
This is a repository copy of A non-linear structure-preserving matrix method for the 
computation of the coefficients of an approximate greatest common divisor of two 
Bernstein polynomials.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/111431/

Version: Accepted Version

Article:

Bourne, M., Winkler, J.R. and Su, Y. (2017) A non-linear structure-preserving matrix 
method for the computation of the coefficients of an approximate greatest common divisor 
of two Bernstein polynomials. Journal of Computational and Applied Mathematics, 320. pp.
221-241. ISSN 0377-0427 

https://doi.org/10.1016/j.cam.2017.01.035

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A non-linear structure-preserving matrix

method for the computation of the coefficients

of an approximate greatest common divisor of

two Bernstein polynomials

Martin Bourne, a,⋆ Joab R. Winkler, a Su Yi b

aThe University of Sheffield, Department of Computer Science, Regent Court,

211 Portobello, Sheffield S1 4DP, United Kingdom

bInstitute of High Performance Computing, 1 Fusionopolis Way, 16-16 Connexis

North, Singapore 138632

mbourne1@sheffield.ac.uk, j.r.winkler@sheffield.ac.uk,
suyi@ihpc.a-star.edu.sg

Abstract

This paper describes a non-linear structure-preserving matrix method for the com-
putation of the coefficients of an approximate greatest common divisor (AGCD) of
degree t of two Bernstein polynomials f(y) and g(y). This method is applied to
a modified form St(f, g)Qt of the tth subresultant matrix St(f, g) of the Sylvester
resultant matrix S(f, g) of f(y) and g(y), where Qt is a diagonal matrix of com-
binatorial terms. This modified subresultant matrix has significant computational
advantages with respect to the standard subresultant matrix St(f, g), and it yields
better results for AGCD computations. It is shown that f(y) and g(y) must be pro-
cessed by three operations before St(f, g)Qt is formed, and the consequence of these
operations is the introduction of two parameters, α and θ, such that the entries of
St(f, g)Qt are non-linear functions of α, θ and the coefficients of f(y) and g(y). The
values of α and θ are optimised, and it is shown that these optimal values allow an
AGCD that has a small error, and a structured low rank approximation of S(f, g),
to be computed.

Key words: Approximate greatest common divisor; Sylvester resultant matrix;
structure-preserving matrix methods

⋆ Martin Bourne was supported by a studentship from The Agency for Science,
Technology and Research (A∗STAR), Singapore, and The University of Sheffield.

Preprint submitted to Elsevier Preprint 31 January 2017



1 Introduction

The need to calculate the points of intersection of two polynomial curves
p(x, y) = 0 and q(x, y) = 0 arises frequently in computer aided geometric
design (CAGD), and an important part of this calculation is the computation
of the greatest common divisor (GCD) of p(x, y) and q(x, y). Resultant ma-
trices are frequently used for this computation, and these matrices and other
polynomial computations also occur in robotics [5], computer vision [6], com-
putational geometry, for example, the implicitization of parametric curves and
surfaces [9] and the construction of surfaces [10,11], control theory [13] and
the computation of multiple roots of a polynomial [17,22]. There are several
resultant matrices, including the Sylvester, Bézout and companion resultant
matrices, of which the Sylvester matrix is the most popular, presumably be-
cause its entries are linear, even though it is larger than the Bézout and
companion matrices. This property of the entries of the Sylvester matrix must
be compared with the entries of the Bézout and companion matrices, which
are bilinear and non-linear, respectively [1].

There has been extensive work on the theoretical and numerical properties
of resultant matrices for polynomials expressed in the power basis, but much
less work has been performed on resultant matrices for polynomials expressed
in the Bernstein basis, which is of particular interest in CAGD because of its
widespread use in this application. Explicit forms for the entries of the Bézout
resultant matrix [3], the companion resultant matrix [16] and the Sylvester
resultant matrix [18] of the Bernstein polynomials f̂(y) and ĝ(y),

f̂(y) =
m
∑

i=0

âi

(

m

i

)

(1− y)m−iyi and ĝ(y) =
n
∑

i=0

b̂i

(

n

i

)

(1− y)n−iyi, (1)

have been developed but there has been significantly less investigation into
their numerical properties. These properties are worthy of consideration be-
cause these resultant matrices contain combinatorial terms, and thus even if
the magnitude of the coefficients âi and b̂j is of order one, the entries of these
matrices may span several orders of magnitude, which may cause numerical
problems.

It was noted above that the computation of the points of intersection of two
polynomial curves requires the GCD of their polynomial forms. It is necessary
to distinguish between polynomials whose coefficients are, and are not, sub-
ject to error because the GCD is defined for exact polynomials only, but the
coefficients of polynomials in practical problems are subject to error. Inexact
(noisy) polynomials must therefore be considered, and this leads to an approx-
imate greatest common divisor (AGCD) of two polynomials whose coefficients
are subject to error. This paper considers, therefore, the computation of the

2



coefficients of an AGCD of degree t of the noisy forms f(y) and g(y) of the
exact polynomials f̂(y) and ĝ(y),

f(y) =
m
∑

i=0

ai

(

m

i

)

(1− y)m−iyi and g(y) =
n
∑

i=0

bi

(

n

i

)

(1− y)n−iyi,

by applying the method of structured non-linear total least norm (SNTLN)
[12] to a modified form St(f, g)Qt of the tth subresultant matrix St(f, g), where
Qt is a diagonal matrix of combinatorial terms. The calculation of the degree
t is considered in [4,23] and it is assumed this calculation has been performed,
and the value of t is therefore known. The computation of the GCD of f̂(y) and
ĝ(y) by Euclid’s algorithm is investigated in [14] and several stopping criteria
for the termination of the divisions in finite precision arithmetic are considered.
The results show that roundoff error can cause a serious deterioration in the
computed GCD and that a numerically robust method is required for this
computation.

One application of the work described in this paper is, as noted above, the
calculation of the points of intersection of two curves. Another application
is the computation of multiple roots of a polynomial, where the multiplicity
of a root defines the smoothness of curves and surfaces at their intersection
point. These roots are important for mechanical design because the stresses
in sharp corners of an object may become very large, and much larger than in
its interior, such that the object may fracture when in operation. These high
stress levels can be reduced substantially by rounding off the corners of the
intersecting curves and surfaces, which requires the formation of a blending
surface. The simplest situation arises when the blending surface reduces to
a blending curve, the formation of which requires the calculation of multi-
ple roots a polynomial p(y). Since the coefficients of this polynomial are, in
practical problems, corrupted by noise, its roots are, in general, simple. This
property does not, however, reflect design intent - a smooth intersection - but
if the noise is sufficiently small, then p(y) is near another polynomial p̃(y) that
has one or more multiple roots, which can therefore be used for the design of a
blending curve. Structured low rank approximations of the Sylvester resultant
matrices of p(k)(y) and p(k+1)(y), where p(k)(y) is the kth derivative of p(y),
k = 0, 1, . . . , allow the polynomial p̃(y) and its multiple roots to be computed,
and this has been considered for power basis polynomials [17,22]. The work
in this paper is therefore a necessary requirement for the extension of this
polynomial root solver to the Bernstein basis.

There are important differences between the GCD of f̂(y) and ĝ(y), and an
AGCD of f(y) and g(y). For example, the GCD of two exact polynomials is
unique up to a non-zero constant multiplier, but an AGCD of two inexact
polynomials is not unique because it can be defined in several different ways

3



and it is a function of the relative error of the coefficients of f(y) and g(y)
[2,24]. It cannot, however, be assumed in practical problems that this error
is uniformly distributed across the coefficients, and the implications of this
property for AGCD computations are considered in [4]. It is therefore assumed
in this paper that the upper bound of the relative error of the coefficients of
f(y) and g(y) is a uniformly distributed random number that spans two orders
of magnitude.

The Sylvester matrix of two Bernstein polynomials is reviewed in Section 2,
and the application of the method of SNTLN to the computation of an AGCD
of f(y) and g(y) is considered in Section 3. Examples of the application of the
method of SNTLN to the computation of the coefficients of an AGCD of degree
t are in Section 4, and Section 5 contains a summary of the paper.

The computation of a structured low rank approximation of the Sylvester ma-
trix of two power basis polynomials has been considered by several researchers
[8,19,20,25,26]. The computation of this matrix, S(f, g), for the Bernstein
polynomials f(y) and g(y) is sufficiently different to merit a separate investi-
gation because, apart from the importance of the Bernstein basis in CAGD,
non-trivial numerical issues that do not occur with power basis polynomials
must be considered. In particular, S(f, g) is not Tœplitz, unlike its power basis
equivalent, and the combinatorial terms in the Bernstein basis imply that the
ratio of the maximum entry to the minimum entry of S(f, g) may be large,
even if the ratio of the maximum coefficient to the minimum coefficient of
(f, g) is of order one. Also, the update formula of the QR decomposition can
be applied to the Sylvester matrix and its subresultant matrices of two power
basis polynomials, but the more involved structure of S(f, g) and its subresul-
tant matrices implies it cannot be used for these matrices. It therefore follows
that computations with subresultant matrices of Bernstein basis polynomials
are more expensive than with their power basis equivalents.

The results of this paper are now summarised:

• A modified form of S(f, g) must be used for the computation of a struc-
tured low rank approximation of this matrix because the modified form
minimises the adverse effects of large combinatorial terms in the Bernstein
basis functions.

