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Abstract

Cross-selling campaigns seek to offer the right products to the set of customers with the goal of maximizing
expected profit, while, at the same time, respecting the purchasing constraints set by investors. In
this context, a bi-objective version of this NP-Hard problem is approached in this paper, aiming at
maximizing both the promotion campaign total profit and the risk-adjusted return, which is estimated
with the reward-to-variability ratio known as Sharpe ratio. Given the combinatorial nature of the problem
and the large volume of data, heuristic methods are the most common used techniques. A Greedy
Randomized Neighborhood Structure is also designed, including the characteristics of a neighborhood
exploration strategy together with a Greedy Randomized Constructive technique, which is embedded in a
multi-objective local search metaheuristic. The latter combines the power of neighborhood exploration by
using a Pareto Local Search with Variable Neighborhood Search. Sets of non-dominated solutions obtained
by the proposed method are described and analyzed for a number of problem instances.

Keywords: Direct marketing campaign, Sharpe ratio, Cross-selling, Metaheuristics, Multi-objective
optimization, Pareto Local Search

1. Introduction

In this paper, we consider a bi-objective meta-
heuristic for choosing sets of clients in direct-
marketing campaigns. We call this problem
the Targeted Offers Problem in Direct Marketing
(TOPDM) promotional campaigns. Solving the
proposed bi-objective problem involves searching
for the sets of customers that maximize both the

∗Corresponding author.
Email address: vncoelho@gmail.com (Vitor N. Coelho)

promotion campaign profit and the risk-adjusted re-
turn (reward-to-variability index). Candidate solu-
tions should respect campaign operational require-
ments related to the investors’ minimum desired
profit, available budget, viability of the product of-
fers and customer constraints.

Since there is uncertainty concerning whether a
client will positively react to a new offer, a low-
risk cross-selling campaign is sought. In the exam-
ples in this paper, we consider instances in which
customers with high expected profits are the ones
with higher volatility. To handle the reward-to-
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variability concept, a risk-adjusted return measure
based on the Sharpe Ratio [1] is proposed, which
is a useful index for investment analysis usually
adopted by investors facing choices under uncer-
tainties [2].
In the complex scenario of acquiring new cus-

tomers and improving existing relationships, the
field of customer relationship management has been
investigated for distinct applications [3, 4]. As men-
tioned by Cohen [5], the right product should be
offered to the right customer at the right time. The
goal of recognizing and responding to client require-
ments remains a significant challenge. Among sev-
eral techniques, Operational Research (OR) meth-
ods have been shown to be a useful and powerful
tool that is used by many marketing departments
of well-established firms [6, 7, 8].

Bhaskar et al. [9] consider uncertainty in con-
nection with the problem of selecting customers for
a cross-selling campaign in a retail bank. A linear
fuzzy model based on triangular fuzzy rules over the
input parameters (client expected profit and posi-
tive responses rates) was developed. A real case in-
volving up to 180,000 clients was employed. These
customers were aggregated into a small number of
groups according to their expected profits. Cohen
[5] studied the case of a promotional campaign in an
international bank. The term campaign implied one
large pro-active customer contact campaign that
comprised 11 distinct offers. Approximately 2.5
million potential customers were evaluated for that
campaign. From response models, the specific ben-
efit of each offer for each customer was estimated.
In Nobibon et al. [10], a TOPDM was solved us-
ing heuristic algorithms and mathematical formu-
lations; in particular, different mathematical pro-
gramming models were developed. A Branch-and-
Price [11] method was designed and the achieved
upper bounds were used for comparing seven differ-
ent optimization methods. The Branch-and-Price
proved to be unable to obtain good feasible solu-
tions for instances involving a large set of clients.
Among the proposed techniques, a Tabu Search

algorithm [12] exhibited the best performance, us-
ing three different Neighborhood Structures (NS).
Delanote, Leus & Nobibon [13] included bundled
products and the use of multi-channel structures,
which allowed the offers to be made through dif-
ferent offering channels (such as mail, email, tele-
marketing, etc). In Oliveira et al. [14], the dataset
of Nobibon et al. [10] was further explored and a
new greedy randomized initial solution builder com-

bined with General Variable Neighborhood Search
(GVNS) [15] was proposed.
Here, we present a Multi-Objective approach

