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Abstract 

Electrochemical impedance techniques and fluorescence spectroscopic methods have been applied 

to the  study of the interaction of ortho (o)-, meta (m)- and para (p)-Cl-, o-, m- and  p-HO-, p-

H3CO-, p-H3C-, p-NC- and p-O3
-S- substituted biphenyls (BPs) with Hg supported dioleoyl 

phosphatidylcholine (DOPC) monolayers  and DOPC vesicles. Non-planar o-substituted BPs 

exhibit the weakest interactions whereas planar p-substituted BPs interact to the greatest extent with 

the DOPC layers. The substituted BP/DOPC monolayer and bilayer interaction depends on the 

effect of the substituent on the aromatic electron density, which is related to the substituents' 

mesomeric Hammetts constants. Substituted BPs  with increased ring electron density do not 

increase the DOPC monolayer thickness on Hg and  penetrate the DOPC vesicle membranes to the 

greatest extent. Substituted BPs  with lower ring  electron density can cause an increase in the 

monolayer’s  thickness on Hg depending on their location and they  remain in the interfacial and 

superficial layer of the free standing DOPC membranes. Quantum mechanical calculations  

correlate the binding energy between the  substituted BP rings and  methyl acetate, as a model for 

the –CH2-(CO)O-CH2- fragment of a  DOPC molecule, with  the location  of BPs within the DOPC 

monolayer. 

 

Keywords: Electrochemical impedance, Fluorescence quenching, Phospholipid 

monolayers/bilayers, Monosubstituted biphenyls, Hammetts constants. 
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1. Introduction 

Biphenyl (BP) and its derivatives are well known for their thermal stability, electrical insulation and 

resistance to redox processes and have been widely used in the past in transformers and capacitors 

as dielectric fluids [1,2]. Moreover, these substance have also been employed in the preparation of 

pesticides, optical brighteners [3], and as fungicides in waxing many fruits. However substituted 

BPs are established environmental toxins [4]. Chlorobiphenyls (Cl-BPs) have been a significant 

issue for their toxicity, bioaccumulation and environmental persistence because of their stability [5]. 

BPs and Cl-BPs are metabolised to hydroxy biphenyls (HO-BPs) via formation of the arene oxide 

intermediate [6] with para (p)-hydroxybiphenyl (p-HO-BP) as a major product [5,7,8]. In addition 

to the monohydroxy metabolites, dihydroxy products can also be produced as a result of 

hydroxylation of BP. The hydroxy metabolites of Cl-BPs have been shown to be retained in the 

blood of many animals and humans [9-12]. The structures of these metabolites resemble thyroid 

hormones in possessing two aromatic rings and are reported as endocrine disrupters because they 

compete with thyroxin for its active site [13,14].  

 

In ortho (o-) substituted BPs, the two phenyl rings have been reported to exhibit a twisted 

conformation with an increase in the torsional angle () between the phenyl rings from 42.5˚ to 

63.2˚ depending on the size of the substituent (Br>Cl>F).  This can be explained by the 

destabilization effect based on the hydrogen substituent repulsion in the o- position. Changes in the 

molecular structure caused by substitution at the p- position does not affect the structure of BP 

derivatives compared to the unsubstituted  BP in both ground and excited states [15]. The value of 

 for m- and p- substituted BPs  is  around 42-45˚ but  for o-substituted BPs,   is around 63˚. m- 

substituted BPs  have  a higher barrier height for rotation between 0˚-90˚ than p- substituted BPs  

which is  responsible for slightly higher values of  [16]. Hence coplanarity of the two phenyl rings 
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decreases in the following order depending on the position of substitution: BP ≈ p-substituted BP > 

m-substituted BP > o-substituted BP. There have been many studies on the potential toxicity of 

substituted BPs in vivo [2,17,18] but very little work has been carried out on the evaluation of the 

molecular characteristics responsible for their toxicity and the mechanism of their interaction at a 

cellular and plasma membrane level. According to some studies, non-planar o-substituted BPs 

increased the cell membrane leakiness and decreased the membrane integrity compared to the 

planar BPs [17-19]. While other studies have shown the non-planar o-substituted molecules to be 

less active compared to the planar p-substituted molecules because of the steric hindrance of the o-

substituted species which influences their penetration into the phospholipid membrane [20-22].  