• Previous work [19–21] has shown that improved results are obtained when
a non-linear transformation is imposed on the independent variable y. The
parameters of the transformation are optimised such that a measure of the
condition number of a subresultant matrix derived from S(f, g) is min-
imised. This minimisation must be performed for each subresultant matrix,
which marks a difference between these subresultant matrices and subresul-
tant matrices of two power basis polynomials, for which the minimisation
need only be performed once because the optimal values of the parameters

4



are independent of the order of the subresultant matrix.
• The polynomials that result from this non-linear transformation are ex-
pressed in a basis that is similar to, but distinct from, the Bernstein basis.
This change in basis does not occur when the non-linear transformation is
applied to a power basis polynomial.

• The method of SNTLN is applied to two different equations in order to
compute two, possibly different, structured low approximations of S(f, g).
The first equation is derived from a subresultant matrix of S(f, g) and the
second equation is derived from the equation that defines an approximate
factorisation of f(y) and g(y) into their AGCD and coprime factors. These
two structured low rank approximations are very similar and both of them
may therefore be used for subsequent analysis.

2 The Sylvester matrix

This section considers the Sylvester matrix and its subresultant matrices of the
Bernstein polynomials f̂(y) and ĝ(y) that are defined in (1). The discussion is
brief and more details are in [18,23].

The Sylvester matrix S(f̂ , ĝ) of f̂(y) and ĝ(y) is a square matrix of order
m+ n,

S(f̂ , ĝ) = D−1T (f̂ , ĝ), D, T (f̂ , ĝ) ∈ R
(m+n)×(m+n),

where

D−1 = diag
[

1

(m+n−1
0 )

1

(m+n−1
1 )

· · · 1

(m+n−1
m+n−1)

]

, (2)

and T (f̂ , ĝ) is the Sylvester matrix of f̂(y) and ĝ(y) when they are expressed
in the scaled Bernstein basis [15],

5



T (f̂ , ĝ) =











































â0
(

m

0

)

b̂0
(

n

0

)

â1
(

m

1

) . . . b̂1
(

n

1

) . . .
...

. . . â0
(

m

0

) ...
. . . b̂0

(

n

0

)

...
. . . â1

(

m

1

) ...
. . . b̂1

(

n

1

)

âm
(

m

m

) . . .
... b̂n

(

n

n

) . . .
...

. . .
...

. . .
...

âm
(

m

m

)

b̂n
(

n

n

)











































. (3)

Consideration of the degree and coefficients of the GCD of f̂(y) and ĝ(y) leads
to the subresultant matrices Sk(f̂ , ĝ), k = 1, . . . ,min(m,n), S1(f̂ , ĝ) = S(f̂ , ĝ).
The structure and dimensions of these matrices are considered in Theorem 2.1.

Theorem 2.1 The degree t̂ of the GCD of f̂(y) and ĝ(y) is equal to the largest

integer k such that Sk(f̂ , ĝ) is singular,

rank Sk(f̂ , ĝ) < m+ n− 2k + 2, k = 1, . . . , t̂,

rank Sk(f̂ , ĝ) = m+ n− 2k + 2, k = t̂ + 1, . . . ,min(m,n).
(4)

Proof The polynomials f̂(y) and ĝ(y) have common divisors of degree k =
1, . . . , t̂, since the degree of their GCD is t̂. It therefore follows that there
exist polynomials d̂k(y), ûm−k(y) and v̂n−k(y) of degrees k,m − k and n − k
respectively, such that

f̂(y) = ûm−k(y)d̂k(y) and ĝ(y) = v̂n−k(y)d̂k(y), (5)

where

ûm−k(y) =
m−k
∑

i=0

ûm−k,i

(

m− k

i

)

(1− y)m−k−iyi,

and

v̂n−k(y) =
n−k
∑

i=0

v̂n−k,i

(

n− k

i

)

(1− y)n−k−iyi.

The elimination of d̂k(y) between f̂(y) and ĝ(y) in (5) leads to the equation
f̂(y)v̂n−k(y) = ĝ(y)ûm−k(y), which can be written in matrix form,

6



D−1
k











































â0
(

m

0

)

b̂0
(

n

0

)

â1
(

m

1

) . . . b̂1
(

n

1

) . . .
...

. . . â0
(

m

0

) ...
. . . b̂0

(

n

0

)

...
. . . â1

(

m

1

) ...
. . . b̂1

(

n

1

)

âm
(

m

m

) . . .
... b̂n

(

n

n

) . . .
...

. . .
...

. . .
...

âm
(

m

m

)

b̂n
(

n

n

)





























































































v̂n−k,0

(

n−k

0

)

v̂n−k,1

(

n−k

1

)

...

v̂n−k,n−k

(

n−k

n−k

)

−ûm−k,0

(

m−k

0

)

−ûm−k,1

(

m−k

1

)

...

−ûm−k,m−k

(

m−k

m−k

)



















































=



















































0
...
...

0

0
...
...

0



















































,

(6)

or equivalently,

Sk(f̂ , ĝ)p(ûm−k, v̂n−k) =
(

D−1
k Tk(f̂ , ĝ)

)

p(ûm−k, v̂n−k) = 0, (7)

where D−1
k is a square diagonal matrix of order m+ n− k + 1,

D−1
k = diag

[

1

(m+n−k

0 )
1

(m+n−k

1 )
· · · 1

(m+n−k

m+n−k)

]

, D−1
1 = D−1,

and D−1 is defined in (2). The matrix Tk(f̂ , ĝ) ∈ R
(m+n−k+1)×(m+n−2k+2) con-

tains the coefficients of f̂(y) and ĝ(y), where T1(f̂ , ĝ) = T (f̂ , ĝ) and T (f̂ , ĝ)
is defined in (3), and p(ûm−k, v̂n−k) ∈ R

m+n−2k+2 contains the coefficients of
ûm−k(y) and v̂n−k(y). Equation (6) has a non-zero solution for k = 1, . . . , t̂,
because the degree of the GCD of f̂(y) and ĝ(y) is t̂, and ûm−k(y) and v̂n−k(y)
are therefore non-zero polynomials for k = 1, . . . , t̂. It follows that Sk(f̂ , ĝ) is
singular for these values of k, and in particular, Sk(f̂ , ĝ) has unit rank loss for
k = t̂ because the GCD of two polynomials is unique up to a non-zero scalar
multiplier. The polynomials ûm−k(y) and v̂n−k(y) are, however, equal to the
zero polynomial for k = t̂+ 1, . . . ,min(m,n), because the zero solution is the
only solution of (6) for these values of k. �

The vector p(ûm−k, v̂n−k) can be written as the product of a square diagonal
matrix Qk of order m+n−2k+2 and a vector r = r(ûm−k, v̂n−k) ∈ R

m+n−2k+2,

p(ûm−k, v̂n−k) = Qkr(ûm−k, v̂n−k), (8)

where

7



Qk = diag
[

(

n−k

0

) (

n−k

1

)

· · ·
(

n−k

n−k

) (

m−k

0

) (

m−k

1

)

· · ·
(

m−k

m−k

)

]

,

and

r =
[

v̂n−k,0 v̂n−k,1 · · · v̂n−k,n−k −ûm−k,0 −ûm−k,1 · · · −ûm−k,m−k

]T

.

The substitution of (8) into (7) yields

Sk(f̂ , ĝ)p(ûm−k, v̂n−k) =
(

D−1
k Tk(f̂ , ĝ)Qk

)

r(ûm−k, v̂n−k) = 0, (9)

and since D−1
k and Qk are non-singular, the rank of Sk = Sk(f̂ , ĝ) satisfies

rank Sk = rank D−1
k Tk = rank D−1

k TkQk = rank TkQk = rank Tk, (10)

where Tk = Tk(f̂ , ĝ). The rank property (4) of the subresultant matrices is
therefore satisfied by all the matrices in (10), and not only Sk(f̂ , ĝ). It is
shown in [4], however, that the form Sk(f̂ , ĝ)Qk = D−1

k Tk(f̂ , ĝ)Qk is preferred
for AGCD computations because its condition number is smaller than the
condition numbers of the other matrices in (10). The computation of its entries
requires, however, the evaluation of three combinatorial terms, which is greater
than the cost of the evaluation of the entries of the other matrices in (10). This
disadvantage is mitigated by the simplification of the entries ofD−1

k Tk(f̂ , ĝ)Qk,
such that only two combinatorial terms need be computed for each value of
k = 1, . . . ,min(m,n). In particular, the combinatorial terms in the entries in
the first n− k + 1 columns of D−1

k Tk(f̂ , ĝ)Qk can be rearranged,

(

m

i−j

)(

n−k

j

)

(

m+n−k

i

) =

(

m+n−k−i

n−k−j

)(

i

j

)

(

m+n−k

n−k

) , j = 0, . . . , n− k, i = j, . . . , m+ j, (11)

and similarly, the combinatorial terms in the entries in the last m − k + 1
columns of D−1

k Tk(f̂ , ĝ)Qk can be rearranged,

(

n

i−j

)(

m−k

j

)

(

m+n−k

i

) =

(

m+n−k−i

m−k−j

)(

i

j

)

(

m+n−k

m−k

) , j = 0, . . . , m− k, i = j, . . . , n+ j, (12)

from which it is seen that, for each value of k, the cost of the evaluation of
the terms on the left hand sides of (11) and (12) is greater than the cost
of the evaluation of the terms on the right hand sides. It therefore follows
that D−1

k Tk(f̂ , ĝ)Qk has the best numerical properties of the matrices in (10)
and the combinatorial terms in its entries can be rearranged, such that they

8



can be computed efficiently. It is also shown in [4] that this matrix has other
advantages, including simplified expressions for the geometric means of the
entries that contain the coefficients of f̂(y) and ĝ(y). This operation will be
required in Section 3 because the non-zero entries in the first n−k+1 columns,
and the non-zero entries in the last m−k+1 columns, of D−1

k Tk(f̂ , ĝ)Qk must
be normalised by their geometric means before computations can be performed
on this matrix.