based on the concepts of maximizing profits and
searching, at the same time, for a sets of customers
with less variability over their expected return (rep-
resented by the Sharpe ratio). The use of different
NS has been already investigated in the literature
and applied for solving several NP-Hard problems
[16, 17, 18]. In particular, Nobibon et al. [10] and
Oliveira et al. [14] already showed the potential
of trajectory search algorithms for the TOPDM.
A new concept of Greedy Randomized Neighbor-
hood Structures (GRNS) is also proposed in this
paper. The idea of GRNS is to perform neigh-
borhood exploration and reconstruct parts of the
neighbor solution by means of a procedure inspired
by the metaheuristic Greedy Randomized Adap-
tive Search Procedure (GRASP) [19]. In order
to deal with multiple conflicting objectives, these
mechanisms are included in a Two-phase Pareto
Local Search with VNS (2PPLS-VNS) [20] to ex-
plore the search space in the quest for high quality
sets of non-dominated solutions. A Generic 2PPLS-
VNS is therefore designed, considering the core of
the 2PPLS-VNS and the possibility of using dif-
ferent Neighborhood Exploration (NE) techniques
[21]. The problem instances proposed by Nobibon
et al. [10] are adapted and used as cases of study.

The main contributions of this current work are:

• use of profit variability measure in connection
to the client response;

• consider the Sharpe ratio index for calculating
risk-adjusted profit in targeted offers;

• introduction of a bi-objective direct marketing
promotional campaign;

• design of a Greedy Randomized Neighborhood
Structure;

• generalization of the 2PPLS in order to obtain
non-dominated solutions with different neigh-
borhood exploration techniques;

The remainder of this paper is organized as fol-
lows. Section 2 describes the TOPDM, as well
as an introduction to the uncertainties concerning
the client responses and the use of the reward-to-
variability concept known as Sharpe ratio. Sec-
tion 3 describes the proposed framework to engage
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the multi-objective TOPDM. Solution representa-
tion and its evaluation are described in Sections 3.1
and 3.2, respectively. The greedy randomized solu-
tion generator is described in Section 3.3. Section
3.4 presents the NS used to guide the search for
non-dominated solutions, as well as the new GRNS
concepts, which are described in Section 3.5. The
combination of three multi-objective metaheuristics
is described in Section 3.6. Section 4 presents the
computational experiments, and, finally, followed
by a summary and conclusions in Section 5.

2. Problem description

The variant of the TOPDM approached here is
composed of a set of clients C = {c1, c2, ..., cm} and
a set of possible product offers O = {o1, o2, ..., on},
quoted for the direct marketing campaign. A cost
cij > 0 and profit pij ≥ 0 is associated to each
customer i ∈ C if offer j ∈ O is directed to him/her.
For each client i ∈ C, there is a maximum number
of offers Mi which would saturate that client. For
each product offer j ∈ O, if the product j is selected
to be used during the campaign, it should be offered
to a minimal number of customers, Omin

j . Each
product has an initial fixed cost fj , if it is used in a
campaign. A maximum available budget Bj is set
by investors of the campaign, which means that the
total cost associated with each product offer j ∈ O

should not be bigger than Bj . It is also required a
minimum rate of returnHR of the whole campaign,
known as the Hurdle Rate.
Nobibon et al. [10] considered a fixed probabil-

ity of a client accepting an offer, which they called
rij . This value was multiplied by the return to the
firm, defined as DFVij , when client i responded
positively to an offer of product j. Thus, the ex-
pected profit pij was estimated as DFVij · rij . In
contrast to their work, the bi-objective problem in-
troduced in this paper considers a extra objective
related to the variability over each client profit pij .

Client uncertainties, regarding their responding
positively to an offer, usually increase when the ex-
pected profits from it are also high [1]. The latter
is a well-known fact that investors are used to face.
In this sense, a variability parameter, defined as vij ,
is associated with each customer i ∈ C when it is
targeted by the offer j ∈ O. The higher the variabil-
ity/volatility vij , the higher is the risk of investing
in that client.
Figure 1 shows a didactic example of a solution

with three clients, m = 3, and two products, n = 2.

It should be emphasized that all clients and prod-
ucts constraints are respected in this considered ex-
ample. It can be seen that product offer o1 is target-
ing the set of clients {c1, c2, c3}, aggregating a total
cost and profit of 7 and 10, respectively. Product
offer o2 is being offered to the set of clients {c1, c3},
consuming an amount of resources equal to 7 and
with a total expected profit of 12. The total ex-
pected return and cost of this whole campaign are
equal to 22 and 19, respectively. It means a total
profit of 15.78% over the total amount of money
invested over the campaign.

