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Abstract

A theoretical model and a design of a magnetic field tunable CdMnTe/CdMgTe terahertz quan-

tum well infrared photodetector are presented. The energy levels and the corresponding wave-

functions were computed from the envelope function Schrödinger equation using the effective mass

approximation and accounting for Landau quantization and the giant Zeeman effect induced by

magnetic confinement. The electron dynamics were modeled within the self-consistent coupled rate

equations approach, with all relevant electron-longitudinal optical phonon and electron-longitudinal

acoustic phonon scattering included. A perpendicular magnetic field varying between 0 T and 5 T,

at a temperature of 1.5 K, was found to enable a large shift of the detection energy, yielding a

tuning range between 24.1 meV and 34.3 meV, equivalent to 51.4 µm to 36.1 µm wavelengths. For

magnetic fields between 1 T and 5 T, when the electron population of the QWIP is spin-polarized,

a reasonably low dark current of ≤ 1.4× 10−2 A/cm2 and a large responsivity of 0.36− 0.64 A/W

are predicted.
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I. INTRODUCTION

In recent years there has been an increasing interest, and a considerable experimental

and theoretical activity focused on dilute magnetic semiconductors (DMSs) whose uncon-

ventional properties offer a great prospect for developing a wide range of novel devices1–6.

The key reason for employing them in both basic and application-oriented research is the

control of spin splitting that can be achieved by varying the material composition, an ex-

ternal magnetic field, temperature and/or via quantum confinement7,8. These extensive

studies have been conducted mostly in the area of spintronics, towards realization of spin-

based devices1–4. Some of the research activity has been oriented into the investigation of

the spin splitting effects on interband transitions and the applications of DMSs in interband

devices9–12. On the contrary, very few studies aiming towards novel intersubband devices

based on DMSs have been reported13.

In spite of significantly improved performance and technological advances of quantum

well infrared photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15, they are still

attracting a considerable amount of research attention. Different designs of QWIPs16–19, the-

oretical models of electron transport20–23 and various applications24,25 have been proposed.

QCL operation has been recently demonstrated in the far-infrared range up to 160µm26–29.

The development of terahertz (THz) QCLs has motivated the research leading to devel-

opment of THz QWIPs30–32. Recently, the experimental observations of greatly improved

GaAs/AlGaAs QCL performance under an applied magnetic field, in terms of threshold

current and its temperature dependence, have been reported29,33,34.

However, one of the much sought after improvements of THz QWIPs comprising doped

symmetric rectangular quantum wells is external tunability. Magnetic field appears to offer

great potential for tuning, if applied on structures based on DMSs. Due to the manipulation

of the electronic structure by varying magnetic field, one can change the transition energies

of the absorbed radiation13. Variations of a few meV which are achievable in CdMnTe (a

DMS compound) imply a large tunability on a relative scale if the transition energy is in

the THz range.

The aim of the present work is to explore the design of a magnetically tunable THz QWIP

comprising CdMnTe/CdMgTe materials. Additionally, introducing a new material system

for QWIPs offers a possibility to access the GaAs Reststrahlen region of 34 − 36 meV. A
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model of electron transport in QWIPs in a magnetic field is then required in order to predict

the QWIP output characteristics.

The organization of the paper is as follows. In Sec. II a theoretical model of QWIPs

in a magnetic field is presented. The calculation of the electronic structure (energy levels

and wavefunctions) of DMS quantum structures is described in Sec. IIA. The interaction

of electrons with electromagnetic radiation in an external magnetic field in the dipole ap-

proximation is reviewed in Sec. IIB. The scattering rates between Landau levels due to the

interaction with optical and acoustic phonons are given in Sec. IIC. Eventually, the rate

equation model of QWIPs subjected to a magnetic field is presented in Sec. IID. The details

of design and the results are presented in Sec. III. The tuning range of the QWIP in a mag-

netic field up to 5 T and the variation of the electron distribution are presented in Sec. IIIA

and Sec. IIIB, respectively. The dark current and responsivity versus magnetic and electric

field dependences are discussed in Sec. IIIC and Sec. IIID.

