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ABSTRACT 

The paper provides the systematic derivation of a new analytical approach to tensile membrane 

action of lightly-reinforced thin concrete slabs at large deflections.  The basic motivation for the 

work comes from the recent use of tensile membrane action as an enhancement, in the fire 

condition, of the capacity of the thin concrete slabs which are normally made composite with 

downstand steel beams, at temperatures which have substantially degraded the contribution of 

these steel beams.  The method accepts as a premise that such slabs form a pattern of localized yield 

lines as an initial small-deflection failure mechanism, and that these yield lines retain their positions 

as subsequent deflection occurs.  As the slab deflects, maintaining the correct kinematics of the 

articulation and displacement of the system of slab facets, interacting across the yield lines, is 

extremely important to the horizontal equilibrium of the slab.  In this process it becomes necessary 

to re-think the basic assumption of traditional yield-line theory that any local cross-section of unit 

width along a yield line equilibrates the force of its concrete compression block with the yielded 

ƐƚĞĞů͛Ɛ ƚĞŶƐŝŽŶ ĨŽƌĐĞ͕ ƉƌŽĚƵĐŝŶŐ ĐŽŶƐƚĂŶƚ ƉůĂƐƚŝĐ ŵŽŵĞŶƚ ĐĂƉĂĐŝƚŝĞƐ ĨŽƌ ƚŚĞ ŵĞƐŚ ŝŶ ĞŝƚŚĞƌ Ěirection 

along any yield line.  In the approach set out in this paper only overall equilibrium of the system of 

facets needs to be maintained.  As in normal rigid-plastic analysis, concrete acts only when 

compressed, and then at its compressive strength, and steel acts at its tensile yield strength whilst it 

remains intact.  However, steel in either direction can fracture when the local crack-width causes its 

local strain to exceed its fracture ductility.  When the rebar crossing the diagonal yield lines begins to 

ĨƌĂĐƚƵƌĞ ƚŚŝƐ ŐĞŶĞƌĂůůǇ ŝŶĚŝĐĂƚĞƐ ƚŚĂƚ ƚŚĞ ƐůĂď͛Ɛ ĐĂƉĂĐŝƚǇ ŝƐ ĂďŽƵƚ ƚŽ ƌĞĚƵĐĞ ǁŝƚŚ ĨƵƌƚŚĞƌ ĚĞĨůĞĐƚŝŽŶ͘  

TŚĞ ƉĂƉĞƌ ĚŽĞƐ ŶŽƚ ĂƚƚĞŵƉƚ ƚŽ ĂĚĚƌĞƐƐ ŚŽǁ Ă ƌĞďĂƌ͛Ɛ ĨƌĞĞ ůĞŶŐƚŚ ĂĐƌŽƐƐ Ă ĚŝƐĐƌĞƚĞ ĐƌĂĐŬ ŝƐ 

generated, or the limiting crack widths implied, but this is shown in a range of examples to be a 

major issue if tensile membrane action is to be used in practice to enhance the capacity of slabs, for 

example in hazard loading situations.  It is important that principles be established in future to 

quantify this aspect of rebar ductility. 

 

Key Words:  composite slabs, fire, concrete slabs, tensile membrane action, yield line theory 
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YIELD-LINE PLASTICITY AND TENSILE MEMBRANE ACTION IN LIGHTLY-REINFORCED RECTANGULAR 

CONCRETE SLABS 

Ian Burgess  

1. INTRODUCTION 

The strength behaviour of concrete slabs, as well as the investigation of calculation methods suitable 

for routine use in design, generated significant interest during the 1950s and 1960s, following the 

initial publication in Swedish of yield-line theory by Johansen [1] in 1943; this was later translated 

into English, but had in any case rapidly been picked-up, explained and developed by others [2, 3]. 

JŽŚĂŶƐĞŶ͛Ɛ ƚŚĞŽƌǇ ĐŽŶĐĞƌŶƐ ƚŚĞ ƉůĂƐƚŝĐ ůŝŵŝƚ-states of reinforced concrete slabs, in principle of any 

shape, size, support conditions and reinforcement ratio, although in practice being most relevant to 

under-reinforced slabs.  It is postulated that, after undergoing some small elastic displacement the 

slab develops a pattern of discrete plasƚŝĐ ŚŝŶŐĞƐ ǁŚŝĐŚ͕ ǁŚĞŶ ĐŽŵƉůĞƚĞ͕ ĐŽŵƉƌŝƐĞ ŝƚƐ ͞ĨĂŝůƵƌĞ͟ 

mechanism.  The development sequence for a simply supported rectangular slab is illustrated in 

Figure 1.   

 

Figure 1: Stages of development of a yield-line mechanism in a concrete slab. 

The slab forms flat facets between the linear plastic hinges, known as yield lines, at which relative 

rotations take place.  The load capacity of a given mechanism geometry can be calculated simply by 

equating the loss of potential of the external loading ŝŶ ĚĞĨůĞĐƚŝŶŐ ƚŚĞ ƐůĂď͛Ɛ ƐƵƌĨĂĐĞ ŝŶ ƚŚŝƐ ǁĂǇ ǁŝƚŚ 

the plastic work done along the yield lines in articulating to create the deflection.  For any assumed 

mechanism the resulting load capacity prediction lies above or equal to the real limiting capacity; in 

the case of the rectangular slab shown in Figure 1 the predicted load capacity has to be minimized 

with respect to the coordinate nl of the intersection of the central and diagonal yield lines in order to 

achieve the exact limiting value.  A floor slab may be continuous across many individual edge-

supported panels, in which case additional yield lines must be considered just inside the continuous 

edges. 

Tests by Ockleston [4] in the 1950s, on an existing reinforced concrete building, showed load 

capacities of slabs considerably in excess of those predicted by either yield-line theory or by the 

simpler Hillerborg [5-7] strip rationalisation.  This was later confirmed [8ʹ10] in many academic 
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research tests.  In conventional two-way-spanning reinforced concrete slabs, with flat soffit and 

moderate span as well as restraint to horizontal edge movement given by adjacent slab panels, the 

slab depth is usually sufficient for a compressive membrane action (CMA) to account for this 

apparent strengthening.  This effect is actually an arching action which creates a shallow dome-

shaped surface of resultant compressive thrust within the thickness of the slab.  In slab panels which 

are thinner relative to their overall dimensions this mechanism may initially occur if the necessary 

horizontal edge-ƌĞƐƚƌĂŝŶƚ ŝƐ ƉƌĞƐĞŶƚ͕ ďƵƚ ǁŝůů ƵŶĚĞƌŐŽ Ă ͞ƐŶĂƉ-ƚŚƌŽƵŐŚ͟ ŝŶƐƚĂďŝůŝƚǇ Ăƚ ǀĞƌǇ ůŽǁ 

deflection, effectively inverting the thrust surface which then acts as a hydrostatic tensile membrane 

field. In contrast to compressive membrane action, this tension can be equilibrated internally within 

the slab panel by a narrow circumferential field of principal compression stress; this is facilitated by 

ĐŽŶĐƌĞƚĞ͛Ɛ ƐƚƌĞŶŐƚŚ ŝŶ ĐŽŵƉƌĞƐƐŝŽŶ͘  TŚŝƐ ŵĞĐŚĂŶŝƐŵ ŝƐ ŬŶŽǁŶ ĂƐ ƚĞŶƐŝůĞ ŵĞŵďƌĂŶĞ ĂĐƚŝŽŶ ;TMAͿ͕ 

whiĐŚ ĚĞŵĂŶĚƐ ŽŶůǇ ƚƌĂŶƐǀĞƌƐĞ ƐƵƉƉŽƌƚ ĂƌŽƵŶĚ Ăůů ƚŚĞ ƐůĂď͛Ɛ ĞĚŐĞƐ ŝŶ ŽƌĚĞƌ ƚŽ ŵĂŬĞ ŝƚ ǁŽƌŬ͘ 

The load-carrying mechanism in the horizontal plane, illustrated in Figure 2, is analogous to the force 

transfer in a bicycle wheel (although without the pre-tension in the spokes), with a radial tension 

field balanced by circumferential compression.  In the transverse direction the external loading 

within any closed area is largely supported by integration of the vertical components of the same 

radial tension, at their corresponding inclinations, around its perimeter.  In Figure 2 the plan view of 

a rectangular slab shows simple vertical support provided around its edges.   

 

Figure 2: Illustrations of tensile membrane action.  (a) Stresses in a concrete slab; (b) Forces 

in a bicycle wheel. 
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In practical situations, especially where TMA is used in structural fire engineering calculations for 

composite floors for which unprotected steel beams within a slab panel area lose nearly all of their 

strength at high temperatures, the edge support is usually provided by strong edge beams.  In the 

fire case the steel edge beams are protected with insulating material so that they retain a much 

larger proportion of their strength than the internal beams, but under prolonged heating will 

eventually achieve very high temperatures and fail to provide the necessary degree of support. 

1.1 Historical approaches 

Most of the existing analytical research work on TMA took place during the 1960s, the most 

significant published work being by Sawczuk and Winnicki [11], Kemp [12] specifically on square 

slabs, and Hayes [13, 14].  At an earlier stage Wood [15] had pointed out a frequent observation 

from tests to failure of concrete slabs that, while rotational hinges formed in the regions of the yield 

lines, generally in accordance with yield-line theory, a purely tensile crack also formed at high 

deflections across the shorter span of the slab.  This crack caused by membrane tension is located 

most usually at the middle of the longer span, but either one or two are sometimes observed as 

originating at the intersection of the central and diagonal yield lines.  The small-deflection yield-line 

mechanism and the two alternative large-deflection failure mechanisms are shown in Figure 3.  

Because of the brittle nature of concrete in tension, and particularly for lightly-reinforced slabs for 

which the yield lines are highly localised, it is logical that as deflections increase these yield lines do 

not change their locations but their hinge articulations increase. 

Sawczuk and Winnicki [11] developed analytical models for all three of these situations, assuming 

that large deflections are caused simply by relative rotations at the yield lines together with 

stretching of reinforcement across yield lines and at any tension cracks, as dictated by the 

kinematics of the particular case under consideration.  Their set-up of the basic case, shown in 

Figure 3(a), allows rotation about, but no movement of the mid-surface across, all the edges of the 

panel.   

 

Figure 3: Different plastic mechanisms considered by Sawczuk and Winnicki [9]. 

 
  

              

(a) Small- or large-deflection 

yield line mechanism. 

(b) Large-deflection yield-line 

mechanism including a 

central tensile crack. 

(c) Large-deflection yield-line 

mechanism including cracks 

at yield-line intersections. 
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For the other cases the corners of the panel are prohibited from moving, although rotations of the 

slab facets are allowed about these points.  Their analysis is based on an approximation of the 

interaction curve between moment capacity and membrane force at an isolated (beam) cross-

section assuming a rectangular concrete compression stress block.  For the basic case, and 

depending on the deflection magnitude, they postulate that a diagonal yield line can contain up to 

three distinct zones: a zone adjacent to the slab corner where only bending moments contribute 

internal work; a zone in which both moment and membrane force do work; finally there may be a 

zone adjacent to the yield-line intersection where only membrane force does work.  The latter 

corresponds to the length of yield line in which there is no concrete stress block, which is particularly 

relevant at high deflections.  The mechanisms in which tensile through-depth cracks have formed 

are not considered in this paper, although the conditions for their initiation will be discussed at a 

later stage. 

Kemp [12] created a large-deflection yield-line model for the bisymmetric case of square simply 

supported, isotropically reinforced slabs under uniformly distributed loading, as a more practically 

ƌĞůĞǀĂŶƚ ĚĞǀĞůŽƉŵĞŶƚ ĨƌŽŵ WŽŽĚ͛Ɛ ΀ϭϱ΁ ƐŽůƵƚŝŽŶ ĨŽƌ Ă ĐŝƌĐƵůĂƌ ƐůĂď͘  KĞŵƉ͛Ɛ ŵĞƚŚŽĚ ƵƐĞƐ Ă 

kinematically admissible extension of the classic diagonal yield-line mechanism for infinitesimal 

deflections which allows compatible movement of the edges of the slab as well as their rotation, in 

order to generate in-plane equilibrium of the four triangular slab facets, taking account of the 

movement of the neutral axis which delimits the concrete stress block along a yield line.  This allows 

the yield lines to separate completely at some value of the deflection, giving a central zone of pure 

tension which grows in width as the deflection increases.  This will be seen to resemble strongly the 

method which is introduced in this paper for rectangular slabs, although Kemp uses an equilibrium 

method, taking moments about the slab edges, rather than by equating the internal work with the 

loss of potential of the external load which is used to calculate the yield-line initial failure load. 