The total variability of the campaign is calculated
by the weighted average of each individual volatility
vij multiplied by the amount of profit pij expected
from that client, as can be seen in Eq. (1).

V (s) =

∑

i∈C

∑

j ∈P

vij · pij · sij

∑

i∈C

∑

j ∈P

pij
(1)

Obviously, only active offers are considered in the
calculation, using the binary variable sij for this
selection, as will be described ahead in Section 3.1.

Thus, the total risk V of the example given in
Figure 1 is:

V =
143

22
= 6.5%

The TOPDM can be reduced to a special case
of the 0-1 Multiple Knapsack Problem (MKP). A
brief study of this class of problems can be found
in [22]. In fact, this analogy can be verified if each
possible offer j ∈ O in the campaign is seen as a
knapsack. Thus, in the beginning of the campaign,
the knapsack is empty and should be filled with, at
least, Omin

j offers. The knapsack maximum capac-
ity is the available budget for the campaign of that
product. Each client i ∈ C, seen as a single object
to be inserted in this knapsack, has an expected
profit pij , an analogy to each object benefit value
in the classical Knapsack Problem. The weights of
the items in the knapsack are related to the cus-
tomers in the TOPDM and their respective costs
cij . In this sense, since the MKP belongs to the
NP-Hard class, the TOPDM also does.

In 1966, William Forsyth Sharpe (Economics No-
bel prize in 1990) introduced the concept of reward-
to-variability ratio as a way to measure portfolio
performance. The generic Sharpe Ratio [1], as it
was later called by academics and financial opera-
tors, can be seen as a deviation risk measure, or a
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V1,1 =  4

V1,2 =  10

M1 =  2

profits (pij)

3

7

2

3

5

5

costs (cij)

4

2

4

3

2

1 f1 = 2

O1
min = 3

B1= 7

o1

c1

c2

c3

o2

V2,1 = 3

V2,2 = 2

M2 =  1

V3,1 = 5

V3,2 = 6

M3 =  2

f2 = 3

O2
min = 1

B2= 8

R = 10%

ci = clients

oj = products 

Vij = risk

Figure 1: TOPDM example

risk-adjusted return, measuring the difference be-
tween the expected return of a fund and the bench-
mark investment, divided by the residual standard
deviation, as presented in Eq. (2). It is often cited
as a measure to calculate excess return (or risk pre-
mium).

SR =
E[RI −RIf ]

σR − σRf

(2)

In Eq. (2), E[·] represents the mathematical ex-
pectation operator, RI is the return of an asset and
RIf is the risk-free return. In the case that RIf is
a constant risk-free return throughout the analyzed
period (as in the current case of study, the market-
ing campaign), σRI − σRIf = σR. E[RI − RIf ] is
the expected value of the excess of the asset return
over the benchmark return.

The Sharpe Ratio has been useful when individ-
ual investors face a choice under uncertainty, as it
happens in the case of the expected profit from huge
direct marketing campaigns. It is able to evaluate
not only the profitability, but also the risk faced by
the investors of the cross-selling campaign.

3. Methodology

3.1. Solution representation

A solution handled by the metaheuristic algo-
rithm is represented by a binary matrix R|C|×|O|,
where C indicates the set of available customers and
O represents the possible products to be used in the
campaign. If a given cell si,j , with i ∈ C, j ∈ O,
is equal to “1” (true), the product j will be offered
to the client i; otherwise, the value would be “0”
(false).
Figure 2 shows the solution representation for the

example previously given in Figure 1.

s =









o1 o2
c1 1 1
c2 1 0
c3 1 1









Figure 2: Solution representation example

3.2. Objective functions and evaluation

A solution s is evaluated regarding two conflict-
ing objective functions, that should be maximized:

• fP (s), Eq. (3), which measures the total profit
of the campaign;
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• fSR(s), Eq. (5), which measures the total
reward-to-variability of the whole investment,
inspired from the Sharpe Ratio SR index;

fP (s) is seen as the total return of the marketing
campaign and is calculated following Eq. (3). Basi-
cally, it is the total expected profits pij , given the
set of active clients i targeted by offers j, minus the
total costs TC, described in Eq. 4.
The adaptation of the generic Sharpe Ratio for

the TOPDM can be seen in Eq. (5). As mentioned
in Section 2, the classic indicator has a variable re-
lated to the risk free investment. Here, the Hurdle
Rate HR of the campaign, settled by the investors,
is used instead of the risk-free Rf . Thus, we de-
fine HR = Rf , which is constant during the whole
campaign, since investors will not change their min-
imum total profit. Finally, the original σR is now
seen as the total risk of the campaign, summed into
variable V (s), already described in Eq. (1).