It is assumed the value of t has been computed [4], and thus the computation
of the coefficients of an AGCD, of degree t, of f(y) and g(y) is performed on
D−1

t Tt(f, g)Qt. The next section considers the application of the method of
SNTLN to this computation.

3 The method of SNTLN for the computation of the coefficients
of an AGCD

The errors in the coefficients of f(y) and g(y) may not be known or they
may only be known approximately, which may cause problems because sev-
eral methods for the computation of an AGCD of f(y) and g(y) attempt to
compute common divisors of degree k, k = min(m,n), min(m,n)− 1, . . . , 2,
1, and an error measure is computed for each value of k. The computations
terminate at the largest (first) value of k for which the error measure is smaller
than the upper bound ǫ of the relative error, from which it follows that an
AGCD is a function of ǫ.

A different procedure is adopted in this paper because the computation of an
AGCD of f(y) and g(y) is considered in two stages:

Stage 1 Compute the degree t of an AGCD of f(y) and g(y).
Stage 2 Compute the coefficients of an AGCD of degree t.

Stage 1 is considered in [4], where it is also shown that f(y) and g(y) must be
processed by three operations before these two stages are implemented. These
operations are:

1. The normalisation of the coefficients of f(y) and g(y) in Sk(f, g)Qk =
D−1

k Tk(f, g)Qk by their geometric means, λk and µk respectively, for k =
1, . . . ,min(m,n).
2. The replacement of g(y) by αkg(y) where αk is a non-zero parameter
whose optimal value is computed for each value of k = 1, . . . ,min(m,n).
These computations require that a linear programming problem be solved
for each value of k.
3. The substitution

9



y = θkw, (13)

is made, where w is the new independent variable and θk is a non-zero
parameter whose optimal value, for each value of k = 1, . . . ,min(m,n), is
calculated from the linear programming problem from which the optimal
value of αk is computed.

The substitution (13) transforms f(y) and g(y) to polynomials that are ex-
pressed in a generalised form of the Bernstein basis, called the modified Bern-
stein basis, whose basis functions for a polynomial of degree m and parameter
θ are

(

m

i

)

(1− θw)m−iwi, i = 0, . . . , m. (14)

The transformation of the Sylvester matrix and its subresultant matrices be-
tween the Bernstein and modified Bernstein bases is considered in Section
3.4.

It follows from the discussion above that the degree and coefficients of an
AGCD of two Bernstein polynomials are computed by transforming them to
the modified Bernstein basis and performing all computations in this basis.
The result of the three preprocessing operations on f(y) and g(y), and the as-
sumption that the degree t of an AGCD has been computed using the methods
in [4], is, therefore, the polynomials f̄(w) and α0ḡ(w),

f̄ = f̄(w) =
m
∑

i=0

(

āiθ
i
0

)

(

m

i

)

(1− θ0w)
m−i wi, āi =

ai
λt

, (15)

and

α0ḡ = α0ḡ(w) = α0

n
∑

i=0

(

b̄iθ
i
0

)

(

n

i

)

(1− θ0w)
n−i wi, b̄i =

bi
µt

, (16)

where α0 and θ0 are, respectively, the optimal values of αk and θk for k = t. The
computation of the coefficients of an AGCD of f̄(w) and α0ḡ(w) is therefore
determined from the tth modified Sylvester subresultant matrix,

St(f̄ , α0ḡ)Qt = D−1
t Tt(f̄ , α0ḡ)Qt =

[

Ft(f̄) α0Gt(ḡ)

]

, (17)

where Ft(f̄) ∈ R
(m+n−t+1)×(n−t+1) and α0Gt(ḡ) ∈ R

(m+n−t+1)×(m−t+1) contain
the coefficients of f̄(w) and α0ḡ(w) respectively. The coprime polynomials

10



ū(w) and v̄(w), which are of degrees m− t and n− t respectively, associated
with f̄(w) and α0ḡ(w) are

ū(w) =
m−t
∑

i=0

(

ūiθ
i
0

)

(

m− t

i

)

(1− θ0w)
m−t−i wi, (18)

and

v̄(w) =
n−t
∑

i=0

(

v̄iθ
i
0

)

(

n− t

i

)

(1− θ0w)
n−t−i wi. (19)

Two methods for the computation of the coefficients of an AGCD of f̄(w)
and α0ḡ(w) are considered and they require a solution of an approximate
linear algebraic equation Ax ≈ b where A ∈ R

p×q, p < q. The matrix A and
vector b are structured because they are derived from the modified Sylvester
subresultant matrix St(f̄ , α0ḡ)Qt, which is defined in (17). This approximate
equation is transformed to an exact equation by the addition of a matrix
E, which has the same structure as A, to the left hand side, and a vector
e, which has the same structure as b, to the right hand side, such that the
approximation Ax ≈ b is transformed to the exact equation,

(A+ E)x̄ = b+ e, (20)

where E and e contain the coefficients of the polynomials that are added to
the noisy polynomials f̄(w) and α0ḡ(w). It follows that the perturbed forms
of these noisy polynomials have a GCD of degree t, that is, the given noisy
polynomials that have an AGCD of degree t are perturbed to polynomials that
have a GCD of degree t. The matrix E and vector e are not unique because the
perturbations added to f̄(w) and α0ḡ(w) to induce a non-constant GCD are
not unique. A constraint is therefore added to (20) to impose uniqueness, and
thus this equation is transformed to a least squares equality (LSE) problem,

min
{

‖E‖2 + ‖e‖2
}

subject to (A+ E)x̄ = b+ e, ‖·‖ ≡ ‖·‖2 . (21)

The minimisation constraint requires that, of all the matrices E and vectors
e that satisfy (20), the given noisy polynomials are perturbed the minimum
amount such that their perturbed forms have a GCD of degree t. The LSE
problem (21) is non-linear because, apart from the entries of E and e, improved
values of α0 and θ0 are computed, and (21) is therefore solved iteratively.

Sections 3.1 and 3.2 consider, respectively, the computation of a structured
low rank approximation of the Sylvester matrix S(f̄ , α0ḡ) and an approximate

11



factorisation of f̄(w) and α0ḡ(w). It is shown that the computation of the
coefficients of an AGCD of degree t by these methods yields an equation of
the form (21), and the convergence of the iterative procedure for its solution
is considered in Section 3.3.

The third preprocessing operation, which is defined in (13), shows that the
AGCD computations are performed in the modified Bernstein basis. The com-
puted AGCD can be transformed to the Bernstein basis using the inverse
transformation w = y/θ∗, where θ∗ is the value of θ0 at the termination of the
iterative procedure for the solution of (21).

3.1 A structured low rank approximation of the Sylvester matrix

This section considers the application of the method of SNTLN to the compu-
tation of the coefficients of an AGCD of f̄(w) and α0ḡ(w) from a structured
low rank approximation of S(f̄ , α0ḡ).

It follows from Theorem 2.1 that, with respect to the exact polynomials f̂(y)
and ĝ(y), the rank of St̂(f̂ , ĝ)Qt̂ is m+n− 2t̂+1, that is, there is exactly one
equation that defines the linear dependence of the columns of St̂(f̂ , ĝ)Qt̂. This
exact rank loss does not exist when inexact polynomials f̄(w) and α0ḡ(w) are
considered, and it is therefore necessary to consider the approximate rank loss
of St(f̄ , α0ḡ)Qt. If ct,k is the kth column of St(f̄ , α0ḡ)Qt, then

St(f̄ , α0ḡ)Qt =
[

ct,1 ct,2 · · · ct,m+n−2t+1 ct,m+n−2t+2

]

,

is near unit rank loss, and (9) is replaced by, for k = t,

St(f̄ , α0ḡ)p(ū, v̄)
∥

∥

∥St(f̄ , α0ḡ)p(ū, v̄)
∥

∥

∥

=

(

D−1
t Tt(f̄ , α0ḡ)Qt

)

r(ū, v̄)
∥

∥

∥

(

D−1
t Tt(f̄ , α0ḡ)Qt

)

r(ū, v̄)
∥

∥

∥

≈ 0, (22)

where ū = ū(w) and v̄ = v̄(w) are defined in (18) and (19) respectively.
Since St(f̄ , α0ḡ)Qt is near unit rank loss, one of its columns is almost linearly
dependent on its other columns, and it is necessary to determine the column
that lies, with minimum error, in the space spanned by the other columns.
The removal of the jth column of St(f̄ , α0ḡ)Qt = D−1

t Tt(f̄ , α0ḡ)Qt leaves a
matrix At,j = At,j(f̄ , α0ḡ) of order (m+ n− t+ 1)× (m+ n− 2t+ 1),

At,j =
[

ct,1 ct,2 · · · ct,j−1 ct,j+1 · · · ct,m+n−2t+1 ct,m+n−2t+2

]

,

12



and the residual rt,j of the least squares solution of the approximate equation,

At,jxj ≈ ct,j , (23)

is computed for j = 1, . . . , m + n − 2t + 2, that is, for each column of
St(f̄ , α0ḡ)Qt. The optimal column to move to the right hand side is the col-
umn ct,j for which the residual rt,j is a minimum because this is the column
that lies, with minimum error, in the space spanned by the columns of At,j .
The index q of the optimal column is therefore given by

q = argmin
j

{rt,j} , (24)

and thus (23) becomes

At,qxq ≈ ct,q. (25)

The modified Sylvester subresultant matrix of order t of f̄(w) and α0ḡ(w) is
St(f̄ , α0ḡ)Qt = D−1

t Tt(f̄ , α0ḡ)Qt, where Tt(f̄ , α0ḡ) ∈ R
(m+n−t+1)×(m+n−2t+2) is

given by

Tt(f̄ , α0ḡ) =



































ā0
(

m

0

)

α0b̄0
(

n

0

)

ā1
(

m

1

)

θ0
. . . α0b̄1

(

n

1

)

θ0
. . .

