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SUMMARY 

 

Factor XIII is responsible for the cross-linking of fibrin -chains in the early stages of 

clot formation, whilst -chain cross-linking occurs at a slower rate. Although - and -

chain cross-linking was previously shown to contribute to clot stiffness, the role of 

cross-linking of both chains in determining clot structure is currently unknown. 

Therefore, the aim of this study was to determine the role of individual - and -chain 

cross-linking during clot formation, and its effects on clot structure. 

We made use of a recombinant fibrinogen (Q398N/Q399N/K406R), which does not 

allow for -chain cross-linking. In the absence of cross-linking, intact D-D interface 

was shown to play a potential role in fiber appearance time, clot stiffness and 

elasticity. Cross-linking of the fibrin -chain played a role in the thickening of the fibrin 

fibers over time, and decreased lysis rate in the absence of 2-antiplasmin. We also 

showed that -chain cross-linking played a role in the timing of fiber appearance, 

straightening fibers, increasing clot stiffness and reducing clot deformation. Cross-

linking of the -chain played a role in fibrin fiber appearance time and fiber density. 

Our results show that - and -chain cross-linking play independent and specific 

roles in fibrin clot formation and structure. 

 

Word count: 200  
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INTRODUCTION 

 

Formation of a cross-linked fibrin clot is central to hemostasis and thrombosis. Upon 

clot formation, activated factor XIII (FXIIIa) produces -glutamyl--lysine isopeptide 

bonds between two fibrin molecules within the fibrin fiber assembly, increasing clot 

stiffness1. FXIIIa cross-links the fibrin - and -chains of fibrin. This cross-linking 

occurs at different rates, whereby the -chains are more rapidly cross-linked between 

residues Q398 and/or Q399 and K4062,3. Cross-linking of the -chains occurs at a 

much slower rate between Q221, Q237, Q328, Q366 and numerous lysine 

residues4,5,6. 

 

FXIIIa cross-linking has been shown to alter the viscoelastic properties of fibrin clots7-

10, but the effects of cross-linking on the structure of fibrin clots is still poorly 

understood. Two previous reports indirectly suggested that FXIIIa may also influence 

the structure of clots. Ryan et al. reported that the average fiber diameter decreased 

after cross-linking by FXIIIa9. We previously found that a FXIII-A (A-subunit) genetic 

polymorphism, V34L, where Leu34 was activated twice as fast as Val34, influenced 

clot structure whereby FXIII-A Leu34 resulted in a clot with thinner fibers and smaller 

pores11. However, the direct effects of FXIII cross-linking on fibrin fiber and network 

ultrastructure have hitherto not been investigated and the mechanisms by which 

these changes occur are also unknown. 

 

The structure of the fibrin clot has repeatedly been shown to be abnormal in patients 

with venous and arterial thrombosis, and to play important roles in the regulation of 

the mechanical properties of the clot and its resistance to fibrinolysis (for a review, 

see Undas & Ariëns12). Therefore, the modification of fibrin fiber and network 

structure by FXIIIa could provide an important new mechanism by which FXIIIa 

influences thrombosis. We have developed a recombinant fibrinogen with mutations 

in the -chain cross-linking sites for FXIIIa (fibrinogen Q398N/Q399N/K406R, 3X, or 

triple-mutant)13 to directly investigate the role of cross-linking in fibrin clot structure 

and function. We find that cross-linking by FXIIIa does not merely stabilize an already 

existing fibrin clot structure, but that it directly influences the ultrastructure of the fibrin 
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fiber network. We also find that cross-linking of the - and -chains is responsible for 

these effects, and that they play specific and complementary roles in this process. 
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MATERIALS AND METHODS 

 

Materials 

Human -thrombin (Calbiochem; Nottingham, UK) was reconstituted to 250U/mL, 

tissue plasminogen activator (tPA; Pathway Diagnostics; Dorking, UK) and Glu-

plasminogen (ERL; Swansea, UK) were diluted in 0.05 MTris-HCl, 0.1M NaCl, pH7.4 

(TBS) to 14nM and 11M respectively, and stored at -80°C. Human FXIII-A 2B2 was 

isolated from contaminating albumin and glucose from Fibrogammin P (CSL Behring; 

Haywards Heath, UK) by Sepharose-6B gel filtration as described previously13. FXIII 

was diluted in TBS to 110g/mL and stored at -80°C. AlexaFluor488 fibrinogen 

(Invitrogen; Paisley, UK) was diluted in TBS to 2mg/mL and stored at -80°C. All other 

chemicals were obtained from Sigma (Gillingham, UK) unless stated otherwise. 