fP (s) =
∑

i∈C

∑

j ∈P

pijsij − TC(s) (3)

TC(s) =
∑

i∈C

∑

j ∈P

cijsij −
∑

j ∈P

fjyj (4)

fSR(s) =

fP (s)
TC(s) −HR

V (s)
(5)

3.3. Building an initial solution

A novel greedy randomized solution generator,
adapted from the greedy randomized procedure
proposed by Oliveira et al. [14], is described in
this section. The procedure is inspired by the pure
greedy procedure of Van Praag [23].
The pseudo-code of this procedure is described

in Algorithm 1. Its main parameters are described
below:

• Set A contains available customers which are
not saturated and can receive more offers;

• set S is the set of products already selected to
the campaign;

• variable tp measures campaign current total
profit;

• variable tc indicates current total cost;

• set LCj is a list of possible clients to be tar-
geted by the product offers j , greedily ordered;

• set LRCj is a restricted list of possible clients
for a product offer j, ordered according to the
greedy randomized parameter γ ∈ [0, 1];

• set CSj is the current set of selected clients of
j;

• variables Cj , Pj and PRj are the current costs,
profits and campaign profit, respectively, of the
list of clients in CSj .

Algorithm 1: BuildGRASPSolution

Input: γ ∈ [0, 1]
Output: initial solution s
tp ← 0, tc ← 0, A ← C and S ← ∅ .1

foreach j ∈ P do2

foreach i ∈ M do3

ANPPij ←
(pijvij−cij)

cij4

end5

end6

forall j /∈ S do7

LCj ← set of clients i ∈ A sorted in decreasing8

order by its ANPPij

CSj ← ∅, Cj ← 0 and Pj ← 09

for |CSj | ≤ Oj do10

LRCj ← ∅11

for c = 0 ≤ γ · |LCj | do12

LRCj ← LRCj ∪ {LCj(c)}13

end14

Select a client i ∈ LRCj at random15

CSj ← CSj ∪ {i}16

LCj ← LCj \ {i}17

end18

Cj ← sum of all the costs cij from clients i ∈ CSj19

Pj ← sum of all benefits pij from clients i ∈ CSj20

PRj ← Pj − Cj − fj21

end22

Select j∗ with the highest PRj∗ > 0 such that23

[Cj∗ ≤ Bj∗ ] & [ (tp+ Pj∗ ) ≥ (1 +HR)(tc+Cj∗ + fj∗ )]
if ∃j∗ then24

S ← S ∪ {j∗}25

tp ← tp+ Pj∗ and tc ← tc+ Cj∗ + fj∗26

Update targeted offers of product j∗ in solution s27

Update A by removing all saturated clients28

Back to line 729

end30

foreach active client i ∈ A do31

foreach j ∈ S do32

if pij > cij and the offer j directed to the33

client i generates a feasible solution then

sij ← 134

end35

end36

end37

return s38

Line 1 of Algorithm 1 initializes auxiliary vari-
ables and sets. Variables tp and tc are used in line
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23 for verifying if the minimum hurdle rate HR is
satisfied. From lines 2 to 6, a metric called ANPP
measures clients profitability and variability, which
is an adaptation of the one presented in Nobibon et
al. [10]. It measures the amount of reward related
to the costs, that is being invested, multiplied by
the risk of that client.
Between lines 7 and 22, the “best” set of clients

with respect to the greedy parameters γ is defined.
In line 8 the clients are sorted in decreasing order
of their ANPP values. That means that clients
with higher profits are the most desired ones, but,
a balance with its volatility is also done. From lines
10 to 18 the minimum number of clients Oj for the
product offer j is selected. The restricted number
of candidates γ · |LCj | is added to the set LRCj .

The best product j∗ with the highest PRj values,
satisfying all operational constraints, is selected in
the line 23. Clients targeted to receive offer j∗ are
inserted in solution s and the algorithm returns to
line 7. If there are no more available offers nor the
minimum number of available clients, the procedure
goes to its final steps from lines 31 to 37, when the
solution s is refined and improved. At this step, all
available clients are sought to receive more offers,
if it generates feasible solutions and improves the
campaign total profit.