Hayes [13, 14] developed a different equilibrium method, addressing rectangular slabs with 

ŽƌƚŚŽƚƌŽƉŝĐ ƌĞŝŶĨŽƌĐĞŵĞŶƚ͘  HĞ ŝŶŝƚŝĂůůǇ ĞǆƚĞŶĚĞĚ “ĂǁĐǌƵŬ͛Ɛ ƐŽůƵƚŝŽŶ ƚŽ ƚŚĞ ĐĂƐĞ ŽĨ ƌĞĐƚĂŶŐƵůĂƌ 

orthotropically-reinforced slabs, whilst accepting that the method implied the existence of boundary 

constraint forces which would not exist around simply supported slabs, and that its predictions for 

ƚŚĞ ĐĂƐĞ ŽĨ ƐƋƵĂƌĞ ƐůĂďƐ ǀĂƌŝĞĚ ĐŽŶƐŝĚĞƌĂďůǇ ĨƌŽŵ KĞŵƉ͛Ɛ͘  HŽǁĞǀĞƌ ŚŝƐ ŵĂŝŶ ĚĞǀĞůŽƉŵĞŶƚ ǁĂƐ ŽĨ Ă 

new equilibrium method to calculate the enhancement of load capacity for rectangular slabs with 

orthotropic reinforcement.  The method is once again based on the optimal small-deflection yield-

line mechanism with moderate deflections imposed upon it.  He assumed two alternative membrane 

force distributions; a linearly-varying distribution of net membrane force along the diagonal yield 

lines (Figure 4(a)), and a similar distribution from the corners of the slab which then becomes 
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constant (Figure 4(b)) when the yield lines separate over the whole slab depth in the vicinity of the 

yield-line intersection.   

 

Figure 4: HĂǇĞƐ͛Ɛ ΀ϭϬ͕ ϭϭ΁ ŵĞŵďƌĂŶĞ ĨŽƌĐĞ ŵŽĚĞůƐ͘  ;ĂͿ CŽŶĐƌĞƚĞ ĐŽŶƚĂĐƚ ŽŶ ǁŚŽůĞ ůĞŶŐƚŚ ŽĨ 
diagonal yield lines; (b) No concrete contact near yield line intersections; (c)  In-

plane equilibrium of forces. 

In these figures the notations T0 and KT0 represent the yield strengths per unit slab width of the 

mesh aligned in the x- and y- directions respectively.  Hence it is hard to see why there is an assumed 

commonality of membrane force between the longitudinal and diagonal yield lines at their 

intersection (the point C) in both cases. 

It must be pointed out that these are simply treated as two alternative assumptions.  Since there is 

ŶŽ ĂƚƚĞŵƉƚ ƚŽ ŵĂŬĞ ƚŚĞ ƐůĂď͛Ɛ ŵŽǀĞŵĞŶƚƐ ĂŶĚ ƌŽƚĂƚŝŽŶƐ ĐŽŵƉĂƚŝďůĞ ǁŝƚŚ ƚŚĞ ŵĞŵďƌĂŶĞ ĨŽƌĐĞ 

distributions, the first assumption cannot predict the critical deflection at which contact ceases 

between the yield-line crack faces at the intersection, beyond which the second assumption would 

be more ůŽŐŝĐĂů͘  HĂǇĞƐ ŵĂŬĞƐ ƚŚĞ ĂƐƐƵŵƉƚŝŽŶ ƚŚĂƚ ƚŚĞ ͞ĨĂŝůƵƌĞ͟ ĐŽŶĚŝƚŝŽŶ ŝƐ ǁŚĞŶ ƚŚĞ ƚŚƌŽƵŐŚ-

depth tension crack has formed from the yield-line intersection, as shown in Figures 3(c) and 4(c), 

and uses in-plane equilibrium of the forces on the sides of the triangles ECD, together with in-plane 

equilibrium of Facets 1 and 2, to determine the exact values of k and b, which define the membrane 

force distributions.  Then, by taking the moments about the slab edges ED (for Facet 1) and DX (for 

Facet 2), the load capacities of each of the facets at any deflection, due only to the membrane forces 

and their lever arms about the edges, are found.  TŚĞƐĞ ĂƌĞ ĞǆƉƌĞƐƐĞĚ ĂƐ ͞ĞŶŚĂŶĐĞŵĞŶƚƐ͟ 1me  and 

2me  relative to the small-deflection yield-line load capacity.  The load capacities of the facets due to 
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the plastic bending moments distributed along the yield lines, amended by the presence of the 

coincident membrane forces, are not included in these calculations but are then aggregated as 

ƐĞƉĂƌĂƚĞ ͞ĞŶŚĂŶĐĞŵĞŶƚs͟ 1be  and 2be , again relative to the small-deflection capacity.  The 

membrane and bending moment enhancement factors for each facet are added together, to 

produce separate overall enhancement factors 1 1 1m be e e   and 2 2 2m be e e   for the two facets.  

These enhancement factors are generally unequal.  This is because the resultant vertical shear forces 

on the diagonal yield lines are not included in the moment calculations.  In their absence a weighted 

average enhancement factor is given (without proof) as 

1 2
1 2

( )
[ ]
(1 2 )

e e
e e




 


  (1) 

in which  is the coefficient of orthotropy and   is the slab aspect ratio. 

It is worth mentioning here that, in unpublished work, Gillies [16] has included the vertical shear 

resultants with the membrane forces in the first moment equations, eliminated these between the 

two facets, and calculated a single enhancement factor 

1 2
1 2

( )
[ ]
(1 2 )

e e
e e

n


 


  (2) 

in which n is the proportion of the longer span which locates the position of the yield-line 

intersection  point, as shown in Fig. 4, and 1e  and 2e  are defined as above. 

1.2 Recent developments 

Interest in the subject of TMA appears to have lapsed after publication of these initial studies; large 

deflections are unacceptable in terms of normal building serviceability, and so the subject was seen 

as of being only of academic interest. A relevant application became apparent in the late 1990s, in 

the context of composite construction, particularly for composite floors composed of thin, very 

lightly-reinforced concrete slabs acting compositely with an array of parallel downstand steel beams.  

When combined with profiled steel decking through which shear studs are welded onto the upper 

flanges of the downstand beams, this system of constructing floors is quick to construct and very 

economical; its major perceived disadvantage is that traditional fire resistance design usually 

requires all the steel beams to be fire-protected.  This process can add a considerable percentage to 

the frame cost, and can also cause extended construction times if performed on-site.  A series of 

monitored fire tests was carried out [17] in 1995-96 at Cardington, in different parts of a loaded full-

scale 8-storey building constructed using steel columns and composite floors.  In all these tests the 

columns were protected, but steel downstand beams were overwhelmingly left unprotected.  In 
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simple terms the most notable statistic from the test series was that, whereas existing codes of 

practice, such as BS5950 Part 8 [18] and the pre-standard ENV1994 Part 1-2 [19], predicted that all 

composite beams should have failed at a steel cross-section temperature of about 680°C, in almost 

every test the steel temperature considerably exceeded this value without any structural failure 

occurring.  It was quickly recognized [20, 21] that this reserve of strength in the composite system, 

when the steel beams had lost most of their strength, must be due to TMA in the concrete slabs 

which formed part of the composite floor.  It was notable that slab deflections were very large in all 

the tests, and that curvatures were distinctly biaxial; these are the essential conditions for TMA to 

occur.  In the aftermath of the Cardington tests a design method based on the enhancement of 

yield-line capacity in composite slabs with unprotected downstand beams supported by protected 

edge-beams was developed by Bailey [22-25] at the Building Research Establishment.  This method 

has been used in structural fire engineering design in the UK from the year 2000 up to the present.  

Its model of TMA is also the basis of the New Zealand Slab Panel Method by Clifton [26], and it has 

recently been adopted almost in its entirety by design guidance documents [27, 28] emanating from 

the European research programme FRACOF. 

BĂŝůĞǇ͛Ɛ ŵŽĚĞů ŝƐ ǀĞƌǇ ŵƵĐŚ ďĂƐĞĚ ŽŶ ƚŚĞ ǁŽƌŬ ŽĨ HĂǇĞƐ͕ ƵƐŝŶŐ ŝĚĞŶƚŝĐĂů ĂƐƐƵŵƉƚŝŽŶƐ ŽŶ ƚŚĞ ĨŽƌĐĞ 

distributions along all of the yield lines, but apparently ignores the case shown in Figure 4(b) in 

which through-depth cracks are generated from the yield-line intersections, gradually spreading 

towards the slab corners as the deflection increases.  Hence, the distribution of membrane force 

along these yield lines is always linear in this model.  However, Bailey uses the more common 

observation from tests, which is that the eventual through-depth tension crack tends to occur across 

the middle of the longer dimension of the slab (Figure 3(b)) rather than at the yield-line 

intersections.  Hence his force system for in-plane equilibrium is as shown in Figure 5, on the edges 

of a semi-trapezoidal quadrilateral, rather than a triangular, slab facet. 

 

Figure 5: BĂŝůĞǇ͛Ɛ ΀ϭϬ͕ ϭϭ΁ ŵĞŵďƌĂŶĞ ĨŽƌĐĞ ŵŽĚĞů͘  ;ĂͿ CŽŶĐƌĞƚĞ ĐŽŶƚĂĐƚ ŽŶ ǁŚŽůĞ ůĞŶŐƚŚ ŽĨ 
diagonal yield lines; (b) In-plane equilibrium of forces. 
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The in-plane equilibrium of the assumed forces shown in Figure 5(b) is addressed in similar fashion 

to Hayes, by resolving in two directions and taking moments about the point E.  Bailey departs from 

HĂǇĞƐ͛Ɛ ĂƐƐƵŵƉƚŝŽŶ ƚŚĂƚ ƚŚĞ ƌĞŝŶĨŽƌĐĞŵĞŶƚ ĐƌŽƐƐŝŶŐ ƚŚĞ ƚhrough-depth crack is at its yield strength, 

by assuming an ultimate strength which is 10% higher.  Beyond this, the enhancement factors e1 and 

e2 are found for each of the facets by taking moments about the supported edges, and a single 

weighted average enhancement factor is once again calculated using Equation (1). 

BĂŝůĞǇ͛Ɛ ŵĞƚŚŽĚ ŝƐ͕ ŽĨ ĐŽƵƌƐĞ͕ ŵĂŝŶůǇ ĂŝŵĞĚ Ăƚ TMA ŝŶ ĐŽŵƉŽƐŝƚĞ ĨůŽŽƌƐ ŝŶ ĨŝƌĞ͕ ĂŶĚ ĂĚĚƐ ƚŚĞ 

enhanced capacity of the slab at any deflection to the reduced capacity of the unprotected 

composite beams due to elevated temperature.  It then applies a deflection limit to the TMA, which 

attempts to represent a safety-factored version of that at which the reinforcement across the 

through-depth crack fractures.  This deflection limit is itself questionable, but since it applies only to 

the high-temperature case it will be dealt with in a subsequent paper.  The present paper presents a 

more complete approach to the basic mechanics of TMA of lightly-reinforced rectangular concrete 

slabs than those postulated previously, and is not at this stage of its development concerned with 

the effects of elevated temperatures.  However, the ultimate aim of the work is very definitely to 

develop a kinematically-consistent process to gauge the enhancement of failure temperatures for 

composite floor panels in fire conditions. 

An aspect of small-deflection yield-line mechanisms which tends to be neglected is that, as the ratio 

of reinforcement strengths per unit width ( pxf  and pyf ) in the x- and y-directions changes, the 

geometry of the optimal yield-line mechanism also changes.  As is illustrated in Figure 6(a), isotropic 

mesh (with / 1px pyf f   )  and lower values of   produce optimum mechanisms with their 

central yield-lines aligned in the longer-span (x) direction, and the value of the intersection 

coordinate ݊௫ increases as   increases.   