 

Fibrinogen expression 

Recombinant human Q398N/Q399N/K406R (3X) fibrinogen was prepared as previously 

described13. In brief, the expression vector containing the full -chain cDNA (pMLP-) 

was mutated at codons 398, 399 and 406 using QuickChange site-directed 

mutagenesis kit (Agilent Technologies; Stockport, UK). Chinese hamster ovary 

(CHO) cells, already containing the human AĮ and Bȕ chains were co-transfected 

with the mutated pMLP- and pMSV-His (selection vector). CHO cells expressing 

either human wild-type fibrinogen, or the 3X fibrinogen, were grown in Petri dishes, 

and transferred into roller bottles containing adherent microcarrier beads and DMEM 

F12 medium (Invitrogen) supplemented with 2mg/mL aprotinin and 5mg/mL insulin, 

transferrin sodium selenite supplement (Roche; Burgess Hill, UK). The medium was 

harvested and replaced every 48hrs, and stored at -80°c in the presence  of 150M 

PMSF. Medium was harvested for as long as fibrinogen was detectable by ELISA. 

Fibrinogen was precipitated overnight with 40% saturated ammonium sulphate 

(Fisher Scientific; Loughborough, UK) and purified, as previously described14, with 

the following modifications: a) 50mM Tris-HCl (pH7.6) and 100mM NaCl were 

replaced by 20mM MES (pH5.6) in the 40x buffer. b) 10U/mL aprotinin was replaced 

by 10U/mL soybean trypsin inhibitor in the buffer A1. c) Protamine / sepharose 

chromatography was replaced by IF-1 mAb (10mg; Kamiya Biomedical; Seattle, 

USA)15 / sepharose (1.5mg; VWR; Lutterworth, UK) immunoaffinity chromatography. 
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Prior to chromatography, CaCl2 was added to the samples (10mM final). The 

fibrinogens were eluted in TBS containing 5mM EDTA, and dialysed overnight 

against TBS. The concentration and purity of the fibrinogen preparations were 

determined at A280nm (extinction coefficient 15.1 for a 1mg/mL fibrinogen solution with 

a 1cm path length at 280nm) and by SDS-PAGE in reducing conditions, respectively. 

 

Turbidity analysis of fibrin polymerization 

Polymerization of fibrin was studied by turbidity analysis as described16. In brief, 

fibrinogen (0.5mg/mL), CaCl2 (5mM) and FXIII (3.7g/mL) were diluted in TBS and 

premixed in 96-well plates in triplicate. Thrombin (0.1U/mL final concentration) was 

added to initiate clotting, and absorbency was measured at 340nm, every 12s for 

2hrs at room temperature, using a BioTek ELX808 microtiter plate reader (Labtech 

International; Ringmer, UK). Experiments were performed in triplicate. 

 

Fibrinolysis analysis by turbidity 

Fibrin clot lysis was studied using an adapted turbidity assay (above) in which tPA 

and plasminogen were included in the reaction mixture. Fibrinogen (0.5mg/mL), 

CaCl2 (5mM), tPA (100pM), Glu-plasminogen (0.24M) and FXIII (3.7g/mL) were 

diluted in TBS and premixed in 96-well plates in triplicate. Thrombin (0.1U/mL final 

concentration) was added to initiate clotting, and changes in absorbency were 

monitored at 340nm, every 12s for 2hrs at room temperature, using a BioTek 

ELX808 microtiter plate reader (Labtech International; Ringmer, UK). Experiments 

were performed in triplicate. Lysis rates were calculated by determining the slope of a 

straight line drawn through the polymerization curve at the point of its steepest 

inclination. Lysis rate were expressed as change in optical density per second (Ǽ

OD/s). 

