representables,

I J

E→.

Then I� = J �.

Proof. The result follows by combining part (i) of Proposition 5.14 and Lemma 5.15. �
6. The functorial Frobenius condition

Recall that a functorial factorization on a category E consists of a pair of functors L, R : E→ → E→

providing factorizations

X
f

Lf

Y

Mf

Rf

functorially in f ∈ E→. The functors L and R then admit a canonical copointing and pointing, respectively, 
given by the natural transformations (Id, R) : L → Id and (L, Id) : Id → R. We write L-map for the category 
of copointed endofunctor algebras over L and R-map for the category of pointed endofunctor algebras over R. 
Both of these categories have evident forgetful functors into E→.

For an algebraic weak factorization system (awfs) [16,20], we require also a comultiplication L → LL and 
a multiplication RR → R, giving the structure of a comonad on L and of a monad on R, respectively, such 
that the canonical natural transformation LR → RL is a distributive law. We write L-Map for the category 
of comonad coalgebras over L and R-Map for the category of monad algebras over R. These come equipped 
with forgetful functors into E→ and fulfill

L-map = �R-Map , R-map = L-Map� .

An awfs (L, R) has an underlying ordinary wfs, in which the left (right) class consists of the maps that admit 
the structure making them into an element of L-map (of R-map, respectively). Recall also that an awfs (L, R)
is said to be algebraically-free on u : I → E→ if R-Map ∼= I�. By Garner’s small object argument [16], every 
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u : I → E→ with I small and E locally-presentable determines an awfs (L, R) that is algebraically-free on I. 
We call such an awfs cofibrantly generated.

We now state the analogue for an awfs of the Frobenius condition for a wfs. This condition, called the 
functorial Frobenius condition, was stated for cloven wfs’s in [3], which are slightly more general than awfs’s. 
Let us fix some notation. For a category E , we write E→×E E→ for the pullback of cod: E→ → E with itself. 
This is the category of cospans in E , i.e. pairs of arrows with common codomain. Pullback gives a functor 
P : E→ ×E E→ → E→ sending a cospan (g, h) to h∗(g).

Definition 6.1. An awfs (L, R) in E satisfies the functorial Frobenius condition if pullback along R-map
preserves L-map, in the sense that we have a lift P̃ of P , as follows:

L-map ×E R-map P̃ L-map

E→ ×E E→
P

E→.

In this section, we obtain an analogue of Proposition 2.4 for awfs’s, i.e. a necessary and sufficient condition 
for an algebraically-free awfs to satisfy the functorial Frobenius condition (Theorem 6.9). We will apply this 
characterization in the next section in order to prove a functorial Frobenius property for the awfs having 
uniform fibrations as right maps.

In order to prove the desired characterization, it is convenient to work with a variant of the functorial 
Frobenius condition we introduce in Definition 6.2 below. For this, we introduce some notation. Given 
u : I → E→, we write I/E for the category with objects consisting of tuples (X, i, a, b) with X ∈ E , i ∈ I
(giving a map ui : Ai → Bi), a : Ai → X, b : Bi → X such that the following diagram commutes:

Ai

a

ui

Bi

b

X.

We write s : I/E → E for the first projection. Then, for v : J → E→, we can form a pullback

I/E ×E J J

cod ◦v

I/E s
E .

When u and v are the identity on E→, we obtain

E→
/E ×E E→ E→

cod

E→
/E s

E .

Pullback gives a functor Q : E→ ×E E→ → E→ sending (f, h) to h∗(f).
/E /E
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Definition 6.2. Let u : I → E→, v : J → E→, w : K → E→ be categories of arrows. We say that (I, J , K)
satisfies the generalized functorial Frobenius condition if pullback along J -maps sends I-maps to K-maps, 
i.e. the functor Q admits a lift Q̃ as below:

I/E ×E J
Q̃

u/E×Ev

K/E

w/E

E→
/E ×E E→

Q
E→
/E .

(6.1)

The next proposition shows in what sense the generalized functorial Frobenius condition is functorial in 
its parameters.

Proposition 6.3. Consider functors ut : It → E→, vt : Jt → E→, wt : Kt → E→, for t ∈ {1 , 2}, related as 
follows:

I2
F

u2

I1

u1

E→,

J2
G

v2

J1

v1

E→,

K1
H

w1

K2

w2

E→.

If (I1, J1, K1) satisfies the generalized functorial Frobenius condition, then so does (I2, J2, K2). �
Next, we show how the generalized functorial Frobenius condition can be simplified under some mild 

assumptions.

Proposition 6.4. Let u : I → E→, v : J → E→, w : K → E→ be categories of arrows such that

J v

codE ◦v

E→

codE

E

(6.2)

is a morphism of Grothendieck fibrations. Then the following are equivalent:

(i) the triple (I, J , K) satisfies the generalized functorial Frobenius condition,
(ii) there is a lift P̃ as below:

I ×E J P̃

u×Ev

K

w

E→ ×E E→
P

E→.

(6.3)

Proof. We will show that giving lifts Q̃ and P̃ as in (6.1) and (6.3), respectively, is equivalent. The situation 
(6.1) a priori represents a more general scenario: we are pulling back an arrow over an object Y ,
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A
ui

B

Y ,

with i ∈ I, along a map vj : X → Y with j ∈ J . In contrast, in (6.3) we restrict to the case that the map 
B → Y is the identity. It follows that any lift Q̃ induces a lift P̃ . However, under the stated assumption 
that (6.2) is a morphism of Grothendieck fibrations, the lift Q̃ can be reconstructed from the lift P̃ by first 
pulling back vj along B → Y to a map vj′ : D → B with j′ → j a map in J in the above situation and 
then setting Q̃(i, j) =def P̃ (i, j′). �

We can now restate the functorial Frobenius condition of Definition 6.1 equivalently in terms of the 
generalized functorial Frobenius condition of Definition 6.2.