 

Figure 6: Changes in yield-line geometry for different ratios ௣݂௫ ௣݂௬Τ Ǥ  (a) x-aligned; (b) 

transition; (c) y-aligned. 
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At some value of 1  the intersection coordinate  reaches the centre of the slab ( / 2xn r ), the 

transition state shown in Figure 6(b).  For even higher values of   the central yield line is aligned in 

the y-direction (Figure 6(c)) and the intersection coordinate ݊௬ decreases progressively as   

increases.  The issue of calculating the alignment of the mechanism, and the optimal value of xn  or 

yn  will be considered later.  The process for finding the enhancement of yield-line capacity due to 

TMA will be defined in detail for the x-aligned mechanism, and the results for the y-aligned 

mechanism will then be presented. 

2. MECHANICS OF DEFLECTION OF YIELD-LINES 

The redeveloped analysis of rectangular slabs is based on the three essential principles of plastic 

theory; kinematics, equilibrium and plastic material properties.  It is assumed that, for a slab under 

uniformly distributed transverse loading, a pattern of yield lines forms at some value of load 

ŝŶƚĞŶƐŝƚǇ͘  IĨ ƚŚĞ ůŽĂĚŝŶŐ ŝƐ ŝŶĐƌĞĂƐĞĚ ďĞǇŽŶĚ ƚŚŝƐ ͞ĨĂŝůƵƌĞ͟ ǀĂůƵĞ͕ ƚŚĞ ŐĞŽŵĞƚƌǇ ŽĨ ƚŚĞ ǇŝĞůĚ-line 

pattern is fixed and cannot change although the deflection increases.  Since concrete is a brittle 

material, when the reinforcement is relatively light cracks tend to be discrete rather than 

distributed, and once a crack has formed the moment capacity across the crack is lower than that of 

adjacent zones of the slab, and so there is no inducement for the position of a yield line to change 

once it has formed.  For rectangular slabs the optimal yield lines tend to separate the slab into 

triangular and trapezoidal flat facets, as discussed earlier.   

2.1 The x-aligned mechanism  

2.1.1 Kinematics of yield-line deflection 

When the optimal yield-line mechanism is deflected by a finite amount  at the intersection of yield 

lines, which is compatible at the yield-line intersection, the facets interact in a way which is dictated 

by their shapes, their compatible angles of rotation  and , and the rigid-body movements x and 

y of their upper-surface corners. These are shown in Figure 7.   
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Figure 7: Geometry of diagonal yield-line crack opening.  (a) Crack opening at rebar level; (b) 

Top surface of slab, including rigid-body movements of triangular and trapezoidal 

slab facets. 

The angle of the triangular facet at the slab corner is denoted as .  If the intersection is located at 

xn l in the x-direction, as shown in Figure 1, then tan 2 xn  .  The angles of rotation of the facets 

about their supported edges are related by: 

2
A x

l
n l

   , or 2 tanxn       (3) 

It is assumed that there is no slip between the facets along the diagonal yield lines.  This gives a basic 

geometric relationship between the rigid-body movements at the top corner, based on the 

geometry shown in Figure 7(b): 

sin cosx y       (4) 

Considering moderate finite rotations  and   of the triangular and trapezoidal facets, and the 

views onto their crack-faces shown in Figure 8(b) and 8(c), the motions u and v of a point at a certain 

depth z and coordinates x and y, which is initially common to the facets at zero deflection, in the x- 

and y-directions respectively are: 

2

2
x

x
u z

      (5) 

2

2
y

y
v z

   
  (6) 

or, substituting Equations (1) and (3) into Equation (6): 

tan 2 xv u n u    (7) 
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Figure 8: Movements of a point on the diagonal yield line.  (a) Plan view of top surface of 

slab; (b) x-direction motion u on triangular Facet 2; (c) y-direction motion v on 

trapezoidal Facet 1. 

Note that any position on the yield line crack-faces of Facet 1 has 0u   and any position on the 

crack-faces of Facet 2 has 0v  .  At any deflection, and given a value of the top corner movement

x , the equation of the neutral axis on each diagonal yield line is therefore given by setting   0u  in 

Equation (5), or 0v   in Equation (6), to indicate the position at which the facets cease to intersect.  

The general form is a straight line: 

2

x x
z





    (8) 

Referring to Figure 9 it can be seen that there are three possible configurations for the concrete 

stress block.   
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Figure 9: Projection on the x-direction of the yield lines at different stages; (a) Concrete stress 

blocks on all yield lines; (b) Triangular stress blocks above rebar on diagonal yield 

lines; (c) Triangular stress blocks below rebar on diagonal yield lines; (d) 

Trapezoidal stress blocks on diagonal yield lines. 

At small deflections (Figure 9(a)) the concrete is compressed on both the central and diagonal yield 

lines; the stress block is clearly rectangular on the central yield line, but increases its depth towards 

the slab corners on the diagonal yield lines.  At some deflection the central stress block disappears 

and this yield line has complete separation of the concrete crack-faces, although y-direction rebar 

may still bridge this crack.  From this point onwards the stress block on the diagonal yield lines 

becomes triangular, as shown in Figures 9(b) and 9(c).  There is also the possibility that this 

triangular stress block may go below the lower surface of the slab and become trapezoidal, as seen 

in Figure 9(d).  These configurations may be characterized by the coordinates 1z and 2z given by 

Equation (8), at the slab corner and at the yield-line intersection respectively.  In Figures 9(a) and 

9(b) the value of 1z lies below t, which is the rebar depth, and in Figures 9(c) and 9(d) it lies below 
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the rebar.  On the other hand 2z  is positive in Figure 9(a), and negative in all other cases.  From 

Equation (8) these key coordinates are: 

1
xz



   (9) 

and 

2
2

x xn l
z





    (10) 

2.1.2 Solution process 

All the forces in the horizontal plane which can cross the yield lines are shown in Figure 10.  These 

are not resultant membrane forces, but the resultant tension forces due to x- and y-direction rebar 

acting at yield, and the resultant compression forces from the concrete stress blocks which are 

assumed to be subject to the compressive strength of the concrete.  There is no attempt here to 

reduce the stress block depth, as tends to be done in current design codes, to take account of the 

curvilinear growth of concrete stress near to the neutral axis; this can easily be done in developing 

design guidance from this analysis at a later stage. 

Horizontal equilibrium can be established by resolving the x-direction forces on the triangular Facet 

2 and the y-direction forces on the trapezoidal Facet 1.  The equilibrium equations are given by: 

1 cos sinxT C S     (11) 

and 

1 2 2sin cosy y yT T C S C       (12) 

Eliminating S from Equations (11) and (12) gives: 

 1 1 2 2cos sin sinx y y yT T T C C        (13) 

It is assumed that the steel rebar is ineffective where it lies in the compressed zone above the 

neutral axis, and that x- and y-direction reinforcement fractures completely at crack openings ,lim x  

and ,lim y , which are defined by its own fracture strain (ductility) and by its bond characteristics with 

the surrounding concrete.  In the simplest terms, it may be assumed that there is zero bond between 

the positive anchor points either side of a yield line which are created by the welds to the 

orthogonal bars; the limiting crack opening at the rebar level is then given by the distance between 

these anchor points for the appropriate bar-direction multiplied by the fracture strain.  This is clearly 

an extreme case, and the crack openings at which fracture takes place will be lower because of the 
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bond between steel and concrete.  However the ductility of the rebar can simply be scaled-down 

within the zero-bond assumption to represent particular bond assumptions or pull-out test data.  

The coordinates which limit the distances over which bars deform plastically in tension across yield 

lines can be defined from the limiting fracture crack-width at the level of the mesh together with 

Equations (5) and (6), and from the neutral axis definition in Equation (8). 

(a) For reinforcement in the x-direction the limiting coordinate for fracture is: 

,

,1 1

1 lim x

lim x

x

y z t
n


 

 
   

 
  (14) 

up to a maximum value of ݈Ȁʹ. 

At high deflection it is possible for all the x-direction reinforcement to fracture.  This is the 

case for ,1 0lim xy  , or: 

,

1

lim x
z t


 

  
 

 (15) 

If the stress block lies below the mesh level at the slab corner then the limiting coordinate at 

which mesh is no longer in tension is: 

 ,1 1

1
t

x

y z t
n




    (16) 

If the stress block lies above the mesh level then ,1 0ty  . 

(b) For reinforcement in the y-direction crossing a diagonal yield line the limiting coordinate is: 

,

,1 1

2

2

lim y

lim y

x

x z t
n


 

 
   

 
  (17) 

up to a maximum value of xn l . 

If the stress block lies below the mesh level at the slab corner then the limiting coordinate at 

which it is no longer in tension is: 

 ,1 1

2
   tx z t


    (18) 

If the stress block lies above the mesh level then ,1 0tx    
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(c) For the y-direction reinforcement crossing the central yield line, either all the reinforcement 

is active, or it has completely fractured when  

,

1

2

4

lim y

x

x

n l z t
n


 

 
   

 
  (19) 

If the strengths per unit width (perpendicular to the bar direction) of the reinforcement in the x- and 

y-directions respectively are pxf and pyf , the concrete compression strength is cf , and the areas 

of the concrete stress blocks on the yield lines are A1 and A2y, the individual force components 

shown in Figure 10 are given by: 

1 cC A f   (20) 

2 2y y cC A f    or 2 0yC    (21) 

 1 ,1 ,1y lim y t pyT x x f     (22) 

 1 ,1 ,1x lim x t pxT y y f    (23) 

 2 / 2y x pyT r n lf    or 2 0yT    (24) 

 

Figure 10: The horizontal force system between facets along the yield lines, for x-aligned 

mechanisms. 

The stages in the solution process are then as follows for any given value of deflection (most 

conveniently expressed as the rotation ߠ of Facet 2): 

 For any assumed case the expressions for the in-plane forces, given by Equations (20)-(24), 

are substituted into the equilibrium Equation (13), with the appropriate assumptions for 

each assumed case, and this is then solved for the value of the only unknown quantity, 1z .   

 The assumptions about  

  

  

 

 
 

 

  
  

  

  C 

S 

T
y1

 

T
x1 

 
  

  

Q R 

S 

Q͛ 

Q͟ 

R͛ 

R͟ 
“͛ “͟ 

T
y2

 Cy2
 

x 

y 

n
x
l 

1 

2 



 

16 

 

o the state of the concrete stress block,  

o the state of fracture of the mesh, 

are then checked for consistency for all cases assumed using this value of 1z .  Only one set 

of assumptions will be verified.   

 For the verified case the plastic internal work done on the central and the four diagonal yield 

lines is now aggregated on the basis of the quarter-model shown in Figure 10 for the 

deflection defined by the rotation ߠ of the triangular facet, as the sum of the multiples of 

the forces and their appropriate movements for each force component, including both 

(tensile resultant forces x their crack-face separations) and (compressive resultant forces x 

their crack-face intrusions).  The appropriate movements are those of the centroids of the 

concrete stress blocks 1A and 2 yA  and of the resultant bar forces 1 1,x yT T  and 2yT .  These 

movements are denoted as  
2 1 1

,  , , ,
y x yC C C T Tu v v u v  and 

2  ,yTv and are calculated from 

Equations (5) and (6) using the coordinates of the appropriate resultant forces.  Of these 

displacements 
1

,
xC Tu u  are given by movement of the triangular facet, and 

2 1
, ,

y yC C Tv v v and 

2  yTv  are given by movement of one half of one trapezoidal facet.  In general terms these 

movements are: 

2

,1 ,1ǻ
2

C CA CAu x z x
     (25) 

2

,1 ,1
2

C CA CAv y z y
      (26) 

2

2

2ǻ
2 4yCv y z l
 

     (27) 

 
1

2

,1 ,1ǻ
4xT Lim Tu x t x x
      (28) 

  
1

2

,1 ,1ǻ
4yT Lim Tv y t y y
      (29) 

2

2

ǻ
4yT

l
v y t

     (30) 

The expression for loss of potential of the external uniformly distributed load ݌ǡ which is the 

same for all cases, is: 
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3

2 3

x
e x

nr
W pl n   

 
  (31) 

This is equated to the aggregate internal work: 

 
1 1 2 21 1 2   24 ( cos sin )

x y y yi x T y T y T C C y CW T u T v T v C u v C v          (32) 

to give the enhanced load capacity: 

 3

6

3 2

i

x x

W
p

l r n n



  (33) 

for the assumed value of ߠ. 

2.1.3 Application to particular cases as deflection increases 

A total of 30 combinations of the different stress-block configurations (complete and triangular, 

above and below the mesh; trapezoidal) and reinforcement failure conditions (central yield line 

intact or fractured; x- or y-bars, or both, partially fractured) is possible; these combinations are 

defined in Table 1.   