II. THEORETICAL CONSIDERATIONS

A. Electronic structure of DMS quantum wells

The unique properties of DMSs arise from their band structure with two distinct elec-

tronic subsystems: delocalized, band electrons and magnetic impurity electrons with mag-

netic moments localized in ionic open 3d (or 4f) shell. The mobile electrons determine

the electrical and optical properties of DMSs, while the localized magnetic moments are

responsible for their magnetic properties. However, the unique magneto-optical properties

of DMSs result from the strong spin-dependent sp–d(f) exchange interactions between these

two subsystems5–8.

Application of a perpendicular magnetic field to nonmagnetic semiconductor quantum

wells splits the in-plane continuum of quantized subbands into Landau levels, each subband

producing a set of Landau levels, described by a Landau index and additionally by spin

index (gyromagnetic spin splitting within Landau levels)35. Both the Landau level energies

and their separation depend linearly on the magnetic field. If the structure includes a DMS,

the conduction band edge varies with the magnetic field locally due to the sp–d interaction,

and hence modifies the potential profile. The shift of the potential (in the magnetic layers

3



and near the interfaces) is opposite for the two spins, and consequently they experience two

different potential profiles, which are both a function of the magnetic field 5,9,10,36. This spin

dependent variation of the confinement energy is particularly significant in the vicinity of

the interfaces10,36 and in turn leads to different, and field-dependent, spectra for the two

spins. This phenomenon is known as the giant Zeeman effect. Since the spin and Landau

level index are conserved in optical transitions caused by z-polarized light, the transition

energies will vary with the magnetic field. This translates into tunability of the intersubband

transition energies by varying the magnetic field.

The total Hamiltonian of an electron in DMSs, in addition to the conventional Hamil-

tonian for nonmagnetic semiconductor structures, contains the spin-dependent potential

induced by the magnetic field, given by an empirical expression5,9,10,36

UDMS = ±1

2
αN0x̄ 〈Sz〉 , (1)

where “+” holds for spin-up and “−” for spin-down electrons, α is the sp–d exchange integral

for the conduction band, N0 is the density of cations, 〈Sz〉 is the thermal average of the Mn2+

spin, which, for paramagnetic materials, amounts to

〈Sz〉 =
5

2
B5/2

[

5g∗µBB

2k(T + T0)

]

, (2)

where g∗ is the Landé factor of the conduction band electrons (here assumed constant

throughout the structure, g∗(z) ≈ 2), µB is the Bohr magneton, B is the magnetic field

along the z axis (the direction of confinement), k is the Boltzmann constant, T the temper-

ature and B5/2 is the Brillouin function

B5/2(w) =
6

5
coth

(

6

5
w

)

− 1

5
coth

(

1

5
w

)

. (3)

Phenomenological fitting parameters x̄ and T0 represent the effective manganese concentra-

tion and the effective temperature5,9,10,36 and both depend on the manganese concentration

and the position on the z axis if the influence of a graded nonDMS/DMS interface and

the enhanced magnetization in its vicinity is accounted for. A theoretical method mapping

the detailed interface profile was used to obtain spatial and manganese concentration de-

pendences of x̄ and T0
36. The band offset was calculated accounting for the variation of

composition profile of Mn ions in the magnetic barriers and at the interface.
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The electronic structure of DMS quantum wells was found by solving Schrödinger equa-

tion for envelope functions within the effective mass approximation

− h̄2

2

d

dz

(

1

m∗(z)

dψ(z)

dz

)

+
[

Ec(z) + eFz ∓ 1

2
g∗(z)µBB ± 1

2
αN0x̄ 〈Sz〉

]

ψ(z)

=

[

E −
(

j +
1

2

)

h̄eB

m∗

]

ψ(z), (4)

where h̄ is Planck constant, e is the electron charge, m∗ is the electron effective mass. The

second term Ec(z) on the left side of Eq. 4 is the band offset, the third term is the potential

due to an applied electric field F , the fourth is the potential stemming from the gyromagnetic

spin splitting of Landau levels (“−” for spin-up and “+” spin-down electrons), and the fifth

is the spin-dependent potential of DMS. In further considerations we will use a shorthand

subscript i to denote the jith Landau level (LL) of the mith state (subband) with spin si,

i.e. i = |mi, ji, si〉. Its energy is

Ei = E|mi,ji,si〉 = Esi
mi

+
(

ji +
1

2

)

h̄ωc, (5)

where Esi
mi

is the energy of the state mi with spin si, and ωc = eB/m∗ is the cyclotron

frequency. The wavefunctions of all the LLs of the same spin, associated to the same state,

have the same form ψi(z) = ψsi
mi

(z).