Proposition 6.5. Let (L, R) be an awfs on E. Then the following are equivalent:

(i) (L, R) satisfies the functorial Frobenius condition,
(ii) (L-map, R-map, �(L-map�)) satisfies the generalized functorial Frobenius condition.

Proof. Recall that L-map = �R-Map is a category of left maps. We claim that both (i) and (ii) are 
equivalent to (L-map, R-map, L-map) satisfying the generalized functorial Frobenius condition. For the 
equivalence with (i), use Proposition 6.4. For the equivalence with (ii), use Proposition 6.3, noting that 
L-map ↔ �(L-map�) over E→, using the adjunction (5.1). �

The benefit of the reformulation in Proposition 6.5 of the functorial Frobenius condition as an instance of 
the generalized functorial Frobenius condition is that the latter admits an equivalent rephrasing in terms of 
pushforward, rather than pullback, functors. This rephrasing, which does not seem directly possible for the 
functorial Frobenius condition, will be essential to our characterization of algebraically-free awfs’s satisfying 
the functorial Frobenius condition. As a first step towards the pushforward formulation, we decompose the 
generalized functorial Frobenius condition into an object part and a morphism part. For this, recall that any 
arrow f : X → Y induces an adjunction f! � f∗ between the slices E/X and E/Y given by left composition f!
and pullback f∗. Given a functor u : I → E→, it is immediate to check that the left composition functor 
lifts as follows:

I/X
˜f!

u/X

I/Y
u/Y

E→
/X f!

E→
/Y .

Note that we can view the bottom map as a lift of f! : E/X → E/Y to arrow categories. Composing with 
the unit I/Y → �((I/Y )�) of the adjunction (5.1), applying Proposition 5.7, and using Proposition 5.3 to 
commute orthogonality functors with slicing, the pullback functor f∗ : E/Y → E/X then lifts to slices of the 
right orthogonality categories,

I�
/Y

u�
/Y

˜f∗

I�
/X

u�
/X

E→
/Y

f∗
E→
/X .
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Proposition 6.6. Let u : I → E→, v : J → E→, w : K → E→. Then (I, J , �(K�)) satisfies the generalized 
functorial Frobenius property if and only if the following conditions hold.

(i) For every j ∈ J , pullback along vj : Cj → Dj lifts to a functor

I/Y
˜v∗
j

u/Dj

�(K�)/Cj

�(w�)/Cj

E→
/Dj v∗

j

E→
/Cj

,

(ii) For every τ : j → k in J , the square

Cj

vj

s

Dj

t

Ck vk
Dk

(6.4)

induced by vτ : vj → vk is such that the canonical natural transformation

E→
/Dj

t!

v∗
j

⇓ φ

E→
/Cj

s!

E→
/Dk v∗

k

E→
/Ck

lifts to a natural transformation

I/Dj

˜v∗
j

˜t! ⇓ φ̃

�(K�)/Cj

s̃!

I/Dk
˜v∗
k

�(K�)/Ck
.

Proof. We consider the lift ˜Q of Q in the generalized functorial Frobenius condition (6.1) for (I, J , �(K�)). 
Since the functor �(w�) : �(K�) → E→ is faithful, the lift ˜Q consists just of a lift of the action of Q on 
objects that is coherent (in an evident sense) with respect to the action of Q on morphisms, in the sense 
that the action of Q on morphisms then determines the action of ˜Q on morphisms. Coherence in morphisms 
in I/E ×E J of the action on objects of ˜Q separates into two parts:

(1) coherence in morphisms in I/Dj
for fixed vj : Cj → Dj with j ∈ J ,

(2) coherence in morphisms in J .

The action of ˜Q on objects together with coherence (1) constitutes part (i). Coherence (2) constitutes 
part (ii). �
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Note that if the commutative square (6.4) is a pullback, then the canonical natural transformation φ is 
an isomorphism by the usual Beck–Chevalley condition, and so is φ̃ since �(u�) reflects isomorphisms.

Proposition 6.6 has an immediate dual, expressed in terms of pushforward rather than pullback, which 
we state next.

Proposition 6.7. Let u : I → E→, v : J → E→, w : K → E→. Then (I, J , �(K�)) satisfies the generalized 
Frobenius property if and only if the following conditions hold.

(i) For every j ∈ J , pushforward along vj : Cj → Dj lifts to a functor

K�
/Cj

˜(vj)∗

w�
/Cj

I�
/Dj

u�
/Dj

E→
/Cj (vj)∗

E→
/Dj

,

(ii) For every τ : j → k, the square (6.4) induced by vτ : vj → vk is such that the canonical natural trans-
formation

E→
/Ck

(vk)∗

s∗ ⇓ ψ

E→
/Dk

t∗

E→
/Cj (vj)∗

E→
/Dj

lifts to a natural transformation

K�
/Ck

˜(vk)∗

˜s∗ ⇓ ψ̃

I�
/Dk

˜t∗

K�
/Cj

˜(vj)∗
I�

/Dj
.

Proof. For (i), note that we can view the bottom map in part (i) of Proposition 6.6 as a lift of v∗j : E/Dj
→

E/Cj
to arrow categories, so we can apply Proposition 5.7 to the adjunction v∗j � (vj)∗ with u = u/Dj

and v =
w�

/Cj
, using Proposition 5.4 to permute slicing and orthogonality functors. For (ii), apply Proposition 5.8

to the adjunctions s!v
∗
j � (vj)∗s∗ and v∗kt! � t∗(vk)∗ recalling that φ and ψ are mates. �

Proposition 6.8. Let u : I → E→ and v : J → E→. Then the following are equivalent:

(i) (I, J , �(I�)) satisfies the generalized functorial Frobenius condition,
(ii) (�(I�), J , �(I�)) satisfies the generalized functorial Frobenius condition.

Proof. Using Proposition 6.3 and the unit I → �(I�) of the adjunction (5.1), we see that statement (ii) 
implies statement (i). For the converse direction, we use the characterizations of statements (i) and (ii) 
provided by Proposition 6.7. The lift of pushforward for (i) can be composed with the counit I� → (�(I�))�

of the adjunction (5.1) to induce a lift of pushforward for (ii). �
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We can finally give the desired characterization of the functorial Frobenius condition for an algebraically-
free awfs.