...
. . . ā0

(

m

0

) ...
. . . α0b̄0

(

n

0

)

ām
(

m

m

)

θm0
. . . ā1

(

m

1

)

θ0 α0b̄n
(

n

n

)

θn0
. . . α0b̄1

(

n

1

)

θ0
. . .

...
. . .

...

ām
(

m

m

)

θm0 α0b̄n
(

n

n

)

θn0



































,

and if Mq ∈ R
(m+n−2t+2)×(m+n−2t+1) is defined as

Mq =
[

e1 e2 · · · eq−1 eq+1 · · · em+n−2t+1 em+n−2t+2

]

,

where ei ∈ R
m+n−2t+2 is the ith unit basis vector, then (25) becomes

(

D−1
t Tt

(

f̄ , α0ḡ
)

Qt

)

Mqxq ≈
(

D−1
t Tt

(

f̄ , α0ḡ
)

Qt

)

eq, (26)

where, from (22), xq ∈ R
m+n−2t+1 is formed by the removal of the qth entry

of r(ū, v̄).

13



It follows from the constraint in the LSE problem (21) that the inexact and
coprime polynomials f̄(w) and α0ḡ(w) are perturbed in order to induce a non-
constant common divisor in their perturbed forms. If the polynomials added
to f̄(w) and α0ḡ(w) are, respectively,

m
∑

i=0

(

ziφ
i
)

(

m

i

)

(1− φw)m−i wi,

and

β
n
∑

i=0

(

zm+1+iφ
i
)

(

n

i

)

(1− φw)n−i wi,

then the tth modified subresultant matrix of the perturbations is equal to
D−1

t Ft(β, φ, z)Qt ∈ R
(m+n−t+1)×(m+n−2t+2) where

z =
[

z0 · · · zm zm+1 · · · zm+n+1

]T

∈ R
m+n+2, (27)

and Ft(β, φ, z) is given by



































z0
(

m

0

)

βzm+1

(

n

0

)

z1
(

m

1

)

φ
. . . βzm+2

(

n

1

)

φ
. . .

...
. . . z0

(

m

0

) ...
. . . βzm+1

(

n

0

)

zm
(

m

m

)

φm . . . z1
(

m

1

)

φ βzm+n+1

(

n

n

)

φn . . . βzm+2

(

n

1

)

φ
. . .

...
. . .

...

zm
(

m

m

)

φm βzm+n+1

(

n

n

)

φn



































.

This perturbation of the coefficients of f̄(w) and α0ḡ(w) implies that the
approximation (26) is replaced by the exact equation,

(

D−1
t (Tt + Ft)Qt

)

Mqxq =
(

D−1
t (Tt + Ft)Qt

)

eq, (28)

which corresponds to the constraint in (21).

A change of notation is required because (28) is a non-linear equation that is
solved iteratively, and the variables to be determined include β, φ and z. The
initial values of these variables in the iterative procedure are β(0) = α0, φ

(0) =

14



θ0 and z(0) = 0, and it is therefore appropriate to include these parameters in
the arguments of the vectors and matrices in (28),

(

D−1
t (Tt(β, φ) + Ft(β, φ, z))Qt

)

Mqxq = ct(β, φ) + ht(β, φ, z), (29)

where

ct(β, φ) = D−1
t Tt(β, φ)Qteq and ht(β, φ, z) = D−1

t Ft(β, φ, z)Qteq.

The scalar multiplier β is included in the arguments of ct and ht because this
is the most general condition. These vectors may not, however, be functions
of β, and this is dependent on the index q of the optimal column, which is
defined in (24),

ct = ct(φ), ht = ht(φ, z) if 1 ≤ q ≤ n− t + 1,

ct = ct(β, φ), ht = ht(β, φ, z) if n− t+ 2 ≤ q ≤ m+ n− 2t+ 2.
(30)

The following theory is developed assuming n− t + 2 ≤ q ≤ m + n − 2t + 2,
but the dependence of ct and ht on β is removed if 1 ≤ q ≤ n− t+ 1.

Equation (29) is non-linear and it is solved by the Newton-Raphson method.
The residual of an approximate solution of this equation is

r(β, φ,xq, z) = ct(β, φ) + ht(β, φ, z)

−
(

D−1
t (Tt(β, φ) + Ft(β, φ, z))Qt

)

Mqxq, (31)

and if r̃ is defined as

r̃ := r(β + δβ, φ+ δφ,xq + δxq, z+ δz)

= ct(β + δβ, φ+ δφ) + ht(β + δβ, φ+ δφ, z+ δz)

−



D−1
t

(

Tt(β + δβ, φ+ δφ) + Ft(β + δβ, φ+ δφ, z+ δz)
)

Qt





×Mq(xq + δxq),

then to first order,

15



r̃= r(β, φ,xq, z)−

(

D−1
t

(

∂Tt

∂φ
+

∂Ft

∂φ

)

QtMqxq −

(

∂ct
∂φ

+
∂ht

∂φ

))

δφ

−

(

D−1
t

(

∂Tt

∂β
+

∂Ft

∂β

)

QtMqxq −

(

∂ct
∂β

+
∂ht

∂β

))

δβ

−
(

D−1
t (Tt + Ft)QtMq

)

δxq +
m+n+1
∑

i=0

∂ht

∂zi
δzi

−

(

D−1
t

m+n+1
∑

i=0

∂Ft

∂zi
δzi

)

QtMqxq, (32)

and it is noted again that the forms of ct and ht, and their derivatives, depend
on the value of q, as shown in (30).

Example 3.1 If q = n − t + 4 > n − t + 1, then ct = ct(β, φ) and ht =
ht(β, φ, z), and thus

Qteq =
[

0T
n−t+1 0 0

(

m−t

2

)

0T
m−t−2

]T

,

ct=

(

m− t

2

)

D−1
t

[

0 0 βb̄0
(

n

0

)

βb̄1
(

n

1

)

φ · · · βb̄n
(

n

n

)

φn 0T
m−t−2

]T

,

∂ct
∂φ

=

(

m− t

2

)

D−1
t

[

0 0 0 βb̄1
(

n

1

)

· · · βnb̄n
(

n

n

)

φn−1 0T
m−t−2

]T

,

∂ct
∂β

=

(

m− t

2

)

D−1
t

[

0 0 b̄0
(

n

0

)

b̄1
(

n

1

)

φ · · · b̄n
(

n

n

)

φn 0T
m−t−2

]T

,

ht=

(

m− t

2

)

D−1
t

[

0 0 βzm+1

(

n

0

)

βzm+2

(

n

1

)

φ · · · βzm+n+1

(

n

n

)

φn 0T
m−t−2

]T

,

∂ht

∂φ
=

(

m− t

2

)

D−1
t

[

0 0 0 βzm+2

(

n

1

)

· · · βnzm+n+1

(

n

n

)

φn−1 0T
m−t−2

]T

,

∂ht

∂β
=

(

m− t

2

)

D−1
t

[

0 0 zm+1

(

n

0

)

zm+2

(

n

1

)

φ · · · zm+n+1

(

n

n

)

φn 0T
m−t−2

]T

,

where the zero vector 0T
r is of length r. The partial derivatives ∂Tt

∂φ
, ∂Tt

∂β
, ∂Ft

∂φ

and ∂Ft

∂β
are calculated in a similar manner. 2

It is still assumed that q > n− t+1, and thus the general expression for ht is

16



ht =

(

m− t

q − (n− t + 2)

)

D−1
t











































0q−n+t−2

βzm+1

(

n

0

)

βzm+2

(

n

1

)

φ
...

βzm+n

(

n

n−1

)

φn−1

βzm+n+1

(

n

n

)

φn

0m+n−2t−q+2











































=β

(

m− t

q − (n− t+ 2)

)

D−1
t















0q−n+t−2,m+1 0q−n+t−2,n+1

0n+1,m+1 G

0m+n−2t−q+2,m+1 0m+n−2t−q+2,n+1

















































z0
...

zm

zm+1

...

zm+n+1



































=βD−1
t Ptz,

where

G = G(φ) = diag
[

(

n

0

) (

n

1

)

φ · · ·
(

n

n−1

)

φn−1
(

n

n

)

φn

]

∈ R
(n+1)×(n+1),

z is defined in (27) and Pt = Pt(φ) ∈ R
(m+n−t+1)×(m+n+2) is given by

Pt =

(

m− t

q − (n− t+ 2)

)















0q−n+t−2,m+1 0q−n+t−2,n+1

0n+1,m+1 G

0m+n−2t−q+2,m+1 0m+n−2t−q+2,n+1















.

It therefore follows that the penultimate term in (32) can be expressed as

m+n+1
∑

i=0

∂ht

∂zi
δzi = βD−1

t Ptδz.

