UNIVERSITY of York

This is a repository copy of Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/111472/</u>

Version: Accepted Version

Article:

Versteegh, Emma, Black, Stuart and Hodson, Mark Edward orcid.org/0000-0002-8166-1526 (2017) Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate. Applied Geochemistry. pp. 1-31. ISSN 0883-2927

https://doi.org/10.1016/j.apgeochem.2017.01.017

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Accepted Manuscript

Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

E.A.A. Versteegh, S. Black, M.E. Hodson

PII: S0883-2927(16)30474-7

DOI: 10.1016/j.apgeochem.2017.01.017

Reference: AG 3809

To appear in: Applied Geochemistry

Received Date: 10 November 2016

Revised Date: 17 January 2017

Accepted Date: 18 January 2017

Please cite this article as: Versteegh, E.A.A., Black, S., Hodson, M.E., Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate, *Applied Geochemistry* (2017), doi: 10.1016/j.apgeochem.2017.01.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Carbon isotope fractionation between amorphous calcium
- 2 carbonate and calcite in earthworm-produced calcium carbonate
- 3 E. A. A. VERSTEEGH^{1*}, S. BLACK², M. E. HODSON^{1,3,**}
- 4
- 5 ¹ University of Reading, Soil Research Centre, Department of Geography
- 6 and Environmental Science, School of Archaeology, Geography and
- 7 Environmental Science, Whiteknights P.O. Box 233, Reading RG6 6DW, UK
- 8 ² University of Reading, Department of Archaeology, School of
- 9 Archaeology, Geography and Environmental Science, Whiteknights, P.O.
- 10 Box 227, Reading RG6 6AB, UK
- ³ University of York, Environment Department, Heslington, York Y010
- 12 *5DD, UK*
- 13
- 14 * E-mail: <u>e.a.a.versteegh@gmail.com</u>
- 15 ** E-mail: <u>mark.hodson@york.ac.uk</u>
- 16

17 Abstract

- 18 In this study we investigate carbon isotope fractionation during the
- 19 crystallization of biogenic calcium carbonate. Several species of
- 20 earthworm including *Lumbricus terrestris* secrete CaCO₃. Initially a
- 21 milky fluid comprising micro-spherules of amorphous CaCO₃ (ACC) is
- 22 secreted into pouches of the earthworm calciferous gland. The micro-

23	spherules coalesce and crystalize to form millimetre scale granules,
24	largely comprising calcite. These are secreted into the earthworm
25	intestine and from there into the soil. <i>L. terrestris</i> were cultured for 28
26	days in two different soils, moistened with three different mineral
27	waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands,
28	granules in the pouches of the calciferous glands and granules excreted
29	into the soil were collected and analysed by FTIR spectroscopy to
30	determine the form of CaCO_3 present and by IRMS to determine $\delta^{13}\text{C}$
31	values. The milky fluid was ACC. Granules removed from the pouches
32	and soil were largely calcite; the granules removed from the pouches
33	contained more residual ACC than those recovered from the soil. The
34	δ^{13} C values of milky fluid and pouch granules became significantly more
35	negative with increasing temperature (p \leq 0.001). For samples from
36	each temperature treatment, δ^{13} C values became significantly (p \leq
37	0.001) more negative from the milky fluid to the pouch granules to the
38	soil granules (-13.77, -14.69 and -15.00 respectively at 10 °C; -14.37, -
39	15.07 and -15.18 respectively at 16 °C and -14.89, -15.41 and -15.65
40	respectively at 20 °C). Fractionation of C isotopes occurred as the ACC
41	recrystallized to form calcite with the fractionation factor $\epsilon_{calcite\text{-}ACC}$ = -
42	$1.20 \pm 0.52 \%_0$. This is consistent with the crystallization involving
43	dissolution and reprecipitation rather than a solid state rearrangement.
44	Although C isotopic fractionation has previously been described

- 45 between different species of dissolved inorganic carbon and various
- 46 CaCO₃ polymorphs, this is the first documented evidence for C isotope
- 47 fractionation between ACC and the calcite it recrystallizes to. This
- 48 phenomenon may prove important for the interpretation of CaCO₃-
- 49 based C isotope environmental proxies.
- 50
- 51 **Keywords**: Earthworms; calcium carbonate; calcite; carbon isotopes;
- 52 fractionation; crystallization
- 53

54 Introduction

- 55 Many earthworm species produce calcium carbonate (CaCO₃) granules
- 56 in specialised calciferous glands. In the earthworm *Lumbricus terrestris*
- 57 these occur in segments 11-12 as two pairs of swellings off the
- 58 oesophagus, and one pair of pouches anterior to the glands in segment
- 59 10 (Darwin, 1881; Canti and Piearce, 2003).
- 60 CaCO₃ production starts by secretion of an amorphous calcium
- 61 carbonate (ACC) suspension that we refer to as milky fluid. In the
- 62 pouches, small spherulites $(1-5 \mu m)$ in the milky fluid accrete into
- 63 larger granules (≤ 2.5 mm). These are released into the oesophagus and
- 64 excreted into the soil (Briones *et al.*, 2008; Gago-Duport *et al.*, 2008).
- 65 The granules retrieved from the pouches and the soil are
- 66 predominantly calcite, but can contain small amounts of ACC, vaterite