  Reinforcement mesh fracturing 

Compression block None Central y 

(all) 

Diagonal 

x 

Central y + 

diagonal x  

Central y + 

diagonal y 

Diagonal 

x and y 

Full   above mesh a1x a1x’ a1x* a1x’* a1x** a1x*** 

 below mesh a2x a2x’ a2x* a2x’* a2x** a2x*** 

Triangular above mesh b1x b1x’ b1x* b1x’* b1x** b1x*** 

 below mesh b2x b2x’ b2x* b2x’* b2x** b2x*** 

Trapezoidal  cx cx’ cx* cx’* cx** cx*** 

Table 1: Combinations of compression block configuration and rebar fracture for x-aligned cases. 

For the initial yield-line failure, at minimal deflection, the case is a1x, for which all the reinforcement 

is intact and lies below the complete stress blocks.  As the deflection is increased, the key 

dimensions which define the stress blocks change; 1z  increases and 2z  decreases, as the crack 

width at the mesh level increases.   There are therefore several possibilities for the subsequent case, 

depending on which of the following happens first: 

 2z  becomes negative; Case b1x. 

 The central rebar fractures; Case a1x’. 

 1z  exceeds t; Case a2x. 

Beyond this first change of case the scope for further changes expands considerably 
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2.1.4 Initial increase of deflection: Case a1 

A general section showing the surfaces of the first yield-line mechanism with stress blocks on all 

yield lines and all rebar intact, viewed as a projection into the x-direction, is shown in Figure 9(a).  It 

is worth showing the calculation process for this case in detail. 

The equations of the neutral axes are: 

1
2

x
z z


    (34) 

on the diagonal yield line, and 2 1
2

xn l
z z z


    on the central yield line.  The concrete stress 

block areas are: 

 1 1 2 1 12 sin
2 2 2

x x x
y

n l n l n l
A z z z A

       
 

  (35) 

2 2 1
2 2 2

x
y x x

n lr r
A l n z l n z

            
    

  (36) 

The concrete compression forces are therefore: 

1
sin 4

c x xf n l n l
C z



   
 

  (37) 

2 1
2 2

x
y c x

n lr
C f l n z

      
  

  (38) 

The steel forces in plastic tension are: 

1y py xT f n l   (39) 

1
2

x px

l
T f   (40) 

 2 / 2y py xT f l r n    (41) 

It is convenient at this stage to use dimensionless versions of various defining parameters: 

px

x

c

f

f l
     and 

py

y

c

f

f l
    (42) 

1
1

z

l
     and 

2
2 1

2

xnz

l

      (43) 
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t

l
    (44) 

For future reference, outside this case, the limiting crack-widths at which mesh fractures are also 

normalized at this stage as: 

,lim x

x
l




    and 
,lim y

y
l




   (45) 

Substitution of some of these relationships, with Equations (37)-(41), into Equation (13) gives an 

equilibrium condition: 

   1

1 1 1
2 2 0

sin cos 2 2 2  cos

x
x x y x

x

n
r n r r n

n sin


  

   
    

           
    

  (46) 

For any known value of ߛ (and ݊௫), 1   is evaluated from this equation.  If this is converted back to ݖଵ and ݖଶ, the concrete forces at the centroids of the areas ܣଵ௬ and ܣଶ௬ǡ given by Equations (35) and 

(36), can then be evaluated.  For Case a1 the coordinates of the centroid of the stress block on a 

diagonal yield line are given from the geometry shown in Figure 8(a) as: 

 
 

1  2

,1

1  2

  2 

3  

x

CA

n l z z
x

z z





  (47) 

,1

,1
2

CA

CA

x

x
y

n
   (48) 

 
 

2 2

1 1 2 2

,1

1 2

 

3
CA

z z z z
z

z z

 



  (49) 

The plastic work done internally, for any deflection defined by the rotation ߠ of the triangular facet, 

and consequently the enhanced load capacity, can now be calculated as in Equations (32) and (33).   

2.1.5 Geometry of the yield-line mechanism 

The geometry of the yield-line mechanism is determined only once for lightly-reinforced slabs.  The 

ƉĂƚƚĞƌŶ ǁŚŝĐŚ ŐŝǀĞƐ ƚŚĞ ůŽǁĞƐƚ ƉůĂƐƚŝĐ ͞ĨĂŝůƵƌĞ͟ ůŽĂĚ ŝŶƚĞŶƐŝƚǇ ݌଴ causes discrete cracks which retain 

their positions during subsequent deflection.  In the conventional analytical process, in which it is 

assumed that the neutral axis depths with respect to the x- and y-aligned reinforcement can be 

calculated independently, the optimal mechanism geometry is obtained analytically, by setting the 

first derivative of the algebraic expression for ݌଴ with respect to ݊௫ equal to zero.  In this case, in 

which the neutral axis depth is found from the in-plane equilibrium conditions, although an algebraic 
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expression can be written for ݌଴, this is sufficiently complex that finding an analytical solution for ݊௫ 

is difficult unless x y   . 

It is relatively straightforward to find the optimum yield-line pattern for a particular case iteratively, 

given that the enhancement calculation has in practical terms to be done by a computer code rather 

than manually.  In this process the coordinate ݊௫ is initially set at a very low value, and then 

increased progressively until / 2xn r .  At each value of ݊௫ Equation (46) is used with 0    to 

give: 

 1

1 1
) / 2

2 sin cos
x y x

x

r r n
n

  
 

   
      

  
  (50) 

For a virtual angle of rotation  , 2 1  and the virtual deflections are given by Equations (25) to 

(30) as: 

1 / 2Cu l    (51) 

2 1yC C xv v n l      (52) 

 
1 1xTu l        (53) 

 
1 2 12

y yT T xv v n l          (54) 

The internal work is then given by a reduced form of Equation (32): 

   3 2

1 12 2 (1 2 )i c x y x xW f l rn rn         
  (55) 

Hence the associated yield-line capacity is: 

      2

1 16 2 2 (1 2 ) / 3 2c x y x x x xp f rn rn r n n         
  (56) 

For each assumed value of ݊௫ a value of ݌  is found, and when the minimum value has been 

detected ݊௫  is refined until its optimum value has been determined to sufficient accuracy.  This 

value is then fixed for use in the enhanced capacity calculations. 

2.1.6 Subsequent cases 

After some deflection Case a1x terminates when its conditions no longer apply, either because of 

the fracture of some reinforcement, or by loss of the mid-yield-line concrete stress block.  As 

deflections increase further a range of different possibilities, each of which is characterized by a 

variation of Equation (46), has to be checked for validity at each deflection value.  If the general form 

of the in-plane equilibrium Equation (13), which has already been specialized to Equation (46) for 

Case a1x, is expressed as: 
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2

1 1 0a b c      (57) 

then the expressions for the coefficients a, b and c of the in-plane equilibrium equations for each of 

these cases are shown in Tables 2, 3 and 4. 
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Case ࣒ࢇ૚૛ ൅ ૚࣒࢈ ൅ ࢉ ൌ ૙ 

 b c ࢇ 

a1x  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ  െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ൬ߣ௫ ͳʹ݊௫ ൅  ൰ݎ௬ߣ

a1x’  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ  െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ൬ߣ௫ ͳʹ݊௫ ൅  ௬݊௫൰ߣʹ

a1x*  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െߣ௫ ͳ݊ߠ௫ଶ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ ͳߠଶ݊௫ଶ ሺߟ௫ െ ሻ߬ߤߠ ൅  ቇݎ௬ߣ

a1x‘*  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െߣ௫ ͳ݊ߠ௫ଶ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ ͳߠଶ݊௫ଶ ሺߟ௫ െ ሻ߬ߤߠ ൅  ௬݊௫ቇߣʹ

a1x**  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െߣ௬ Ͷߠ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ൭ߣ௫ ͳʹ݊௫ ൅ ௬ߣʹ ͳߠଶ݊௫ ൫ߟ௬ െ ʹ݊௫ߠ߬ߤ൯൱ 

a1x***  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െߣ௫ ͳ݊ߠ௫ଶ െ ௬ߣ Ͷߠ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ൭ߣ௫ ͳߠଶ݊௫ଶ ሺߟ௫ െ ሻ߬ߤߠ ൅ ௬ߣʹ ͳߠଶ݊௫ ൫ߟ௬ െ ʹ݊௫ߠ߬ߤ൯൱ 

a2x  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ ൅ߣ௫ ͳ݊ߠ௫ଶ ൅ ௬ߣ Ͷߠ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ሺ ͳʹ݊௫ ൅ ௫ଶሻ݊ߠ߬ߤ ൅ ݎ௬ሺߣ ൅ Ͷߠ߬ߤ ሻቇ 

a2x’  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ ൅ߣ௫ ͳ݊ߠ௫ଶ ൅ ௬ߣ Ͷߠ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ሺ ͳʹ݊௫ ൅ ௫ଶሻ݊ߠ߬ߤ ൅ ௬ሺʹ݊௫ߣ ൅ Ͷߠ߬ߤ ሻቇ 

a2x*  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ ൅ߣ௬ Ͷߠ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ ଶ݊௫ଶߠ௫ߟ ൅ ݎ௬ሺߣ ൅ Ͷߠ߬ߤ ሻቇ 

a2x’*  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ ൅ߣ௬ Ͷߠ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ ଶ݊௫ଶߠ௫ߟ ൅ ௬ሺʹ݊௫ߣ ൅ Ͷߠ߬ߤ ሻቇ 

a2x**  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ ൅ߣ௫ ͳ݊ߠ௫ଶ െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ሺ ͳʹ݊௫ ൅ ௫ଶሻ݊ߠ߬ߤ ൅ ௬ߣ  ଶ݊௫ቇߠ௬ߟʹ

a2x***  ቆ ͳ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ  െ ʹ௫݊ߠ ቆ ͳʹ ݊݅ݏ ߛ ݏ݋ܿ ߛ ൅ ሺݎ െ ʹ݊௫ሻቇ െ ቆߣ௫ ଶ݊௫ଶߠ௫ߟ ൅ ௬ߣ  ଶ݊௫ቇߠ௬ߟʹ

Table 2: In-plane equilibrium equations for different possible x-aligned cases.  Cases with concrete stress blocks on central and diagonal yield lines.
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Case ࣒ࢇ૚૛ ൅ ૚࣒࢈ ൅ ࢉ ൌ ૙ 

 b c ܉ 

b1x 
ͳ݊݅ݏ ߛ ݏ݋ܿ െ  ߛ ൬ߣ௫ ߠʹ ൅  ൰ߠ௫݊ݎ௬ߣ

b1x’ 
ͳ݊݅ݏ ߛ ݏ݋ܿ െ  ߛ ൬ߣ௫ ߠʹ ൅  ൰ߠ௬ʹ݊௫ଶߣ

b1x* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣെ ߛ ͳ݊௫ െ ൬ߣ௫݊௫ ቀߟ௫ߠ െ ቁ߬ߤ ൅  ൰ߠ௫݊ݎ௬ߣ

b1x’* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣെ ߛ ͳ݊௫ െ ൬ߣ௫݊௫ ቀߟ௫ߠ െ ቁ߬ߤ ൅  ൰ߠ௬݊௫ଶߣʹ

b1x** 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௬݊௫ െߣെͶ ߛ ൬ߣ௫ ߠʹ ൅ ߠ௬ߟʹ௬ሺߣ െ Ͷ݊௫߬ߤሻ൰ 

b1x*** 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣെ ߛ ͳ݊௫ െͶߣ௬݊௫ െ ൭ߣ௫݊௫ ቀߟ௫ߠ െ ቁ߬ߤ ൅ ௬ߣ ൬ʹߟ௬ߠ െ Ͷ݊௫߬ߤ൰൱ 

b2x 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ ͳ݊௫ ൅Ͷߣ௬݊௫ െ ൭ߣ௫ ൬ʹߠ ൅ ௫൰݊߬ߤ ൅ ߠݎ௬݊௫ሺߣ ൅ Ͷ߬ߤሻ൱ 

b2x’ 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ ͳ݊௫ ൅Ͷߣ௬݊௫ െ ൭ߣ௫ ൬ʹߠ ൅ ௫൰݊߬ߤ ൅ ߠ௬݊௫ሺʹ݊௫ߣ ൅ Ͷ߬ߤሻ൱ 

b2x* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௬݊௫ െߣ൅Ͷ ߛ ൭ߣ௫ ߠ௫݊௫ߟ ൅ ߠݎ௬݊௫ሺߣ ൅ Ͷ߬ߤሻ൱ 

b2x’* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௬݊௫ െߣ൅Ͷ ߛ ൭ߣ௫ ߠ௫݊௫ߟ ൅ ߠ௬݊௫ሺʹ݊௫ߣ ൅ Ͷ߬ߤሻ൱ 

b2x** 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ ͳ݊௫ െ ൬ߣ௫ ൬ʹߠ ൅ ௫൰݊߬ߤ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

b2x*** 
ͳ݊݅ݏ ߛ ݏ݋ܿ െ  ߛ ൬ߣ௫ ߠ௫݊௫ߟ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