Indeed reference [22] used electrochemical methods in a preliminary study  of the relation between 

the biphenyl's structure and their interaction with  lipid layers  however no understanding was 

developed concerning  a systematic structure-activity relationship. 

 

The  present study is an attempt to widen and deepen the work begun in reference [22] by extending  

the electrochemical methods and supporting them with additional  techniques. An important 

objective of this work  was to obtain an understanding of the fundamental molecular properties of 

aromatic and associated  molecular species which enhance their interaction with phospholipid 

membranes as a model for biological membranes. Of interest in particular was  how the substituted  

biphenyl affected the membrane structure, function and biomolecular organization and how this 

related to membrane surface interactions with the biphenyl. The final location of the substituted  

biphenyl in the membrane following interaction was also sought. An understanding of the factors 

promoting aromatic group interaction with phospholipid membranes  is extremely relevant to 

biological membrane structure and function. A significant reason for this is that  the conformation 

of  membrane proteins and peptides is strongly affected by their aromatic residue interaction with 

the phospholipid skeleton [23-25].  
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Hg supported phospholipid monolayers and free standing bilayer vesicles have been used to 

investigate:  (1) structure-activity relationships and (2) mechanism of interaction of BP derivatives, 

with phospholipid layers, using electrochemical and fluorescence spectroscopic techniques. The 

rationale for employing these techniques was to obtain a generic and consistent understanding of 

the interaction mechanism. DOPC was used as the test phospholipid in these studies. The model 

system of DOPC monolayer on Hg is a well established  membrane model  which has been well 

characterized internationally [26-35].   Moreover it has been shown to be particularly stable and 

reproducible in structure.  Although Hg supports monolayers  of palmitoyloleoyl PC (POPC)   and 

POPC/POPE mixtures, it was felt appropriate to carry out this study  with DOPC on Hg in the first 

instance. The particular defect-free nature  and fluidity of DOPC monolayers/bilayers enabled very 

precise experiments to be carried out so that  the factors promoting the interaction of   aromatic 

compounds with phospholipid membranes can be  better understood.  Later studies would  use more 

complex and more relevant model membrane systems. 

 

Monolayers of phospholipids on the Hg surface act as a sensor element for aromatic  compounds 

and many other species  including biomembrane-active peptides  and nanoparticle dispersions [22, 

26-35]. At potentials around -0.4 V which is close to the position of zero charge (PZC) of Hg, the 

Hg supported DOPC monolayer is completely intact and impermeable to inorganic ions. At more 

negative potentials, capacitance peaks appear due to underlying field induced phase transitions 

occurring in the monolayer [36-39]. Alterations in the nature of these capacitance peaks are very 

sensitive to any changes in the monolayer structure. The capacitance peak occurring at around -0.94 

V (capacitance peak-1) is associated with electrolyte penetration of the monolayer. The capacitance 

peak at around -1.0 V (capacitance peak-2) represents a phase transition involving a nucleation and 

growth process that results in the formation of a bilayer in equilibrium with electrolyte on the Hg 

surface. The described   profile is specific to the capacitance-potential curves  for  DOPC 

monolayers. Different capacitance-potential profiles are obtained with different phospholipid 
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molecules [40]. The capacitance-potential profile is itself a  fingerprint for a specified  phospholipid 

monolayer. Interaction of organic compounds with the monolayer significantly influences the 

capacitance-potential profile of the layer in a selective and systematic manner.  It has been 

established by direct imaging that binding of  SiO2 nanoparticles [34]  to the DOPC polar groups  

elicits significant depression of the capacitance current peaks in proportion to the extent of binding. 

In addition it is clearly stated in other work [28-30] that the decrease in the  DOPC capacitance 

peak-1 may be due to an interaction of the peptide with the DOPC  polar heads and to an 

intercalation of the peptide between the hydrocarbon tails or to a possible combination of the two 

effects. 