 

Laser Scanning Confocal Microscopy 

Fibrinogen (0.5mg/mL), CaCl2 (5mM), AlexaFluor488 fibrinogen (1% w/w) and FXIII 

(3.7g/mL) were diluted in TBS. After addition of thrombin (0.1U/mL final 

concentration), the reaction mixture was transferred into the channel of an uncoated 

Ibidi -slide VI (Thistle Scientific; Glasgow, UK), before being immediately observed 

by laser scanning confocal microscopy (LSCM). Imaging was performed using an 
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upright Zeiss LSM-510 META Axioplan2 microscope (Carl Zeiss; Welwyn Garden 

City, UK) with a 63x oil immersion objective lens. Optical z-stacks were obtained, 

every 2m over 20m, and combined into single projected images. Fiber density was 

determined by counting the number of fibers crossing an arbitrary line of fixed length 

(200m) drawn through a single optical section. Each fibrin clot was prepared in 

duplicate and three density measurements were performed in each. 

 

Field Emission Scanning Electron Microscopy 

Fibrinogen (0.5mg/mL), CaCl2 (5mM), FXIII (3.7g/mL) were premixed in TBS, before 

adding thrombin (0.1U/mL). The reaction mix (50L) was transferred into pierced 

Eppendorf lids, to allow fixing and washing of the clot. Clots were left to form in a 

humidity chamber for 1hr at room temperature, before being washed with sodium 

cacodylate buffer (67mM, pH7.4) to remove excess salt. Clots were then fixed 

overnight in 2% gluteraldehyde, and further washed in sodium cacodylate buffer, 

before being dehydrated in a series of increasing acetone concentrations (30-100%). 

Critical-point drying with C02, mounting onto stubs, sputter-coating with platinum 

using a Cressington 208 HR (Cressington Scientific Instruments; Watford, UK), were 

then performed before imaging the clots using a FEI Quanta 200 FEGSEM (FEI; 

Hillsboro, USA). 

 

Fibrin viscoelastic properties 

We measured the viscoelastic properties of fibrin clots using a magnetic 

microrheometer device as previously described17. Fibrinogen (0.5mg/mL), CaCl2 

(5mM), and FXIII (3.7g/mL) were diluted in TBS. After the addition of paramagnetic 

particles (4.5m diameter; Dynal; Oslo, Norway) and thrombin (0.1U/mL), the 

reaction mixture was transferred into 500ȝm diameter capillaries (VitroCom, 

Mountain Lakes, USA). Once filled, the capillary ends were sealed with Vaseline, and 

the clots were left to form overnight. Clot viscoelastic properties were measured 

using a magnetic microrheometer, as previously described18. Clot stiffness (storage 

modulus, G) and viscosity (loss modulus, G) were calculated as previously 

described19. The ratio of energy dissipated to energy stored (loss tangent, tan = 

G/G), which reflects clot stability was also calculated10. Measurements were 

repeated for 10 particles per clot, in triplicate. 
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Data analysis 

All data are presented as mean±SEM, and all statistical analysis (t-test) were 

performed using GraphPad. P-values of lower than 0.05 were considered to indicate 

statistical significance.  
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RESULTS 

 

The effect of cross-linking by FXIII on fibrin polymerisation 

Turbidity analysis showed a small but significant difference in polymerization patterns 

between wild-type (WT) and triple-mutant (3X) fibrinogens (Figure 1). Although 

polymerization rates and time to reach plateau were similar in either fibrinogen in the 

absence of cross-linking by FXIIIa, maximum optical density (Max OD) was 

significantly higher (p<0.05) in WT (1.33-fold) compared to that of 3X, indicating that 

the triple mutant fibrinogen produced clots with thinner fibres and increased fiber 

density. While this indicated that the mutations in the 3X fibrinogen were directly 

responsible for minor changes in fibrin polymerization and the structure of the fibrin 

network, these results did not preclude the use of the 3X and WT fibrinogen to study 

the effects of cross-linking by FXIIIa on clot structure. When FXIII was added prior to 

clot formation, a similar significant increase (p<0.05) in Max OD was observed for 

both WT (1.21) and 3X (1.18) fibrinogens, indicating that in both cases addition of 

FXIII leads to clots with thicker fibers. Although the initial polymerization rates were 

unchanged, the time to reach Max OD at a later stage was significantly lengthened 

(p<0.001) by the addition of FXIII, from 25min to 69min and 30min to 64min for WT 

and 3X fibrinogens respectively. These data suggest that once polymerization by 

thrombin alone is complete, cross-linking by FXIIIa continues to affect clot structure, 

by increasing fiber thickness over time. Furthermore, since Max OD increased in both 

WT and 3X fibrinogen (the latter of which does not support -chain crosslinking), 

these data show that the late changes in fibrin structure are due to cross-linking of 

the -chains. 