Table 3: In-plane equilibrium equations for different possible x-aligned cases.  Cases with triangular 

concrete stress blocks on diagonal yield lines. 
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Case ࣒ࢇ૚૛ ൅ ૚࣒࢈ ൅ ࢉ ൌ ૙ 

 b c ܉ 

cx  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ൅ ߛ ௫݊௫ߣ ൅Ͷߣ௬݊௫ െ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ ൬ʹߠ ൅ ௫൰݊߬ߤ ൅ ߠݎ௬݊௫ሺߣ ൅ Ͷ߬ߤሻ൱ 

cx’  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ൅ ߛ ௫݊௫ߣ ൅Ͷߣ௬݊௫ െ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ ൬ʹߠ ൅ ௫൰݊߬ߤ ൅ ߠ௬݊௫ሺʹ݊௫ߣ ൅ Ͷ߬ߤሻ൱ 

cx*  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௬݊௫ െߣ൅Ͷ ߛ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ ߠ௫݊௫ߟ ൅ ߠݎ௬݊௫ሺߣ ൅ Ͷ߬ߤሻ൱ 

cx’*  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௬݊௫ െߣ൅Ͷ ߛ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ ߠ௫݊௫ߟ ൅ ߠ௬݊௫ሺʹ݊௫ߣ ൅ Ͷ߬ߤሻ൱ 

cx**  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ൅ ߛ ௫݊௫ െߣ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൬ߣ௫ ൬ʹߠ ൅ ௫൰݊߬ߤ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

cx***  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ െ  ߛ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൬ߣ௫ ߠ௫݊௫ߟ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

Table 4: In-plane equilibrium equations for different possible x-aligned cases.  Cases with 

trapezoidal concrete stress blocks on diagonal yield lines. 
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2.2 The y-aligned mechanism  

As the reinforcement strength pxf  in the x-direction (or its dimensionless parameter ߣ௫)  increases 

relative to pyf  the optimum value of ݊௫ increases until, as illustrated in Figure 6, it becomes greater 

than ݎȀʹ.  The optimum mechanism then becomes y-aligned, with ݊௬ as the dimension which 

defines the geometry.  The in-plane equilibrium equation at infinitesimal deflection now gives: 

 
2

1 / 1 2
2 sin cos

x y y

y

r r
n

n
  

 
   

          
  (58) 

For a virtual angle of rotation 2 1,      the virtual deflections are now: 

2 1 / 2
xC Cu u l     (59) 

1
4

C

y

r
v l

n
    (60) 

 
1 2 1x xT Tu u l          (61) 

 
1 1

2yT

y

r
v l

n
        (62) 

The internal work is then given by: 

 
2 2

3 2

1 12 (1 )
2 2

i c x y

y y

r r
W f l

n n
     

  
          

  (63) 

The loss of potential of the external uniformly distributed load ݌ is now: 

2
3 1

2 3 2

y

e

n r
W pl 

 
  

 
  (64) 

Hence the associated yield-line capacity is: 

    
2 2

2 2

1 112 2 (1 ) / 3 2
2 2

c x y y

y y

r r
p f n r

n n
    

  
           

  (65) 

Again it is convenient to optimize the yield-line pattern iteratively rather than algebraically, and this 

fixes both the yield-line capacity and the mechanism geometry for subsequent deflection of the slab.  

The initial in-plane equilibrium equation, based on the force system shown in Figure 11, is: 
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 1 2 1 2cos sin cosx x y xT T T C C        (66) 

 

Figure 11: The horizontal force system between facets along the yield lines, for y-aligned 

mechanisms.  

For the initial case a1y, in which there has been no reinforcement fracture and concrete stress 

blocks exist on all yield lines, the force components are: 

12
2 4

c yf ln rl
C z

cos



   
 

  (67) 

2 1

1

2 4
x c y

rl
C f l n z

      
  

  (68) 

1
2

y py

r
T f l   (69) 

1x px yT f ln   (70) 

2

1

2
x px yT f l n

   
 

  (71) 

For Case a1y, and using the dimensionless relationships defined in Equations (42) to (45), Equation 

(66) becomes: 

   
2

1 1 2 1 2 0
sin cos 4 2  cos 2

y y x y

y

r r r r
n n

sin n

  
   

    
                  

  (72) 
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In the general form shown in Equation (57) the terms within the in-plane equilibrium equations for 

all of the subsequent y-aligned cases defined in Table 5 are shown in Tables 6, 7 and 8. 

  Reinforcement mesh fracturing 

Compression block None Central x 

(all) 

Diagonal 

y 

Central x + 

diagonal y  

Central x + 

Diagonal x 

Diagonal 

x and y 

Full   above mesh a1y a1y’ a1y* a1y’* a1y** a1y*** 

 below mesh a2y a2y’ a2y* a2y’* a2y** a2y*** 

Triangular above mesh b1y b1y’ b1y* b1y’* b1y** b1y*** 

 below mesh b2y b2y’ b2y* b2y’* b2y** b2y*** 

Trapezoidal  cy cy’ cy* cy’* cy** cy*** 

Table 5:   Combinations of compression block configuration and rebar fracture for y-aligned cases. 

The expression for loss of potential of the external uniformly distributed load ݌ is: 

2
3 1

2 3 2

y

e

n r
W pl 

 
  

 
  (73) 

The aggregate internal work is: 

 
1 2 1 21 2   1 24 ( cos sin )

x x y xi x T x T y T C C x CW T u T u T v C u v C u          (74) 

The enhanced load capacity for the assumed value of   is therefore: 

 
 3 2

12

3 2

i

y

W
p

l n r



  (75)
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Case ࣒ࢇ૚૛ ൅ ૚࣒࢈ ൅ ࢉ ൌ ૙ 

 b c ࢇ 

a1y  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ  െ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ቆߣ௫ ൅ ௬ߣ  ଶʹ݊௬ቇݎ

a1y’  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ  െ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ቆʹ݊௬ߣ௫ ൅ ௬ߣ  ଶʹ݊௬ቇݎ

a1y*  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െߣ௬ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ൭ߣ௫ ൅ ௬ߣ ଶ݊௬ߠʹ ൫ߟ௬݊௬ െ  ൯൱ߠݎ߬ߤ

a1y‘*  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െߣ௬ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ൭ʹ݊௬ߣ௫ ൅ ௬ߣ ଶ݊௬ߠʹ ൫ʹߟ௬݊௬ െ  ൯൱ߠݎ߬ߤ

a1y**  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െߣ௫ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ቆߣ௫ ଶ݊௬ߠݎʹ ሺߟ௫ െ ሻߠ߬ߤ ൅ ௬ߣ  ଶʹ݊௬ቇݎ

a1y***  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െߣ௫ ௬݊ߠݎʹ െ ௬ߣ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ൭ߣ௫ ଶ݊௬ߠݎʹ ሺߟ௫ െ ሻߠ߬ߤ ൅ ௬ߣ ଶ݊௬ߠʹ ൫ʹߟ௬݊௬ െ  ൯൱ߠݎ߬ߤ

a2y  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ ൅ߣ௫ ͺ݊௬ݎߠ ൅ ௬ߣ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ቆߣ௫ሺͳ ൅ ͺ݊௬ݎߠ߬ߤ ሻ ൅ ௬ߣ ௬݊ʹݎ ሺݎ ൅ Ͷߠ߬ߤ ሻቇ 

a2y’  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ ൅ߣ௫ ͺ݊௬ݎߠ ൅ ௬ߣ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ቆߣ௫ሺʹ݊௬ ൅ ͺ݊௬ݎߠ߬ߤ ሻ ൅ ௬ߣ ௬݊ʹݎ ሺݎ ൅ Ͷߠ߬ߤ ሻቇ 

a2y*  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ ൅ߣ௫ ͺ݊௬ݎߠ  െ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ൬ߣ௫ሺͳ ൅ ͺ݊௬ݎߠ߬ߤ ሻ ൅ ௬ߣ Ͷߟ௬ߠଶ ൰ 

a2y’*  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ ൅ߣ௫ ͺ݊௬ݎߠ  െ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ൬ߣ௫ሺʹ݊௬ ൅ ͺ݊௬ݎߠ߬ߤ ሻ ൅ ௬ߣ Ͷߟ௬ߠଶ ൰ 

a2y**  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ ൅ߣ௬ ௬ െ݊ߠݎʹ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ቆߣ௫ ͺߟ௫݊௬ߠଶݎ ൅ ௬ߣ ௬݊ʹݎ ሺݎ ൅ Ͷߠ߬ߤ ሻቇ 

a2y***  ቆ ݊݅ݏݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ  െ Ͷݎߠ ቆ ݊݅ݏ ʹݎ ߛ ݏ݋ܿ ߛ ൅ ൫ͳ െ ʹ݊௬൯ቇ െ ൬ߣ௫ ͺߟ௫݊௬ߠଶݎ ൅ ௬ߣ Ͷߟ௬ߠଶ ൰ 

Table 6: In-plane equilibrium equations for different possible y-aligned cases.  Cases with concrete stress blocks on central and diagonal yield lines. 
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Table 7: In-plane equilibrium equations for different possible y-aligned cases.  Cases with 

triangular concrete stress blocks on diagonal yield lines. 

 

 

  

Case ࣒ࢇ૚૛ ൅ ૚࣒࢈ ൅ ࢉ ൌ ૙ 

 b c ܉ 

b1y 
ͳ݊݅ݏ ߛ ݏ݋ܿ െ  ߛ ቆߣ௫ ߠʹ ൅ ௬ߣ  Ͷ݊௬ቇߠଶݎ

b1y’ 
ͳ݊݅ݏ ߛ ݏ݋ܿ െ  ߛ ቆߣ௫݊௬ߠ ൅ ௬ߣ  Ͷ݊௬ቇߠଶݎ

b1y* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௬ߣെ ߛ ௬ െݎ݊ ൭ߣ௫ ߠʹ ൅ ௬ߣ ቆʹߟ௬ߠ െ ௬݊ݎ߬ߤ ቇ൱ 

b1y’* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௬ߣെ ߛ ௬ െݎ݊ ൭ߣ௫݊௬ߠ ൅ ௬ߣ ቆʹߟ௬ߠ െ ௬݊ݎ߬ߤ ቇ൱ 

b1y** 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣെ ߛ Ͷ݊௬ݎ  െ ቆߣ௫ Ͷ݊௬ݎ ቀߟ௫ߠ െ ቁ߬ߤ ൅ ௬ߣ  Ͷ݊௬ቇߠଶݎ

b1y*** 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣെ ߛ Ͷ݊௬ݎ െߣ௬ ௬ െݎ݊ ൭ߣ௫ Ͷ݊௬ݎ ቀߟ௫ߠ െ ቁ߬ߤ ൅ ௬ߣ ቆʹߟ௬ߠ െ ௬݊ݎ߬ߤ ቇ൱ 

b2y 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ ൅ߣ௬ ௬ െݎ݊ ൭ߣ௫ ൬ʹߠ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ Ͷ݊௬ݎ ሺߠݎ ൅ Ͷ߬ߤሻ൱ 

b2y’ 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ ൅ߣ௬ ௬ െݎ݊ ൭ߣ௫ ൬݊௬ߠ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ Ͷ݊௬ݎ ሺߠݎ ൅ Ͷ߬ߤሻ൱ 

b2y* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ  െ ൬ߣ௫ ൬ʹߠ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

b2y’* 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ  െ ൬ߣ௫ ൬݊௬ߠ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