67	and aragonite (Gago-Duport <i>et al.</i> , 2008; Lee <i>et al.</i> , 2008; Fraser <i>et al.</i> ,
68	2011; Brinza <i>et al.</i> , 2013; Brinza <i>et al.</i> , 2014a; Brinza <i>et al.</i> , 2014b;
69	Hodson et al., 2015). The function of $CaCO_3$ production by the
70	earthworms remains unclear but is likely related to regulation of pH
71	and CO_2 concentrations in body fluids (Voigt, 1933; Aoki, 1934;
72	Kaestner, 1967; Kühle, 1980; Versteegh <i>et al.</i> , 2014).
73	It is known that considerable δ^{13} C fractionation factors exist between
74	the different species of DIC and the various polymorphs of $CaCO_3$
75	(Fouke et al., 2000; Romanek <i>et al.</i> , 1992; Szaran, 1997; Zhang <i>et al.</i> ,
76	1995). In addition to thermodynamics, kinetics of precipitation plays an
77	important role in fractionation (Watson, 2004; DePaolo, 2011; Nielsen
78	et al., 2012). Variable fractionation of carbon isotopes has been
79	observed in different calcium carbonate biominerals suggesting that
80	vital effects may also be relevant (e.g. Adkins et al., 2003; Auclair et al.,
81	2003; Bernis et al. 2000; Lécuyer et al. 2012; McConnaughey, 1989;
82	Rollion-Bard et al, 2016; Spooner et al, 2016). Despite many calcium
83	carbonate minerals having an amorphous pre-cursor (Radha et al.,
84	2010; Rodriguez-Blanco et al., 2011; Stephens et al., 2011) and stable
85	ACC being increasingly observed in biominerals (Aizenberg et al., 2003;
86	Jacob <i>et al.</i> , 2008; Wehrmeister <i>et al.</i> , 2011), carbon isotope
87	fractionation between ACC and calcite has not been previously reported
88	in the literature

89	Here we present results of stable carbon isotope analyses on milky
90	fluid collected from the calciferous pouches of earthworms, fresh
91	granules also collected from the pouches, and older granules collected
92	from the soil in which the earthworms were cultivated and address the
93	question: how does granule mineralogy influence δ^{13} C values?
94	Furthermore we make a first attempt at estimating the carbon isotopic
95	fractionation factor between calcite and ACC, produced by earthworms.
96	
97	Materials & Methods
98	Experimental setup
99	Two soils were collected from agricultural fields in Berkshire, UK:
100	Hamble (SU 61968 70235) and Red Hill (SU 56060 80033); both
101	Typical Argillic Brown Earths (Avery, 1980; full soil characterisation in
102	Table 1, Versteegh et al., 2014). The soil was air-dried and sieved to 250
103	μm prior to use (Lambkin <i>et al.,</i> 2011). This ensures that no large
104	granules are present in the soil at the beginning of the experiment and
105	facilitates granule recovery at the end. Post-sieving soil pH and organic
106	matter content were 7.5 \pm 0.3 and 3.8 \pm 0.1 % for Hamble and 7.1 \pm 0.1
107	and 7.4 \pm 0.1 % for Red Hill. For each replicate, 300 g of soil were mixed
108	with one of three types of mineral water (initial δ^{18} O values -10.0, -7.3
109	and -5.3 (\pm 0.2) $\%$ VSMOW) to 65 $\%$ water holding capacity (BS ISO,
110	1998). The moistened soil was put in a zip-lock bag with 5 g air-dried

111	horse manure rehydrated with 10 ml demineralised water. One adult,
112	clitellate <i>L. terrestris</i> was added to each bag. Bags were closed and kept
113	at either 10, 16 or 20 °C. There were six replicates per treatment.
114	Earthworms were acclimatised for three weeks, and then transferred to
115	an identical treatment bag containing the same type and mass of soil
116	and manure at the same temperature. Experimental details are given in
117	Versteegh et al. (2013). After 28 days earthworms were removed from
118	the bags, killed by dipping them in near-boiling water, and the
119	calciferous glands were dissected out. Any $CaCO_3$ concretions present in
120	the pouches were also retrieved, rinsed in deionised water and air-
121	dried. Calciferous glands were put on a glass slide; MF was allowed to
122	leak from the glands, was left to air-dry overnight, and collected by
123	scraping it off the slide. The soil was wet-sieved to 500 μm to retrieve
124	granules which were air-dried.
125	
126	Stable-isotope analyses
127	Milky fluid and individual granule $CaCO_3$ samples were analysed for
128	δ^{13} C values using a Thermo Delta V Advantage IRMS with a GasBench II.
129	The Gasbench II sample preparation device uses 100% ortho-

130 phosphoric acid to transform CaCO₃ into CO₂ and hence only analyses

- 131 the mineral fraction of the samples (Paul and Skrzypek, 2007). The raw
- 132 δ^{13} C values were converted to the VPDB scale after normalising against