3.4. Neighborhood structures

To explore the search space of the TOPDM, NS
were adapted from Nobibon et al. [10] and Oliveira
et al. [14]. In their works, three different NS were
used, which are briefly described below. It should
be noted that the initial solution generator (Section
3.3) and these two NS are both designed to keep
feasibility and walk through a feasible search space.

Swap Clients Intra – NSSCIntra

(s): This
movement consists in swapping two positions,
l,m ∈ C of a given product j ∈ O, such that
sl,j = sm,j and sm,j = sl,j .

Swap Clients Inter – NSSCInter

(s): Similar to
the movement NTC−Intra(s), but in this case,
two positions from different products i, j ∈ O

are swapped, e.g., sl,i = sm,j and sm,j = sl,i.

NSSCIntra

(s) or NSSCInter

(s) represent NS in-
volving small changes in the solution, which is de-
sirable for local search. However, the small steps
performed in these NS might lead to slow conver-
gence in large problems. For example, the largest

problem dealt by Nobibon et al. [10], composed of
10,000 clients and 15 products, would give a search
space with almost 50 millions different moves for

NSSCIntra

(s).
In the next section, a novel Greedy Randomized

NS is described, as well as an example of its use.

3.5. Greedy Randomized NS

The concept of a Greedy Randomized NS
(GRNS) derives from the same principle of GRASP
[19], where a semi-greedy constructive method
builds a solution step by step, inserting elements
from a list of candidates (line 8 of Algorithm 1),
according to a sorting criterion. This criterion is
generally related to the best parts of the solution
that are able to minimize the desired greedy func-
tion. An example was already presented in line 4 of
Algorithm 1, where ANPP criterion balances profit
and volatility, both related to the objective func-
tions described in Section 3.2.
An example of a GRNS is the neighborhood

GRNSSP (s), described in algorithm 2, adapted
from NSSP (s) [10].

Swap Products – NSSP (s): exchanges two bits
from two different columns i, j ∈ O of a given
solution s, such that yi = 1 and yj = 0. Thus,
a product offer which is not being used in the
campaign (yj = 0) can be now part of the ac-
tive set of products to be used during the cam-
paign. A new product is added if, and only
if, there are, at least, Oj available clients for
receiving offers (after removing offers from yi).

The main difference between the strategy intro-
duced here is that a random product from the ac-
tive set of products is removed (line 2 of Algorithm
2) and a new random one is selected from the set
of the products offers which are not being used in
the campaign, as can be seen in line 3. As already
mentioned, a new product is only inserted in the
campaign if there is a minimum Oj available clients
in the set V and if operational constraints are still
satisfied.

3.6. Multi-objective local search algorithm

Some recent works in the literature have been
trying to standardize and disseminate the use
of Dominance-based Multi-objective Local Search
(DMLS) methods [21]. The core of the generic
algorithm used in this paper combines the flexi-
bility provided by the metaheuristics GRASP [19]

6



Algorithm 2: GRNSSP (s) move generation

Input: solution s, γGRNS ∈ [0, 1], set of available
clients A, set of active products S

Output: move m(s)
jremove ← product offer from the set of active offers S1

chosen at random
Update A and S by removing all targeted offers from2

jremove

j ← pick product offer at random from the set of3

inactive offers {O − S}
foreach i ∈ A do4

ANPPij ←
(pijvij−cij)

cij5

end6

Call the same procedure from Lines 8 to 18 of7

Algorithm 1, considering greedy parameter γGRNS

Update targeted offers of product j in solution s8

Update A by removing all saturated clients9

foreach active client i ∈ A do10

if pij > cij and the offer j directed to the client i11

generates a feasible solution then

sij ← 112

end13

end14

return s15

and Two-phase Pareto Local Search with VNS
(2PPLS-VNS) [20]. Pareto Local Search [24, 25,
26] is a straightforward extension of the classical
Hill-Climbing method. Nevertheless, we design a
even more generic method, able to perform local
searches considering different neighborhood explo-
ration techniques. For those interested in this topic,
different mechanisms for DMLS were pointed out
by Liefooghe et al. [21] and the variants based on
multi-objective variable neighborhood search meth-
ods were discussed by Duarte et al. [27]. The ab-
breviation G2PPLS-VNS is defined for our Generic
2PPLS-VNS, with its pseudo-code outlined in Al-
gorithm 3.

In line 1 of Algorithm 3, an initial set of non-
dominated solutions is generated by the proce-
dure Pareto Front Builder (pfBuilder), described
in Algorithm 4. Procedure pfBuilder generates
graspMax solutions and calls addSolution (Algo-
rithm 5, extracted from [28]) procedure for filtering
those that are non-dominated.

