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 16 

Abstract 17 

In this study we investigate carbon isotope fractionation during the 18 

crystallization of biogenic calcium carbonate. Several species of 19 

earthworm including Lumbricus terrestris secrete CaCO3. Initially a 20 

milky fluid comprising micro-spherules of amorphous CaCO3 (ACC) is 21 

secreted into pouches of the earthworm calciferous gland. The micro-22 
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spherules coalesce and crystalize to form millimetre scale granules, 23 

largely comprising calcite. These are secreted into the earthworm 24 

intestine and from there into the soil. L. terrestris were cultured for 28 25 

days in two different soils, moistened with three different mineral 26 

waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, 27 

granules in the pouches of the calciferous glands and granules excreted 28 

into the soil were collected and analysed by FTIR spectroscopy to 29 

determine the form of CaCO3 present and by IRMS to determine δ13C 30 

values. The milky fluid was ACC. Granules removed from the pouches 31 

and soil were largely calcite; the granules removed from the pouches 32 

contained more residual ACC than those recovered from the soil. The 33 

δ13C values of milky fluid and pouch granules became significantly more 34 

negative with increasing temperature (p < 0.001). For samples from 35 

each temperature treatment, δ13C values became significantly (p < 36 

0.001) more negative from the milky fluid to the pouch granules to the 37 

soil granules (-13.77, -14.69 and -15.00 respectively at 10 °C; -14.37, -38 

15.07 and -15.18 respectively at 16 °C and -14.89, -15.41 and -15.65 39 

respectively at 20 °C). Fractionation of C isotopes occurred as the ACC 40 

recrystallized to form calcite with the fractionation factor εcalcite-ACC = -41 

1.20 ± 0.52 %0. This is consistent with the crystallization involving 42 

dissolution and reprecipitation rather than a solid state rearrangement. 43 

Although C isotopic fractionation has previously been described 44 
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between different species of dissolved inorganic carbon and various 45 

CaCO3 polymorphs, this is the first documented evidence for C isotope 46 

fractionation between ACC and the calcite it recrystallizes to. This 47 

phenomenon may prove important for the interpretation of CaCO3-48 

based C isotope environmental proxies. 49 

 50 

Keywords: Earthworms; calcium carbonate; calcite; carbon isotopes; 51 

fractionation; crystallization 52 

 53 

Introduction 54 

Many earthworm species produce calcium carbonate (CaCO3) granules 55 

in specialised calciferous glands. In the earthworm Lumbricus terrestris 56 

these occur in segments 11-12 as two pairs of swellings off the 57 

oesophagus, and one pair of pouches anterior to the glands in segment 58 

10 (Darwin, 1881; Canti and Piearce, 2003). 59 

CaCO3 production starts by secretion of an amorphous calcium 60 

carbonate (ACC) suspension that we refer to as milky fluid. In the 61 

pouches, small spherulites (1-5 μm) in the milky fluid accrete into 62 

larger granules (≤ 2.5 mm). These are released into the oesophagus and 63 

excreted into the soil (Briones et al., 2008; Gago-Duport et al., 2008). 64 

The granules retrieved from the pouches and the soil are 65 

predominantly calcite, but can contain small amounts of ACC, vaterite 66 
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and aragonite (Gago-Duport et al., 2008; Lee et al., 2008; Fraser et al., 67 

2011; Brinza et al., 2013; Brinza et al., 2014a; Brinza et al., 2014b; 68 

Hodson et al., 2015). The function of CaCO3 production by the 69 

earthworms remains unclear but is likely related to regulation of pH 70 

and CO2 concentrations in body fluids (Voigt, 1933; Aoki, 1934; 71 

Kaestner, 1967; Kühle, 1980; Versteegh et al., 2014). 72 

It is known that considerable δ13C fractionation factors exist between 73 

the different species of DIC and the various polymorphs of CaCO3 74 

(Fouke et al., 2000; Romanek et al., 1992; Szaran, 1997; Zhang et al., 75 

1995). In addition to thermodynamics, kinetics of precipitation plays an 76 

important role in fractionation (Watson, 2004; DePaolo, 2011; Nielsen 77 

et al., 2012). Variable fractionation of carbon isotopes has been 78 

observed in different calcium carbonate biominerals suggesting that 79 

vital effects may also be relevant (e.g. Adkins et al., 2003; Auclair et al., 80 

2003; Bernis et al. 2000; Lécuyer et al. 2012; McConnaughey, 1989; 81 

Rollion-Bard et al, 2016; Spooner et al, 2016). Despite many calcium 82 

carbonate minerals having an amorphous pre-cursor (Radha et al., 83 

2010; Rodriguez-Blanco et al., 2011; Stephens et al., 2011) and stable 84 

ACC being increasingly observed in biominerals (Aizenberg et al., 2003; 85 

Jacob et al., 2008; Wehrmeister et al., 2011), carbon isotope 86 

fractionation between ACC and calcite has not been previously reported 87 

in the literature 88 
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Here we present results of stable carbon isotope analyses on milky 89 