133	NBS 18 and NBS 19 carbonate standards. The long-term standard
134	deviation of a routinely analysed in-house $CaCO_3$ standard was < 0.05
135	‰. Statistical analysis of the ¹³ C data was carried out using SigmaPlot
136	12 for Windows 7.
137	
138	Fourier transform infrared spectroscopy (FTIR)
139	Three samples each of milky fluid, granules from pouches and granules
140	from soil were analysed by FTIR in the range $650 - 4000 \text{ cm}^{-1}$ using a
141	diamond internal reflection cell on a A2-Technology MicroLab Portable
142	mid-IR spectrometer of the Cohen Laboratories, University of Leeds.
143	Spectra were acquired by co-adding 512 scans with a 4 cm ⁻¹ resolution.
144	Crystalline carbonate phases have distinct bands at $\sim714~cm^{\text{-1}}$ (v4), \sim
145	866 cm ⁻¹ (v ₂), ~ 1084 cm ⁻¹ (v ₁) and 1420-1470 cm ⁻¹ (v ₃) whilst ACC
146	lacks the distinct vibrational band at \sim 714 cm ⁻¹ (Chester and
147	Elderfield, 1967; Aizenberg <i>et al.</i> , 1996; Gago-Duport <i>et al.</i> , 2008;
148	Rodriguez-Blanco <i>et al.</i> , 2011). Areas for the v_4 and v_3 peaks covering
149	the wavenumber ranges between 651 – 725 cm $^{-1}$ and 1602-1243 cm $^{-1}$
150	respectively were determined using the Nicolet EZ OMNIC 5.1 Software.
151	Reference spectra for synthetic calcite and ACC were provided by Dr.
152	Juan-Diego Rodriguez-Blanco, University of Copenhagen, Department of
153	Chemistry.

Results

$\delta^{13}C$ values of CaCO₃

157	For each individual earthworm, 10 granules were analysed from the soil
158	and one from each of the pouches (if available). For milky fluid, only one
159	analysis per earthworm could be undertaken, but sometimes this failed
160	because too little material was available. All analyses are reported in
161	the Supplementary material. Three-way Analysis of Variance (ANOVA)
162	with temperature, soil type and water type as factors indicated that
163	there were no significant differences in δ^{13} C values of granules
164	extracted from the soil between different treatments. In contrast, 3-way
165	ANOVA followed by pair-wise multiple comparison (Holm-Sidak
166	method) indicated that there were significant differences in $\delta^{13}\text{C}$ values
167	between different temperature treatments for the granules extracted
168	from the pouches and also for the milky fluid (p \leq 0.01); values became
169	increasingly negative from the 10 to 16 to 20 °C treatments. There were
170	no significant differences in $\delta^{13} C$ values for either the milky fluid or
171	granules from pouches between different soils or different mineral
172	water treatments. Consequently, the data for different soil-water
173	combinations but the same temperature were combined for analysis.
174	Kruskall-Wallis One-way Analysis of Variance (ANOVA) on ranks
175	followed by pair-wise comparison (Dunn's method) indicated that at
176	each temperature there were significant differences between the δ^{13} C

- 177 values of the milky fluid, granules from pouches and granules from soil
- 178 with values becoming increasingly negative in that order (Fig. 1).
- 179 Ranges of δ^{13} C values were relatively narrow for milky fluid and
- 180 granules from pouches but wider for granules retrieved from the soil.

Chillip Mark

Granules

from

Soil (327)

Fig. 1. Box plots showing the decrease in δ^{13} C values for L. terrestris-produced milky fluid extracted from the granule-producing pouches, granules extracted from the pouches and CaCO₃ granules extracted from the soil for the a) 10 °C, b) 16 °C and c) 20 °C treatments. Values in brackets indicate sample numbers. Within each grey box the solid line represents the median value and the dashed line the mean. The top and bottom of the box define the 25th and 75th percentiles and the error bars the 5th and 95th percentiles. Data points which plot outside the 5th and 95th percentiles are

- 183 FTIR data
- 184 FTIR analyses revealed that in the milky fluid the v_4 peak at 714 cm⁻¹
- 185 was absent (Fig. 2). In contrast, the granules recovered from the pouch
- and from the soil both had a distinct peak at 714 cm⁻¹. The ratio of the
- 187 peak areas for the v_3 and v_4 vibrations was significantly greater (t-test,
- 188 $p \le 0.05$) for the pouch granules (31.9 ± 2.2, mean ± standard deviation,
- 189 n = 3) than for the soil granules (21.3 ± 0.6) .
- 190

FIG. 2. Typical FTIR spectra for milky fluid, a granule recovered from 192 one of the pouches (pouch granule), and a granule recovered from the 193 soil (soil granule); all spectra relate to samples from the same 194 195 earthworm. Reference spectra for synthetic calcite and ACC are also shown. Spectra are vertically offset on the absorbance axis for clarity. 196 197 The major calcium carbonate peaks (v_1 to v_4) are labelled. Calcite shows peaks at ~714 cm⁻¹ (v_4), ~866 cm⁻¹ (v_2), ~1090 cm⁻¹ (v_1) and 198 1420-1470 cm⁻¹ (v_3); amorphous calcium carbonate lacks the ~714 cm⁻ 199 ¹ peak. 200 201