B. Interaction of electrons with electromagnetic field

In optical transitions the Landau index and spin are conserved, and absorption occurs

only on transitions between LLs associated with different states. The fractional absorption

of such a transition is13,37

Ai,f =
πe2ω

nε0c
M s 2

mi,mf
δ(Ef − Ei − h̄ω)(nf − ni), (6)

where i = |mi, j, s〉 and f = |mf , j, s〉 are LLs stemming from different states (mi 6= mf ),

Ei and Ef are their energies with the corresponding wavefunctions ψs
mi

and ψs
mf

, M s
mi,mf

=
∫

ψs ∗
mf

(z)zψs
mi

(z) dz is the dipole matrix element, ni and nf are the electron sheet densities,

n is the refraction index, ε0 is the permittivity of vacuum, c is the speed of light in vacuum,

and ω is the frequency of incident radiation. The fractional absorption may be written as

Ai,f = σi,f (ni − nf ) with the cross-section

σi,f =
πe2ω

nε0c
M s 2

mi,mf
δ(Ef − Ei − h̄ω), (7)
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independent of the electron concentration. The total absorption between states mi and mf

of the same spin s is a sum of contributions of all LLs stemming from them

As
mi,mf

=
∑

i,f,ji=jf=j,si=sj=s

Ai,f

=
πe2ω

nε0c
M s 2

mi,mf
δ(Es

mf
− Es

mi
− h̄ω)

∑

i,f,ji=jf=j,si=sj=s

(nf − ni), (8)

where Es
mi

− Es
mf

= Ei − Ef . State broadening was modeled by a Lorentzian distribution

with the transition linewidth (FWHM) Γ.

C. Interaction of electrons with phonons

Within the frame of a bulk phonon model, the electron-longitudinal optical (LO) phonon

scattering rate between LLs i = |mi, ji, s〉 and f = |mf , jf , s〉 if ji ≤ jf reads38

WLO(i, f) =
e2ωLO

2πεp

[

n0(ωLO) +
1

2
∓ 1

2

]

δ(Ei − Ef ± h̄ωLO)

×
∫ ∞

0
qxy

∣

∣

∣Hji,jf
(qxy)

∣

∣

∣

2

dqxy

∫ ∞

0

∣

∣

∣Gs
mi,mf

(qz)
∣

∣

∣

2

q2
xy + q2

z

dqz, (9)

where ωLO is optical phonon frequency, qxy (qxy = |qxy|) is the xy-component and qz is

the z-component of the phonon wave vector q = (qxy, qz), the constant εp is defined as

ε−1
p = ε−1

∞ − ε−1
s where ε∞ and εs are high-frequency and static permittivity, respectively,

n0(ωLO) is the Bose-Einstein factor. To calculate the scattering rate if ji > jf , one swaps

these indices. The upper sign in the
(

n0(ωLO) + 1

2
∓ 1

2

)

term and in the energy conservation

law (the δ function) holds for absorption, and the lower sign for emission.

The form-factor Gs
mi,mf

(qz) is defined as

Gs
mi,mf

(qz) =
∫

ψs ∗
mf

(z)eiqzzψs
mi

(z) dz. (10)

The lateral overlap integral Hji,jf
(qxy) is given in the analytical form

|Hji,jf
(qxy)|2 = e−q2

xy/2β2 ji!

jf !

(

q2
xy

2β2

)jf−ji
[

L
jf−ji

jf

(

q2
xy

2β2

)]2

, (11)

where β =
√

m∗ωc

h̄
=

√

eB
h̄

and Lk
n(x) is the associated Laguerre polynomial. The delta

function was replaced by a Gaussian39 with the transition linewidth (FWHM) equal to Γ if

mi 6= mj and ji = jj, or equal to σ0

√
B
√

2 ln 2 if mi = mj and ji 6= jj, or to
√

Γ2 + 2 ln 2σ2
0B
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if mi 6= mj and ji 6= jj. The parameter σ0 is inversely proportional to the effective mass, so

from its value for GaAs39 (1 meV/T1/2), one may estimate the value for CdMnTe.