Theorem 6.9. Let (L, R) be an awfs algebraically-free on u : I → E→. Then the following are equivalent:

(i) (L, R) satisfies the functorial Frobenius condition,
(ii) (I, I�, �(I�)) = (I, R-Map, L-map) satisfies the generalized functorial Frobenius condition.

Proof. Using Proposition 5.2 and the adjunction (5.1), we have I� ↔ I�, hence R-Map ↔ R-Map. Note 
that R-Map ↔ R-map (this is the case for pointed endofunctor and monad algebras over any monad). It 
follows that R-Map ↔ R-map.

With this, the functorial Frobenius condition for (L, R) can be stated equivalently as the existence of a 
lift of the form

�(I�) ×E I� �(I�)

E→ ×E E→
P ′

E→.

(6.5)

This amounts to the generalized functorial Frobenius condition for (�(I�), I�, �(I�)) by Proposition 6.4, 
which is equivalent to the generalized functorial Frobenius condition for (I, I�, �(I�)) by Proposi-
tion 6.8. �

We conclude the section with a result needed in Section 8.

Proposition 6.10. Let ut : It → E→, wt : Kt → E→ for t ∈ {1 , 2} and v : J → E→. If (I1, J , K1, ) and 
(I2, J , K2) satisfy the generalized functorial Frobenius property, then so do

(I1 ×E→ I2,J ,K1 ×E→ K2) , (I1 +E→ I2,J ,K1 +E→ K2) .

Proof. This follows easily from Proposition 6.3 using the universal property of products and coproducts in 
the category CAT/E→ . �

This concludes our work on orthogonality functors and the functorial Frobenius condition in general. In 
Sections 7 and 8, we develop the algebraic counterpart of the material in Sections 3 and 4.

7. Uniform fibrations

This section is devoted to introducing the notion of a uniform fibration, which is the algebraic counterpart 
of the notion of a fibration introduced in Definition 3.3, and establishing some basic results about it. For this, 
we first introduce suitable awfs’s, in complete analogy with the way we defined suitable wfs’s in Definition 3.1. 
We will use the notation (C, Ft) to denote a suitable awfs and let

Cof =def C-map, TrivFib =def Ft-Map. (7.1)

We then refer to objects in Cof as uniform cofibrations and objects in TrivFib as uniform trivial fibrations. 
Again, we hope that this helps to convey some of the basic intuition motivating our development. In (7.1), 
the dichotomy between copointed endofunctor coalgebras on one hand and monad algebras on the other is 



3054 N. Gambino, C. Sattler / Journal of Pure and Applied Algebra 221 (2017) 3027–3068
motivated by our technical development: the uniform fibrations introduced in Definition 7.3, which generalize 
the uniform fibrations in cubical sets in [11], are monad algebras (as shown in Theorem 7.5) rather than 
pointed endofunctor algebras. Note however that we will only consider cofibrantly generated awfs (L, R), for 
which there are always functors back and forth between R-Map and R-map.

Definition 7.1. An awfs (C, Ft) is said to be suitable if the following conditions hold.

(S1) (C, Ft) is cofibrantly generated.
(S2) The functor ⊥ : E → E→ mapping X ∈ E to ⊥X : 0E → X factors through Cof, as in the diagram

E
˜⊥

⊥

Cof

E→.

(S3) Cof is closed under pullback, in the sense that the pullback functor P of Section 6 lifts as follows:

Cof ×E E→ ˜P Cof

E→ ×E E→
P

E→.

(S4) Cof is closed under Leibniz product with endpoint inclusions, in the sense that the Leibniz product 
functor lifts as follows for k ∈ {0 , 1}:

Cof
˜δk⊗̂(−)

Cof

E→
δk⊗̂(−)

E→.

The main difference between the notion of a suitable wfs (Definition 3.1) and that of a suitable awfs 
(Definition 7.1) is that the conditions in the former express closure of the class of left maps under the action 
of certain functions, while the conditions in the latter express closure of the category of left maps under the 
action of certain functors.

Note that, by Proposition 6.4, condition (S3) is equivalent to the generalized functorial Frobenius condi-
tion for (Cof, E→, Cof).

Example 7.2. As we will see in Section 9, the categories SSet and CSet admit suitable awfs’s (C, Ft)
that are algebraically-free on the categories M of all monomorphisms and pullback squares, i.e. such that 
TrivFib = M�. The right maps of these awfs’s are a natural algebraic counterpart of trivial Kan fibrations 
and so we call them uniform trivial Kan fibrations. Similarly, we will see in Example 9.3 that the category 
CSet also admits a suitable awfs (C′, Ft

′) algebraically-free on the category M′ of monomorphisms classified 
by the face lattice Φ of [11] and pullback squares (see Example 3.7).

Let us now fix a suitable awfs (C, Ft) cofibrantly generated by a small category of maps u : I → E→. We 
refer to the objects of I as generating uniform cofibrations. For k ∈ {0 , 1}, we define a functor δk⊗̂u : I → E→

by letting
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(δk ⊗̂ u)i =def δ
k ⊗̂ ui ,

where δk ⊗̂ ui is the Leibniz product of δk and ui : Ai → Bi, as in (3.1). Now let I⊗ =def I + I and define 
u⊗ : I⊗ → E→ via the coproduct diagram

I
ι0

δ0⊗̂u

I⊗
u⊗

I

δ1⊗̂u

ι1

E→.

(7.2)

We refer to the objects of I⊗ as generating uniform trivial cofibrations.

Definition 7.3.

(i) A uniform fibration is a right I⊗-map.
(ii) A morphism of uniform fibrations is a morphism of right I⊗-maps.

We write Fib for the category of uniform fibrations and their morphisms. We now give the algebraic 
analogue of Proposition 3.4, i.e. an equivalent characterization of uniform fibrations which does not refer to 
generating uniform cofibrations. This will show that the category Fib is independent from the choice of the 
functor u : I → E→ cofibrantly generating (C, Ft), and instead depends only on the awfs (C, Ft).