fluid collected from the calciferous pouches of earthworms, fresh 90 

granules also collected from the pouches, and older granules collected 91 

from the soil in which the earthworms were cultivated and address the 92 

question: how does granule mineralogy influence δ13C values? 93 

Furthermore we make a first attempt at estimating the carbon isotopic 94 

fractionation factor between calcite and ACC, produced by earthworms. 95 

 96 

Materials & Methods 97 

Experimental setup 98 

Two soils were collected from agricultural fields in Berkshire, UK: 99 

Hamble (SU 61968 70235) and Red Hill (SU 56060 80033); both 100 

Typical Argillic Brown Earths (Avery, 1980; full soil characterisation in 101 

Table 1, Versteegh et al., 2014). The soil was air-dried and sieved to 250 102 

µm prior to use (Lambkin et al., 2011). This ensures that no large 103 

granules are present in the soil at the beginning of the experiment and 104 

facilitates granule recovery at the end. Post-sieving soil pH and organic 105 

matter content were 7.5 ± 0.3 and 3.8 ± 0.1 % for Hamble and 7.1 ± 0.1 106 

and 7.4 ± 0.1 % for Red Hill. For each replicate, 300 g of soil were mixed 107 

with one of three types of mineral water (initial δ18O values -10.0, -7.3 108 

and -5.3 (± 0.2) ‰ VSMOW) to 65 % water holding capacity (BS ISO, 109 

1998). The moistened soil was put in a zip-lock bag with 5 g air-dried 110 
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horse manure rehydrated with 10 ml demineralised water. One adult, 111 

clitellate L. terrestris was added to each bag. Bags were closed and kept 112 

at either 10, 16 or 20 °C. There were six replicates per treatment. 113 

Earthworms were acclimatised for three weeks, and then transferred to 114 

an identical treatment bag containing the same type and mass of soil 115 

and manure at the same temperature. Experimental details are given in 116 

Versteegh et al. (2013). After 28 days earthworms were removed from 117 

the bags, killed by dipping them in near-boiling water, and the 118 

calciferous glands were dissected out. Any CaCO3 concretions present in 119 

the pouches were also retrieved, rinsed in deionised water and air-120 

dried. Calciferous glands were put on a glass slide; MF was allowed to 121 

leak from the glands, was left to air-dry overnight, and collected by 122 

scraping it off the slide. The soil was wet-sieved to 500 µm to retrieve 123 

granules which were air-dried. 124 

 125 

Stable-isotope analyses 126 

Milky fluid and individual granule CaCO3 samples were analysed for 127 

δ13C values using a Thermo Delta V Advantage IRMS with a GasBench II. 128 

The Gasbench II sample preparation device uses 100% ortho-129 

phosphoric acid to transform CaCO3 into CO2 and hence only analyses 130 

the mineral fraction of the samples (Paul and Skrzypek, 2007). The raw 131 

δ13C values were converted to the VPDB scale after normalising against 132 
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NBS 18 and NBS 19 carbonate standards. The long-term standard 133 