b2y** 
ͳ݊݅ݏ ߛ ݏ݋ܿ ௬ߣ൅ ߛ ௬ െݎ݊ ൭ߣ௫ Ͷ݊௬ߟ௫ߠݎ ൅ ௬ߣ Ͷ݊௬ݎ ሺߠݎ ൅ Ͷ߬ߤሻ൱ 

b2y*** 
ͳ݊݅ݏ ߛ ݏ݋ܿ െ  ߛ ൬ߣ௫ Ͷ݊௬ߟ௫ߠݎ ൅ ௬ߣ ߠ௬ߟʹ ൰ 
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Case ࣒ࢇ૚૛ ൅ ૚࣒࢈ ൅ ࢉ ൌ ૙ 

 b c ܉ 

cy  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ ൅ߣ௬ ௬ െݎ݊ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ ൬ʹߠ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ Ͷ݊௬ݎ ሺߠݎ ൅ Ͷ߬ߤሻ൱ 

cy’  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ ൅ߣ௬ ௬ െݎ݊ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ ൬݊ߠ௬ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ Ͷ݊௬ݎ ሺߠݎ ൅ Ͷ߬ߤሻ൱ 

cy*  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ  െ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൬ߣ௫ ൬ʹߠ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

cy’*  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௫ߣ൅ ߛ Ͷ݊௬ݎ  െ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൬ߣ௫ ൬݊ߠ௬ ൅ Ͷ݊߬ߤ௬ݎ ൰ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

cy**  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ ௬ߣ൅ ߛ ௬ െݎ݊ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൭ߣ௫ Ͷ݊௬ߟ௫ߠݎ ൅ ௬ߣ Ͷ݊௬ݎ ሺߠݎ ൅ Ͷ߬ߤሻ൱ 

cy***  
݊݅ݏ߬ʹ ߛ ݏ݋ܿ െ  ߛ ቆ ߬ଶ݊݅ݏ ߛ ݏ݋ܿ ቇ െߛ ൬ߣ௫ Ͷ݊௬ߟ௫ߠݎ ൅ ௬ߣ ߠ௬ߟʹ ൰ 

Table 8: In-plane equilibrium equations for different possible y-aligned cases.  Cases with 

trapezoidal concrete stress blocks on diagonal yield lines. 
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3. APPLICATION OF THE MODEL 

Although there is insufficient space in this paper for a comprehensive practical study of the theory 

presented, it is appropriate to illustrate the key aspects of its application, and how its predictions 

compare with those of the existing BRE calculation in some examples which reflect practical design.  

The theory which has been developed in this paper deals only with slabs whose membrane action is 

changing whilst the triangular and trapezoidal slab facets, defined by the optimal yield-line 

mechanism, are deflecting.  Although it provides maximum in-plane tensile stresses, which will 

trigger the almost instantaneous development of the transverse tension crack observed in most 

experiments, it does not cover the load capacity enhancement once this extra crack has developed.  

The theoretical extension for this phase will be covered in a subsequent paper; at that point it will be 

appropriate to perform parametric studies directly comparing it, the BRE and FRACOF methods, with 

test results which include the transverse tension crack.   

3.1 Comparisons with the BRE method based on the Garston Test 

As has been pointed-out earlier the ultimate aim of this development is to address tensile 

membrane action of composite slabs in fire conditions, when downstand steel beams have largely 

lost their strength at very high temperatures.  Although these studies consider only the load capacity 

enhancement of concrete slabs at ambient temperature, the test cases use dimensions which are 

more typical of the concrete slabs used in composite construction than of those in normally-

reinforced concrete.  The ambient-temperature large-scale slab test at Garston, reported by Bailey 

et al. [25], is very useful in this respect.  It was intended to represent a 9 m x 6 m corner-bay slab 

from the Cardington composite building.  Assuming that the single unprotected downstand steel 

beam running centrally along the long-span of this slab would have lost all significant strength at 

high temperature, this beam was omitted from the Garston set-up.  The average depth of the slab 

was 120 mm, and the mean effective depth of the A142 mesh was 69 mm. The dimensions of its 

supported edges were 9500 mm x 6460 mm, giving an aspect ratio of 1.4706. The compressive cube 

strength of the concrete on the day of the test was 52 MPa (equivalent to a cylinder strength ckf  of 

42 MPa).  From several tensile tests the undeformed (prismatic) mesh bars achieved an average 

tensile strength of about 580 MPa at a fracture strain of 12%.  In these analyses the limiting crack-

width at which reinforcement fractures is represented as an ͞equivalent fracture strain͟, using the 

200mm length between the anchor-points created by the welds between orthogonal bars as a 

gauge-length.  This ignores the bond between concrete and reinforcement, and is therefore an 

inherently unconservative way of considering the limiting crack-width at which reinforcement 

fractures, because it ignores bond along the surfaces of bars.  If the as-tested tensile fracture strain 
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of the bars is used in this context, then this represents fairly well the behaviour of slabs with 

undeformed bars; this applies to the composite slabs used at Cardington and in the subsequent 

Garston ambient-temperature test [25].  For slabs with deformed bars it would clearly be an over-

ductile assumption.  The optimum yield-line load capacity of the slab using this data is 2.30 kN/m
2
, 

which was almost identical to its self-weight combined with that of the attached loading gear in the 

actual test.  On further loading the slab achieved an enhanced total capacity of 4.81 kN/m
2
, until 

sudden fracture across the mid-span short dimension occurred,.   The test cases used here use this 

as their base case, which is referred to as ͞the Garston TĞƐƚ͟. 

3.1.1 The effect of mesh ductility, aspect ratio  and effective depth for isotropically reinforced slabs 

A series of slabs based on the Garston Test details, but with different aspect ratios and mesh 

effective depths, have been tested using the new formulation, to illustrate the ways in which 

reinforcement fracture takes place as deformation of the yield-line pattern increases, and its effect 

on load capacity.  In the absence of definitive guidance on the pull-out characteristics of reinforcing 

bars from discrete cracks in concrete, both the tested  ductility value of 12% and a lower ductility of 

4%, which might represent better the characteristics of deformed bars, have been used.  This mesh 

has been located at both the original mean effective depth of 69mm and at 35mm from the top 

surface.  Two extra aspect ratios, of 1.0 and 2.0, have been considered in addition to 1.4706 for the 

same ͞ƐŚŽƌƚ͟ ƐƉĂŶ l of 6.460m.  With the optimum yield-line mechanism as a starting-point, 

deflections have been increased progressively, initially in Case a1x, for these slabs.  The load capacity 

enhancement factors for the two different mesh effective depths have been plotted in Figures 12(a ʹ 

f), in terms of mid-slab deflection normalized with respect to the mesh effective depth.  In each case 

the BRE enhancements are plotted on the same graphs. It can be seen that, even before any mesh 

fracture has taken place, the rate of enhancement with deflection changes differently in the two 

methods, so that the BRE method gives higher predictions for square slabs and lower predictions for 

aspect ratio 2.0, with approximate parity, at least initially, for aspect ratio 1.4706.     On each of the 

six graphs two enhancement curves are plotted, representing the different effective ductilities of 

12% and 4% (or fracture crack-widths of 24mm and 8mm)͖ ƚŚŝƐ ŚĂƐ ŶŽ ĞĨĨĞĐƚ ŽŶ ƚŚĞ BRE ŵĞƚŚŽĚ͛Ɛ 

calculated enhancement.  It can be seen in each case that the peak enhancement, given either by 

ƐƵĚĚĞŶ ĨƌĂĐƚƵƌĞ ŽĨ ƚŚĞ ĐĞŶƚƌĂů ǇŝĞůĚ ůŝŶĞ ŵĞƐŚ Žƌ ďǇ ƚŚĞ ŝŶŝƚŝĂƚŝŽŶ ŽĨ ͞ƵŶǌŝƉƉŝŶŐ͟ ĂĐƌŽss the diagonal 

yield lines, is considerably increased by the higher ductility.  In the event of fracture across the 

central yield line a sudden loss of load capacity occurs, whereas the initiation of ͞ƵŶǌŝƉƉŝŶŐ͟ ĂůŽŶŐ 

diagonal yield lines causes the load capacity to begin reducing gradually from a peak with deflection. 
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Figure 12: Slab capacity enhancement factors with displacement for slabs of width 6.46m and 

different aspect ratios and mesh effective depths. 
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(b) r=1.0, d1=69 mm 
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(c) r=1.4706, d1=35mm 
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(d) r=1.4706, d1=69 mm 
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The enhancement factors plotted for the cases with 12% ductility and 69 mm effective depth in 

Figures 12(a-f) are compared directly in Figure 13(a).   The slabs all show similar behaviour in 

qualitative terms, with the greatest initial enhancements for the slabs of the higher aspect ratios.  

  
 

Figure 13: Variation of capacity with aspect ratio for isotropically-reinforced slabs:  (a) 

Dimensionless enhancement factor; (b) Actual capacity for the particular slab cross-

section. 

This seems superficially counter-intuitive, but is rationalized by considering the absolute values of 

load capacity plotted against deflection which are shown in Figure 13(b); the small-deflection yield-

line capacities themselves decline markedly with increasing aspect ratio, and the curves showing 

how this capacity is increased at any finite deflection remain roughly parallel to one another, so that 

a square slab is always the strongest and the slab with the highest aspect ratio is always the weakest 

at any particular deflection. 

3.1.2 Variation of force resultants and in-plane stresses 

As the deflection of the yield-line mechanism increases, causing the concrete stress block to change 

its shape and position and the reinforcing mesh to fracture either abruptly across the central yield 

line or progressively across the diagonal yield lines, the resultant forces given by Equations (37-41) 

or (67-71), which are shown in Figures 10 and 11, change.  Their variation is shown in Figure 14 for a 

single case, of the Garston 9500 mm x 6360 mm slab (aspect ratio 1.4706) defined above with A142 

mesh of an effective ductility of 12%, placed at an average depth of 69mm. 
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Figure 14: Variation of the resultant forces on yield lines with deflection of the slab (r=1.4706, 

d1=69mm, effective ductility 4%). 

The values of the force resultants can be used to calculate the net in-plane bending moments and 

forces acting on the slab cross-sections passing through the points Q, R and S, shown in Figures 10 

and 11.  These are the cross-sections at which it is most likely that a through-depth tensile failure of 

the concrete will take place, on the basis of evidence from test results over many years.  Assuming 

that both the concrete and steel mesh crossing these as-yet uncracked cross-sections are elastic, the 

normal linear-elastic engiŶĞĞƌƐ͛ ďĞŶĚŝŶŐ ƌĞůĂƚŝŽŶƐŚŝƉƐ ĐĂŶ ďĞ ƵƐĞĚ ƚŽ ĐĂůĐƵůĂƚĞ ƚŚĞ ǀĂůƵĞƐ ŽĨ ƚĞŶƐŝůĞ 

and compressive stress acting on these cross-sections.  In accordance with the general concept of 

Tensile Membrane Action the maximum compressive stress is always found to be at the edge of the 

slab, and the maximum tension at the central yield line (the yield-line intersection for R and S).   The 

maximum in-plane tensile stresses on these cross-sections are plotted for the Garston slab example 

in Figure. 15.  If the initiation of through-depth tension cracks is considered as significant, as it has 

been in the existing simplified methods, then a limiting value of concrete tensile strength (either 

based on test or an empirical value within the range of tabulated values given in Table 3.1 of 

Eurocode 2 Part 1-1 [29]) can be used to determine the deflection at which the through-depth crack 

occurs.  For concrete of cylinder strength 42MPa the mean tensile strength is quoted as lying in the 

range 2.52-4.67 MPa, which suggests that the central through-depth crack could be initiated fairly 

early in the deflection for this particular case, and a new mechanism which includes this crack would 

then take over. 
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Figure 15: Variation of the maximum tensile in-plane bending stresses on yield lines with 

deflection of the slab (r=1.4706, d1=69 mm, ductility 4%). 

3.1.3 Variation of the initial yield-line mechanism with orthotropy of reinforcement 

To illustrate the change of yield-line mechanism as the orthotropy ratio /py pxf f   rises the 

change of geometry of the yield-line mechanism, as indicated by the values of nx and ny , is plotted in 

Figure 16(a).   

  

Fig. 1: Optimal x- and y-aligned yield-line mechanisms for a 9m x 6m slab with mesh effective 

depth 20 mm with different orthotropy ratios; (a) nx and ny; (b) Yield-line capacities.  
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At very small values of   the mechanism is y-aligned, and as it increases the optimal ny value 

increases until it reaches 0.5.  Beyond this point the mechanism is x-aligned, and nx progressively 

decreases as   increases.  The yield-line capacity variation with   is shown in Figure 16(b).  Since 

pxf  is held constant (with steel area of 142 mm
2
/m in the x-direction) in these examples it is logical 

that the capacity value increases with  , but it is notable that the transition between x- and y-

aligned mechanisms is continuous.  For any particular case this yield-line mechanism fixes the 

geometry for the TMA phase. 