 

Cross-linking by FXIIIa reduces fibrinolysis rates 

Turbidity analysis showed a difference in lysis between WT and 3X fibrinogens 

(Figure 2). Similar to the data obtained in the absence of tPA and plasminogen, Max 

OD was reduced for clots made with 3X compared with WT fibrinogen. In the 

absence of FXIII, lysis rates were similar for clots made from both WT (-2.30x10-4 

unit/sec) and 3X (-2.32x10-4 unit/sec) fibrinogens. These rates were significantly 

decreased when FXIII was added, both WT (-1.97x10-4 Unit/sec) and 3X (-1.96x10-4) 
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fibrinogens showed a similar decrease (1.18- and 1.17-fold respectively, p<0.05). 

When lysis rates were normalized to the maximum absorbency of each data set, the 

decrease in lysis rates after cross-linking by FXIIIa was further accentuated to 1.26- 

and 1.29-fold for clots made with WT- and 3X-fibrinogen, respectively. In addition, 

when FXIII was added, the time to half-lysis was significantly prolonged by 1.23- and 

1.16-fold (p<0.05) for WT- and 3X-fibrinogen, respectively. These data, which were 

obtained using purified proteins and recombinant fibrinogen, in the absence of 2-

antiplasmin, show that cross-linking by FXIIIa decreases lysis rate independently of 

other plasma proteins, and that this effect is mainly due to cross-linking of the -

chains. 

 

Effects of cross-linking on fiber density and fiber appearance times 

In agreement with the turbidity results, laser scanning confocal microscopy showed 

that after 60min, in the absence of FXIII, clots formed with 3X fibrinogen were 

significantly denser, than those formed with WT fibrinogen (Figs. 3A, 3C, and 3E). 

When FXIII was added, the fiber density was significantly increased for WT but not 

3X fibrinogen (Figs. 3B, 3D, and 3E). These data suggest that -chain rather than Į-

chain cross-linking influences fiber density. When images were captured every 30sec 

throughout the clot formation, in the absence of FXIII, fibers appeared after 3.0min 

and 3.5min for fibrinogen WT and 3X respectively (Supplementary Figure). When 

FXIII was added, WT and 3X fibers were first observed 30sec earlier, at 2.5min and 

3.0min respectively (Supplementary Figure). This phenomenon was also observed 

when the turbidity data were zoomed in for the first 3 minutes. The order of length of 

time required to reach a determined OD (Figure 1 inset) correlated with that of the 

visual appearance of the fibers. These data suggest that intact -chain plays a role in 

fiber appearance time, along with -chain cross-linking. 

 

Cross-linking by FXIIIa straightens fibers 

Electron microscopy analysis of clots formed in the absence of FXIII showed no 

major difference for fibrinogen 3X compared to fibrinogen WT (Figs. 4C and 4A, 

respectively). However, it was striking to observe that for both fibrinogens (Figs. 4B 

and 4D) the fibers appeared to be straighter compared with those produced in the 

absence of FXIII (Figs. 4A and 4C, respectively). In the absence of FXIII, fibrin fibers 
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exhibited greater curvature, and the effect of straightening of the fibers occurred after 

the addition of FXIII to clots made from both WT and 3X fibrinogen, indicating that -

chain cross-linking plays a role in fiber straightness in electron microscopy. 

 

Cross-linking by FXIIIa increases clot stiffness and decreases clot deformation 

The viscoelastic properties of clots were measured using a magnetic microrheometer 

(Figure 5). In the absence of FXIII, clots formed with fibrinogen WT were significantly 

stiffer (p<0.05) compared to fibrinogen 3X, as indicated by the 1.5-fold higher storage 

modulus G (Figure 5A). The loss modulus G was significantly higher (2-fold, 

p<0.005), in clots formed with fibrinogen 3X compared to fibrinogen WT (Figure 5B), 

indicating that 3X clots are more susceptible to inelastic deformation. The storage 

modulus reflects the elastic energy stored by the clot during deformation, whilst the 

loss modulus reflects the viscous properties of the clot, i.e. its permanent inelastic 

deformability. When FXIII was added, stiffness was significantly increased for clots 

formed by both WT (1.3-fold, p<0.01), and 3X (1.4-fold, p<0.05) fibrinogen (Figure 