Algorithm 3 performs a Pareto Local Search ac-
cording to the 2PPLS-VNS designed by Lust &
Teghem [20]. This algorithm handles an auxiliary
set Pa that contains the solution added in each it-
eration.

Line 7 explores the neighbors of each solution p

from population P using any Neighborhood Explo-

Algorithm 3: Generic 2PPLS with VNS

Input: Neighborhoods Nk(x), graspMaxSol

and γmaxRange

Output: Approximation of the efficient set Xe

P0 ← pfBuilder(graspMax,γmaxRange)1

Xe and P ← P02

Pa ← ∅3

k ← 14

while k ≤ r do5

forall p ∈ P do6

NE(Xe, p,Added,Nk(x), ...)7

if Added = true then8

update Pa with the new individuals9

added to Xe;
end10

end11

if Pa �= ∅ then12

k ← 113

P ← Pa and Pa ← ∅14

else15

k ← k + 116

P ← Xe \ {x ∈ Xe | Pareto local17

optimum for Nk(x)} ;
end18

end19

retorna Xe20

Algorithm 4: pfBuilder

Input: graspMaxSol and γmaxRange

Output: Approximation of the efficient set Xe

for i ← 1 To graspMaxSol do1

γ ← random value in[0, γmaxRange]2

s ← BuildGRASPSolution(γ)3

Xe′ ← addSolution(Xe, s, f(p))
end4

return Xe5
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Algorithm 5: addSolution

Input: Non-dominated population Xe;
Solution s and its corresponding
evaluations z(s)

Output: Xe and Added (optional)

Added ← true1

forall x ∈ Xe do2

if z(x) � z(s) then3

Added ← false4

Break5

end6

if z(s) ≺ z(x) then7

Xe ← Xe \ x8

end9

end10

if Added = true then11

Xe ← Xe ∪ s12

end13

return Xe14

ration (NE) technique. In our designed strategy,
the procedure NE, an abbreviation for any Neigh-
borhood Exploration techniques, should update the
set of non-dominated solutions Xe. An example of
an Exhaustive Neighborhood Exploration (ENE) is
given in Algorithm 6, which would result in the clas-
sical PLS algorithm. ENE procedure generates all
possible neighbors from lines 1 to 3. However, a
partial neighborhood exploration can be done with
random moves, as exemplified in Algorithm 7.

If, at least one new non-dominated solution was
found during the NE procedure (line 12 of Algo-
rithm 3), the local search starts again from the first
NS (line 13) and will search over the new obtained
ones. Otherwise, if no new solution was found, line
16 makes the algorithm jump to the next available
NS. A speed up is made in line 17, in a such way
that the method will not repeat the neighborhood
search over visited neighbors.

4. Computational experiments

This section is divided into six subsections. Sec-
tion 4.1 presents the computational resources, some
considerations about the code and algorithm pa-
rameters. Section 4.2 introduces the cases of study
used in this paper. Section 4.3 checks the ability of
the constructive in generating diversified solutions
for composing initial sets of non-dominated solu-
tions. Section 4.4 analyses the GRNS proposed in

Algorithm 6: Exhaustive Neighborhood Ex-
ploration (ENE)

Input: Initial approximation of the efficient
set Xe, solution p and Neighborhood
N(p)

Output: Xe and Added (optional)

forall p′ ∈ N(p) do1

addSolution(Xe, p′, f(p′), Added)2

end3

retorna Xe4

Algorithm 7: Random Neighborhood Explo-
ration (RNE)

Input: Initial approximation of the efficient
set Xe, solution p, Neighborhood N(p)
and number of random moves mMax

Output: Xe and Added (optional)

for m = 1 to mMax do1

p′ ← random move of N(p)2

addSolution(Xe, p′, f(p′), Added)3

end4

retorna Xe5

this paper. Section 4.5 reports the results consider-
ing all features of the proposed algorithm. Finally,
Section 4.6 describes two Pareto fronts obtained us-
ing the proposed methodology.

4.1. Basic configurations

The metaheuristic algorithm was implemented in
C++ in the framework OptFrame 2.2 1 [29]. This
framework has been successfully applied to other
problems in the literature, as can be seen in [30,
31, 18].
The tests were carried out on an OPTIPLEX

9010 Intel Core i7-3770, 3.40 x 8 GHZ with 32GB
of RAM, with operating system Ubuntu 14.04 pre-
cise, and compiled by g++ 4.8.4, using the Eclipse
Kepler Release.