Proposition 7.4. Uniform fibration structures on p ∈ E→ are isomorphic to uniform trivial fibration struc-
tures on both êxp(δ̄0, p) and êxp(δ̄1, p), naturally in p. More precisely, the category Fib is isomorphic over 
E→ to the product of the categories D0 and D1 defined via pullbacks as follows:

D0 TrivFib

E→
êxp(δ̄0,p)

E→,

D1 TrivFib

E→
êxp(δ̄1,p)

E→.

Proof. Recall that TrivFib = I� and Fib = (I⊗)�. Note that the right orthogonality functor is contravariant 
and part of the adjunction (5.1), hence sends coproducts to products of categories over E→. The statement 
then follows from Corollary 5.12 via Remark 5.13. �

We write TrivCof for the category of uniform trivial cofibrations, defined as left Fib-maps, i.e.

Fib =def (I⊗)� , TrivCof =def
�Fib.

The next statement is immediate.

Theorem 7.5. The category E admits a cofibrantly generated awfs (Ct, F) such that

TrivCof = Ct-map , Fib = F-Map.

Proof. By Garner’s small object argument [16] (see also [7, Proposition 16]), applied to the generating small 
category of arrows I⊗. �
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Note again that there are functors over E→ back and forth between F-map and F-Map since (Ct, F) is 
cofibrantly generated. Let us remark that Proposition 7.4 would not hold as stated above if we had defined 
uniform (trivial) fibrations as algebras for the pointed endofunctors of the relevant awfs’s; instead of an 
isomorphism we would have only functors back and forth over E→.

Example 7.6. If we start from the awfs’s (C, Ft) in SSet and CSet of Example 7.2 and apply Theorem 7.5, we 
obtain awfs’s (Ct, F) whose monad algebras are algebraic counterparts of Kan fibrations, and hence will be 
called uniform Kan fibrations. In the case of CSet, if we instead start with the awfs (C′, Ft

′) of Example 7.2, 
we obtain an awfs (Ct

′, F′) whose right maps are exactly the uniform Kan fibrations considered in [11]. An 
application to a different version of cubical sets (not using connections) gives the awfs considered in [38].

The next corollary, which will be useful to establish the functorial Frobenius property for (Ct, F) in 
Section 8, is the algebraic counterpart of Corollary 3.9.

Corollary 7.7. Leibniz product with endpoint inclusions sends uniform cofibrations to uniform trivial cofi-
brations, in the sense that the Leibniz product functor lifts as follows for k ∈ {0 , 1}:

Cof TrivCof

E→
δk⊗̂(−)

E→.

Proof. Recall that Cof = �TrivFib and TrivCof = �Fib. In the following diagram, the first lift is given by 
the map Fib → Dk of Proposition 7.4 and the second lift is given by the unit of the adjunction (5.1):

Fib TrivFib Cof�

E→
êxp(δ̄k,−)

E→.

The goal now follows from the outer square by applying Proposition 5.11 as in Remark 5.13. �
8. The functorial Frobenius property for uniform fibrations

We now continue to consider the fixed suitable awfs (C, Ft) with generating small category I and the 
induced awfs (Ct, F), in which the monad algebras for F are exactly the uniform fibrations. Our aim in this 
section is to show that (Ct, F) satisfies the functorial Frobenius property.

For this, we follow a strategy analogous to the one we used in Section 4. We begin by organizing strong 
k-oriented homotopy equivalences into a category Sk. Its objects are 4-tuples (f, g, φ, ψ) consisting of an 
arrow f : A → B together with data g : B → A, φ : I ⊗ A → A, ψ : I ⊗ B → B making f into a strong 
k-oriented homotopy equivalence in the sense of Definition 4.1. A morphism m : (f, g, φ, ψ) → (f ′, g′, φ′, ψ′)
consists of maps s : A → A′, t : B → B′ such that the following diagrams commute:

A
s

f

A′

f ′

B
t

B′,

B
t

g

B′

g′

A
s

A′,

I ⊗A

φ

I⊗s
I ⊗A′

φ′

A
s

A′,

I ⊗B

ψ

I⊗t
I ⊗B′

ψ′

B
t

B′.
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There is an obvious first projection functor pk : Sk → E→. Lemma 8.1 below extends the logical equivalence 
of Lemma 4.3 to an isomorphism of categories. In its statement, we refer to the maps θk ⊗̂ f : f → δk ⊗̂ f

in (4.3).

Lemma 8.1. For k ∈ {0 , 1}, the category Sk of strong k-oriented homotopy equivalences can be described 
isomorphically as the category of arrows f ∈ E→ with a retraction ρ of θk ⊗̂ f . In detail,

(i) objects are pairs (f, ρ) consisting of f ∈ E→ and a retraction ρ of θk ⊗̂ f , as below:

f
θk⊗̂f

δk ⊗̂ f

ρ

f ,

(ii) morphisms τ : (f, ρ) → (f ′, ρ′) are maps τ : f → f ′ such that the below diagram commutes:

δk ⊗̂ f

ρ

δk⊗̂τ
δk ⊗̂ f ′

ρ′

f
τ

f ′.

Proof. The object part of the correspondence is essentially Lemma 4.3. The morphism part is straightfor-
ward. �
Remark 8.2. As suggested by our notation, the maps θk ⊗̂ f : f → δk ⊗̂ f are really given as the action on 
objects of a natural transformation θk ⊗̂ (−) : Id → δk ⊗̂ (−) as follows. Let θk : ⊥Id → δk ⊗ (−) denote the 
arrow in [E , E→] ∼= [E , E ]→ given by the following square:

0
⊥Id

⊥Id

Id

δk⊗(−)

Id
δ1−k⊗(−)

I ⊗ (−).