The transition of an electron from the ith LL (i = |mi, ji, s〉) with larger energy than

that of the final fth LL (f = |mf , jf , s〉) via an interaction with longitudinal acoustic (LA)

phonons in a magnetic field is given by40

WAC(i, f) =
D2

A(Ei − Ef )
2

πρv4
s h̄

3

e
Ei−Ef

kT

e
Ei−Ef

kT − 1

×
∫ qzmax

0

∣

∣

∣Gs
mi,mf

(qz)
∣

∣

∣

2 ∣

∣

∣Hji,jf
(qxy0)

∣

∣

∣

2

dqz, (12)

where

qxy0 =

√

√

√

√

(

Ei − Ef

h̄vs

)2

− q2
z . (13)

Here DA is the deformation potential, ρ is the density of the material, vs the sound velocity,

Gs
mi,mf

(qz) and Hji,jf
(qxy) are the form factor and the lateral overlap integral for electron-LO

phonon scattering, and

qzmax =
|Ei − Ef |

h̄vs

. (14)

If Ei < Ef , the electron-LA scattering is calculated from a similar expression

WAC(i, f) =
D2

A(Ei − Ef )
2

πρv4
s h̄

3

1

e
Ei−Ef

kT − 1

×
∫ qzmax

0
|Gs

mi,mf
(qz)|2|Hji,jf

(qxy0)|2 dqz. (15)

Generally, electron-LA scattering is less significant than electron-LO scattering.

Landau quantization and the giant Zeeman effect have a significant impact on scatter-

ing processes, enhancing or inhibiting them depending on the inter-LL energy separation.

The electron-LO phonon interaction between a ground state LL and a continuum state LL

increases considerably as their energy difference approaches one LO phonon energy (ELO).

The scattering reaches a maximum when the difference becomes equal to ELO and then the

corresponding LLs are in resonance. A similar conclusion applies for electron-LA phonon

scattering, with the distinction that resonance occurs when two LLs have very similar ener-

gies.
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D. Modeling of QWIPs in a magnetic field

A quantum mechanical model of electron dynamics in QWIPs in a magnetic field, ac-

counting for Landau quantization and the giant Zeeman effect, was developed to describe

the electron transport processes. Consider a QWIP with a large number of periods in an

externally applied electric and magnetic field. The population dynamics of LLs can be

obtained from the system of nonlinear rate equations in the steady state21,41

dnf

dt
= 0 =

Nc
∑

i=1,i6=f

niWi,f − nf

Nc
∑

i=1,i 6=f

Wf,i +
Nc
∑

i=1,i6=f

C(Φ, ni, nf ), (16)

where i and f run over all Nc LLs in the cascade, in all of its periods, ni is the electron

concentration of the ith LL and Wi,f is the total scattering rate from LL i into LL f

Wi,f = W i,f [1 − fFD(Ef )], (17)

where W i,f is the scattering rate from LL i into LL f , independent of the electron distribu-

tion, and 1−fFD(Ef ) accounts for Pauli exclusion, with fFD being the Fermi Dirac function.

The electron distribution over all LLs associated with some state is assumed to be Fermi

Dirac-like, with electron temperature equal to the lattice temperature, but with different

quasi-Fermi level EF,mi
for each state mi, i.e.

fFD(Ei) =
1

e
Ei−EF,mi

kT − 1
, (18)

The electron concentration on the ith LL, with energy Ei, is

ni = n|mi,ji,si〉 =
eB

2πh̄
fFD(Ei). (19)

The last sum in Eq. 16 is the contribution of intersubband absorption to electron transition

rates with21

C(Φ, ni, nf ) = Aif (ni, nf )Φ, (20)

where Aif is the fractional absorption on the i → f transition, and Φ the optical flux.