202 Discussion

- 203 $\delta^{13}C$ values and polymorphs of CaCO₃
- 204 Ranges of δ^{13} C values are narrow for the milky fluid and granules from
- 205 pouches, while δ^{13} C values for granules retrieved from the soil show a

206	wide range and are not normally distributed (Fig. 1). Therefore, for
207	each experimental replicate, the median $\delta^{13}C$ value for each set of 10
208	granules recovered from the soil per earthworm was used for
209	comparison with the $\delta^{13}C$ values of the milky fluid and pouch granules
210	recovered from the same earthworm that produced the soil granules.
211	Regression analyses for the entire dataset (combining the different
212	temperature treatments) revealed strong relationships between milky
213	fluid $\delta^{13}C$ values and $\delta^{13}C$ values of the granules retrieved from the
214	same earthworm's pouches (Fig. 3a), as well as between δ^{13} C values of
215	granules retrieved from the pouches and those secreted into the soil by
216	the same earthworm (Fig. 3b). Relationships were less strong when
217	individual temperature treatments were considered. Going from milky
218	fluid, to granules in the pouches, to granules in the soil, δ^{13} C values
219	show a gradual shift to lower values (Fig. 1, Fig. 3a-b).
220	

FIG. 3. (a) δ^{13} C values of individual granules retrieved from the pouches 223 versus δ^{13} C values of milky fluid recovered from the same pouch, note 224 the depletion in ¹³C in the former and the shift to lower values with 225 increasing temperature; (b) Median δ^{13} C composition of granules 226 recovered from the soil versus δ^{13} C values of the individual granules 227 retrieved from the pouches of the earthworm cultivated in that soil; 228 229 note increased scatter and lower R². Data from all experiments is 230 plotted. 231

232	Previous studies show that the $CaCO_3$ in milky fluid mostly
233	comprises ACC (Briones et al., 2008), while the granules mostly
234	comprise calcite but with trace amounts of vaterite (Gago-Duport et al.,
235	2008; Lee et al., 2008; Hodson et al., 2015). Our data are consistent with
236	this. Our FTIR analyses (Fig. 2) indicate that the milky fluid was
237	dominated by ACC (the v_4 peak at 714 cm ⁻¹ was absent and the
238	spectrum resembled that of the reference synthetic ACC). In contrast,
239	the granules recovered from the pouch and from the soil both had a
240	distinct peak at 714 cm ⁻¹ , typical of crystalline forms of CaCO $_3$ and a
241	spectrum almost identical to reference calcite, though we note that the
242	FTIR spectrum of vaterite is almost identical to that of calcite (e.g.
243	Hodson et al., 2015) and, in contrast to our previous studies, here we
244	did not carry out the X-ray diffraction data necessary to confirm that the
245	granules are calcite and not vaterite.
246	In previous studies relict ACC has been detected in granules (Gago-
247	Duport <i>et al.</i> , 2008; Lee <i>et al.</i> 2008; Fraser <i>et al.</i> , 2011; Brinza <i>et al.</i> ,
248	2013, 2014a, b; Hodson <i>et al.</i> , 2015). The ratio of the peak areas for the
249	ν_3 and ν_4 vibrations was greater for the pouch granules than for the soil
250	granules. The ratio of ν_3 and ν_4 decreases as the amount of ACC
251	decreases (Hodson <i>et al.,</i> 2015) suggesting that the granules from the
252	pouches contain a larger amount of untransformed ACC than the
253	granules recovered from the soil.

254	It is known that considerable δ^{13} C fractionation factors exist between
255	the different species of DIC and the various polymorphs of $CaCO_3$
256	(Romanek <i>et al.,</i> 1992; Zhang <i>et al.,</i> 1995; Szaran, 1997). The observed
257	differences in $\delta^{13}C$ values between milky fluid and the two types of
258	granules could be due to analogous isotopic fractionation. Similarly
259	Guiffre et al (2015) observed a change in both the Ca and Mg isotopic
260	composition of $CaCO_3$ as it transformed from ACC to calcite and
261	attributed this to a dissolution-reprecipitation mechanism for the
262	transformation. Thus, the observed C fractionation reported here
263	supports suggestions that the transformation of ACC into calcite occurs
264	through dissolution and re-precipitation (e.g. Pontoni et al., 2003; Han
265	and Aizenberg, 2008; Bots et al., 2012; Guiffre et al., 2015) rather than
266	solid state dehydration and structural rearrangement (e.g. Beniash <i>et</i>
267	al., 1999; Politi et al., 2008; Weiner and Addabi, 2011; Gal et al., 2013).
268	As we only analysed samples by FTIR we are unable to comment on
269	whether vaterite might form as an intermediate in this transformation.
270	Using the $\delta^{13}C$ values for the milky fluid, the pouch granules and
271	median values for the soil-recovered granules for individual
272	earthworms we estimated the isotopic enrichment factor (ϵ) between
273	calcite (soil granules and pouch granules) and ACC, defined by:
274	
275	$\varepsilon_{\text{calcite-ACC}} = 1000 \cdot \left[(\delta^{13}C_{\text{calcite}} + 1000) / (\delta^{13}C_{\text{ACC}} + 1000) - 1 \right] $ (1)