The last term in (32) must also be simplified, and this simplification is achieved

by noting that the matrix-vector multiplication
(

D−1
t Ft

)

(QtMqxq) represents
the product of two polynomials expressed in the modified Bernstein basis.
Since polynomial multiplication is commutative, it follows that there exists a
matrix Yt = Yt(β, φ,xq) ∈ R

(m+n−t+1)×(m+n+2) such that

17



(

D−1
t Yt

)

z =
(

D−1
t Ft

)

(QtMqxq) ,

for all β, φ,xq and z. The differentiation of this equation with respect to z,
and keeping β and φ constant, yields

Ytδz =
m+n+1
∑

i=0

(

∂Ft

∂zi
δzi

)

QtMqxq,

and thus (32) simplifies to

r̃= r(β + δβ, φ+ δφ,xq + δxq, z+ δz)

= r(β, φ,xq, z)−

(

D−1
t

(

∂Tt

∂φ
+

∂Ft

∂φ

)

QtMqxq −

(

∂ct
∂φ

+
∂ht

∂φ

))

δφ

−

(

D−1
t

(

∂Tt

∂β
+

∂Ft

∂β

)

QtMqxq −

(

∂ct
∂β

+
∂ht

∂β

))

δβ

−
(

D−1
t (Tt + Ft)QtMq

)

δxq −D−1
t (Yt − βPt)δz, (33)

to first order. The jth iteration in the Newton-Raphson method for the cal-
culation of β, φ,xq and z is obtained from (33),

[

Hz Hxq
Hβ Hφ

](j)





















δz

δxq

δβ

δφ





















(j)

= r(j), (34)

where r(j) = r(j)(β, φ,xq, z),

Hz =D−1
t (Yt − βPt) ∈ R

(m+n−t+1)×(m+n+2),

Hxq
=D−1

t (Tt + Ft)QtMq ∈ R
(m+n−t+1)×(m+n−2t+1),

Hβ =D−1
t

(

∂Tt

∂β
+

∂Ft

∂β

)

QtMqxq −

(

∂ct
∂β

+
∂ht

∂β

)

∈ R
m+n−t+1,

Hφ =D−1
t

(

∂Tt

∂φ
+

∂Ft

∂φ

)

QtMqxq −

(

∂ct
∂φ

+
∂ht

∂φ

)

∈ R
m+n−t+1.

The values of β, φ,xq and z at the jth iteration, j = 1, 2, . . . , are

18



y(j) = y(j−1) + δy(j), y(j) =





















z

xq

β

φ





















(j)

, δy(j) =





















δz

δxq

δβ

δφ





















(j)

, (35)

where y(j) ∈ R
2m+2n−2t+5, the initial value of z is z(0) = 0 because the given

data is the inexact data, the initial values of β and φ are β(0) = α0 and φ(0) =
θ0, and x(0)

q , the initial value of xq, is calculated from (31) when r = ht = 0
and Ft = 0,

x(0)
q = argmin

w

∥

∥

∥

∥

(

D−1
t Tt (α0, θ0)QtMq

)

w− ct (α0, θ0)

∥

∥

∥

∥

.

Equation (34) is under-determined and it can be written as

C(j)δy(j) = q(j), (36)

where C(j) ∈ R
(m+n−t+1)×(2m+2n−2t+5) and q(j) ∈ R

m+n−t+1 are, respectively,

C(j) =
[

Hz Hxq
Hβ Hφ

](j)

and q(j) = r(j).

A unique solution of (36) is obtained by calculating the vector δy(j) of mini-
mum magnitude that satisfies this equation, that is, the solution that is closest
to the given inexact data is required. It follows from (35) that the magnitude
of the difference between the solution y(j) at the jth iteration and the initial
estimate y(0) of the solution is

∥

∥

∥y(j) − y(0)
∥

∥

∥ =
∥

∥

∥y(j−1) + δy(j) − y(0)
∥

∥

∥ =
∥

∥

∥δy(j) − p(j)
∥

∥

∥ , (37)

where

p(j) = y(0) − y(j−1), (38)

and thus the minimisation of (37) subject to (36) yields the LSE problem (21),

min
δy(j)

∥

∥

∥δy(j) − p(j)
∥

∥

∥ subject to Cδy(j) = q(j), j = 1, 2, . . . (39)

This problem can be solved by the QR decomposition at each iteration [7],
where δy(j), C(j),q(j) and p(j) are updated between successive iterations. The
convergence of the iteration (39) is considered in Section 3.3.

19



If the iteration (39) converges, then the vector y(j) at termination contains
the perturbations z∗i , i = 0, . . . , m, and z∗i , i = m + 1, . . . , m+ n + 1, and the
parameters β∗ and φ∗, such that the corrected polynomials

f̃(w) =
m
∑

i=0

(

(āi + z∗i )φ
∗
i
)

(

m

i

)

(1− φ∗w)m−iwi

:=
m
∑

i=0

(

ãiφ
∗
i
)

(

m

i

)

(1− φ∗w)m−iwi, (40)

and

β∗g̃(w) = β∗

n
∑

i=0

(

(b̄i + z∗m+1+i)φ
∗
i
)

(

n

i

)

(1− φ∗w)n−iwi

:= β∗

n
∑

i=0

(

b̃iφ
∗
i
)

(

n

i

)

(1− φ∗w)n−iwi, (41)

have a GCD d̃(w) of degree t,

d̃(w) =
t
∑

i=0

(

d̃iφ
∗
i
)

(

t

i

)

(1− φ∗w)t−iwi, (42)

that satisfies

ũ(w)d̃(w) = f̃(w) and ṽ(w)d̃(w) = β∗g̃(w), (43)

where the corrected coprime polynomials ũ(w) and ṽ(w) are obtained from the
least squares solution xq of (29) when β = β∗, φ = φ∗ and z = z∗. The poly-
nomial d̃(w) is most easily computed by combining the polynomial equations
(43) into one matrix equation,

H−1







D1(ũ)

D2(ṽ)





 Jd̃ =







f̃

β∗g̃





 , (44)

where D1(ũ) ∈ R
(m+1)×(t+1) and D2(ṽ) ∈ R

(n+1)×(t+1) are Tœplitz matrices
that contain the coefficients of ũ(w) and ṽ(w) respectively,

20



H−1=H(m,n)−1 =







H1(m)−1 0

0 H1(n)
−1





 ∈ R
(m+n+2)×(m+n+2), (45)

H1(p)
−1=diag

[

1

(p0)
1

(p1)
· · · 1

(pp)

]

∈ R
(p+1)×(p+1),

J =diag
[

(

t

0

) (

t

1

)

· · ·
(

t

t

)

]

∈ R
(t+1)×(t+1), (46)

f̃=
[

ã0 ã1φ
∗ · · · ãmφ

∗
m

]T

∈ R
m+1,

g̃=
[

b̃0 b̃1φ
∗ · · · b̃nφ

∗
n

]T

∈ R
n+1,

d̃=
[

d̃0 d̃1φ
∗ · · · d̃tφ

∗
t

]T

∈ R
t+1,

and the coefficients ãiφ
∗
i

, b̃iφ
∗
i

and d̃iφ
∗
i

are defined in (40), (41) and (42)
respectively. The error of the least squares solution of (44) is very small be-
cause the polynomials f̃(w), β∗g̃(w), ũ(w) and ṽ(w) satisfy (43) since they are
computed from the solution of (39) at convergence.

3.2 Approximate polynomial factorisation

This section considers an approximate factorisation of f̄(w) and α0ḡ(w), which
are defined in (15) and (16) respectively, in order to compute the coefficients
of an AGCD of degree t. This factorisation also yields a non-linear equation
that requires the solution of an LSE problem at each iteration.

The preprocessing operations discussed in Section 3 yield the values α0 and
θ0, and thus if ḋ(w) is an AGCD of f̄(w) and α0ḡ(w), then

ū(w)ḋ(w) ≈ f̄(w) and ṽ(w)ḋ(w) ≈ α0ḡ(w), (47)

where ū(w) and v̄(w) are defined in (18) and (19) respectively, and

ḋ(w)=
t
∑

i=0

(

ḋiθ
i
0

)

(

t

i

)

(1− θ0w)
t−iwi. (48)

The approximations (47) can be combined into one approximate equation,

H−1







C1(θ0)

C2(θ0)





 Jḋ(θ0) ≈







f̄(θ0)

α0ḡ(θ0)





 , (49)

21



where H−1 and J are defined in (45) and (46) respectively,

f̄(θ0) =
[

ā0 ā1θ0 · · · āmθ
m
0

]T

∈ R
m+1,

ḡ(θ0) =
[

b̄0 b̄1θ0 · · · b̄nθ
n
0

]T

∈ R
n+1,

ḋ(θ0) =
[

ḋ0 ḋ1θ0 · · · ḋtθ
t
0

]T

∈ R
t+1,

C1(θ0) ∈ R
(m+1)×(t+1) and C2(θ0) ∈ R

(n+1)×(t+1) are Tœplitz matrices,

C1(θ0) =

























































ū0

(

m−t

0

)

ū1

(

m−t

1

)

θ0 ū0

(

m−t

0

)

ū2

(

m−t

2

)

θ20 ū1

(

m−t

1

)

θ0
. . .

... ū2

(

m−t

2

)

θ20
. . . ū0

(

m−t

0

)

...
...

. . . ū1

(

m−t

1

)

θ0

ūm−t

(

m−t

m−t

)

θm−t
0

...
. . . ū2

(

m−t

2

)

θ20

ūm−t

(

m−t

m−t

)

θm−t
0

. . .
...