3.1.4 The effect of orthotropy on tensile membrane action 

It has been seen above that the optimal yield-line mechanism changes as the orthotropy ratio 

changes.  In order to examine the effect of orthotropy on the finite-deflection behaviour the Garston 

Slab, of aspect ratio 1.4706 is given a range of   values by keeping the y-direction reinforcement 

constant at 142 mm
2
/m and increasing the x-direction reinforcement through integer bar sizes from 

6 mm upwards, keeping the spacing at 200 mm.  The x-direction bar areas per metre run, shown on 

the enhancement plots in Figures 17(a) and 17(b) are therefore approximately 142, 192, 251, 318, 

393, 475 and 565 mm
2
/m, giving  values of 1.0, 0.73, 0.56, 0.44, 0.36, 0.30 and 0.25.  The 

transition between x- and y-aligned mechanisms is at an x-direction bar area of 311 mm
2
/m (

=0.457), which can be seen from Figures 17(a) and 17(b) to give the highest peak enhancement 

factor.  The deflections which cause the peak capacities do not vary significantly with the orthotropy 

factor. 

  

Figure 17: Enhancement for orthotropic slabs with y-reinforcement constant at 142 mm
2
/m; x-

reinforcement areas/m marked on curves.  (a) x-aligned mechanisms.  (b) y-aligned 

mechanisms. 
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The maximum tensile bending stresses at the points Q, half-way along the long span, irrespective of 

the alignment of the yield-line mechanism, are shown for each of the orthotropic reinforcement 

arrangements in Figure 18.  It is clear that these tensile stresses increase as the x-direction 

reinforcement area increases.   From the intercepts of these curves with the Eurocode 2 tensile 

strength range it is clear that, for the structural parameter values  (particularly steel strength) of the 

Garston Test, the transverse through-depth crack will form at very low deflections. 

 

Figure 18: Variation of the maximum tensile in-plane bending stresses at position Q with 

deflection of the slab (r=1.4706, d1=69 mm, ductility 12%) for different areas of x-

reinforcement per metre, keeping y-reinforcement constant at 141.2 mm
2
/m.  The 

Eurocode 2 tensile strength range is indicated. 

3.2 Comparisons against tests which do not form a mid-span tension crack 

It is generally desirable to test new methods against load-deflection tests, but the problem in 

selecting suitable tests for comparison with the formulation developed in this paper is that this is 

specifically for cases in which no transverse through-depth tension crack has formed.  A survey of 

tests carried out by previous researchers shows that transverse tension cracking, either at mid-span 

or from the yield-line intersection, occurred in nearly all of them.  Given that Figure 18 shows cases 

with fairly typical reinforcement and concrete strengths, this is not surprising.  However, a series of 

model-scale tests with different aspect ratios and various degrees of orthotropy were carried out by 

Foster et al. [30].  At the extreme end of the range of orthotropy in this test series four tests gave no 

sign of transverse tensile cracking, and these are used for comparison.  It should be noted that, for 

the details of these tests, the graph of maximum in-plane tensile stress at the three key locations in 
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the centre of the slabs, which is similar to Figure 18, shows peak tensile stresses which lie below the 

Eurocode range of concrete tensile strengths, so the fact that transverse cracks do not occur is 

predicted by the new method.  

The slabs tested were all of width 550 mm, with lengths 850 mm and 1150 mm, giving respective 

aspect ratios of 1.545 and 2.091.  Slab thicknesses were between 15 mm and 18 mm, and samples of 

the small-aggregate concrete were tested for each test, the cube strengths being between 36 and 41 

MPa.  The reinforcement consisted of 0.71 mm steel wire of which samples were tested before each 

test, at an even spacing of 12 mm for the x-direction bars and 60 mm for the y-direction bars (an 

orthotropy coefficient  of 0.20).  The wires were not welded together at their intersections, but 

were interwoven at intervals so that the mesh layer was fairly uniform.  In two of the tests (denoted 

as Tests 6 and 11) the wires were smooth-surfaced, but in the other two (denoted as Tests 8 and 14) 

the wires had been deformed by indentation along their lengths in order to achieve better bond 

with the concrete.  For the plain wires a number of tensile tests carried out before the slab tests 

gave yield strengths in the region 252-269 MPa, with fracture ductility of around 20%.  The 

deformed wires showed yield strengths in the range 242-248 MPa and ductility reduced to around 

11%.  Before each slab test further tensile tests were carried out on samples of the wires actually 

used in the test.  Pure tensile tests on sawn slab strips including both plain and deformed wires were 

also carried out.  These showed very different bond characteristics around the local concrete tension 

fracture; plain wires pulled-out by amounts between 8 mm and 23 mm, with no wire fracture 

observed  in 3 of 12 tests.  For the deformed wires the pull-out at fracture was between 0.9 mm and 

3 mm, demonstrating the effectiveness of the indentations in creating a shear-bond between the 

wires and the concrete.  In terms of the simple definition of effective fracture ductility used 

previously (fracture crack-width/transverse bar spacing) this is equivalent to very high percentage 

ductilities ʹ although the transverse wires are not welded to the longitudinal wires, so there are no 

discrete anchor-points.  For this reason it is more useful simply to consider the crack-width that 

causes wire fracture, rather than relating this to a finite anchored length, especially because the wire 

spacings in the orthogonal directions are very different in the tests used at this stage.   

3.2.1 Tests on slabs with plain wire reinforcement 

Tests 6 and 11 were on slabs reinforced with plain wire.  The test records, in terms of applied load 

intensity against deflection in deflection-controlled tests, are shown in Figures 19(a) and 19(b).  It 

can be seen from these that an initial peak load, which fairly rapidly declines over 10-12 mm of 

deflection, is caused by the formation of the yield-line mechanism which requires the tensile 

strength of the concrete to be overcome progressively along the yield lines as the maximum tensile 

strain moves along the yield lines from the central region towards the corners, and as the initial 
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bond of the wires to the concrete is overcome.  Beyond this stage, in both cases, the progressive 

enhancement of the load capacity, characteristic of tensile membrane action, occurs.  The load 

capacities predicted by both the new method and the existing BRE method are shown for 

comparison on the graphs for both aspect ratios.  In the case of the new method a high effective 

ductility, given by a fracture crack-width of 10mm in both directions, has been assumed, although 

for plain wires this could be set much higher on the basis of the tests on sawn slabs.  Both methods 

show a consistent enhancement with deflection, although these do not fit particularly well with the 

test results.  For Figure 19(a) the two methods show almost identical enhancements, but for the 

lower aspect ratio in Figure 19(b) they diverge considerably, with the new method showing an 

enhancement gradient which is almost parallel to the test.   

  

Figure 19: Comparison of predicted enhancements according to the new method and BRE with 

Foster et al. tests [30] using smooth reinforcement. 

3.2.2 Tests on slabs with deformed wire reinforcement 

Tests 8 and 14 were nominally identical to Tests 6 and 11, although some details, such as material 

strengths and the estimated value of effective depth, differed by a small amount.  The key difference 

was that deformed wires were used as the mesh reinforcement.  It can be seen from Figures 20(a) 

and 20(b) that the test behaviour was very different from that shown by slabs with smooth mesh.  

After the initial deflection of the order of 10-12 mm, beyond which the tensile strength of the 

concrete has been overcome, both aspect ratios show a steady progressive drop in load capacity.  

Enhanced load capacities given by the BRE method and the new method are shown on the two 

graphs.  These predictions diverge considerably.  For the BRE method the prediction is for a 

continuous increase of load capacity with deflection, which contrasts strongly with the decreasing 

capacity shown in the tests.  However, the new method shows increasing load capacity up to a peak, 

the location of which is controlled by the assumed fracture ductility, beyond which the capacity 
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decreases as the y-direction wires fracture progressively along the diagonal yield lines.  The fracture 

crack-widths for which curves are plotted are 1.2 mm, 1.8 mm and 2.1 mm, which are in the middle 

of the ductility range suggested by the direct tension tests on sawn specimens using deformed wire.  

  

Figure 20: Comparison of predicted enhancements for different fracture crack-widths 

according to the new method and BRE with Foster et al. tests [30] using deformed 

reinforcement. 

TŚĞ ĚĞĐůŝŶĞ ŽĨ ůŽĂĚ ĐĂƉĂĐŝƚǇ ďĞǇŽŶĚ ƚŚĞ ƉĞĂŬ ĚĞŵŽŶƐƚƌĂƚĞƐ ƚŚĞ ĞĨĨĞĐƚ ŽĨ ͞ƵŶǌŝƉƉŝŶŐ͟ ŽĨ Ǉ-direction 

reinforcement along the diagonal yield lines.  It is clear that the low fracture crack-widths caused by 

ƚŚĞ ĚĞĨŽƌŵĞĚ ǁŝƌĞ͛Ɛ ďŽŶĚ ĐŚĂƌĂĐƚĞƌŝƐƚŝĐƐ ĐĂƵƐĞ ĚƌĂŵĂƚŝĐĂůůǇ ĚŝĨĨĞƌĞŶƚ ƉƌĞĚŝĐƚŝŽŶs from that of the 

BRE method, with the limiting load capacity being caused, essentially, by the initiation of 

reinforcement fracture due to relatively high bond between the wires and the concrete.  The change 

from enhancement to falling load capacity compares very well with the experimental results for 

these tests.  It is fortunate that the ductility data from the direct-tension tests on sawn slab-strips is 

available in these cases; wider application will clearly need reliable methods for determining fracture 

crack-widths at discrete cracks in lightly reinforced slabs. 

4. CONCLUSION 

The main fundamental difference between this treatment of tensile membrane action and previous 

studies is in its approach to the kinematics of a lightly-reinforced concrete slab which forms straight 

discrete yield lines at very small deflection.  The geometry of interlocking flat facets involves there 

being a straight neutral axis on any yield line, which can be seen as the boundary between separated 

and contacting concrete surfaces.  On any diagonal yield line this neutral axis is inclined to the plane 

of the slab surface, and this inclination increases as the slab deflection increases.  Steel crossing the 

yield line is orthogonal, and can be in tension only where it is below the neutral axis.  Concrete, on 
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the other hand, is only compressed within the area above the neutral axis, and produces a resultant 

compressive force normal to the yield line.  Individual cross-sections through yield lines are not 

required to create an equilibrium of normal stresses, except at infinitesimal deflection; each of the 

flat facets caused by the appearance of discrete yield lines must be in equilibrium under the whole 

system of resultant forces to which it is subjected.  As the deflection increases the neutral axis level 

rises above the top surface of the slab, leaving only the reinforcement crossing the crack to impose 

tension in the middle area of the slab.  A very similar approach to the kinematics of rectangular slabs 

in tensile membrane action has recently been used by Herraiz and Vogel [31] in a recent analysis of 

tensile membrane action of reinforced concrete slabs.  Their approach includes an elastic deflection 

prior to the rigid-plastic yield line phase and assumes that the initial fracture of reinforcement or an 

estimate of ultimate concrete compressive strain at the slab corners defines structural failure, and 

they do not consider the behaviour as the reinforcing mesh fractures across yield lines.  However, 

they have modified a bond-slip model based on the FIB Model Code [32] to estimate fracture crack-

width.  This is clearly worthy of further experimental investigation as an analytical predictor of 

fracture ductility of the light meshes used in composite slabs. 