 

Phospholipid vesicles have been used extensively as a biological membrane mimic [41] to study the 

interactions of membrane active compounds [42,43] with membranes. The BPs have fluorescent 

properties which allow the use of fluorescence spectroscopy to estimate their fractions which have 

not penetrated into biomimetic assemblies such as phospholipid vesicles and are thus available for 

quenching by a quencher (e.g. I-) [44-47]. This is defined as the  accessible fraction in this study. 

These experiments were carried out as a corollary to the electrochemical experiments to substantiate 

the nature of the BP-DOPC interactions. Table 1 summarizes the BP derivatives used in this study 

and their physical properties including log P values [48] and Hammets constants [49].  

 

2. Experimental 

2.1. Materials 

o-chlorobiphenyl (o-Cl-BP), m-chlorobiphenyl (m-Cl-BP), p-chlorobiphenyl (p-Cl-BP), o-

hydroxybiphenyl (o-HO -BP), m-hydroxybiphenyl (m-HO-BP), p-hydroxybiphenyl (p-HO-BP), p-

methoxybiphenyl (p-H3CO-BP), p-methylbiphenyl (p-H3C-BP), p-cyanobiphenyl (p-NC-BP) and p-

sulphonic acid biphenyl (p-HO3S-BP) were purchased from Sigma Aldrich and their stock solutions 

(1000 mol dm-3) were prepared in acetone and ethanol for electrochemical and fluorescence 
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studies respectively. p-HO3S-BP exists in ionised form at the solution pH of 7.4 because its pKa 

value is near to that of toluene suphonic acid  [50] (~2.8) and is represented as p-O3-S-BP 

throughout the text. The electrolyte, 0.1 mol dm-3 KCl was prepared from KCl (Fisher Chemicals 

Ltd.) calcined at 600 °C in a muffle furnace and dissolved in 18.2 M MilliQ water containing 

0.001 mol dm-3 phosphate buffer at pH 7.4. A 2.54 mmol dm-3  DOPC (Avantilipids)  solution  in 

pentane (HPLC grade, Fisher Scientific Chemicals Ltd.) was prepared for electrochemical 

experiments and a 12.7 mmol dm-3 stock DOPC  dispersion in 0.1 mol dm-3 KCl containing 0.001 

mol dm-3 phosphate buffer was used for preparation of vesicles in the  fluorescence studies.  An 8.0 

mol dm-3 stock solution of KI (Fisher Scientific Ltd.) was prepared with 0.2 mmol dm-3 sodium 

thiosulphate (Na2S2O3) in 18.2 M MilliQ water for use in quenching experiments. 

 

2.2. Electrochemical methods 

2.2.1. Apparatus and procedure  

The experiments were performed in a standard three electrode electrochemical cell containing; a 

Ag/AgCl, 3.5 mol dm-3 KCl as reference electrode with porous sintered ceramic frit separating the 

3.5 mol dm-3 KCl solution from the electrolyte solution, a platinum rod as a counter electrode and a 

DOPC coated MFE as working electrode. The electrochemical apparatus was contained in a 

Faraday cage. The Hg film electrode (MFE) was prepared using a micro-fabricated Pt electrode 

(Tyndall National Institute, Ireland) having a 1 mm Pt disc area and a contact pad [24,31,32]. 

Fabricated electrodes were rinsed with  with acetone and then MilliQ water,placed in  in hot Piranha 

solution for 10-15 minutes, subsequently rinsed with Milli Q water and  and dried under N2 gas. Hg 

was deposited using an Eppendorf pipette on the  Pt disc electrode to cover the Pt completely and 

the fabricated electrode inserted into electrochemical cell. A potential excursion from -0.2 to -3.0 V 

at 40V s-1 was used  to remove organic material from the surface.  The area (~0.009 mm2)  of the 

Hg was determined  from the capacitance-potential plot of the clean Hg surface as described 

previously.   This electrode is stable and  operational  for up to  three months [51].  
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The electrochemical cell, electrodes and all other glass apparatus were washed with Piranha 

solution to remove organic contamination. Subsequently, the apparatus and the electrodes were 

rinsed with MilliQ water to remove traces of Piranha residue.  A PGSTAT 30 Autolab potentiostat 

(Ecochemie, Utrecht, Netherlands) interfaced to PowerLab 4/25 signal generator (AD Instruments 