Writing (−) ⊗̂ (−) : [E , E ]→ × E→ → E→ for the functor obtained by applying the Leibniz construction to 
the evaluation functor (cf. Remark 5.13), the desired natural transformation is precisely θk ⊗̂ (−).

Remark 8.3. Recall from Remark 4.2 that the components of the endpoint inclusion δk ⊗ (−) are strong 
k-oriented homotopy equivalences. In fact, this is the action on objects of a factorization of δk⊗(−) through 
Sk:

Sk

E
δk⊗(−)

˜δk⊗(−)

E→.

The next lemma is the analogue of Lemma 4.4.



3058 N. Gambino, C. Sattler / Journal of Pure and Applied Algebra 221 (2017) 3027–3068
Lemma 8.4. For k ∈ {0 , 1}, the functor δk ⊗̂ (−) : E→ → E→ factors via Sk as follows:

Sk

E→
δk⊗̂(−)

˜δk⊗̂(−)

E→.

Proof. We give a proof using the formalism of Leibniz constructions, as explained in [36]. For this, we use 
the description of Sk provided by Lemma 8.1 and the notation of Remark 8.2, thus writing simply δk for 
the natural transformation δk ⊗ (−). We apply the Leibniz construction to the endofunctor composition 
functor (−) ◦ (−) : [E , E ] × [E , E ] → [E , E ], so as to obtain a functor

(−) ◦̂ (−) : [E , E ]→ × [E , E ]→ → [E , E ]→.

Recall from Remark 8.3 that δk : E → E→ factors via Sk → E→, i.e. that the arrow

θk ⊗̂ (δk ⊗X) : δk ⊗X → δk ⊗̂ (δk ⊗X)

exhibits δk ⊗X as a retract of δk ⊗̂ (δk ⊗X), functorially in X ∈ E . This amounts to saying that the map 
of natural transformations

θk ◦̂ δk : δk → δk ◦̂ δk

exhibits δk as a retract of δk ◦̂ δk in [E , E ]→.
Our goal is to show that δk ⊗̂ (−) : E→ → E→ can be factored via Sk → E→. For this, we need to show 

that the arrow

θk ⊗̂ (δk ⊗̂ f) : δk ⊗̂ f → δk ⊗̂ (δk ⊗̂ f)

exhibits δk ⊗̂ f as a retract of δk ⊗̂ (δk ⊗̂ f), functorially in f ∈ E→. But associativity of functor compo-
sition implies associativity of the corresponding Leibniz construction (since the involved functors preserve 
pushouts), and therefore we can restate our goal as asserting that the map

(θk ◦̂ δk) ⊗̂ f : δk ⊗̂ f → (δk ◦̂ δk) ⊗̂ f

exhibits δk ⊗̂ f as a retract of (δk ◦̂ δk) ⊗̂ f , functorially in f ∈ E→. But functors, in this case the functor 
(−) ⊗̂ (−) : [E , E ]→ × E→ → E→ mapping (α, f) to α ⊗̂ f , preserve section–retraction pairs. �

The next lemma is the analogue of Lemma 4.5. Define S =def S0 + S1.

Proposition 8.5.

(i) There is a functor

I⊗

u⊗

F Cof ×E→ S

E→.
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(ii) There is a functor

Cof ×E→ S
H

TrivCof

E→.

Proof. We begin by considering (i). For k ∈ {0 , 1}, we show that there is a functor

I

δk⊗̂u

Mk Cof ×E→ Sk

E→.

The map to the first factor is given by the embedding I → Cof and the assumption that Cof is closed under 
Leibniz product with the endpoint inclusions, which is condition (S4) of Definition 7.1. The map to the 
second factor is given by Lemma 8.4. The claim in (i) then follows by combining the cases k = 0 and k = 1.

For (ii), let us write c : Cof → E→ for the forgetful functor. We fix again k ∈ {0 , 1} and show that there 
is a functor

Cof ×E→ Sk

Nk Cof

δk⊗̂c

E→.

(8.1)

We only describe the action of the functor Nk on an object (i, ρ) with i ∈ Cof and ρ a retraction of 
θk ⊗̂ ci : ci → δk ⊗̂ ci, leaving the evident definition of the action on arrows to the reader. Since ρ exhibits ci
as a retract of δk ⊗̂ ci, we may define Nk(i, ρ) =def (i, ci, θk ⊗̂ ci, ρ). Observe that this definition makes 
the diagram for Nk commute. We then pass from δk ⊗̂ c : Cof → E→ to TrivCof using Corollary 7.7. Upon 
combining the cases k = 0 and k = 1, this gives a functor Cof ×E→ S → TrivCof over E→. The claim in (ii) 
then follows by Proposition 5.2 and the adjunction (5.1), noting that TrivCof is a category of left maps. �
Remark 8.6. We also have a pair of functors (Cof ×E→ S)� ↔ Fib relating uniform fibrations with right 
(Cof ×E→ S)-maps. This means that a map can be equipped with the structure of a uniform fibration if 
and only if it can be equipped with the structure of a right (Cof ×E→ S)-map. This is the analogue of the 
equality between sets in Remark 4.6. However, these functors do not in general form an equivalence.

We are now ready to show that the awfs in which the right maps are the uniform fibrations (constructed 
in Theorem 7.5) satisfies the functorial Frobenius property. For this, we use our characterization of the 
functorial Frobenius property in algebraically-free awfs’s stated in Theorem 6.9. As the main step, we 
show that strong homotopy equivalences and uniform fibrations satisfy the generalized functorial Frobenius 
condition, i.e. the algebraic analogue of Lemma 4.7.

Lemma 8.7. The triple (S, Fib, S) satisfies the generalized functorial Frobenius condition.

Proof. The core of the argument is to obtain, for k ∈ {0 , 1}, a lift P̃ in
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Sk ×E Fib P̃ Sk

E→ ×E E→
P

E→

(8.2)

where P : E→ ×E E→ → E→ is the pullback functor, sending a cospan (g, h) to h∗g. The goal then follows 
from Proposition 6.4 upon combining the cases k = 0 and k = 1 using Proposition 6.10.