. . .
...

ūm−t

(

m−t

m−t

)

θm−t
0

























































,

and

C2(θ0) =

























































v̄0
(

n−t

0

)

v̄1
(

n−t

1

)

θ0 v̄0
(

n−t

0

)

v̄2
(

n−t

2

)

θ20 v̄1
(

n−t

1

)

θ0
. . .

... v̄2
(

n−t

2

)

θ20
. . . v̄0

(

n−t

0

)

...
...

. . . v̄1
(

n−t

1

)

θ0

v̄n−t

(

n−t

n−t

)

θn−t
0

...
. . . v̄2

(

n−t

2

)

θ20

v̄n−t

(

n−t

n−t

)

θn−t
0

. . .
...

. . .
...

v̄n−t

(

n−t

n−t

)

θn−t
0

























































.

Consideration of the combinatorial terms in H1(m)−1C1(θ0)J , where H1(m)−1

is defined in (45), in the coefficient matrix in (49) shows that it is necessary

22



to evaluate the expression

(

m−t

i−j

)(

t

j

)

(

m

i

) , j = 0, . . . , t, i = j, . . . , m− t + j,

which requires that three combinatorial terms be computed. A computation-
ally efficient form of this expression is obtained by rearrangement of the com-
binatorial terms,

(

m−t

i−j

)(

t

j

)

(

m

i

) =

(

i

j

)(

m−i

t−j

)

(

m

t

) , j = 0, . . . , t, i = j, . . . , m− t+ j,

which requires the evaluation of two combinatorial terms for each value of
i and j. It is clear that a similar simplification is appropriate for the matrix
H1(n)

−1C2(θ0)J in the coefficient matrix in (49), and that these simplifications
are identical to the simplifications (11) and (12).

The approximate equation (49) is transformed to an exact equation by the
addition of a structured matrix to the left hand side and a structured vector
to the right hand side, that is, the procedure used to transform (26) to (29)
is used. This procedure is equivalent to the addition of polynomials s(w) and
t(w) to f̄(w) and ḡ(w) respectively,

s(w)=
m
∑

i=0

(

piθ
i
0

)

(

m

i

)

(1− θ0w)
m−iwi, (50)

t(w)=
n
∑

i=0

(

qiθ
i
0

)

(

n

i

)

(1− θ0w)
n−iwi, (51)

and the addition of polynomials c(w) and e(w) to ū(w) and v̄(w) respectively,

c(w)=
m−t
∑

i=0

(

ziθ
i
0

)

(

m− t

i

)

(1− θ0w)
m−t−iwi,

e(w)=
n−t
∑

i=0

(

zm−t+1+iθ
i
0

)

(

n− t

i

)

(1− θ0w)
n−t−iwi,

such that the approximate equations (47) become

(ū(w) + c(w))d̄(w)= f̄(w) + s(w), (52)

(v̄(w) + e(w))d̄(w)= (α0 + β) (ḡ(w) + t(w)) , (53)

23



where the AGCD ḋ(w), which is defined in (48), is replaced by the GCD d̄(w),
and β is a constant to be determined. The polynomial equations (52) and (53)
are written as a matrix equation that is solved iteratively for the coefficients of
the polynomials c(w), e(w), s(w), t(w) and d̄(w), and the parameters β and θ0.
The initial values of the coefficients and parameters in the iterative procedure
are zi = 0, i = 0, . . . , m+ n− 2t + 1, pi = 0, i = 0, . . . , m, qi = 0, i = 0, . . . , n,
β(0) = 0 and φ(0) = θ0. Equations (52) and (53) are therefore written as

H−1







C1(φ) + E1(w1, φ)

C2(φ) + E2(w2, φ)





 Jd̄(φ) =







f̄(φ) + s(p, φ)

(α0 + β)
(

ḡ(φ) + t(q, φ)
)





 , (54)

where H−1 is defined in (45), E1(w1, φ) ∈ R
(m+1)×(t+1) and E2(w2, φ) ∈

R
(n+1)×(t+1) are Tœplitz matrices that contain the coefficients of c(w) and

e(w) respectively, w1 and w2 are derived from z, which is defined in(27),

z=







w1

w2





 ,

w1=
[

z0
(

m−t

0

)

z1
(

m−t

1

)

· · · zm−t

(

m−t

m−t

)

]T

∈ R
m−t+1,

w2=
[

zm−t+1

(

n−t

0

)

zm−t+2

(

n−t

1

)

· · · zm+n−2t+1

(

n−t

n−t

)

]T

∈ R
n−t+1,

E1(w1, φ) =



















































z0
(

m−t

0

)

z1
(

m−t

1

)

φ
. . .

z2
(

m−t

2

)

φ2 . . . z0
(

m−t

0

)

...
. . . z1

(

m−t

1

)

φ
...

. . . z2
(

m−t

2

)

φ2

zm−t

(

m−t

m−t

)

φm−t . . .
...

. . .
...

zm−t

(

m−t

m−t

)

φm−t



















































,

24



E2(w2, φ) =



















































zm−t+1

(

n−t

0

)

zm−t+2

(

n−t

1

)

φ
. . .

zm−t+3

(

n−t

2

)

φ2 . . . zm−t+1

(

n−t

0

)

...
. . . zm−t+2

(

n−t

1

)

φ
...

. . . zm−t+3

(

n−t

2

)

φ2

zm+n−2t+1

(

n−t

n−t

)

φn−t . . .
...

. . .
...

zm+n−2t+1

(

n−t

n−t

)

φn−t



















































,

the vectors s = s(p, φ) and t = t(q, φ) contain the coefficients of s(w) and
t(w), which are defined in (50) and (51) respectively,

s=
[

p0 p1φ · · · pmφ
m

]T

∈ R
m+1,

t=
[

q0 q1φ · · · qnφ
n

]T

∈ R
n+1,

p=
[

p0 p1 · · · pm

]T

∈ R
m+1,

q=
[

q0 q1 · · · qn

]T

∈ R
n+1,

and

d̄(φ) =
[

d̄0 d̄1φ · · · d̄tφ
t

]T

∈ R
t+1.

Equation (54) is similar to (29) because it is derived from an approximation
of a polynomial decomposition and the variables to be computed include the
perturbations to be added to the inexact polynomials, such that the perturbed
polynomials satisfy an equation rather than an approximation. Equation (54)
is solved in the same manner as (29), that is, the Newton-Raphson method is
used. This yields an under-determined equation, and uniqueness is imposed by
the addition of a constraint, such that it is necessary to solve an LSE problem
at each iteration.

It follows from Section 3.1 and this section that the computation of the co-
efficients of an AGCD requires the solution of an LSE problem in which the
vectors and matrices are updated between successive iterations. The next sec-
tion considers the convergence of this iterative procedure.

25



3.3 The LSE problem

It follows from Sections 3.1 and 3.2 that the computation of the coefficients of
an AGCD requires the solution of a non-linear equation that yields the LSE
problem,

min
y

‖y− p‖ subject to Dy = q,

at each iteration, where D ∈ R
r×s,y,p ∈ R

s,q ∈ R
r and r < s. This problem,

which has a unique solution if D has full row rank, can be solved by the QR
decomposition, as shown in Algorithm 1 [7].

Algorithm 1: The solution of the LSE problem by the QR
decomposition

(a) Compute the QR decomposition of DT ,

DT = QR = Q







R1

0





 .

(b) Set w1 = R−T
1 q.

(c) Partition Q into

Q =
[

Q1 Q2

]

, (55)

where Q1 ∈ R
s×r and Q2 ∈ R

s×(s−r).
(d) Compute w2 = QT

2 p.
(e) Compute the solution

y = Q







w1

w2





 = Q







R−T
1

0





q+Q2Q
T
2 p.

Consider the application of this algorithm to the solution of (39). In particular,
it follows from (38) and step (e) that

δy(j) = Q(j)







R−T
1

0







(j)

q(j) +
(

Q2Q
T
2

)(j) (

y(0) − y(j−1)
)

,

26



at the jth iteration. If ȳ is the solution of (39), and e(j) and e(j−1) are the
errors at the jth and (j − 1)th iterations, then it follows from (35) that

e(j)=y(j) − ȳ

= e(j−1) −
(

Q2Q
T
2

)(j)
y(j−1) +Q(j)







R−T
1

0







(j)

q(j) +
(

Q2Q
T
2

)(j)
y(0),

and thus e(j) − e(j−1) = y(j) − y(j−1) is given by

e(j) − e(j−1)=
(

Q2Q
T
2

)(j) (

y(0) − y(j−1)
)

+Q(j)







R−T
1

0







(j)

q(j)

=Q(j)





(

QT
)(j) (

Q2Q
T
2

)(j) (

y(0) − y(j−1)
)

+







R−T
1

0







(j)

q(j)





=Q(j)











0

QT
2







(j)
(

y(0) − y(j−1)
)

+







R−T
1

0







(j)

q(j)



,

from (55) because

QT
1Q1 = Ir, QT

2Q2 = Is−r and QT
1Q2 = 0.

It follows that the iterative scheme converges if

lim
j→∞

∥

∥

∥e(j) − e(j−1)
∥

∥

∥ = lim
j→∞

∥

∥

∥

∥

∥

∥

∥







(

R−T
1 q

)(j)

(

QT
2

)(j) (

y(0) − y(j−1)
)







∥

∥

∥

∥

∥

∥

∥

= 0,

which is independent of Q1. Since R
(j)
1 is square and non-singular for all values

of j, it follows that q(j) → 0 as j → ∞ for convergence, that is, the residual
of (31) approaches zero at convergence. The second condition states that the
difference between the initial estimate y(0) of the solution and the solution

y(j−1) at the (j − 1)th iteration lies in the nullspace of
(

QT
2

)(j)
as j → ∞.