4.2. Datasets

The set of instances was taken from Nobibon et
al. [10]. The test problems comprised cases with
300, 2, 000 and 10, 000 clients, respectively small,
medium and large size cases. For each different set

1Available at http://sourceforge.net/projects/optframe/
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of clients, three instances with different number of
possible offers were used: 5, 10 and 15 available
products for the promotional campaign.
The expected return pij for each offer j ∈ O di-

rected to customer i ∈ C is an integer between 0
and 16. Clients were grouped according to their
expected profit. Volatility values vij were gener-
ated for each group, as described in Eq. (6). A
maximum volatility of 0.6 can be returned by this
formula.

vij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪



0.01, if pij < 3
0.05, if 3 ≤ pij < 5
0.1, if 5 ≤ pij < 8
0.25, if 8 ≤ pij < 11
0.4, if 11 ≤ pij < 14
0.6, if pij ≥ 14

(6)

4.3. Checking GRASP ability of obtaining non-

dominated solutions – pfBuilder procedure

The first batch of experiments sought to analyze
the ability of the constructive procedure in finding
good initial sets of non-dominated solutions, i.e.,
initial estimates of the Pareto front. Different
sizes of the initial population and GRASP greedy
parameters were verified: graspMaxSol =
[1, 10, 100, 500, 1000, 3000, 5000, 10000]
and γmaxRange =
[0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].
The batch was composed of 11673 executions,
considering all possible configurations of both
parameters.
Furthermore, the new ANPP strategy, which in-

cludes the variability vij in the original NPP calcu-
lus was also analyzed. In this sense, both sorting
strategies ANPP andNPP were considered for the
constructive procedure.
Obtained sets of non-dominated solutions were

evaluated according to:

1. Hypervolume (HV) [32] quality indicator (us-
ing the computational tool provided by Beume
et al. [33]);

2. Number of non-dominated solutions.

Figure 3 shows one interaction plot between ana-
lyzed parameters and these Quality Indicators (QI).
Values were normalized for the HV by subtracting
the minimum values and dividing the result by the
range of each indicator,

QI −min(QI)

max(QI)−min(QI)

Dashed lines show the standard deviation while
the continuous lines indicate average values. The
higher the γmaxRange, the more non-dominated so-
lutions could be found, since solutions can be gen-
erated with more randomness. We decide to set
this parameter to γmaxRange = 0.8, providing an
interesting balance between the HV, number of non-
dominated solutions and standard deviation.
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Figure 3: Interaction plots of number of initial solutions,
γmaxRange parameters and sorting strategy

4.4. Checking PLS with the GRNS

This second batch intended to check if the
proposed GRNS was able to improve the quality of
the initial estimates of the Pareto Front. Thus, we
verify its effectiveness regarding different greedy
parameters γGRNS = {0.05, 0.1, 0.2, 0.5, 0.7, 0.9, 1},
iterMaxGRNS = {1, 5, 10, 50, 100} and
graspMaxSol = [1, 10, 100, 500] In the same
way as proceeded in the last batch of exper-
iments, 5, 000 random runs, with a restricted
computational time of 5 minutes, were performed
considering all combinations of these values.
This randomized greedy NS can be exhaustively

searched following the procedure defined in Algo-
rithm 6. The number of neighbors is the amount of
possible swaps between products (105 for the case
involving 15 products, 15∗14

2 ). However, due to the
greedy parameter γGRNS , different clients can be
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targeted each time a move is generated. Figure
4 illustrates the obtained results considering both
aforementioned QI plus a diversity indicator, cal-
culated with the ∆ metric [34];
As expected, whenever an ENE is performed

(iterMaxGRNS), the quality of the estimate set of
non-dominated solutions is improved. Thus, pa-
rameter γGRNS was fixed to 0.1 for the following
analysis.

4.5. Checking complete Generic 2PPLS with VNS

This third and last batch of experiments aimed
at analyzing the performance of the proposed
G2PPLS-VNS. For this purpose, two different con-
figurations were analyzed:

1. searching from the largest to the small-

est neighborhoods, l2s (NSSCInter

(s),

NSSCIntra

(s) and GRNSSP (s), respectively);

2. exploring from the smallest to the
largest neighborhoods, s2l, (GRNSSP (s),

NSSCIntra

(s) and NSSCInter

(s), respec-
tively).