Wherever the reinforcement in either direction is in tension across a yield line this implies that it is 

crossing the yield line at a point where there is a separation between the two opposing faces of the 

discrete crack which defines the extension of a finite length of reinforcing bar as a uniform plastic 

strain below the fracture strain of the steel material.  This finite length depends on failure of the 

bond between the bar and the concrete over finite lengths either side of the crack.  Clearly tensile 

membrane action would be impossible with perfect bond between steel and concrete, because the 

bars would fracture instantly within the cracks.  On the other hand, remembering that the context in 

which the behaviour is important is for the relatively thin slabs reinforced only with anti-crack mesh 

that typically form composite floors, the tensile strength of the steel reinforcement in either 

direction is less than that of the whole concrete cross-section, and cracking is localized.  In more 

heavily reinforced slabs, in which the reinforcement layer is stronger in tension than the concrete 

cross-section, the cracking can be distributed over a distance either side of a yield-line.  There is 

currently insufficient reliable information concerning the pull-out characteristics of deformed bars 

from discrete crack surfaces; this is necessary in order to define the free lengths over which the 

known fracture strain of the steel bars can be used to specify crack widths at bar fracture.  However, 

significant work has been done in recent years by Cashell et al. [33] and by Sezen and Setzler [34] in 

developing simplified bond models, either of which could form the basis for a general design model 

of pull-out at a discrete crack which could be guaranteed as conservative but otherwise accurate. In 

this paper the problem has been dealt with provisionally for plain welded mesh by assuming that 
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ďĂƌƐ ĂƌĞ ĨƵůůǇ ĚĞƚĂĐŚĞĚ ĨƌŽŵ ƚŚĞ ĐŽŶĐƌĞƚĞ ďĞƚǁĞĞŶ ƚŚĞ ƉŽƐŝƚŝǀĞ ͞ĂŶĐŚŽƌ ƉŽŝŶƚƐ͟ Ăƚ ǁŚŝĐŚ ƚƌĂŶƐǀĞƌƐĞ 

bars are welded to the bars under consideration (in most practical meshes these are at 200mm 

spacing, and this has been assumed in the full-scale examples presented), and assigning artificially 

low ductility to the steel.  Essentially, however, this is just one way of defining the crack-width, at 

the level of the reinforcement, at which a bar fractures, and for the comparisons with model-scale 

tests on orthotropic slabs experimentally-determined fracture crack-widths have been used, 

showing an extremely promising degree of correlation with the reducing load capacity in the tests.  

Clearly there is a need for more  work on bar pull-out from discrete cracks, because the fracture of 

ƌĞŝŶĨŽƌĐĞŵĞŶƚ ĂĐƌŽƐƐ ĐƌĂĐŬƐ͕ ĞƐƉĞĐŝĂůůǇ ƚŚĞ ŝŶŝƚŝĂƚŝŽŶ ŽĨ ͞ƵŶǌŝƉƉŝŶŐ͟ ŽĨ ŵĞƐŚ ĂůŽŶŐ ƚŚĞ ĚŝĂŐŽŶĂů ǇŝĞůĚ 

lines, has been shown to be the key effect which limits the enhancement of yield-line load capacity 

with increasing deflection, and initiates structural collapse of the slab.  In fire, which will eventually 

be the context in which this model is most relevant, it should also be capable of including the effect 

of differential thermal expansions on pull-out characteristics. 

It is should be remembered that this work has been done as an essential first step in re-developing a 

method for assessing the load capacity of lightly-reinforced composite slabs in fire conditions, at 

very high temperatures which reduce the contribution from the attached steel beams to a very low 

level.  In this context the limiting condition may be either a resistance failure (either local or global 

loss of structural capacity) of the slab, or as a compartment integrity failure (a through-depth crack 

which allows flames to pass through to the adjacent compartment at the upper face of the slab).  

Both of these may be interpreted in different ways.  It may be considered that the first peak of 

capacity in an enhancement curve, often caused  by fracture of the bars crossing the central yield 

line, is sufficient to define a resistance failure, although this usually stabilizes with increasing 

ĚĞĨůĞĐƚŝŽŶ ƵŶƚŝů Ă ƐĞĐŽŶĚ ĂŶĚ ĨŝŶĂů ƉĞĂŬ ŝƐ ĐĂƵƐĞĚ ďǇ ƚŚĞ ƐƚĂƌƚ ŽĨ ĚŝĂŐŽŶĂů ͞ƵŶǌŝƉƉŝŶŐ͘͟  TŚĞ ŚŝŐŚĞƌ ŽĨ 

the two peaks definitely indicates the limiting capacity of the slab.  In terms of fire compartment 

integrity there are also different possibilities.  The concrete surfaces either side of the central yield 

line lose contact when the neutral axis depth at the intersections becomes negative; in a composite 

slab it is likely that steel decking will continue to cross this through-depth crack, creating a physical 

barrier to hot gases passing through, although there may still be some heat transmission by 

radiation from the upper surface of this thin sheet.  A similar argument may be applied to the 

appearance of a central through-depth crack across the short span, which initiates a new mechanism 

not considered in this paper.  In either case criteria need to be developed to identify integrity failure 

of composite slabs. 
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Subsequent papers will deal with high-temperature applications in which tensile membrane action 

occurs, as well as explicitly covering the effect of heating of unprotected downstand beams and the 

reinforcing mesh.   
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Notation List 

BRE/Bailey method [13, 14, 22, 23] 

e  Weighted-mean enhancement factor 

1 2,e e  Enhancement factors for triangular and trapezoidal slab facets 

n Dimensionless coordinate of yield line intersection as a proportion of L (long span) 

  Slab aspect ratio (x:y) 

  Orthotropy ratio, equivalent to   in current method (below) 

Current method 

1 2, yA A  Concrete stress block areas on diagonal and central yield lines 

C  Concrete resultant force across a diagonal yield line 

2 2,x yC C  Concrete x- or y- direction resultant forces on central yield line 

,px pyf f  Steel strengths per unit width in x and y directions 

cf  Concrete strength 

l   y-dimension of slab 

,x yn n   Dimensionless coordinates of yield line intersection in x- and y-aligned mechanisms 

p  Distributed load intensity on slab 

r  Aspect ratio of slab (x:y) 

S  Resultant shear force along a diagonal yield line 

t  Thickness of slab 

1xT , 2xT  Tensile resultant forces in x-aligned mesh  

1 2,y yT T  Tensile resultant forces in y-aligned mesh 

,u v  Movements of a point on a crack-face in x and y directions 

,C Cu v  Movements of centroid of diagonal concrete stress block in x and y directions 

1 1 2  ,,
x y yT T Tu v v  Movements of resultant mesh forces on diagonal and central yield lines 

2yCv  Movement of centroid of central concrete stress block in y direction 

eW  External work: loss of potential of load on slab 

iW  Internal work: plastic movements of steel and concrete 

, ,x y z  Coordinate system 

,1 ,1 ,1, ,CA CA CAx y z  Coordinates of concrete stress-block centroids on diagonal and central yield lines 

,1lim yx  Limiting x coordinate of unbroken y-direction reinforcement 

,1    tx  x coordinate at which y reinforcement emerges from compressive stress block 

,1lim xy  Limiting y coordinate of unbroken x-direction reinforcement 

,1ty  y coordinate at which x reinforcement emerges from compressive stress block 

1 2,z z  Depths of concrete stress block at slab corner and yield line intersection 
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  Angle of diagonal yield line to y axis 

A  Deflection of centre of slab 

,x y   x and y movements of facets at corner of slab 

, ,,lim x lim y   Limiting x and y crack widths at which reinforcement fractures 

,x y   Dimensionless limiting crack widths 
,lim x

x
l




  

  

and 
,lim y

y
l




  

  Rotation of slab Facet 1 about x axis 

  Rotation of slab Facet 2 about y axis 

 Mesh depth as a proportion of slab thickness  

,x y   Dimensionless strength ratios 
px

x

c

f

f l
  and 

py

y

c

f

f l
   

1 2,   Dimensionless stress block depths 1 1 2 2/ , /z l z l    

  Dimensionless slab thickness t/l 

  Orthotropy factor /py pxf f  
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Table Captions 

Table 1: Combinations of compression block configuration and rebar fracture for x-aligned cases. 

Table 2: In-plane equilibrium equations for different possible x-aligned cases.  Cases with concrete 

stress blocks on central and diagonal yield lines. 

Table 3: In-plane equilibrium equations for different possible x-aligned cases.  Cases with 

triangular concrete stress blocks on diagonal yield lines. 

Table 4: In-plane equilibrium equations for different possible x-aligned cases.  Cases with 

trapezoidal concrete stress blocks on diagonal yield lines. 

Table 5: Combinations of compression block configuration and rebar fracture for y-aligned cases. 

Table 6: In-plane equilibrium equations for different possible y-aligned cases.  Cases with concrete 

stress blocks on central and diagonal yield lines. 

Table 7: In-plane equilibrium equations for different possible y-aligned cases.  Cases with 

triangular concrete stress blocks on diagonal yield lines. 

Table 8: In-plane equilibrium equations for different possible y-aligned cases.  Cases with 

trapezoidal concrete stress blocks on diagonal yield lines. 
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Figure Captions 

Fig. 2: Stages of development of a yield-line mechanism in a concrete slab. 

Fig. 3: Illustrations of tensile membrane action.  (a) Stresses in a concrete slab; (b) Forces in a 

bicycle wheel 

Fig. 4: Different plastic mechanisms considered by Sawczuk and Winnicki [9]. 

Fig. 5: HĂǇĞƐ͛Ɛ ΀ϭϬ͕ ϭϭ΁ ŵĞŵďƌĂŶĞ ĨŽƌĐĞ ŵŽĚĞůƐ͘  ;ĂͿ CŽŶĐƌĞƚĞ ĐŽŶƚĂĐƚ ŽŶ ǁŚŽůĞ ůĞŶgth of 

diagonal yield lines; (b) No concrete contact near yield line intersections; (c)  In-plane 

equilibrium of forces. 

Fig. 6: BĂŝůĞǇ͛Ɛ ΀ϭϬ͕ ϭϭ΁ ŵĞŵďƌĂŶĞ ĨŽƌĐĞ ŵŽĚĞů͘  ;ĂͿ CŽŶĐƌĞƚĞ ĐŽŶƚĂĐƚ ŽŶ ǁŚŽůĞ ůĞŶŐƚŚ ŽĨ 
diagonal yield lines; (b) In-plane equilibrium of forces. 

Fig. 7: Changes in yield-line geometry for different ratios ௣݂௫ ௣݂௬Τ Ǥ  (a) x-aligned; (b) transition; 

(c) y-aligned. 

Fig. 8: Geometry of diagonal yield-line crack opening.  (a) Crack opening at rebar level; (b) Top 

surface of slab, including rigid-body movements of triangular and trapezoidal slab 

facets. 

Fig. 9: Movements of a point on the diagonal yield line.  (a) Plan view of top surface of slab; (b) 

x-direction motion u on triangular Facet 2; (c) y-direction motion v on trapezoidal 

Facet 1. 

Fig. 10: Projection on the x-direction of the yield lines at different stages; (a) Concrete stress 

blocks on all yield lines; (b) Triangular stress blocks above rebar on diagonal yield lines; 

(c) Triangular stress blocks below rebar on diagonal yield lines; (d) Trapezoidal stress 

blocks on diagonal yield lines. 

Fig. 11: The horizontal force system between facets along the yield lines, for x-aligned 

mechanisms. 

Fig. 12: The horizontal force system between facets along the yield lines, for y-aligned 

mechanisms. 

Fig. 13: Slab capacity enhancement factors with displacement for slabs of width 6m and 

different aspect ratios and mesh effective depths. 

Fig. 14: Variation of capacity with aspect ratio for isotropically-reinforced slabs:  (a) 

Dimensionless enhancement factor; (b) Actual capacity for the particular slab cross-

section. 

Fig. 15: Variation of the resultant forces on yield lines with deflection of the slab (r=1.5, 

d1=20mm, ductility 1%). 

Fig. 16: Variation of the maximum tensile in-plane bending stresses on yield lines with 

deflection of the slab (r=1.5, d1=20mm, ductility 1%). 

Fig. 17: Optimal x- and y-aligned yield-line mechanisms for a 9m x 6m slab with mesh effective 

depth 20mm with different orthotropy ratios; (a) nx and ny; (b) Yield-line capacities.  
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Fig. 18: Enhancement for orthotropic slabs with y-reinforcement constant at 142mm2/m; x-

reinforcement areas/m marked in legends.  (a) x-aligned mechanisms.  (b) y-aligned 

mechanisms. 

Fig. 19: Variation of the maximum tensile in-plane bending stresses at position Q with 

deflection of the slab (r=1.5, d1=20mm, ductility 1%) for different areas of x-

reinforcement  per metre, keeping y-reinforcement constant at 141.2mm
2
/m. 

Fig. 20: Comparison of predicted enhancements according to the new method and BRE with 

Foster et al. tests [30] using smooth reinforcement. 

Fig. 21: Comparison of predicted enhancements for different fracture crack-widths according to 

the new method and BRE with Foster et al. tests [30] using deformed reinforcement. 

 