Electron-LO phonon and electron-LA phonon scattering are included in the model as

the main scattering mechanisms. Ionized impurity scattering is considered negligible as the

doping density is assumed low. Electron-electron scattering between the ground state LLs,

populated by the majority of carriers, and the LLs in the continuum is neglected because of
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the relatively large energy separation, as well as between any two of the continuum state LLs

because of their low population. Spin-flip scattering is in general less significant than phonon

scattering42 and was neglected. Since the scattering between electrons of different spin is

not included in the model, the rate equation system, which breaks into two independent

subsystems, one for either spin orientation, together with the particle conservation law,

is underdetermined. Therefore, one needs to calculate the total concentrations of spin-up

and spin-down electrons. Since the perturbation of the system induced by an external

electric field is relatively small, a quasiequilibrium state of the system, with a unique quasi-

Fermi energy EF , is assumed (only for calculating the total spin-up and spin-down electron

concentrations). Inserting the quasi-Fermi energy EF into Eq. 18, replacing Eq. 18 in Eq. 19

and summing over all the LLs one may obtain EF , then find the concentrations ni from

Eq. 19 and sum those of the same spin. Hence, each electron spin subsystem is effectively

described by an independent rate equation system and a particle conservation law. In this

paper the simulations were carried out in the magnetic field range between 1 T and 5 T,

where the population of spin-up states was found to be negligible (given in Sec. IIIB). Hence,

only spin-down electron transitions were taken into account in the analysis, using only the

rate equations and the particle conservation law for the spin-down electrons.

Due to the wavefunction localization properties, each state and the LLs originating from

it can be associated to one of the periods of the QWIP. We assume a globally linear variation

of the conduction band potential and apply the quasiperiodicity principle, i.e. if ψi(z) is the

wavefunction of a LL of energy Ei, then ψi(z−D) is the wavefunction of a LL of energy Ei−
∆V , where D is a period length and ∆V is the potential drop across a period. Therefore, by

determining all the LLs (their energies and wavefunctions) belonging to one period (referred

to as the central), one may obtain all the LLs in the whole structure. It is considered that

a state and its LLs belong to a period if that state has a better overlap with the ground

state of that period than with the ground states of the neighboring periods (overlap is here

defined as the integral of their squared wavefunctions along the structure). An identical

set of N states and their LLs with potentially considerable population are thus attributed

to each period (high energy states are practically unpopulated). This discretization of the

continuum spectrum gives an accurate description of the continuum if addition of new states

and their LLs from the same basis does not affect the values of physical observables i.e.

current. A LL assigned to the central period is labeled as the ith, (i = 1, ...N), and a
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LL assigned to its kth nearest neighbor as the i + kNth, (i = 1, ...N), where k > 0 for

right and k < 0 for left neighbors. Since the interaction between LLs belonging to distant

periods is negligible due to the small wavefunction overlap, the ‘tight-binding’ description

is introduced, by including the interaction with only P nearest neighbors on both sides.

Assuming an identical electron distribution in each period (ni = ni+kN), one may account

explicitly for distributions in the central period, and evaluate the scattering rates within it

and between any two LLs belonging to the central period and any of its P nearest neighbors

on either side. Furthermore, the scattering rates are shift invariant (Wi,j = Wi+kN,j+kN ,

Wi−kN,j = Wi,j+kN), therefore reducing the calculation of the scattering rates by taking into

account only the central period and its P right neighbors. Introducing αB = 2π
eB

h̄ in Eq. 19

and from Ai,f = σi,f (ni − nf ) and Eq. 7, we get a system of nonlinear equations

dnf

dt
= 0 =

N
∑

i=1,i6=f

ni[W i,f (1 − αBnf ) + σi,fΦ] − nf

N
∑

i=1,i6=f

[W f,i(1 − αBni) + σf,iΦ]

+
P

∑

k=1

N
∑

i=1,i6=f

{ni[(W i,f+kN + W i+kN,f )(1 − αBnf ) + (σi,f+kN + σi+kN,f )Φ]

−nf [(W f+kN,i + W f,i+kN)(1 − αBni) + (σf+kN,i + σf,i+kN)Φ]} (21)

where i and f run over all LLs in a period. Within the ‘tight-binding’ description, the

interaction with two nearest neighbors (P = 2) is considered.

The current density is calculated by taking into account all electrons crossing some ref-

erence plane e.g. the interface between the central period and the adjacent right period.