5A). Similarly, the loss modulus was significantly decreased by fiber cross-linking in 

clots formed by WT (1.5-fold, p<0.005) and 3X (1.4-fold, p<0.01) fibrinogens (Figure 

5B). The loss tangent, tan relates to the overall plastic stability of the clot. In the 

absence of cross-linking, tan was significantly higher (2.6-fold, p<0.05) in 3X clots 

compared to the WT clots, indicating that the latter are more stable and less 

susceptible to permanent deformation. In the presence of FXIII, tan was decreased 

for both WT (1.7-fold) and 3X (2.4-fold) clots (Figure 5C). These results indicate that 

-chain cross-linking plays a role in increasing clot stiffness and plastic stability, and 

decreasing clot inelastic deformation. 
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DISCUSSION 

 

Our study provides novel evidence that cross-linking of the - and -chains of fibrin 

by FXIIIa plays a direct role in the regulation of fibrin clot ultrastructure. Using 

recombinant wild-type fibrinogen and fibrinogen with mutations in the -chain cross-

linking sites we show that cross-linking by FXIIIa influences fibrin clot formation and 

structure. We find that cross-linking of the fibrin -chains by FXIIIa influences fibrin 

polymerization long after the effects of thrombin have worn off. We also find that -

chain cross-linking directly influences fibrinolysis rates and decreases fibrin fiber 

curvature observed by electron microscopy, whereas cross-linking of the -chains 

influences fiber density. Fibrin microrheological properties are mostly regulated by -

chain cross-linking. These data demonstrate that cross-linking by FXIIIa influences 

fibrin formation, clot structure, and its stability, and that - and -chain cross-linking 

play specific and complementary roles in these processes. In view of the role of fibrin 

structure in thrombosis12, these findings indicate a novel role for FXIIIa in regulating 

thrombosis.  

 

We investigated the characteristics of the clot during its formation, but also its 

structure once formed, in a variant fibrinogen that does not form - cross-links. 

During the polymerization process, minor differences were observed between WT 

and 3X fibrinogens with regards to polymerization onset and maximum absorbency. 

In the absence of cross-linking, we found that visually (confocal microscopy) the 

fibers appeared later in the case of fibrinogen 3X compared to WT. This was also 

observed when analyzing the early stages of polymerization by turbidity, therefore we 

hypothesize that this phenomenon may be due to impaired protofibril formation, 

resulting in a delayed lateral aggregation, and therefore fiber appearance, although 

the rate of polymerization was not apparently altered. Although the mutations 

produced in fibrinogen 3X (Q398N/Q399N/K406R) were selected on the basis that 

the new amino-acids show similar chemical and structural characteristics, this 

impaired protofibril formation could be caused by these mutations, as it was 

suggested that -dimerization occurs as soon as the fibrin molecules associate20. 

Residue Q398 was shown to be located on the edge of the D-D interface by X-ray 

crystallography21, which would make this residue, and residue Q399, more readily 
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accessible to FXIIIa for cross-linking. This location at the edge of the D-D interface 

suggests that a mutation at this site may induce small alterations to the area involved 

in D-D interactions. The exact location of K406 with regards to the D-D interface is 

unresolved in the crystal structure, but its close proximity to Q398 would indicate 

that it could also interfere with D-D interactions and protofibril formation. A somewhat 

larger change in amino acid characteristics is observed for the substation of lysine 

with arginine (K406R), where 2 amine groups are added due to the mutagenesis, 

which could trigger a slight change in conformation, hence affecting polymerization. 

No naturally occurring mutations of these amino acids have been documented. 

Further analysis of the role of these particular residues in D-D interactions requires 

characterization of the D-D interface for fibrinogen 3X and WT by crystallography in a 

future study. 