277	The pouch granule - milky fluid (-0.74 \pm 0.37 %), soil granule - milky
278	fluid (-1.20 \pm 0.52 $\%_0$) and soil granule - pouch granule (-0.46 \pm 0.45
279	% ₀) enrichment factors were significantly different from each other
280	(Kruskal-Wallis One Way Analysis of Variance on Ranks followed by a
281	post hoc Tukey test, p \leq 0.01) despite significant overlap between the
282	first two. The high level of overlap between these two enrichment
283	factors is undoubtedly due to the fact that the granules in the pouches
284	and the soil are predominantly calcite. This also helps explain the soil
285	granule – pouch granule enrichment factor that is almost equal to zero
286	within error; the majority of ACC will have converted to calcite in the
287	pouch granules and therefore little additional transformation occurs
288	following expulsion of the granules from the calciferous gland into the
289	earthworm intestine and from there into the soil. Both the pouch
290	granule - milky fluid and soil granule - milky fluid enrichment factors
291	indicate an increase in the incorporation of $^{\rm 12}{\rm C}$ relative to $^{\rm 13}{\rm C}$ as the ACC
292	crystallizes to calcite. This incorporation of the lighter isotope in the
293	final crystallization product is in agreement with existing kinetic
294	theories on the control of isotope fractionation (Watson, 2004; DePaolo,
295	2011; Nielsen et al., 2012) and has been observed in a variety of
296	biominerals (e.g. Auclair et al., 2003; Rollion-Bard et al, 2016; Spooner

297	et al, 2016) where the δ^{13} C of crystalline calcium carbonate is compared
298	to that of dissolved precursor ions.
299	Although significant differences exist between the enrichment
300	factors calculated for different temperatures for the pouch granule -
301	milky fluid (ANOVA, p \leq 0.01) and soil granule - milky fluid (Kruskal-
302	Wallis One Way Analysis of Variance on Ranks, $p \le 0.01$ linear
303	regression indicates only a small dependence of this variation on
304	temperature ($R^2 < 0.2$), consistent with previous abiotic calcite-
305	bicarbonate enrichment factors (Romanek et al., 1992), but not with
306	theories considering kinetic controls on isotopic fractionation. The lack
307	of an apparent temperature dependence may be due to either or both
308	the metabolism of the earthworms maintaining a more constant body
309	temperature in the calciferous gland than in the surrounding soil
310	(though note that oxygen fractionation is temperature sensitive to the
311	temperature of the surrounding soil, see Versteegh et al., 2013) or the
312	scatter in the δ^{13} C values.
313	Guiffre et al. (2015) found that the Ca and Mg isotopic composition of

calcite formed from ACC was sensitive to the amounts of ACC present. In
a similar fashion, the relatively high standard deviation values for the
enrichment factors may be due to a lack of end member ACC and calcite
used in our calculation. Although the FTIR spectra for the milky fluid
indicate that the only form of CaCO₃ present is ACC (Fig. 2), studies have

319	found trace amounts of calcite in the milky fluid (Gago-Duport et al.,
320	2008) and it is possible that that is the case here with the calcite below
321	detection levels. Trace amounts of calcite may have been produced if
322	some ACC transformed whilst the milky fluid was drying out. Our
323	results suggest that this would result in more negative $\delta^{13}\text{C}$ values.
324	Similarly the granules, although predominantly calcite, may contain
325	varying, but small, amounts of ACC (e.g. Lee <i>et al.</i> , 2008; Hodson <i>et al.</i> ,
326	2015)). Small amounts of ACC appear to be unusually stable in the
327	granules and may be preserved indefinitely in the granules. Further,
328	granules recovered from the soil were secreted over a 28 day period
329	and therefore potentially show different degrees of transformation
330	from ACC to calcite. Varying levels of transformation from ACC to calcite
331	from the milky fluid to the granules recovered from the soil are also
332	consistent with the wider range of $\delta^{13}\text{C}$ values and enrichment factors
333	observed for these granules compared to those present in the pouches
334	which will have a more similar age and, therefore potentially have
335	experienced the same amount of ACC transformation.
336	Methods have recently been developed to synthesise ACC that can
337	remain stable for several days (Rodriguez-Blanco et al., 2008). This
338	opens up the possibility of direct and accurate determination of $\epsilon_{\text{calcite-}}$
339	$_{\mbox{\scriptsize ACC}}$ for abiotic systems in the near future. More detailed carbon isotope
340	and mineralogical studies of the calciferous gland and calcite granules