The convergence of the iterations for the solution of (39) can be considered
from the residual r(j) at the jth iteration,

27



r(j) =

∥

∥

∥

∥

∥

(ct + ht)
(j) −

(

D−1
t (Tt + Ft)QtMqxq

)(j)
∥

∥

∥

∥

∥

∥

∥

∥(ct + ht)
(j)
∥

∥

∥

, j = 1, 2, . . . (56)

3.4 The transformation of the Sylvester matrix and its subresultant matrices

between the Bernstein and modified Bernstein bases

This section considers the transformation of the Sylvester matrix and its sub-
resultant matrices between the Bernstein and modified Bernstein bases, where
the basis functions of the modified Bernstein basis for a polynomial of degree
m are defined in (14). If ai and bj are the coefficients of f(y) and g(y) respec-
tively, aiθ

i and bjθ
j are the coefficients of f̄(w) and ḡ(w) respectively, and Θ1

and Θ2 are the diagonal matrices,

Θ1 = diag
[

θ−1 1 θ θ2 · · · θm+n−k−1

]

∈ R
(m+n−k+1)×(m+n−k+1),

Θ2 =







Θ2,1

Θ2,2





 ∈ R
(m+n−2k+2)×(m+n−2k+2),

Θ2,1 = diag
[

θ 1 θ−1 θ−2 · · · θ−n+k+1

]

∈ R
(n−k+1)×(n−k+1),

Θ2,2 = diag
[

θ 1 θ−1 θ−2 · · · θ−m+k+1

]

∈ R
(m−k+1)×(m−k+1),

then the transformation between Sk(f̄ , ḡ) and Sk(f, g) is

Sk(f̄ , ḡ) = Θ1Sk(f, g)Θ2, k = 1, . . . ,min(m,n).

The transformation matrices Θ1 and Θ2 are ill-conditioned if θ is very small or
very large, or m is large, or n is large, and this equation should not, therefore,
be used to transform between Sk(f̄ , ḡ) and Sk(f, g).

The transformation matrix T (f) between the coefficients ai of f(y) and the
coefficients aiθ

i of f̄(w) is diagonal,

T (f) = diag
[

1 θ · · · θm
]

∈ R
(m+1)×(m+1),

and the transformation matrix T (g) between the coefficients bj of g(y) and
the coefficients bjθ

j of ḡ(w) is obtained by replacing m by n. The condition
numbers of these matrices are

28



κ(T (f)) = max
{

θm, θ−m
}

and κ(T (g)) = max
{

θn, θ−n
}

, (57)

depending on whether θ is greater than or less than one. They increase with
m,n and θ, and they are therefore large if m or n are large.

4 Examples

This section contains two examples that show the application of the method
of SNTLN to the computation of the coefficients of an AGCD of degree t of
two inexact Bernstein polynomials f(y) and g(y). These inexact polynomials
are obtained by adding noise to their exact forms, f̂(y) and ĝ(y) respectively,
in the componentwise sense,

δâi = âiriεi, i = 0, . . . , m, and δb̂j = b̂jrjεj, j = 0, . . . , n, (58)

where ri and rj are uniformly distributed random numbers in the interval
[−1, 1], and εi and εj are uniformly distributed random numbers in an interval
I whose lower and upper bounds define the range of the reciprocal of the
signal-to-noise ratio of the coefficients of f(y) and g(y). It follows from (58)
that these coefficients are, respectively,

ai = âi + δâi, i = 0, . . . , m, and bj = b̂j + δb̂j , j = 0, . . . , n.

(59)

Example 4.1 The polynomials f̂(y) and ĝ(y) are

f̂(y)=
19
∑

i=0

âi

(

19

i

)

(1− y)19−iyi

= (y − 0.10)4(y − 0.30)2(y − 0.50)2(y − 0.70)3(y − 0.80)2 ×

(y − 2.50)3(y + 3.40)3,

and

ĝ(y)=
16
∑

i=0

b̂i

(

16

i

)

(1− y)16−iyi

= (y − 0.10)3(y − 0.80)2(y − 0.85)4(y − 0.90)4(y − 1.10)3,

and thus t̂ = degGCD (f̂ , ĝ) = 5. The coefficients of f̂(y) and ĝ(y) were
perturbed, thereby forming the inexact polynomials f(y) and g(y), where

29



I = [10−10, 10−8], as shown in (58) and (59), which yielded normwise relative
errors in f(y) and g(y) of 2.85×10−9 and 2.55×10−9 respectively. The polyno-
mials were preprocessed, as discussed in Section 3, and the method of SNTLN
was used to compute a structured low rank approximation of S(f̄ , α0ḡ), as
described in Section 3.1.

i
5 10 15 20 25 30 35

lo
g 10

 σ
i / 

σ
1

-20

-15

-10

-5

0

with structured
perturbations

after
preprocessing

before
preprocessing

i=30

Fig. 1. The normalised singular values σi/σ1 of the Sylvester matrix of (i) f(y)
and g(y) � (before preprocessing), (ii) f̄(w) and α0ḡ(w)  (after preprocessing),
and (iii) f̃(w) and β∗g̃(w) � (with structured perturbations), for Example 4.1. The
point i = 30, which corresponds to the degree five of the GCD of f̂(y) and ĝ(y), is
marked.

Figure 1 shows the normalised singular values of the Sylvester matrix of (i)
the given inexact polynomials f(y) and g(y), (ii) the polynomials f̄(w) and
α0ḡ(w), which are defined in (15) and (16), and (iii) the polynomials f̃(w)
and β∗g̃(w), which are defined in (40) and (41). It is seen that the numerical
rank of S(f, g) is 33, which is incorrect because this implies that the degree
of an AGCD of f(y) and g(y) is two. The figure shows the importance of the
preprocessing operations because the rank loss of S(f̄ , α0ḡ) and S(f̃ , β∗g̃) is 5,
which is correct, and the inclusion of the structured perturbations improved
the results slightly because the numerical rank is more clearly defined. The
normwise relative errors in the computed coprime polynomials and AGCD in
the Bernstein basis were

e (ũ (w = y/θ∗)) = 1.25× 10−6, e (ṽ (w = y/θ∗)) = 4.86× 10−8, (60)

and

e
(

d̃ (w = y/θ∗)
)

= 8.07× 10−7, (61)

which are between one and three orders of magnitude larger than the relative
errors in f(y) and g(y). Since θ∗ = 1.6133, it follows from (57) that κ(T (f)) =
8.84× 103 and κ(T (g)) = 2.11× 103.

30



The LSE problem requires the iterative solution of (39) and Figure 2 shows the
variation of the error r(j), which is defined in (56). It is seen that convergence
is achieved after a few iterations and that r(j) ≈ 10−15 at convergence.

iteration
5 10 15 20 25 30 35 40 45 50

lo
g 10

 e
rr

or

-14

-12

-10

Fig. 2. The error r(j) of (39) against the iteration counter j for Example 4.1.

5 10 15 20 25 30 35

−20

−15

−10

−5

0

i

lo
g 10

 σ
i / 

σ 1 before
preprocessing

after
preprocessing

i=30

Fig. 3. The normalised singular values σi/σ1 of the Sylvester matrix of (i) f(y) and
g(y) � (before preprocessing), and (ii) f̄(w) and α0ḡ(w)  (after preprocessing),
for Example 4.1. The point i = 30, which corresponds to the degree five of the GCD
of f̂(y) and ĝ(y), is marked.

The computations were repeated but the standard form D−1
k Tk(f, g), k =

1, . . . ,min(m,n), of the Sylvester matrix and its subresultant matrices was
used. Figure 3 shows the normalised singular values of the Sylvester matrix
of the given inexact polynomials f(y) and g(y), and the Sylvester matrix of
the polynomials f̄(w) and α0ḡ(w) after preprocessing and before the applica-
tion of the method of SNTLN. Unsatisfactory results were obtained because
the numerical rank of these matrices is either not defined or incorrect, even
though the methods described in [4] for the computation of t yielded t = t̂ = 5

31



and the errors in the coprime polynomials and AGCD were approximately
equal to the errors (60) and (61). This result shows that even if the errors of
two AGCDs are approximately equal, it does not follow that the structured
low rank approximations of the Sylvester matrices will also be approximately
equal. Also, it is clear that significantly improved results were obtained when
the modified Sylvester matrix and its subresultant matrices D−1

k Tk(f, g)Qk,
rather than the standard form D−1

k Tk(f, g) of these matrices, were used.

The coefficients of an AGCD of degree t were also computed by an approxi-
mate factorisation of f̄(w) and α0ḡ(w), which is described in Section 3.2. Very
similar results were obtained and the iterations in the LSE problem converged
rapidly to a solution with a very small error. 2

Example 4.2 The procedure described in Example 4.1 was repeated for the
polynomials,

f̂(y)=
16
∑

i=0

âi

(

16

i

)

(1− y)16−iyi

= (y − 0.23)4(y − 0.43)3(y − 0.57)3(y − 0.92)3(y − 1.70)3,

and

ĝ(y)=
18
∑

i=0

b̂i

(

18

i

)

(1− y)18−iyi

= (y − 0.23)4(y − 0.30)2(y − 0.77)5(y − 0.92)2(y − 1.20)5,

except that the interval I was equal to [10−8, 10−6]. The method of SNTLN
was applied to the perturbed polynomials after they were preprocessed, and
an approximate factorisation of f̄(w) and α0ḡ(w) was computed. The relative
errors in f(y) and g(y) were 5.85× 10−7 and 2.18× 10−7 respectively.