So it remains to show how to obtain the lift in (8.2). Its action on objects is described in the proof 
of Lemma 4.7. For the lift of the action on morphisms, suppose we are given a map j → j′ in Fib, inducing 
a square

X
vj

s

Y

t

X ′
vj′

Y ′,

and a map τ : (g, ρ) → (g′, ρ′) in Sk, with τ forming a square

B

g

B′

g′

Y
t

Y ′

and commuting with the retractions ρ and ρ′ as follows:

δk ⊗̂ g
ρ

δk⊗̂τ

g

τ

δk ⊗̂ g′
ρ′

g′.

Let (ḡ, ρ̄) and (ḡ′, ρ̄′) denote the respective action of P̃ on the objects (g, ρ, j) and (g′, ρ′, j′) as constructed 
in Lemma 4.7. Recall that this includes pullback squares σ : ḡ → g and σ′ : ḡ′ → g′ with bottom side 
vj : X → Y and vj′ : X ′ → Y ′, respectively, as in (4.6). The square τ : g → g′ pulls back to a square 
τ̄ : ḡ → ḡ′ with bottom side vj′ . We want to show that τ̄ in addition forms a morphism of strong k-oriented 
homotopy equivalences from (ḡ, ρ̄) to (ḡ′, ρ̄′). For this, we have to verify commutativity of the following 
diagram:

δk ⊗̂ ḡ′
ρ̄

δk⊗̂τ̄

ḡ

τ̄

δk ⊗̂ ḡ′
ρ̄′

ḡ′.

Recall the construction of ρ̄ and ρ̄′, omitting horizontal composite identities for readability:
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ḡ
θk⊗̂ḡ

σ

τ̄

δk ⊗̂ ḡ
ρ̄

δk⊗̂σ

δk⊗̂τ̄

ḡ

σ

τ̄

ḡ′
θk⊗̂ḡ′

σ′

δk ⊗̂ ḡ′
ρ̄′

δk⊗̂σ′

ḡ′

σ′g
θk⊗̂g

τ

δk ⊗̂ g
ρ

δk⊗̂τ

g

τ

g′
θk⊗̂g′

δk ⊗̂ g
ρ′

g.

Our goal is to show that the top right square commutes. Since that square commutes after composing it 
with the pullback square σ′, it suffices to show that the square commutes when projected to codomains, 
again omitting horizontal composite identities:

X
δ1−k⊗X

vj

s

I ⊗X
cod(ρ̄)

I⊗vj

I⊗s

X

vj

s

X ′ δ1−k⊗X′

vj′

I ⊗X ′ cod(ρ̄′)

I⊗vj′

X ′

vj′Y
δ1−k⊗Y

t

I ⊗ Y
cod(ρ)

I⊗t

Y

t

Y ′ δ1−k⊗Y ′

I ⊗ Y ′ cod(ρ′)
Y ′.

But this follows from coherence of lifts in the following morphism of lifting problems:

X

δ1−k⊗X

s

X

vj

s

X ′

δ1−k⊗X′

X ′

vj′I ⊗X
I⊗vj

cod(ρ̄)

I⊗s

I ⊗ Y
cod(ρ)

I⊗t

Y

t

I ⊗X ′
I⊗vj′

cod(ρ̄′)

I ⊗ Y ′
cod(ρ′)

Y ′.

Here, the left and right faces form morphisms in TrivCof (using condition (S2) of Definition 7.1 and Corol-
lary 7.7) and Fib, respectively, making the lifts cohere as needed. �
Theorem 8.8. The awfs (Ct, F) satisfies the functorial Frobenius condition.

Proof. First, we show that (Cof ×E S, Fib, Cof ×E S) satisfies the generalized functorial Frobenius condition. 
This follows from Proposition 6.10: by condition (S3) in the definition of Definition 7.1 and Proposition 6.4, 
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(Cof, E→, Cof) satisfies the generalized functorial Frobenius condition, hence also (Cof, Fib, Cof) by Propo-
sition 6.3; while (S, Fib, S) satisfies the generalized Frobenius condition by Lemma 8.7.

The generalized functorial Frobenius condition for (Cof ×E S, Fib, Cof ×E S) implies the generalized func-
torial Frobenius condition for (I⊗, Fib, TrivCof) using functoriality of generalized functorial Frobenius in the 
form of Proposition 6.3 with F the functor in (i) of Proposition 8.5, G the identity, and H the functor in (ii)
of Proposition 8.5. This implies the functorial Frobenius condition for (Ct, F) by Theorem 6.9. �

As special cases, we obtain the pushforward versions of the Frobenius and Beck–Chevalley condition for 
uniform fibrations. First, pushforward lifts to slices of the category of uniform I-fibrations.

Corollary 8.9.

(i) For every uniform fibration p : X → Y , pushforward along p lifts to a functor

Fib/X
p̃∗ Fib/Y

E→
/X p∗

E→
/Y .

(ii) For every map of uniform I-fibrations (s, t) : p → q, where p : X → Y and q : U → V , the canonical 
natural transformation ψ : t∗q∗ → p∗s∗ lifts to a natural transformation

Fib/U
q̃∗

˜s∗ ⇓ ˜ψ

Fib/V

˜t∗

Fib/X
p̃∗

Fib/Y .

If (s, t) : p → q forms a pullback square, then ˜ψ is a natural isomorphism.

Proof. The claim follows from Theorem 8.8 using Theorem 6.9 and Proposition 6.7. �
Example 8.10. The application of Corollary 8.9 in SSet and CSet shows that pushforward along a uniform 
Kan fibration preserves uniform Kan fibrations. Since exponentiation is a special case of pushforward, this 
result shows also that if X is a uniform Kan complex (defined in the evident way) then Y X is again a 
uniform Kan complex, for every Y . In fact, for this easier result, only the base needs to be assumed uniform 
Kan. It follows by setting A =def 1 and B =def 0 from the general statement that the Leibniz exponential 
of a uniform Kan fibration p : X → A with a cofibration i : B → Y gives a uniform Kan fibration êxp(i, p).