341	together with other biominerals, e.g. echinoderm spines, in which both
342	ACC and calcite are present are required to better understand the role
343	of vital processes in this fractionation. As many biominerals are
344	precipitated from an ACC precursor phase, and can contain stable ACC
345	in their mature state, this will be an important step in understanding
346	the mechanisms of biomineralisation and implications for the
347	environmental interpretation of biomineral proxies.
348	
349	Acknowledgements
350	This research was funded by a NERC Standard Research Grant (M.E.H.
351	and S.B.; NE/H021914/1). The research was carried out in accordance
352	with the U.K. Animals (Scientific Procedures) Act, 1986 and associated
353	guidelines. MEH and SB designed the study, EAAV carried out the
354	experimental work and chemical analyses. All authors contributed to
355	data analysis and paper writing. We would like to thank Trevor Piearce
356	(Lancaster University) for his help with the earthworm dissections,
357	Liane Benning (University of Leeds) for assistance with the FTIR work,
358	Juan Diego Rodriguez Blanco (University of Copenhagen) for providing
359	reference $CaCO_3$ FTIR spectra, Yan Gao (University of Reading) for
360	assistance with stable isotope analyses and two anonymous referees for
361	their comments which helped improve the clarity of the paper.
362	

363 **References**

- 364 Adkins, J.F., Boyle, E.A., Curry, W.B. and Lutringer, A. (2003) Stable
- isotopes in deep-sea corals and a new mechanism for "vital effects".
- 366 *Geochim Cosmochim. Acta*, **67**, 1129-1143.
- 367 Aizenberg, J., Addadi, L., Weiner, S. and Lambert, G. (1996) Stabilization
- 368 of amorphous calcium carbonate by specialized macromolecules in
- biological and synthetic precipitates. *Advanced Materials*, **8**, 222-226.
- 370 Aizenberg, J., Weiner, S. and Addadi, L. (2003) Coexistence of
- amorphous and crystalline calcium carbonate in skeletal tissues.
- 372 *Connective Tissue Research*, **44**, 20-25.
- 373 Aoki, K. (1934) Kalzium im blut des regenwurms. Proceedings of the
- 374 *Imperial Academy of Japan*, **10**, 121-124.
- 375 Auclair, A.-C., Joachmisky, M.M., Lécuyer, C. (2003) Deciphering kinetic,
- 376 metabolic and environmental controls on stable isotope
- 377 fractionations between seawater and the shell of *Terebratalia*
- 378 transversa. Chemical Geology, **202**, 59–78.
- 379 Avery, B.W. (1980) Soil classification for England and Wales [higher
- 380 *categories*]. Rothamsted Experimental Station, Harpenden.
- 381 Beniash, E., Addadi, L. and Weiner, S. (1999) Cellular control over
- 382 spicule formation in sea urchin embryos: a structural approach.
- *Journal of Structural Biology*, **125**, 50-62.

384	Bernis, B.E., Spero, H.J., Lea, D.W. and Bijma, J. (2000) Temperature
385	influence on the carbon isotopic composition of <i>Globigerina bulloides</i>
386	and Orbulina universa (planktonic foraminifera) Marine
387	Micropalaeonology, 38 , 213-228.
388	Bots, P., Benning, L. G., Rodriguez-Blanco, JD., Roncal-Herrero, T. and
389	Shaw, S. (2012) Mechanistic insights into the crystallization of
390	amorphous calcium carbonate (ACC). Crystal growth and Design, 12,
391	3806-3814.
392	Brinza, L., Quinn, P.D., Schofield, P.F., Mosselmans, J.F.W. and Hodson,
393	M.E. (2013) Incorporation of strontium in earthworm-secreted
394	calcium carbonate granules produced in strontium-amended and
395	strontium-bearing soil. <i>Geochimica et Cosmochimica Acta</i> , 113 , 21-
396	37.
397	Brinza, L., Schofield, P.F., Hodson, M.E., Weller, S., Ignatyev, K., Geraki, K.,
398	Quinn, P.D. and Mosselmans, J.F.W. (2014a) Combining microxanes
399	and microxrd mapping to analyse the heterogeneity in calcium
400	carbonate granules excreted by the earthworm Lumbricus terrestris.
401	Journal of Synchrotron Radiation, 21 , 235-241.
402	Brinza, L., Schofield, P.F., Mosselmans, J.F.W., Donner, E., Lombi, E.,
403	Paterson, D. and Hodson, M.E. (2014b) Can earthworm-secreted
404	calcium carbonate immobilise Zn in contaminated soils? Soil Biology
405	and Biochemistry, 74 , 1-10.

406	Briones, M.J.I., López, E., Méndez, J., Rodríguez, J.B. and Gago-Duport, L.
-----	---

- 407 (2008) Biological control over the formation and storage of
- 408 amorphous calcium carbonate by earthworms. *Mineralogical*
- 409 *Magazine*, **72**, 227-231.
- 410 BS ISO. (1998) Soil quality determination of the water-retention
- 411 *characteristic*. Pp. 24. BS ISO, Geneva.
- 412 Canti, M.G. and Piearce, T.G. (2003) Morphology and dynamics of
- 413 calcium carbonate granules produced by different earthworm
- 414 species. *Pedobiologia*, **47**, 511-521.
- 415 Chester, R. and Elderfield, H. (1967) The application od infra-red
- 416 absorption spectroscopy to carbonate mineralogy. *Sedimentology*, 9,
 417 5-21.
- 418 Darwin, C. (1881) *The formation of vegetable mould, through the action*
- 419 *of worms, with observations on their habits.* Pp. 103. The Echo
- 420 Library, Teddington.
- 421 DePaolo, D., 2011. Surface kinetic model for isotopic and trace element
- 422 fractionation during precipitation of calcite from aqueous solutions.
- 423 *Geochimica et Cosmochimica Acta*, **75**, 1039–1056.
- 424 Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns,
- 425 P.C. and Discipulo, M.K. (2000) Depositional facies and aqueous-solid
- 426 geochemistry of travertine-depositing hot springs (Angle Terrace,