Effectively, this is done by subtracting the current density component due to electrons scat-

tering through the reference plane in the direction of the potential drop from the component

due to electrons scattering in the opposite direction

J =
P

∑

k=1

N
∑

i=1

N
∑

f=1

kni [Wi,f+kN − Wi+kN,f + (σi,f+kN − σi+kN,f ) Φ]

=
P

∑

k=1

N
∑

i=1

N
∑

f=1

kni

[(

W i,f+kN − W i+kN,f

)

(1 − αBnf ) + (σi,f+kN − σi+kN,f ) Φ
]

(22)

The responsivity of a QWIP is evaluated from

R =
J(Φ) − J(Φ = 0)

(hc/λ)Φ
, (23)

where λ is the detection wavelength.
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III. NUMERICAL RESULTS

The design targets at simultaneously achieving maximum tunability and large oscillator

strength of transitions relevant for the device operation. These clearly are the transitions

of spin-down electrons from the ground state to resonant states near the barrier top43. A

good design should maintain the above features throughout the range of magnetic fields,

from zero to where the sp–d interaction saturates.

The design cycle proceeded by varying the thickness and the composition of the magnetic

Cd1−xMnxTe wells and the nonmagnetic Cd1−yMgyTe barriers. Also, special care was taken

to minimize the scattering rate from the ground state to the continuum, in order to minimize

the dark current. This was done by tailoring the transition energies to be approximately one

linewidth larger than the LO-phonon energy of the CdMnTe/CdMgTe system (21 meV). The

linewidth was assumed to be 30% of the transition energy of maximal strength, as is usually

done in bound-continuum QWIPs44. Solving the Schrödinger equation was implemented by

a finite-difference method. Many body effects were not taken into account in the calculation

due to the low doping density. The material parameters for CdMnTe/CdMgTe in the electron

structure computation were taken from Refs.45–47. The parameters used in the scattering

rate calculation were taken from Refs.46,48.

A. Tunability

The designed QWIP consists of a series of 8.64 nm Cd0.89Mn0.11Te magnetic wells and

86.4 nm Cd0.855Mg0.145Te barriers. The doping density of the wells was chosen to be

1011cm−2, to satisfy the requirement for achieving relatively high absorption in the THz

range at low temperatures31 (≈ 0.04%). The temperature was set to 1.5 K, when the giant

Zeeman effect is more pronounced at lower magnetic fields. The conduction band edge po-

tential profile of the QWIP in magnetic and electric fields for spin-down electrons, together

with the energies of the relevant states assigned to one period is given on the left-hand side

of Fig. 1. The modification of the conduction band edge for spin-up and spin down-electrons

induced by the magnetic field is shown in the right-hand side of Fig. 1.

With an applied electric field of 1 kV/cm and no magnetic field, the intersubband transi-

tion energy corresponding to the maximum oscillator strength is 26.9 meV. It increases with
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magnetic field to 34.3 meV for spin-down and decreases to 19.5 meV for spin-up transitions

until the sp–d exchange interaction saturates at B = 5 T, Fig. 2. With this design, the

energy range of 19.5− 24.1 meV is not accessible because of the small population of spin-up

electrons for magnetic fields of 1 − 5 T (explained below), effectively limiting the tuning

range to 24.1 − 34.3 meV.

The contribution of other continuum states to the responsivity slightly shifts the peak

detection energy upwards. For magnetic fields of 1 − 5 T, for spin-down transitions, the

peak detection energy differs from the transition energy of maximal strength up to 1.5 meV,

maintaining the tunability obtained from the consideration of the maximal strength tran-

sitions. It is expected that this conclusion also applies for both the spin-up and spin-down

transitions in magnetic fields of 0 − 1 T.

B. Population of Landau levels

The population of LLs, especially those stemming from the ground state, determines the

QWIP output characteristics, such as current and responsivity. Therefore, the discussion of

the LL population is given first.

The energies of several lowest index LLs originating from the ground and the first contin-

uum state of both the spin-up and spin-down subsystems, and the quasi-Fermi level EF vs.

magnetic field dependences are given in Fig. 3. The inset of Fig. 4 shows the distribution

of spin-up and spin-down electrons in a magnetic field from 1 T to 5 T. At magnetic fields

above 1 T the LL configuration is such that all the LLs of spin-up electrons are above EF .

Given that the temperature is near zero, the population of these levels is extremely small,

and so is their contribution to the absorption and scattering processes. For spin-down elec-

trons some low index LLs of the ground state are below EF and hence most of the electrons

reside there. Therefore, only spin-down electrons contribute to transport processes. This

phenomenon represents the spin-polarization of the system.