Ltd.) controlled by Scope software was used to record rapid cyclic voltammetry (rcv) scans. The 

Autolab systems GPES (general purpose electrochemical studies) and FRA (frequency response 

analyser) with PGSTAT 30 and controlled with Autolab software were used for the alternating 

current voltammetry (acv) and impedance measurements respectively. The electrolyte solution was 

purged with argon gas for about 15-20 minutes followed by a redirection of argon gas as a blanket 

on top of electrolyte during the experiment. DOPC monolayers were prepared by spreading about 

15 cm3 of 2.54 mmol dm-3 DOPC in pentane at the argon-electrolyte interface in the 

electrochemical cell. A period of 5-10 minutes was required for the pentane to evaporate. The MFE 

electrode was vertically lowered into the solution slowly through the interface to allow the DOPC 

monolayer to self-assemble on the Hg surface. Current-potential and impedance scans were 

recorded using electrochemical techniques. The MFE was cleaned by applying a cycling potential 

from -0.2 to -3.0 V to remove the DOPC monolayer and a new monolayer was deposited prior to 

each series of experiments. For electrochemical studies of substituted BP interactions, calculated 

amounts of their respective stock solution were injected below the DOPC monolayer into the 

electrolyte followed by gentle stirring of the solution for 5 minutes. Subsequent electrochemical 

analysis was then performed on the modified lipid coated electrode.  

 

2.2.2. Rapid cyclic voltammetry (rcv) 

rcv was used to acquire rapid scans and examine the properties of the monolayer at a scan rate () 

of 40 Vs-1 with a potential excursion between -0.2 and -1.2 V on the DOPC coated Hg electrode. 
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The specific capacitance defined as the capacitance   per unit area is related to the current (I) from 

rcv scans by the following equation: 

Csp = I/                                                           (1) 

Suppression of the capacitance current peaks in the pure electrolyte solution may indicate either 

imperfections in the monolayer or the presence of contamination in the electrolyte solution. The 

electrode area, A, was estimated from the capacitance of the uncoated Hg [40]. 

 

2.2.3. Electrochemical impedance 

Alternate current voltammograms (acv) were recorded by measuring the out-of-phase current in 

response to application of an ac sine wave of 0.005 V amplitude and 75 Hz frequency (f) added to a 

negatively increasing (ramp rate 5 mVs-1) DC potential (E) from -0.2 to -1.2 V. Csp was calculated 

using the current from the acv scans by the following equation: 

Csp = I/AV                                                      (2) 

where  =2฀f is  the angular frequency and ∆V is the amplitude of the sine wave. At least three Csp- 

E curves were recorded following fresh DOPC depositions on the MFE for each experiment. 

Measurements of the real and imaginary impedance of the electrode system using frequencies 

logarithmically distributed between 65000 to 0.1 Hz, with ac amplitude of 0.005 V and at potential 

-0.4 V (~PZC of Hg [52]) were carried out both in the absence and presence of BPs in the 

electrolyte solution. The real and imaginary impedance was normalized at respective frequencies 

and transformed to the complex capacitance plane as  “Cole-Cole”  plots using Microsoft EXCEL 

spreadsheet. Complex plane axes were expressed as Y’/ȦA vs. Y’’/ȦA where Y’/ȦA and Y’’/ȦA  

represent real and imaginary normalised admittances respectively  divided by electrode area (A)  as 

defined previously [53]. Incidentally, the series combination of a capacitance, C, and a resistance, 

R, which is simulated by the Hg-supported DOPC monolayer, is such that Y"/ȦA equals 

C/(Ȧ2R2C2+1)A, while Y'/ȦA equals ȦRC(Y"/Ȧ)/A; moreover, the Y'/ȦA vs. Y"/ȦA plot yields a 

semicircle of diameter C/A and centre of coordinates  (C/2A). This value C/A is frequency 
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independent and its value is extracted from measurements carried out over the whole frequency 

range from 105  to 0.1 Hz. This  frequency independent capacitance (C/A)  approximates to  the 

monolayer capacitance divided by electrode area  which is directly related to the monolayer 

dielectric permittivity and inversely related to the monolayer thickness. In this study the  C/A was 

graphically determined from the complex capacitance plots and expressed as specific frequency 

independent capacitance (FICsp). In the case of the phospholipid coated Hg electrode, any additional 

circuit element (second semicircle and  "tail") at lower frequencies outside of RC is reflective of 

ionic penetration [54] and  physical modifications of the phospholipid monolayer respectively  [53].  