 

When polymerization occurred in the absence of cross-linking, turbidity and confocal 

data showed that fibrinogen 3X formed denser clots compared to WT fibrinogen. In 

the presence of FXIIIa, it was observed that upon completion of polymerization, 

absorbency continued to increase for both fibrinogens for over an hour. Since -

chain cross-linking occurs over a similar time span, and lateral aggregation likely 

involves - interactions22 these data indicate that -chain cross-linking plays a role 

in fiber thickening once the initial phase of polymerization is complete. It is possible 

that -chain cross-linking plays a role in the continued remodeling of the clot, as 

recently described by Chernysh et al.23. Cross-linking of the -chain appears to play a 

significant role in determining the fiber density, as an increase was observed when 

FXIIIa was added to fibrinogen WT which was not present in the case of fibrinogen 

3X. We hypothesize that during clot formation, -chain cross-linking may help to 

stabilize branching of fibers24, leading to an increase in fiber density. These data are 

in agreement with Carlisle et al., who found that cross-linking of fibrin by FXIIIa 

particularly increased the resistance of fiber branchpoints to rupture during pulling 

experiments with the atomic force microscope25. In the absence of cross-linking fiber 

branching may prove less stable, and therefore a reduction in the number of stable 

branchpoints in the absence of cross-linking by FXIIIa could lead to clots with a lower 

fiber density, since fiber density is determined as the number of fibers between 

branchpoints in a certain area (or over a certain length) of the clot. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Chernysh%20IN%5BAuthor%5D&cauthor=true&cauthor_uid=23170200
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Turbidity analysis to determine the functional relevance of the individual chain cross-

linking on fibrinolysis showed that in the absence of 2-antiplasmin, cross-linking of 

the -chain is responsible for a decrease in fibrinolysis rate. A previous study has 

shown that FXIIIa cross-linking increased clots resistance to lysis26, however this 

study was performed with plasma and plasma-purified proteins. Our study uses 

recombinant proteins which are not subject to possible contamination with other 

plasma proteins (2-antiplasmin in particular), showing that this effect is directly 

FXIIIa-dependent. The apparent role of the -chain in this process could be due to 

the number of cross-linking sites present on this chain, which is far more compared 

to that of the -chain. In addition, since inter-protofibril cross-links (produced in the -

chains) are present in greater number than intra-protofibril cross-links (produced in 

the -chain), more cleavages by plasmin are required to dissolve the network. Our 

data therefore show that -chain cross-linking reduces susceptibility of the fibrin 

network to fibrinolysis to a certain degree directly, although we recognize that 

incorporation of 2-antiplasmin by FXIIIa into Lys303 of the fibrin -chain has a much 

larger effect on the resistance of the clot to fibrinolysis as previously demonstrated by 

Fraser et al..27. Future studies using recombinant fibrinogen with mutations in the 

cross-linking site for 2-antiplasmin for will be required to shed further light on the 

roles of 2-antiplasmin dependent and independent effects on fibrinolysis. 

 

We found that when the viscoelastic properties of clots were investigated using a 

magnetic microrheometer, clots made with fibrinogen WT showed a significantly 

higher stiffness (storage modulus or G’) compared to those made with fibrinogen 3X. 

Cross-linking of these fibrinogens by FXIIIa resulted in a further significant increase 

in clot stiffness which was similar for both fibrinogens, indicating that the increased 

stiffness upon cross-linking is largely dependent on the -chains. Previous studies 

have found that cross-linking by FXIIIa resulted in clots with increased stiffness and 

reduced inelastic deformation8,9,20. Furthermore, a previous study using a 

recombinant fibrinogen truncated at A251 and therefore lacking most of the -chain 

cross-linking sites, also found that cross-linking of the -chain plays a major role in 

the determination of fibrin stiffness, since the storage modulus of clots made with this 

variant was significantly reduced compared to clots made from WT fibrinogen.22 Our 
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current findings using a mutant that lacks all three -chain cross-linking sites, extend 

these data and confirm that -chain cross-linking plays a major role in clot stiffness. 