The distribution of a few lowest ground state LLs of spin-down electrons, calculated from

the rate equation model as a function of magnetic field, is given in Fig. 4. The decrease of

the LL population occurs at the same magnetic fields where Fermi energy drops, justifying

the assumption that the system is close to equilibrium, which was introduced to calculate

the concentration of spin-up and spin-down electrons.
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C. Dark current

The population in the continuum is mainly determined by the transitions between the

ground LLs and the continuum, and the magnetic field influence on the scattering between

continuum LLs is of secondary importance. Hence, the dark current is determined by scat-

tering from the populated ground state LLs, from which the electrons are injected into the

continuum. Therefore, scattering from the ground state LLs is considered first.

The average scattering rate from the ground state LLs to the continuum is defined as

W a
i =

ni
∑

f,mf 6=1

Wi,f

∑

f,mf=1

nf

≈ ni

ns

∑

f,mf 6=1

Wi,f , (24)

where i = |1, ji,−1/2〉, ji ≥ 0, is a ground state LL, ns is the doping density and it is

assumed that the continuum LL population is small. These are shown in Fig. 5 as functions

of the magnetic field, for an electric field of 1 kV/cm. At a fixed electric field, an increasing

magnetic field causes the energy separation between any of the ground state LLs except the

lowest (|1, ji〉, ji > 0), and the continuum to decrease towards ELO, significantly enhancing

the corresponding scattering rates. On the other hand, the separation between the ground

state and the continuum states increases, and becomes more distant from ELO, which results

in a reduction of the scattering rate from the |1, 0〉 LL to the continuum. However, since

the ground state–continuum transition energies are remote from ELO in the whole range

of magnetic fields (a requirement in the design), this decrease does not have a large effect

on scattering from |1, 0〉. Since the concentration of each ground state LL increases and

then decreases (apart from |1, 0〉 which increases and reaches saturation), see Fig. 4, all

average scattering rates increase until the decrease of concentration prevails, causing their

decrease with further increase of magnetic field, as shown in Fig. 5. The described maxima

in |1, 1〉, |1, 2〉, |1, 3〉 occur at magnetic fields of 3.5 T, 1.8 T and 1.2 T, respectively, in

Fig. 5. The other peaks in the average scattering rates of |1, 2〉 and |1, 3〉 in Fig. 5 appear as

the consequence of their resonances with some of continuum LLs, when the scattering rates

become strongly enhanced and prevail over the effects of decreasing population.

The dark current vs. magnetic field dependence is shown in Fig. 6. From Fig. 5 and Fig. 6

one can see that the dark current follows the same trend as the total average scattering rate

from all the ground state LLs. Since only spin-down electrons here interact with phonons,

the dark current is spin-down-polarized. The zero-field extrapolation of the results from our
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model shows a reasonable agreement with the measured values of the dark current in the first

reported bound-continuum THz QWIP31, as well as in another, just published, structures32,

for the identical value of electric field (1 kV/cm).

The dark current/electric field characteristics at B = 3 T is shown in the inset of Fig. 6.

Applying a stronger electric field causes an increase of dark current, just as in QWIPs

without magnetic field. This is because the applied electric field does not affect the LL

configuration, so despite the discretization of the spectrum this system behaves similarly to

the one having simple parabolic dispersion in the plane of the layers.

D. Responsivity

The population of higher index ground state LLs decreases with magnetic field, and hence,

so does the number of photoelectrons generated from them into higher index continuum

states LLs, see Fig. 4. In contrast, the population of low index ground state LLs and

of photoelectrons generated from them into low index continuum states LLs increase. The

contribution of higher index LLs photoelectrons to the photocurrent is larger than that of low

index LLs photoelectrons, because of their larger transition rates to the neighboring periods.