 

2.3. Fluorescence Spectroscopy  

2.3.1. Principle 

The basic principle in fluorescence spectroscopy involves the emission of light as a result of singlet-

singlet electronic relaxation subsequent to absorbing light energy. The fluorescence has a typical 

life time of nanoseconds. In fluorescence spectroscopy, an incident light beam (usually UV) excites 

the electrons in the fluorophore molecule to the excited electronic states. These excited molecules 

then lose vibrational energy to return to the lowest vibrational state of the excited electronic state. 

As a result, the emission spectrum is recorded keeping the excitation wavelength constant and 

measuring the fluorescent light at different wavelengths. In this study, the substituted BP acted as 

an effective fluorophore [55]. The penetration of the BP into the vesicle bilayer was followed by 

recording the extent of quenching of the BP's fluorescence by KI (i.e. I- as active quencher) which 

itself at lower solution KI concentrations did not penetrate the phospholipid bilayer.  BPs which 

remained in the polar region of the bilayer were accessible to quenching by KI.  BPs which 

penetrated the bilayer have their fluorescence quenched to varying degrees depending on their 

extent of penetration. 

 

2.3.2. Preparation of liposomes 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 10 

A DOPC stock dispersion of 12.7 mmol dm-3 was prepared by directly dispersing DOPC in 0.1 mol 

dm-3 KCl with added 0.001 mol dm-3 phosphate buffer. Unilamelar vesicles containing 3.9% 

ethanol and 0.249 mmol dm-3 DOPC were prepared by a modification of the solvent exchange 

procedure [56]. This involved adding 2 cm3 of the DOPC stock dispersion to 4 cm3 ethanol in a 

measuring flask followed by the addition of  96 cm3 of 0.1 mol dm-3 KCl with added 0.001 mol dm-

3 phosphate buffer gently along the wall of flask with constant swirling. The resulting vesicles 

formed a unidisperse dispersion of ~220 nm diameter unilamellar vesicles as characterised by 

dynamic light scattering (DLS) and confocal microscopy (not shown) and were found to be stable 

for up to 24 hours (Figure 1(a)).  No attempt was made to remove the 3.9% ethanol from the 

dispersion since the ethanol facilitated the stability of the added biphenyl in solution for the 

subsequent fluorescence measurements. It has been shown that 4% ethanol does not significantly 

influence dimyristoyl PC (DMPC) conformation in vesicle dispersions [57] and shows no 

significant interaction  with DOPC monolayers supported on Hg (data not shown). 

 

2.3.3. Instrumentation and procedure 

A FluoroMax-3 Fluorimeter from Horiba Scientific with xenon lamp was used to obtain 

fluorescence spectra.  Fluorescence spectra of DOPC vesicles at the excitation wavelengths specific 

to different BPs were recorded as controls. Substituted BP solutions were added to the DOPC 

vesicle dispersions to a concentration of  1 mol dm-3  with an incubation period of 15 minutes 

before measurement. KI was used as a quencher. Secondary stock solutions of different 

concentrations of KI (1.0-7.0 mol dm-3) were prepared from the primary stock solution of 8.0 mol 

dm-3 KI and 0.2 mmol dm-3 Na2S2O3 in 18.2 M MilliQ water. Na2S2O3 was used as a reducing 

agent to prevent the oxidation of iodide to iodine. 0.15 cm3 portions of the KI secondary stock 

solutions were added to the 3 cm3 of vesicle dispersion containing substituted BPs in the cuvette  to 

give 0.047 to 0.333 mole dm-3 KI concentrations  and fluorescence spectra were recorded at 

appropriate excitation and emission wavelengths. The cuvette was dried from inside using 
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compressed air before taking all the measurements to eliminate the error from small dilutions.  