In total, 2, 500 runs were performed, checking al-
gorithm performance for a starting of
As pointed out in Section 3.4, it would be a huge

computational effort to run ENE for the neigh-

borhood NSSCInter

(s) and NSSCIntra

(s). In this
sense, two RNE (Algorithm 7) were created for
each of these NS with mMax = 1000. The first
two graphics of Figure 5 show the HV of the final
estimate of the Pareto Front (after G2PPLS-VNS
refinement) and of its respective initial set of non-
dominated solutions, while the third one shows the
HV improvement.

4.6. Obtained sets of non-dominated solutions

Two different test problems were used for illus-
trating the Pareto Fronts that can be obtained us-
ing the proposed methodology. A single run of 10
minutes was performed for each case and the ob-
tained sets of non-dominated solutions (or parts of
it) are illustrate in Figure 6 and Table 1.
Table 1 shows characteristics of some of the non-

dominated solutions obtained in each case. As can
be noticed, those different solutions illustrate sev-
eral possible scenarios for conducting the promo-
tional campaign. Each of these possible sets of tar-
geted offers indicate a specific expected profit and
Sharpe Ratio associated to it.
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Figure 6: Set of non-dominated solutions for instance “S3-
10-15-1-s”

Finally, Figure 7 computes the maximum ex-
pected profit of each execution from the batch of
experiments of this section. In order to compare
the performance of the proposed algorithm in terms
of minimizing a single objective, the GAP metric

(gapni =
f∗

i −fn
i

f∗

i

) was used, with f∗
i being the best

known result for a given test-problem and fn
i the

value obtained by each algorithm. Average gaps
of the G2PPLS-VNS algorithm are compared with
the single values reported from a Tabu Search algo-
rithm (H8) [10].
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Figure 7: Univariate objective function comparison

5. Conclusions and extensions

5.1. Summary and final considerations

In this paper, a bi-objective direct-marketing
promotional campaign was discussed by simultane-
ously optimizing campaign profits and a reward-
to-variability index, adapted from the Sharpe Ra-
tio. A multi-objective DMLS metaheuristic was
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Table 1: Targeted offers according to clients risk – Different non-dominated solutions characteristics

Expected Sharpe Client risk – vij
profit Ratio 0.01 0.05 0.1 0.25 0.4 0.6

Small instance with 100 clients and 15 products

4599 3.69364 0 2 23 96 192 253
4311 4.11411 0 0 24 99 189 211
4177 4.24447 1 1 40 109 176 196
3990 4.3399 1 9 54 111 172 176
3883 4.37944 1 8 62 121 171 160
3846 4.38868 0 12 66 118 169 158
Large instance “L-10-15-1-l” with 10000 clients and 15 products

240218 1.63729 4758 7631 14250 14851 15075 15045
239108 1.92499 4617 7018 12989 13586 13816 13811
238344 1.9392 5250 6993 12929 13613 13791 13736
217520 2.03421 5020 6206 11503 12176 12330 12231
217774 2.01374 4464 6210 11552 12145 12347 12294
192945 2.09869 3422 5161 9804 10431 10725 10661
192934 2.12584 3936 5161 9759 10465 10713 10601

proposed for searching for sets of non-dominated
solutions.
Due the large number of neighborhoods that can

be searched, a generic Pareto Local Search was in-
troduced. In order to produce a diversified initial
estimate of the Pareto Front, a greedy random-
ized initial solution builder was proposed for deal-
ing with the concept of volatility. Furthermore, a
special case involving a Greedy Randomized Neigh-
borhood Structure, which reconstructs parts of the
solution, was described and evaluated.
By adapting test problems from the literature,

different characteristics from the obtained Pareto
Fronts were described and analyzed. Sharpe ratio
index was able to regulate the search for low-risk
direct marketing campaigns, providing a trade-off
between campaign total profit and the groups of
clients which the offers are directed to.

5.2. Extensions

As future extensions for this research, the current
approach should be applied in other types of direct
marketing campaigns.
The development of new neighborhood struc-

tures might improve the ability of the Pareto Local
Search in finding non-dominated solutions from the
space of solutions. A parallel version of the method
could improve the performance of the model over
problems with large amount of data. This approach
would take advantage of the multi-core technology
that is already integrated in the current machines,

and with easy abstraction for this metaheuristic al-
gorithm.
The entire code used in this research is, from

this moment, available as example on the OptFrame
website. Thus, it is expected that future researchers
continue contributing to enhancing the proposed
model, increasing its efficiency and improving the
tools and ideas presented in this paper.
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