Figure 4 shows the normalised singular values of the Sylvester matrices of
the pairs of polynomials (f(y), g(y)), (f̄(w), α0ḡ(w)) and (f̃(w), β∗g̃(w)). The
figure is similar to Figure 1 because the best result is obtained when f(y)
and g(y) are preprocessed and the method of SNTLN is used to compute
an AGCD. In particular, it is seen that bad results are obtained when the
method of SNTLN is not applied because the numerical rank of the Sylvester
matrices S(f, g) and S(f̄ , α0ḡ) is not defined. By contrast, the numerical rank
of S(f̃ , β∗g̃) is clearly defined and deg AGCD (f̃ , β∗g̃) = deg GCD (f̂ , ĝ) = 6.

The normwise relative errors in the computed coprime polynomials and AGCD
in the Bernstein basis are

32



5 10 15 20 25 30
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

i

lo
g 10

 σ
i / 

σ 1

 

 

after
preprocessing

before
preprocessing

i=28

with structured
perturbations

Fig. 4. The normalised singular values σi/σ1 of the Sylvester matrix of (i) f(y) and
g(y) � (before preprocessing), (ii) f̄(w) and α0ḡ(w)  (after preprocessing), and
(iii) f̃(w) and β∗g̃(w) � (with structured perturbations), for Example 4.2. The point
i = 28, which corresponds to the degree six of the GCD of f̂(y) and ĝ(y), is marked.

e (ũ (w = y/θ∗)) = 1.73× 10−4, e (ṽ (w = y/θ∗)) = 1.36× 10−4,

and

e
(

d̃ (w = y/θ∗)
)

= 7.97× 10−4,

which are about three orders of magnitude larger than the relative errors
in f(y) and g(y). Since θ∗ = 1.7071, this increase in errors may be due to
the large condition numbers of T (f) and T (g), κ(T (f)) = 5.20 × 103 and
κ(T (g)) = 1.52× 104 respectively, as discussed in Example 4.1.

Figure 5 shows the convergence of the iterations for the solution of the LSE
problem and it is seen that it is similar to Figure 2 because good convergence
is achieved very rapidly.

An AGCD of f(y) and g(y) was also computed when the standard form
D−1

k Tk(f, g) of the Sylvester matrix and its subresultant matrices of f(y) and
g(y) was used, and the results are shown in Figure 6. This figure is similar to
Figure 3 because bad results were obtained since the numerical rank of each
of these matrices is not defined.

A structured low rank approximation of the Sylvester matrix of f̄(w) and
α0ḡ(w) was then used to compute an AGCD of f(y) and g(y). The results
were very similar to the results obtained from an approximate factorisation of
f̄(w) and α0ḡ(w), which is consistent with the results of Example 4.1. 2

33



5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

iteration

lo
g 10

 e
rr

or

Fig. 5. The error r(j) of (39) against the iteration counter j for Example 4.2.

5 10 15 20 25 30
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

i

lo
g 10

 σ
i / 

σ 1

 

 

before
preprocessing

after
preprocessing

i=28

Fig. 6. The normalised singular values σi/σ1 of the Sylvester matrix of (i) f(y) and
g(y) � (before preprocessing), and (ii) f̄(w) and α0ḡ(w)  (after preprocessing) for
Example 4.2. The point i = 28, which corresponds to the degree six of the GCD of
f̂(y) and ĝ(y), is marked.

5 Summary

This paper has considered two applications of the method of SNTLN to the
computation of the coefficients of an AGCD of two Bernstein polynomials.
These applications are the calculation of a structured low rank approximation
of the Sylvester matrix S(f̄ , α0ḡ) of f̄(w) and α0ḡ(w), and an approximate
factorisation of f̄(w) and α0ḡ(w). It was shown that f(y) and g(y) must be

34



processed by three operations before an AGCD is computed, and that the ef-
fect of one of these operations is a change in the basis, from the Bernstein basis
to the modified Bernstein basis. The method of SNTLN yields a non-linear
equation that is solved iteratively, where each iteration requires the solution
of an LSE problem. It was shown that the standard form D−1

t Tt(f̄ , α0ḡ) of
the tth subresultant matrix does not yield good results for the coefficients of
an AGCD, of degree t, of f(y) and g(y), and that better results are obtained
when the modified subresultant matrix D−1

t Tt(f̄ , α0ḡ)Qt is used. Many exam-
ples showed that the AGCD computed from a structured low rank approx-
imation of a Sylvester matrix and an approximate polynomial factorisation
of f(y) and g(y) are very similar, and the results in this paper are therefore
typical.

References

[1] S. Barnett. Polynomials and Linear Control Systems. Marcel Dekker, New
York, USA, 1983.

[2] D. A. Bini and P. Boito. A fast algorithm for approximate polynomial GCD
based on structured matrix computations. In D. A. Bini, V. Mehrmann,
V. Olshevsky, E. Tyrtshnikov, and M. Van Barel, editors, Numerical Methods

for Structured Matrices and Applications: The Georg Heinig Memorial Volume,
pages 155–173. Birkhäuser, 2010.

[3] D. A. Bini and L. Gemignani. Bernstein-Bezoutian matrices. Theoretical

Computer Science, 315:319–333, 2004.

[4] M. Bourne, J. R. Winkler, and S. Yi. The computation of the degree of
an approximate greatest common divisor of two Bernstein polynomials, 2015.
Submitted.

[5] J. F. Canny. The Complexity of Robot Motion Planning. The MIT Press,
Cambridge, USA, 1988.

[6] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint.
The MIT Press, Cambridge, MA, 1993.

[7] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins
University Press, Baltimore, USA, 2013.

[8] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a
Sylvester matrix. In D. Wang and L. Zhi, editors, Trends in Mathematics,
pages 69–83. Birkhäuser Verlag, Basel, Switzerland, 2006.

[9] Y. S. Lai and F. L. Chen. Implicitizing rational surfaces using moving quadrics
constructed from moving planes. Journal of Symbolic Computation, 77:127–161,
2016.

35



[10] Y. S. Lai, W. P. Du, and R. H. Wang. The Viro method for construction
of Bernstein-Bézier algebraic hypersurfaces. Science China Mathematics,
55(6):1269–1279, 2012.

[11] Y. S. Lai, W. P. Du, and R. H. Wang. The Viro method for construction
of piecewise algebraic hypersurfaces. Abstract Applied Analysis, 2013.
doi:10.1155/2013/690341.

[12] J. Ben Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear
problems. SIAM J. Mat. Anal. Appl., 20(1):14–30, 1998.

[13] P. Stoica and T. Söderström. Common factor detection and estimation.
Automatica, 33(5):985–989, 1997.

[14] Y. Tsai and R. T. Farouki. Algorithm 812: BPOLY: An object-oriented library
for numerical algorithms for polynomials in Bernstein form. ACM Trans.

Mathematical Software, 27(2):267–296, 2001.

[15] J. R. Winkler. A resultant matrix for scaled Bernstein polynomials. Linear

Algebra and Its Applications, 319:179–191, 2000.

[16] J. R. Winkler. A companion matrix resultant for Bernstein polynomials. Linear
Algebra and Its Applications, 362:153–175, 2003.

[17] J. R. Winkler. Structured matrix methods for the computation of multiple
roots of a polynomial. Journal of Computational and Applied Mathematics,
272:449–467, 2014.

[18] J. R. Winkler and R. N. Goldman. The Sylvester resultant matrix for Bernstein
polynomials. In T. Lyche, M. Mazure, and L. L. Schumaker, editors, Curve
and Surface Design: Saint-Malo 2002, pages 407–416, Tennessee, USA, 2003.
Nashboro Press.

[19] J. R. Winkler and M. Hasan. A non-linear structure preserving matrix method
for the low rank approximation of the Sylvester resultant matrix. Journal of

Computational and Applied Mathematics, 234:3226–3242, 2010.

[20] J. R. Winkler and M. Hasan. An improved non-linear method for the
computation of a structured low rank approximation of the Sylvester resultant
matrix. Journal of Computational and Applied Mathematics, 237(1):253–268,
2013.

[21] J. R. Winkler, M. Hasan, and X. Y. Lao. Two methods for the calculation of the
degree of an approximate greatest common divsior of two inexact polynomials.
Calcolo, 49:241–267, 2012.

[22] J. R. Winkler, X. Y. Lao, and M. Hasan. The computation of multiple roots of
a polynomial. Journal of Computational and Applied Mathematics, 236:3478–
3497, 2012.

[23] J. R. Winkler and N. Yang. Resultant matrices and the computation of the
degree of an approximate greatest common divisor of two inexact Bernstein
basis polynomials. Computer Aided Geometric Design, 30(4):410–429, 2013.

36



[24] Z. Zeng. The approximate GCD of inexact polynomials. Part 1: A univariate
algorithm, 2004. Preprint.

[25] L. Zhi. Displacement structure in computing the approximate GCD of
univariate polynomials. In W. Sit and Z. Li, editors, Lecture Notes Series

on Computing, pages 288–298. World Scientific, 2003.

[26] L. Zhi and Z. Yang. Computing approximate GCD of univariate polynomials
by structured total least norm. Technical report, Institute of Systems Science,
AMSS, Academia Sinica, Beijing, China, 2004.

37