Therefore, the responsivity generally exhibits a decreasing dependence on the magnetic field,

shown in Fig. 7. However, this trend is changed when an increasing number of photoelectrons

in low index continuum LLs becomes more important than the decreased number of higher

index continuum LLs photoelectrons, and then the responsivity increases. The scattering

rates from the continuum to the ground state LLs increase with the magnetic field because

the energy spacing between relevant LLs approaches ELO. The responsivity vs. magnetic

field dependence is again reversed, reaching a maximum in Fig. 7, when scattering rates

from low index continuum LLs increase sufficiently to reduce photoelectron concentration

on them. The responsivity then continues to follow the general trend. Photocurrent is spin-

down polarized because only the spin-down electron transitions occur via the interaction with

phonons and incident radiation. In comparison to previously reported bound-continuum

THz QWIPs31,32, at 1 kV/cm the order of magnitude of the responsivity in the whole range

of magnetic fields is the same (∼ 0.1 A/W).

The inset of Fig. 7 shows the responsivity as a function of bias for B = 3 T. At a fixed

magnetic field, the bias dependence of responsivity is qualitatively the same as in QWIPs
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with no magnetic field.

IV. CONCLUSION

A quantum mechanical model of electron transport in QWIPs in magnetic field was

developed and used to design and analyze the performance of magnetic field tunable DMS

THz QWIPs. The tunability is based on the magnetically induced variation of the band

offset potential profile. The QWIP parameters were engineered to get maximal tunability

in the desired range of the far infrared spectrum, while maintaining low dark current and

large responsivity. The values of current density and responsivity were calculated and found

to be of the same order of magnitude as in GaAs/AlGaAs THz QWIPs.
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R. Köhler, A. Tredicucci, Phys. Rev. B 68, 081303 (R) (2003).

30 M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, Appl.

Phys. Lett. 84, 475 (2004).

31 H. C. Liu, C. Y. Song, A. J. SpringThorpe, J. C. Cao, Appl. Phys. Lett. 84, 4068 (2004).

32 H. Luo, H. C. Liu, C. Y. Song, Z. R. Wasilewski, Appl. Phys. Lett. 86, 231103 (2005).

33 C. Becker, C. Sirtori, O. Drachenko, V. Rylkov, D. Smirnov, J. Leontin, Appl. Phys. Lett. 81,

2941 (2002).

34 D. Smirnov, O. Drachenko, J. Leontin, H. Page, C. Becker, C. Sirtori, V. Apalkov, T.

Chakraborty, Phys. Rev. B 66, 125317 (2002).

35 L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory (Pergamon, London,

1959).

36 J. A. Gaj, W. Grieshaber, C. Bodin-Deshayes, J. Cibert, G. Feuillet, Y. Merle d’Aubigne,

A. Wasiela, Phys. Rev. B 50, 5512 (1994).
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Figure captions

FIG. 1: Left-hand side: The conduction band profile of the QWIP, the energies of states

that belong to one period (dashed lines) and the squared wavefunctions of the ground state

and the continuum state with maximal oscillator strength towards the ground state, for the

electric field E = 1 kV/cm and magnetic field B = 5 T. Right-hand side: The conduction

band profile in a magnetic well and in the vicinity of interfaces: for both spins at B = 0 T

(solid line), for spin-up electrons at B = 5 T (dashed line) and for spin-down electrons at

B = 5 T (dash-dotted line).

FIG. 2: Transition energies corresponding to maximal oscillator strength for spin-down

and spin-up electrons vs. magnetic field dependence, at a fixed electric field of 1 kV/cm.

FIG. 3: The fan-out of Landau levels from the ground and the first continuum states for

both the spin-up and spin-down electron system, together with the quasi-Fermi level, for a

fixed electric field of 1 kV/cm.

FIG. 4: The electron distribution over the first 4 ground state Landau levels vs. magnetic

field dependence at a fixed electric field of 1 kV/cm. Inset: the electron distributions over

the spin-up and spin-down states vs. magnetic field dependence for the same electric field.

FIG. 5: Average scattering rates (see text for explanation) from the first 4 ground state

Landau levels to the continuum, and the total average scattering rate from all ground state

Landau levels vs. magnetic field dependence at a fixed electric field of 1 kV/cm.

FIG. 6: Dark current density vs. magnetic field dependence for a fixed electric field of 1

kV/cm. Inset: dark current density vs. electric field dependence for a fixed magnetic field

of 3 T.

FIG. 7: Responsivity vs. magnetic field dependence for a fixed electric field of 1 kV/cm.

Inset: responsivity vs. electric field dependence for a fixed magnetic field of 3 T.
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