deviation of a routinely analysed in-house CaCO3 standard was < 0.05 134 

‰. Statistical analysis of the 13C data was carried out using SigmaPlot 135 

12 for Windows 7. 136 

 137 

Fourier transform infrared spectroscopy (FTIR) 138 

Three samples each of milky fluid, granules from pouches and granules 139 

from soil were analysed by FTIR in the range 650 – 4000 cm-1 using a 140 

diamond internal reflection cell on a A2-Technology MicroLab Portable 141 

mid-IR spectrometer of the Cohen Laboratories, University of Leeds. 142 

Spectra were acquired by co-adding 512 scans with a 4 cm-1 resolution. 143 

Crystalline carbonate phases have distinct bands at ~ 714 cm-1 (ν4), ~ 144 

866 cm-1 (ν2), ~ 1084 cm-1 (ν1) and 1420-1470 cm-1 (ν3) whilst ACC 145 

lacks the distinct vibrational band at ~ 714 cm-1 (Chester and 146 

Elderfield, 1967; Aizenberg et al., 1996; Gago-Duport et al., 2008; 147 

Rodriguez-Blanco et al., 2011). Areas for the ν4 and ν3 peaks covering 148 

the wavenumber ranges between 651 – 725 cm-1 and 1602-1243 cm-1 149 

respectively were determined using the Nicolet EZ OMNIC 5.1 Software. 150 

Reference spectra for synthetic calcite and ACC were provided by Dr. 151 

Juan-Diego Rodriguez-Blanco, University of Copenhagen, Department of 152 

Chemistry. 153 

 154 
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Results 155 

δ13C values of CaCO3 156 

For each individual earthworm, 10 granules were analysed from the soil 157 

and one from each of the pouches (if available). For milky fluid, only one 158 

analysis per earthworm could be undertaken, but sometimes this failed 159 

because too little material was available. All analyses are reported in 160 

the Supplementary material. Three-way Analysis of Variance (ANOVA) 161 

with temperature, soil type and water type as factors indicated that 162 

there were no significant differences in δ13C values of granules 163 

extracted from the soil between different treatments. In contrast, 3-way 164 

ANOVA followed by pair-wise multiple comparison (Holm-Sidak 165 

method) indicated that there were significant differences in δ13C values 166 

between different temperature treatments for the granules extracted 167 

from the pouches and also for the milky fluid (p < 0.01); values became 168 

increasingly negative from the 10 to 16 to 20 °C treatments. There were 169 

no significant differences in δ13C values for either the milky fluid or 170 

granules from pouches between different soils or different mineral 171 

water treatments. Consequently, the data for different soil-water 172 

combinations but the same temperature were combined for analysis. 173 

Kruskall-Wallis One-way Analysis of Variance (ANOVA) on ranks 174 

followed by pair-wise comparison (Dunn’s method) indicated that at 175 

each temperature there were significant differences between the δ13C 176 
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values of the milky fluid, granules from pouches and granules from soil 177 

with values becoming increasingly negative in that order (Fig. 1). 178 

Ranges of δ13C values were relatively narrow for milky fluid and 179 

granules from pouches but wider for granules retrieved from the soil. 180 
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Fig. 1. Box plots showing the decrease in δ13C 
values for L. terrestris-produced milky fluid 
extracted from the granule-producing pouches, 
granules extracted from the pouches and CaCO3

granules extracted from the soil for the a) 10 °C, b) 
16 °C and c) 20 °C treatments. Values in brackets 
indicate sample numbers. Within each grey box the 
solid line represents the median value and the 
dashed line the mean. The top and bottom of the 
box define the 25th and 75th percentiles and the 
error bars the 5th and 95th percentiles. Data points 
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 182 

FTIR data 183 

FTIR analyses revealed that in the milky fluid the ν4 peak at 714 cm-1 184 

was absent (Fig. 2). In contrast, the granules recovered from the pouch 185 

and from the soil both had a distinct peak at 714 cm-1. The ratio of the 186 

peak areas for the ν3 and ν4 vibrations was significantly greater (t-test, 187 

p < 0.05) for the pouch granules (31.9 ± 2.2 ,mean ± standard deviation, 188 

n = 3) than for the soil granules (21.3 ± 0.6). 189 

  190 
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 191 

FIG. 2. Typical FTIR spectra for milky fluid, a granule recovered from 192 

one of the pouches (pouch granule), and a granule recovered from the 193 

soil (soil granule);all spectra relate to samples from the same 194 

earthworm. Reference spectra for synthetic calcite and ACC are also 195 

shown. Spectra are vertically offset on the absorbance axis for clarity. 196 

The major calcium carbonate peaks (υ1 to υ4) are labelled. Calcite 197 

shows peaks at ~714 cm-1 (υ4), ~866 cm-1 (υ2), ~1090 cm-1 (υ1) and 198 

1420-1470 cm-1 (υ3); amorphous calcium carbonate lacks the ~714 cm-199 
1 peak. 200 

 201 

Discussion 202 

δ13C values and polymorphs of CaCO3 203 

Ranges of δ13C values are narrow for the milky fluid and granules from 204 

pouches, while δ13C values for granules retrieved from the soil show a 205 
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wide range and are not normally distributed (Fig. 1). Therefore, for 206 

each experimental replicate, the median δ13C value for each set of 10 207 

granules recovered from the soil per earthworm was used for 208 

comparison with the δ13C values of the milky fluid and pouch granules 209 

recovered from the same earthworm that produced the soil granules. 210 

Regression analyses for the entire dataset (combining the different 211 

temperature treatments) revealed strong relationships between milky 212 

fluid δ13C values and δ13C values of the granules retrieved from the 213 

same earthworm’s pouches (Fig. 3a), as well as between δ13C values of 214 

granules retrieved from the pouches and those secreted into the soil by 215 

the same earthworm (Fig. 3b). Relationships were less strong when 216 

individual temperature treatments were considered. Going from milky 217 

fluid, to granules in the pouches, to granules in the soil, δ13C values 218 

show a gradual shift to lower values (Fig. 1, Fig. 3a-b). 219 

 220 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

14 

 