427	Mammoth Hot Springs, Yellowstone National Park, USA). <i>Journal of</i>
428	Sedimentary Research, 70, 565-585.
429	Fraser, A., Lambkin, D.C., Lee, M.R., Schofield, P.F., Mosselmans, J.F.W.
430	and Hodson, M.E. (2011) Incorporation of lead into calcium
431	carbonate granules secreted by earthworms living in lead
432	contaminated soils. Geochimica et Cosmochimica Acta, 75, 2544-
433	2556.
434	Gago-Duport, L., Briones, M.J.I., Rodríguez, J.B. and Covelo, B. (2008)
435	Amorphous calcium carbonate biomineralization in the earthworm's
436	calciferous gland: Pathways to the formation of crystalline phases.
437	Journal of Structural Biology, 162 , 422-435.
438	Gal, A., Habraken, W., Gur, D., Fratzl, P., Weiner, S. and Addadi, L. (2013)
439	Calcite crystal growth by a solid-state transformation of stabilized
440	amorphous calcium carbonate nanospheres in a hydrogel.
441	Angewandte Chemie International Edition, 52 , 4867-4870.
442	Guiffre, A.J., Gagnon, A.C., de Yoreo, J.J. and Dove, P.M. (2015) Isotopic
443	tracer evidence for the amorphous calcium carbonate to calcite
444	transformation by dissolution-reprecipitation. Geochimica et
445	Cosmochimica Acta, 165 , 407-417.
446	Han, T. YJ. and Aizenberg, J. (2008) Calcium carbonate storage in
447	amorphous form and its template-induced crystallization. Chemical
448	Materials, 20 , 1064-1068.

449	Hodson, M.E., Benning, L., Demarchi, B., Penkman, K., Rodriguez-Blanco,
450	J.D., Schofield, P.F., Versteegh, E.A.A. (2015) Amorphous calcium
451	carbonate stability in earthworm-secreted granules: an amino acid
452	and synchrotron FTIR study. <i>Geochemical Transactions</i> 16 : 4.
453	Jacob, D.E., Soldati, A.L., Wirth, R., Huth, J., Wehrmeister, U. and
454	Hofmeister, W. (2008) Nanostructure, composition and mechanisms
455	of bivalve shell growth. <i>Geochimica et Cosmochimica Acta</i> , 72 , 5401-
456	5415.
457	Kaestner, A. (1967) Invertebrate zoology. Interscience, New York.
458	Kühle, J.C. (1980) Vergleichende untersuchungen zur funktion der
459	kalkdrüse verschiedener regenwurmarten bei unterschiedlicher co2-
460	atmosphäre. Verhandlungen der Gesellschaft für Ökologie, VIII , 411-
461	415.
462	Lambkin, D.C., Gwilliam, K.H., Layton, C., Canti, M.G., Piearce, T.G. and
463	Hodson, M.E. (2011) Soil pH governs production rate of calcium
464	carbonate secreted by the earthworm Lumbricus terrestris. Applied
465	Geochemistry, 26 , S64-S66.
466	Lécuyer, C., Hutzler, A., Amiot, R., Daux, V., Grosheny, D., Otero, O.,
467	Martineau, F., Fourel, F., Balter, V. and Reynard, B. (2012) Carbon and
468	oxygen isotope fractionations between aragonite and calcite of shells
469	from modern molluscs. <i>Chemical Geology</i> , 332-333 , 92-101.

470	Lee, M.R., Hodson, M.E. and Langworthy, G.N. (2008) Earthworms
471	produce granules of intricately zoned calcite. <i>Geology</i> , 36 , 943-946.
472	McConnaughey, T (1989) 13C and 180 isotopic disequilibrium in
473	biological carbonates II: <i>In vitro</i> simulation of kinetic isotope effects.
474	Geochimica et Cosmochimica Acta, 53 , 163-171.
475	Nielsen, L.C., DePaolo, D.J., De Yoreo, J.J. (2012) Self-consistent ion-by-
476	ion growth model for kinetic isotopic fractionation during calcite
477	precipitation. <i>Geochimica et Cosmochimica Acta</i> , 86 , 166–181.
478	Paul, D. and Skrzypek, G. (2007) Assessment of carbonate-phosphoric
479	acid analytical technique performed using gasbench ii in continuous
480	flow isotope ratio mass spectrometry. International Journal of Mass
481	Spectrometry, 262 , 180-186.
482	Politi, Y., Metzler, R. A., Abrecht, M., Gilbert, B., Wilt, F. H., Sagi, I., Addadi,
483	L., Weiner, S. and Gilbert, P. U. P. A. (2008) Transformation
484	mechanism of amorphous calcium carbonate into calcite in sea
485	urchin larval spicule. Proceedings of the National Academy of Sciences.
486	105 , 17362-17366.
487	Pontoni, D., Bolze, J., Dingenouts, N., Narayanan, T. and Ballauff, M.
488	(2003) Crystallization of calcium carbonate observed in-situ by
489	combined small- and wide-angle X-ray scattering. <i>Journal of Physical</i>
490	Chemistry B, 107 , 5123-5125.