As is well known, this can be seen as follows. Let k ∈ {0 , 1}. By Proposition 7.4, êxp(δ̄k, p) is a uniform 
trivial Kan fibration. Since uniform cofibrations are closed under Leibniz product with i, by adjointness 
êxp(i, ̂exp(δ̄k, p)) = êxp(δ̄k, ̂exp(i, p)) is a uniform trivial Kan fibration. Combining the cases k = 0 and 
k = 1 and using Proposition 7.4 in the reverse direction, it follows that êxp(i, p) is a uniform Kan fibration.

9. Uniform fibrations in presheaf categories

The aim of this final section is to study in more detail the notion of a uniform fibration in the case when 
E is a presheaf category. Let us begin by fixing the setting in which we shall be working. First, let C be a 
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small category and fix E =def Psh(C). We write y: C → E for the Yoneda embedding. We assume that the 
functorial cylinder I ⊗ (−) : E → E satisfies not only our standing assumptions of having contractions and 
connections and of possessing a right adjoint (see Section 2), but also the following two conditions:

(C1) I ⊗ (−) : E → E preserves pullback squares,
(C2) the natural transformations δk ⊗ (−) : IdE → I ⊗ (−), for k ∈ {0 , 1}, are cartesian.

Second, we let M be a full subcategory of E→
cart satisfying the following assumptions:

(M1) the elements of M are monomorphisms,
(M2) for every X ∈ E , the unique map ⊥X : 0 → X is in M,
(M3) the elements of M are closed under pullback,
(M4) the elements of M are closed under Leibniz product with the endpoint inclusions,
(M5) the category M has colimits and the inclusion M → E→

cart preserves them.2

The next result not only provides us with a wide class of examples of suitable awfs’s, but also shows 
that there are situations in which object-wise assertions, as in (M2)–(M4) above, can be strengthened to 
functoriality properties, as required to obtain a suitable weak awfs (Definition 7.1).

Theorem 9.1. There exists a suitable awfs (C, Ft) on E that is algebraically-free on M, i.e. such that TrivFib =
M�.

Proof. Let I be the full subcategory of M spanned by maps with a representable presheaf as codomain. 
Since I is small, by Garner’s small object argument [16] it generates a cofibrantly generated awfs (C, Ft)
with TrivFib = Ft-Map = I�. Furthermore, we have M� = I�. This follows from Proposition 5.16 using 
that M is a full subcategory of E→

cart. Indeed, for a map f : X → Y in E , to give a natural choice of fillers 
for all diagrams with an arbitrary element of M on the left is the same as to give a natural choice of fillers 
for only those diagrams which are the form

A X

f

y(x) Y

for x ∈ C.
It remains to check that (C, Ft) satisfies conditions (S2)–(S4) in Definition 7.1. These follow from the corre-

sponding object-wise assumptions (M2)–(M4) via standard diagram-chasing arguments, which we omit. For 
condition (S4), the crucial property being used in that proof is that elements of M, being monomorphisms 
in a topos, are adhesive maps [18]. �
Remark 9.2. Let us point out that the reduction to the lifting problems against maps in M to those with 
a representable codomain in the proof of Theorem 9.1 exploits the good behavior of the right orthogonality 
functor with respect to colimits as described in Proposition 5.16, which is not available in the setting of 
ordinary wfs’s.

Example 9.3. Since assumptions (C1)–(C2) and (M1)–(M5) are fulfilled in both SSet and CSet, with M
the category of all monomorphisms and pullback squares (with (M5) a consequence of the existence of 

2 This assumption is not used to instantiate our general results, but only for Lemma 9.7 and Theorem 9.9.
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a subobject classifier), Theorem 9.1 establishes the existence of the awfs (Ct, F) of Example 7.6. The as-
sumptions are also satisfied if instead in CSet we choose for M the category M′ of Example 7.2 (with 
elements classified by the face lattice Φ of [11]), establishing the existence of the awfs (Ct

′, F′) of Exam-
ple 7.6.

Remark 9.4. We discuss how, in the case of SSet and CSet, the existence of the awfs’s (C, Ft), having 
uniform trivial Kan fibrations as monad algebras, and (Ct, F), having uniform Kan fibrations as monad 
algebras, and the Frobenius property for (Ct, F) can be proved constructively, i.e. without using the law of 
excluded middle or the axiom of choice.

We begin by observing that Theorem 9.1 can be proved constructively in SSet and CSet. In order to see 
why this is the case, first note that in these examples every subobject of a representable is finitely presentable 
and that the functorial cylinder I ⊗ (−) : E → E preserves finitely presentable objects. Since subobjects 
of representables are finitely presentable, the values of the inclusion u : I → E→ are finitely presentable 
objects of E→. An inspection of the proof of [16, Theorem 4.4] shows that this suffices to construct the 
algebraically-free awfs (C, Ft) on u : I → E→, and in fact the sequence constructing the appropriate free 
monad converges after ω steps. Next, note that also Theorem 7.5 can be proved constructively for SSet and 
CSet, via a reasoning that is analogous to the one above, observing that also the values of u⊗ : I⊗ → E→

are finitely presentable by the assumption of the functorial cylinder and the fact that finitely presentable 
objects are closed under pushout. Finally, the general proofs of Theorem 8.8 and Corollary 8.9, establishing 
the functorial Frobenius condition for (Ct, F) and its pushforward analogue, are constructive.

We have therefore obtained a constructive proof that pushforward along a uniform Kan fibration preserves 
uniform Kan fibrations in SSet and CSet. For SSet, this result is a constructive counterpart of the fact 
that pushforward along a Kan fibration preserves Kan fibrations, which cannot be proved constructively 
without changes to the definition of Kan fibration [6].

Finally, let us point out that if one adds the assumption that elements of M are decidable monomorphisms, 
then the argument above carries over without relying on the Power Set axiom to establish the smallness 
of I.