Maximum fluorescence intensities were measured from the fluorescence spectra. All fluorescence 

spectra were corrected for  the fluorescence of a vesicle dispersion with no biphenyl and no 

quencher.  An example of a corrected fluorescence spectrum is shown in Figure 1(b). Fluorescence 

data  were plotted versus the inverse of the KI concentration according to the modified Stern-

Volmer equation [44].  

F°/F=(1 ⁄ faKcKI) + 1/fa                                   (3) 

Where Fo is the intensity of emitted light in the absence of quencher and ǻF is the difference in the 

intensities of emitted light in the absence and presence of quencher respectively, K is the Stern-

Volmer quenching constant, cKI is the KI concentration and fa is the accessible fraction. The 

accessible fraction is defined as the fraction (expressed in text as %) of the fluorophore present in 

the polar region of the DOPC bilayer and hence available for quenching. The accessible fraction 

therefore reports on the location of the BP fluorophore in the membrane. The accessible fractions 

(fa) for the quenching of the BP derivative fluorescence were calculated from the intercept values 

(intercept = 1/fa) with an intercept value of 1.0 indicating 100% accessibile fraction  of the BP 

derivatives to quenching by I-. The slope of these plots gives the effective quenching constant (K) 

for accessible fluorophores which is similar to the binding constant for the quencher-acceptor 

systems [58] and represents the quenching efficiency of the BP derivatives by I-. It is not a 

significant parameter in terms of their interaction with the membrane. 0.04 mmol dm-3 I- has been 

shown to interact with the polar but not penetrate the apolar region in Hg supported DOPC 

monolayers [54]   and is known to associate   with the choline group of DOPC [59].  Indeed it was 

shown from I- quenching of Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) in the DOPC 

phospholipid bilayer that I-,  from solution concentrations above 0.15 mol dm-3, penetrates  down to 

the glycerol level of  the phospholipid bilayer [59].  
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In this study  all experiments were carried out under the same conditions  thus it is unlikely that the 

I-/DOPC interaction will affect the relative BP penetration into the membrane. This asssumption is 

supported  by the characteristic  Stern-Volmer plot (Figure 1(c)) where the slope of the plot is linear 

indicating  that the increase in I- concentration is not affecting the BP accessible fraction  and hence 

BP penetration. However, at higher solution concentrations of I-, a discrete increase in the slope of 

the modified Stern-Volmer plots was observed.  This increase in slope is due to the I- penetrating 

the apolar region of the monolayer and quenching penetrated BP. This data is therefore excluded 

from the plot used to estimate the intercept. All the BP derivatives were found to be stable on 

exposure to light (constant intensity of re-emitted light on repetitive exposure to light) except o-Cl-

BP and were studied using the method described above. For o-Cl-BP, the spectra were recorded in 

kinetic acquisition mode with an interval of 0.1 s and 6 s total time, at an excitation wavelength of 

260 nm and an emission wavelength of 316 nm to eliminate the effects from photo-degradation. 

The intercept from the linear regression of these intensity values versus time yielded the intensity of 

re-emitted light at zero time (where there is no photo degradation) and was used to plot the 

modified Stern-Volmer plot for I- quenching of  o-Cl-BP. 

 

3. Results and discussion 

The effect of the interaction of the substituted mono HO-BPs with the DOPC monolayer on the 

capacitance-potential plot is shown in Figure 2(a). Suppression of the peak-1 capacitance with an 

increase in solution concentration of o-, m- and p-HO- BPs is clear and the extent of suppression 

follows the order of  o-<m-<p- HO-BP/DOPC interaction (Figure 2(b)). This suppression   of  the 

capacitance peak is directly related to the extent of interactions of these BPs with the DOPC 

monolayer [22,27] indicating that the p-HO-BP showed the strongest interactions with the DOPC 

monolayer compared to that of m- and o-HO-BP. Notably the potentials (-E) characterising 

capacitance peaks-1 and -2 do not markedly change on penetration of the HO-BP into the 

monolayer. The accessible HO-BP fraction for I- quenching in the presence of vesicles prepared 
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from a 0.249 mmol dm-3  DOPC dispersion indicates that this fraction is lowest for p-HO-BP and 

increases in the following order: p-HO-BP (17.21 %) < m-HO-BP (29.03 %) < o-HO-BP (90.63 %) 

which indicates the penetration extent of HO-BP into the apolar core is in the order: p-HO-BP 