491	Radha, A.V., Forbes, T.Z., Killian, C.E., Gilbert, P.U.P.A. and Navrotsky, A.
492	(2010) Transformation and crystallization energetics of synthetic
493	and biogenic amorphous calcium carbonate. <i>Proceedings of the</i>
494	National Academy of Sciences, 107 , 16438-16443.
495	Rodriguez-Blanco, J.D., Shaw, S. and Benning, L.G. (2011) The kinetics
496	and mechanisms of amorphous calcium carbonate (acc)
497	crystallization to calcite, via vaterite. <i>Nanoscale</i> , 3 , 265-271.
498	Rodriguez-Blanco, J.D., Shaw, S. and Benning, L.G. (2008) How to make
499	"stable" ACC: protocol and preliminary structural characterization.
500	Mineralogical Magazine, 72 , 283-286.
501	Rollion-Bard, C., Saulnier, S., Vigier, N., Schumacher, A., Chaussidon, M.,
502	Lécuyer, C. (2016) Variability in magnesium, carbon and oxygen
503	isotope compositions of brachiopod shells: Implications for
504	paleoceanographic studies. <i>Chemical Geology</i> , 423 , 49-60.
505	Romanek, C.S., Grossman, E.L. and Morse, J.W. (1992) Carbon isotopic
506	fractionation in synthetic aragonite and calcite: Effects of
507	temperature and precipitation rate. Geochimica et Cosmochimica
508	<i>Acta</i> , 56 , 419-430.
509	Spooner, P.T., Guo, W.F., Robinson, L.F., Thiagarajan, N., Hendry, K.R.,
510	Rosenheim, B.E. and Meng, M.J. (2016) Clumped isotope composition
511	of cold-water corals: A role for vital effects? Geochimica et
512	Cosmochimica Acta, 179 , 123-141.

513	Stephens, C.J., Kim, YY., Evans, S.D., Meldrum, F.C. and Christenson, H.K.
514	(2011) Early stages of crystallization of calcium carbonate revealed
515	in picoliter droplets. Journal of the American Chemical Society, 133 ,
516	5210-5213.
517	Szaran, J. (1997) Achievement of carbon isotope equilibrium in the
518	system HCO ₃ - (solution)-CO ₂ (gas). <i>Chemical Geology</i> , 142 , 79-86.
519	Versteegh, E.A.A., Black, S. and Hodson, M.E. (2014) Environmental
520	controls on the production of calcium carbonate by earthworms. Soil
521	Biology and Biochemistry, 70 , 159-161.
522	Versteegh, E.A.A., Black, S., Canti, M.G. and Hodson, M.E. (2013)
523	Earthworm secreted calcium carbonate – a new palaeothermometer?
524	Geochimica et Cosmochimica Acta, 123 , 351-357.
525	Voigt, O. (1933) Die funktion der regenwurm-kalkdrüsen. Zoologische
526	Jahrbücher: Abteilung für allgemeine Zoologie und Physiologie der
527	Tiere, 52 , 677-708.
528	Watson, B.E. (2004) A conceptual model for near-surface kinetic
529	controls on the trace element and stable isotope composition of
530	abiogenic calcite crystals. <i>Geochimica et Cosmochimica Acta</i> , 68 ,
531	1473–1488.
532	Wehrmeister, U., Jacob, D.E., Soldati, A.L., Loges, N., Häger, T. and

533 Hofmeister, W. (2011) Amorphous, nanocrystalline and crystalline

- 534 calcium carbonates in biological materials. *Journal of Raman*
- 535 *Spectroscopy*, **42**, 926-935.
- 536 Weiner S. and Addadi L. (2011) Crystallization pathways in
- 537 biomineralization. Annual Reviews of Material Research, 41, 21–
- 538 40.
- 539 Zhang, J., Quay, P.D. and Wilbur, D.O. (1995) Carbon isotope
- 540 fractionation during gas-water exchange and dissolution of co₂.
- 541 *Geochimica et Cosmochimica Acta*, **59**, 107-114.
- 542

Earthworms produce granules of calcium carbonate that form from an amorphous calcium carbonate suspension

The microspherulites of amorphous calcium carbonate coalesce and recrystallize

Fractionation of C isotopes occurs as the ACC recrystallizes with $\epsilon_{\text{calcite-ACC}}$ = -1.20 \pm 0.52%

This is consistent with a dissolution-reprecipitation pathway rather than solid state rearrangement

This may be important for the interpretation of CaCO₃-based C isotope environmental proxies.

Chillip Marine