In previous reports, we made similar observations using the 3X fibrinogen variant in 

bulk measurements of fibrin clots13 and also at the single fiber level28, although in 

these studies a smaller increase in stiffness with fibrinogen 3X cross-linking 

compared to fibrinogen WT was observed, indicating a role also for -chain cross-

linking in fibrin stiffness. The reasons for the apparent discrepancies with regards to 

the role of -chain cross-linking in fibrin stiffness between the current study and these 

earlier studies are unclear, but could involve differences in fibrin formation conditions 

and differences in the measurement techniques employed. In the current study we 

studied the rheological properties at a micron scale level of a paramagnetic bead with 

a diameter of 4.5m trapped by a number of fibrin fibers (magnetic microrheometer), 

as opposed to the whole clot rheology using a torsion pendulum and the single fiber 

mechanical properties investigated by atomic force microscopy in our previous 

studies13,28. It appears that under the conditions used in the current study, cross-

linking of the -chains plays a smaller role in determining fibrin stiffness as compared 

to that of the -chains. 

 

Loss modulus (G’’) was also measured, and we found that clots produced with 

fibrinogen 3X were more susceptible to  inelastic deformation compared to fibrinogen 

WT. Upon cross-linking, clots made of both fibrinogens showed a decrease in 

inelastic deformation as the clots stiffened, indicating that the cross-linking 

dependent increase in clot stiffness is -chain dependent. This observation is in 

agreement with the observations made at the single fiber level28. The overall clot 

plastic stability (loss tangent) was determined from the storage and loss moduli, and 

clots formed from 3X fibrinogen showed an intrinsic decrease in plastic stability 

compared to WT fibrinogen. In the presence of cross-linking this plastic stability was 

increased for clots made of both fibrinogen variants, indicating that this effect is 

largely -chain dependent. 

 

Previous studies have shown that the storage modulus (G) directly relates to the 

density of cross-links in a clot20, in particular -chain cross-links. The authors 

hypothesized that this is due to the larger amount of cross-linking sites in the -chain, 
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compared to -chain. Our current study is in agreement with this, since no major 

difference was observed in the level of increase of clot stiffness upon cross-linking in 

clots made from WT and 3X fibrinogens.  

 

Electron microscopy analysis of clots formed with both fibrinogens, in the absence 

and presence of FXIIIa, provided additional insights into the effects of cross-linking 

by FXIIIa on fibrin clot structure and fiber tautness. In the absence of cross-linking, 

both fibrinogens formed similar clots with regards to fiber curvature. Interestingly, in 

the presence of cross-linking by FXIIIa, both sets of fibrinogens produced clots with 

much straighter fibers, indicating that -chain cross-linking plays a role in reducing 

fiber curvature. The reduction of fiber curvature following cross-linking by FXIIIa is 

likely caused by the increase in fiber stiffness, and decrease in inelastic deformation 

of the fibers. It may be possible that the curvature observed in the absence of FXIIIa 

is due to the sample preparation procedures used prior to imaging the clot, which 

include fixation, dehydration and critical point drying. This was further supported by 

the absence of difference in fibers curvature, before and after cross-linking, in fully 

hydrated clots observed by confocal microscopy. However, the absence of such 

curvature following cross-linking is an indication that -chain cross-linking may 

protect the fibrin fibers against this inelastic deformation. The - cross-links 

introduced by FXIIIa in the fibrin fiber assembly likely result in more rigid and taut 

fibers, which could be less prone to bending and remain tense, even during 

dehydration and critical point drying of the clots as required for imaging by the 

electron microscope. Sample preparation for electron microscopy may also partly 

explain the apparent discrepancies between the electron microscopy and turbidity 

observations. Although turbidity indicated that WT fibrinogen produced clots with 

thicker fibers than 3X fibrinogen in the absence of FXIIIa, and that cross-linking 

increased fiber thickness in clots made from either fibrinogen, no major differences in 

fiber diameters were observed by electron microscopy, possibly due to effects of 

sample dehydration on fiber thickness in these experiments. 

 

Fibrin clot formation is a highly dynamic process whereby cross-linking of the fibrin 

fibers by FXIIIa occurs whilst the network is still being formed. Our study through the 

use of recombinant fibrinogens with mutations in the FXIII cross-linking sites presents 
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novel, direct data demonstrating that cross-linking by FXIIIa, or the absence of it, 

plays an important role in the final structure and function of the clot. In addition, we 

have found that cross-linking of the fibrin - and -chains play different, specific and 

complementary roles during clot formation (Table 1), ultimately each impacting on 

particular aspects of fibrin clot structure and function. These data show that cross-

linking by FXIIIa does not merely stabilize an already existing fibrin network structure 

but influences its formation and structure. Our findings have important implications 

for the understanding of the molecular processes involved in clot formation and 

stability.  