 221 

 222 

FIG. 3. (a) δ13C values of individual granules retrieved from the pouches 223 

versus δ13C values of milky fluid recovered from the same pouch, note 224 

the depletion in 13C in the former and the shift to lower values with 225 

increasing temperature; (b) Median δ13C composition of granules 226 

recovered from the soil versus δ13C values of the individual granules 227 

retrieved from the pouches of the earthworm cultivated in that soil; 228 

note increased scatter and lower R2. Data from all experiments is 229 

plotted. 230 
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Previous studies show that the CaCO3 in milky fluid mostly 232 

comprises ACC (Briones et al., 2008), while the granules mostly 233 

comprise calcite but with trace amounts of vaterite (Gago-Duport et al., 234 

2008; Lee et al., 2008; Hodson et al., 2015). Our data are consistent with 235 

this. Our FTIR analyses (Fig. 2) indicate that the milky fluid was 236 

dominated by ACC (the ν4 peak at 714 cm-1 was absent and the 237 

spectrum resembled that of the reference synthetic ACC). In contrast, 238 

the granules recovered from the pouch and from the soil both had a 239 

distinct peak at 714 cm-1, typical of crystalline forms of CaCO3 and a 240 

spectrum almost identical to reference calcite, though we note that the 241 

FTIR spectrum of vaterite is almost identical to that of calcite (e.g. 242 

Hodson et al., 2015) and, in contrast to our previous studies, here we 243 

did not carry out the X-ray diffraction data necessary to confirm that the 244 

granules are calcite and not vaterite.  245 

In previous studies relict ACC has been detected in granules (Gago-246 

Duport et al., 2008; Lee et al. 2008; Fraser et al., 2011; Brinza et al., 247 

2013, 2014a, b; Hodson et al., 2015). The ratio of the peak areas for the 248 

ν3 and ν4 vibrations was greater for the pouch granules than for the soil 249 

granules. The ratio of ν3 and ν4 decreases as the amount of ACC 250 

decreases (Hodson et al., 2015) suggesting that the granules from the 251 

pouches contain a larger amount of untransformed ACC than the 252 

granules recovered from the soil.  253 
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It is known that considerable δ13C fractionation factors exist between 254 

the different species of DIC and the various polymorphs of CaCO3 255 

(Romanek et al., 1992; Zhang et al., 1995; Szaran, 1997). The observed 256 

differences in δ13C values between milky fluid and the two types of 257 

granules could be due to analogous isotopic fractionation. Similarly 258 

Guiffre et al (2015) observed a change in both the Ca and Mg isotopic 259 

composition of CaCO3 as it transformed from ACC to calcite and 260 

attributed this to a dissolution-reprecipitation mechanism for the 261 

transformation. Thus, the observed C fractionation reported here 262 

supports suggestions that the transformation of ACC into calcite occurs 263 

through dissolution and re-precipitation (e.g. Pontoni et al., 2003; Han 264 

and Aizenberg, 2008; Bots et al., 2012; Guiffre et al., 2015) rather than 265 

solid state dehydration and structural rearrangement (e.g. Beniash et 266 

al., 1999; Politi et al., 2008; Weiner and Addabi, 2011; Gal et al., 2013). 267 

As we only analysed samples by FTIR we are unable to comment on 268 

whether vaterite might form as an intermediate in this transformation.  269 

Using the δ13C values for the milky fluid, the pouch granules and 270 

median values for the soil-recovered granules for individual 271 

earthworms we estimated the isotopic enrichment factor (ε) between 272 

calcite (soil granules and pouch granules) and ACC, defined by: 273 

 274 

εcalcite-ACC = 1000 · [(δ13Ccalcite + 1000)/(δ13CACC + 1000) - 1] (1) 275 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

17 

 