The rest of this section is devoted to giving a characterization of uniform trivial fibrations in terms 
of the partial map classifier, a result suggested to us by Thierry Coquand and André Joyal (see also 
Remark 9.5 below). We then use this characterization to relate non-algebraic and algebraic notions of 
(trivial) fibration.

Remark 9.5. A related, but different, approach to generating an awfs (C, Ft) from a class of monomorphisms 
is taken in [7]. Recall from Theorem 9.1 that (C, Ft) is cofibrantly generated by the full subcategory of E→

cart
spanned by monomorphisms, written M below. Instead, as done in [7], one may assume that the chosen 
monomorphisms are closed under composition and view M as a double category. This then cofibrantly 
generates an awfs (C′, Ft

′) in a double categorical sense. The monad Ft
′ in the slice over Y ∈ E is given by 

the M-partial map classifier PY in the slice over Y defined before Theorem 9.8 below. For us instead, as 
implies by Theorem 9.8, the monad Ft in the slice over Y ∈ E is freely generated by PY seen as a pointed 
endofunctor. It follows that the awfs’s (C, Ft) and (C′, Ft

′) are different, but related by an isomorphism 
Ft-Map ∼= Ft

′-map. Since δk ⊗̂ (−) for k ∈ {0 , 1} do not lift to endofunctors on the double category of 
squares in E , it is not clear how to construct a double categorical version of the generating uniform trivial 
cofibrations I⊗ to generate a corresponding awfs (Ct

′, F′).

We begin with a simple lemma.

Lemma 9.6. For all X ∈ E, idX ∈ M.
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Proof. The claim follows by inspection of the following diagram:

X
idX

idX

Id⊗X

δ0⊗̂⊥X

Id⊗X
δ0⊗̂⊥X

I ⊗X.

By conditions (M2) and (M4), the right map is in M. By condition (C2), the square is a pullback. By 
condition (M3), the left map idX is then in M. �

Below, as usual, we write Ω for the subobject classifier of the topos E and � : 1 → Ω for its ‘true’ 
morphism.

Lemma 9.7. There exists a subobject K � Ω and a factorization

1 � Ω

K

such that the map 1 → K classifies maps in M, in the sense that a map i : A → B is in M if and only if 
there exists a pullback

A

i

1

B K.

Proof. For x ∈ C, define K(x) to be the set of subobjects of y(x) that are elements of M. The factorization 
of � : 1 → Ω through K follows since identities are contained in M by Lemma 9.6.

Any element i : A → B of M arises as base change of 1 → K along a unique map B → K, sending an 
element b : y(x) → B, for x ∈ C, to the subobject of y(x) given by the base change of i : A → B along b, 
which is in K(x) since i is in M. For the converse, it suffices to show that 1 → K is in M, but this is 
equivalent to (M5). �

The axioms for the class M in (M1)–(M5) can then be rewritten in equivalent form as properties of the 
classifier K, see [32] for details and [24,37] for related ideas in synthetic domain theory. Observe that the 
factorization of � : 1 → Ω via K gives us a pullback diagram

1 1

�

K Ω.

(9.1)

Let us now fix Y ∈ E and work in the slice category E/Y . Let t : Y → K×Y denote the classifier for I/Y . 
Let π : K × Y → Y denote the map to the terminal object. The M-partial map classifier PY relative to Y
is defined by letting PY =def π! ◦ t∗ [25, A2.4]. Note that this is the polynomial endofunctor, in the sense 
of [14], associated to the diagram
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Y Y
idK t

K × Y
π

Y

Observe that we have t∗t∗ = Id since t is monic, giving rise to a pullback square

X
ηX

PY X

Y
t

K × Y

(9.2)

for every X ∈ E/Y .

Theorem 9.8. Giving the structure of a uniform trivial fibration on a map f : X → Y is equivalent to giving 
a diagonal filler for the diagram

X

ηX

X

f

PY X Y ,

i.e. a retraction of ηX in E/Y .

Proof. Let I be the full subcategory of M spanned by maps with a representable presheaf as codomain 
and recall from the proof of Theorem 9.1 that we have M� = I�. Let u : I → E→ denote the inclusion. 
Following the first step of Garner’s small object argument, a lift of a map f : X → Y to an element of I�

is given by a diagonal filler in the canonical square (Lanu u)(f) → f . Unfolding the left Kan extension, we 
have

(Lanu u)(f) = colimi∈I,ui→f ui

= colimσ:yC→K×Y, E/Y (t∗σ,X) σ
∗t

= colimσ:yC→PY (X) σ
∗ηX

= ηX .

Here, the penultimate step uses the pullback square (9.2) and the last step uses the Yoneda lemma and 
preservation of colimits by pullback. �
Theorem 9.9.

(i) A map can be equipped with the structure of a uniform trivial fibration if and only if it is a trivial 
fibration, i.e. it has the right lifting property with respect to the maps in M.

(ii) A map can be equipped with the structure of a uniform fibration if and only if it is a fibration, i.e. it 
has the right lifting property with respect to the generating trivial cofibrations.

Proof. For part (i), since 1 → K is in M, as proved in Lemma 9.7, then also η has components in M
by (9.2). Part (ii) follows from part (i) and Proposition 7.4. �
Example 9.10. Theorem 9.9 applies to SSet and CSet, showing that a map can be equipped with the 
structure of a (trivial) Kan fibration if and only if it is a (trivial) Kan fibration in the usual sense.
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Remark 9.11. Since Theorem 9.9 is proved constructively, it is natural to wonder whether it is possible to 
develop constructively our theory in the non-algebraic setting, at least for SSet or CSet. The key obstacle 
to this is that, while the special case of the algebraic result in Theorem 9.1 admits a constructive proof in 
SSet and CSet, as we explained in Remark 9.4, its non-algebraic counterpart does not seem to provable be 
constructively, even in the case when M consists of all monomorphisms (cf. Example 3.2 and Remark 9.2). 
And such a result is essential for the development since it provides the suitable wfs on which the definition 
of a fibrations is based.
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