 

 18 

WHAT IS KNOWN ABOUT THIS TOPIC? 

 

 Activated factor XIII cross-links the fibrin - and -chains. 

 Cross-linking by activated factor XIII increases stiffness of the fibrin clots, and 

resistance of the clot to fibrinolysis by incorporation of 2-antiplasmin. 

 A functional genetic polymorphism in factor XIII (Val34Leu) has been associated 

with changes in clot structure. 

 

 

WHAT DOES THIS PAPER ADD? 

 

 Recombinant fibrinogens with mutations in the cross-linking sites show that 

activated factor XIII does not stabilize an already existing fibrin clot structure but 

directly modulates fibrin formation and network structure. 

 Cross-linking of the fibrin - and -chains play specific and complementary roles in 

modulating fibrin clot structure. 

 Cross-linking of the fibrin -chain by activated factor XIII reduces fibrinolysis rate 

independently of 2-antiplasmin.  
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Table 1: Summary of the effects of fibrin - and - chain cross-linking by FXIIIa 

on clot formation and structure. All data are from this study, except the role of -

chain cross-linking in increased stiffness13,26. 

 

 -chain -chain 

Fiber thickness over time   

Fiber density   

Clot stiffness  13,26 

Fibrin clot lysis rate   

Fiber appearance time   

Fiber tautness   
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Figure 1: Turbidity analysis of polymerizing clots produced with WT and 3X 

fibrinogen, in the absence or presence of factor XIII. WT (grey line) and 3X (black 

line) fibrinogen at 0.5mg/mL were incubated with either TBS (dotted line) or 3.7g/mL 

FXIII (plain line), in the presence of 0.1U/mL thrombin and 5mM CaCl2. Insert shows 

a scale up representation of the early stages of polymerization, with an arbitrary 

threshold used for comparison to confocal microscopy data. Error bars represent 

standard error of the mean.  
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Figure 2: Turbidity analysis of polymerizing and lysing clots produced with WT 

and 3X fibrinogen, in the absence or presence of FXIII. WT (grey line) and 3X 

(black line) fibrinogen at 0.5mg/mL were incubated with either TBS (dotted line) or 

3.7g/mL FXIII (plain line), in the presence of 0.1U/mL thrombin and 5mM CaCl2, 

100pM tPA, and 0.24M Glu-plasminogen. Lysis rate was determined as ǻOD/s at 

the steepest part of the curve. Error bars represent standard error of the mean. 
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Figure 3: Laser scanning confocal microscopy images of clots produced with 

WT and 3X fibrinogen, in the absence or presence of FXIII. WT (upper panels) 

and 3X (lower panels) fibrinogen at 0.5mg/mL were incubated with either TBS (A, C) 

or 3.7g/mL FXIII (B, D), in the presence of 1% AlexaFluor-labeled fibrinogen, 

0.1U/mL thrombin and 5mM CaCl2. Pictures were taken after 60min incubation. 

Optical z-stacks (every 2m over 20m) were combined into single projected images. 

The scale bars indicate 50m. Fiber density (E) was determined by counting the 

number of fibers crossing a section of 200ȝm long, in triplicate. Error bars represent 

standard error of the mean. ** p<0.01, *** p<0.005.  
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Figure 4: Field emission scanning electron microscopy images of clots 

produced with WT and 3X fibrinogen, in the absence or presence of FXIII. WT 

(upper panels) and 3X (lower panels) fibrinogen at 0.5mg/mL were incubated with 

either TBS (A, C) or 3.7g/mL FXIII (B, D), in the presence of 0.1U/mL thrombin and 

5mM CaCl2. The scale bar represents 2.5m.  
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Figure 5: Magnetic microrheometer measurements of clots produced with WT 

and 3X fibrinogen, in the absence or presence of FXIII. WT and 3X fibrinogen at 

0.5mg/mL were incubated with either TBS or 3.7g/mL FXIII, in the presence of 

0.1U/mL thrombin and 5mM CaCl2. A: Clot stiffness (G) measurements. B: Clot 

viscosity (G) measurements. C: Clot stability (tan) measurements. Error bars 

represent standard error of the mean. * p<0.05, ** p<0.01, *** p<0.005. 