 276 

The pouch granule - milky fluid (-0.74 ± 0.37 %0), soil granule - milky 277 

fluid (-1.20 ± 0.52 %0) and soil granule - pouch granule (-0.46 ± 0.45 278 

%0) enrichment factors were significantly different from each other 279 

(Kruskal-Wallis One Way Analysis of Variance on Ranks followed by a 280 

post hoc Tukey test, p < 0.01) despite significant overlap between the 281 

first two. The high level of overlap between these two enrichment 282 

factors is undoubtedly due to the fact that the granules in the pouches 283 

and the soil are predominantly calcite. This also helps explain the soil 284 

granule – pouch granule enrichment factor that is almost equal to zero 285 

within error; the majority of ACC will have converted to calcite in the 286 

pouch granules and therefore little additional transformation occurs 287 

following expulsion of the granules from the calciferous gland into the 288 

earthworm intestine and from there into the soil. Both the pouch 289 

granule - milky fluid and soil granule - milky fluid enrichment factors 290 

indicate an increase in the incorporation of 12C relative to 13C as the ACC 291 

crystallizes to calcite. This incorporation of the lighter isotope in the 292 

final crystallization product is in agreement with existing kinetic 293 

theories on the control of isotope fractionation (Watson, 2004; DePaolo, 294 

2011; Nielsen et al., 2012) and has been observed in a variety of 295 

biominerals (e.g. Auclair et al., 2003; Rollion-Bard et al, 2016; Spooner 296 
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et al, 2016) where the δ13C of crystalline calcium carbonate is compared 297 

to that of dissolved precursor ions.  298 

Although significant differences exist between the enrichment 299 

factors calculated for different temperatures for the pouch granule - 300 

milky fluid (ANOVA, p < 0.01) and soil granule - milky fluid (Kruskal-301 

Wallis One Way Analysis of Variance on Ranks, p < 0.01) linear 302 

regression indicates only a small dependence of this variation on 303 

temperature (R2 < 0.2), consistent with previous abiotic calcite-304 

bicarbonate enrichment factors (Romanek et al., 1992), but not with 305 

theories considering kinetic controls on isotopic fractionation. The lack 306 

of an apparent temperature dependence may be due to either or both 307 

the metabolism of the earthworms maintaining a more constant body 308 

temperature in the calciferous gland than in the surrounding soil 309 

(though note that oxygen fractionation is temperature sensitive to the 310 

temperature of the surrounding soil, see Versteegh et al., 2013) or the 311 

scatter in the δ13C values.  312 

Guiffre et al. (2015) found that the Ca and Mg isotopic composition of 313 

calcite formed from ACC was sensitive to the amounts of ACC present. In 314 

a similar fashion, the relatively high standard deviation values for the 315 

enrichment factors may be due to a lack of end member ACC and calcite 316 

used in our calculation. Although the FTIR spectra for the milky fluid 317 

indicate that the only form of CaCO3 present is ACC (Fig. 2), studies have 318 
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found trace amounts of calcite in the milky fluid (Gago-Duport et al., 319 

2008) and it is possible that that is the case here with the calcite below 320 

detection levels. Trace amounts of calcite may have been produced if 321 

some ACC transformed whilst the milky fluid was drying out. Our 322 

results suggest that this would result in more negative δ13C values. 323 

Similarly the granules, although predominantly calcite, may contain 324 

varying, but small, amounts of ACC (e.g. Lee et al., 2008; Hodson et al., 325 

2015)). Small amounts of ACC appear to be unusually stable in the 326 

granules and may be preserved indefinitely in the granules. Further, 327 

granules recovered from the soil were secreted over a 28 day period 328 

and therefore potentially show different degrees of transformation 329 

from ACC to calcite. Varying levels of transformation from ACC to calcite 330 

from the milky fluid to the granules recovered from the soil are also 331 

consistent with the wider range of δ13C values and enrichment factors 332 

observed for these granules compared to those present in the pouches 333 

which will have a more similar age and, therefore potentially have 334 

experienced the same amount of ACC transformation.  335 

Methods have recently been developed to synthesise ACC that can 336 

remain stable for several days (Rodriguez-Blanco et al., 2008). This 337 

opens up the possibility of direct and accurate determination of εcalcite-338 

ACC for abiotic systems in the near future. More detailed carbon isotope 339 

and mineralogical studies of the calciferous gland and calcite granules 340 
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together with other biominerals, e.g. echinoderm spines, in which both 341 

ACC and calcite are present are required to better understand the role 342 

of vital processes in this fractionation. As many biominerals are 343 

precipitated from an ACC precursor phase, and can contain stable ACC 344 

in their mature state, this will be an important step in understanding 345 

the mechanisms of biomineralisation and implications for the 346 

environmental interpretation of biomineral proxies. 347 
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Earthworms produce granules of calcium carbonate that form from an amorphous calcium 

carbonate suspension  

The microspherulites of amorphous calcium carbonate coalesce and recrystallize 

Fractionation of C isotopes occurs as the ACC recrystallizes with εcalcite-ACC = -1.20 ± 0.52% 

This is consistent with a dissolution-reprecipitation pathway rather than solid state rearrangement 

This may be important for the interpretation of CaCO3-based C isotope environmental proxies. 