(82.79 %) > m-HO-BP (70.97%) > o-HO-BP (9.37%). This order arises from: (i) the symmetrically 

linear and planar structure of the p-isomer enabling its ready penetration into the apolar membrane 

core; (ii) the lack of two-fold symmetry of the m-isomer rendering it less able to penetrate the 

phospholipid membrane; and, (iii) the twisted geometry of the o-isomer arising from the increased 

torsion angle between the two phenyl rings further impeding its penetration.  

 

The capacitance peak-1 height correlates with the accessible fraction of HO-BPs for quenching 

(Figure 2(c)) indicating that the fluorescence results are commensurate with and support the 

electrochemical results and together relate qualitatively to the interaction of the HO-BP with the 

DOPC layer. This suggests that the HO-BPs behave in a comparable manner at the Hg supported 

monolayer/electrolyte interface and at the vesicle/electrolyte interface. Figure 2(d) shows the 

impedance data represented as a complex capacitance plot of a DOPC coated Hg electrode in the 

presence of o-, m- and p-HO-BPs. In this plot the interaction of these species with the  DOPC  

monolayer is represented by the presence of a low frequency "tail" at the right hand side of the plot. 

The frequencies defining this tail are lower than ~22 radians s-1  and are  usually representative of 

imperfections in the layer and species adsorbed within the DOPC [53].  It is interesting that the 

monolayer capacitance  does not decrease following the interaction of DOPC with the HO-BP 

isomers and the interaction of p-HO-BP with DOPC and its penetration introduces an additional 

very  small irregular semicircular element defined by frequencies 1900 to 13 radians s-1 between the 

RC element and the "tail". The inset to Figure 2(d) shows this intermediate circuit element more 

clearly. Current work investigating the interaction of small molecular weight organic compounds  

with DOPC layers show that phenolic compounds tend to have a disruptive effect on DOPC 

monolayers compared to non-polar aromatics. This intermediate circuit element could relate to the 
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disruptive effect of the p-HO-BP leading to ionic penetration  within the polar head region  [54].  

Further more focused work would need to be carried out to establish this. 

 

Interaction of Cl-BPs with DOPC monolayers on Hg had a significant effect on the capacitance-

potential plot (see Figure 3 (a)).   Suppression of the peak-1 capacitance with an increase in solution 

concentration of o-, m- and p-Cl-BPs is clear (Figure 3(b)) and  following interaction of the Cl-BPs 

with the  DOPC monolayer, the capacitance peak suppression was more pronounced compared to 

that following HO-BP/DOPC interactions (Figure 3(a) and (b) compared to  Figures 2(a) and (b)).  

This observation indicates that Cl-BP interacts more strongly than HO-BP with the DOPC polar 

heads. This shows a deeper penetration of HO-BP than Cl-BP in the DOPC layer. In addition, 

capacitance peak-1 and more extensively peak-2 (Figures 3 (a)) were shifted to more negative 

potentials in the presence of m- and p-Cl-BPs. The accessible Cl-BP fraction for I- quenching in the 

presence of vesicles prepared from a 0.249 mmol dm-3 DOPC dispersion showed that this fraction 

increased in the following order: p-Cl-BP (76.47 %) < m-Cl-BP (93.14 %) < o-Cl-BP (96.08 %). 

This indicates that the extent of penetration of Cl-BP into the monolayer apolar core is in the order: 

p-Cl-BP (23.53 %) > m-Cl-BP (6.86 %) > o-Cl-BP (3.92%). The isomers of Cl-BPs exhibited a 

similar order of incorporation/penetration into the bilayer to that of HO-BPs but the extent of the 

penetration is decreased which is commensurate with  the capacitance peak suppression results 

above. Cl-BPs have a comparable 3D structure to their HO- analogues but there is an essential 

difference in distribution of electron density among the ring atoms in these substituted BPs. It is 

well established that the HO- group acts as an electron donor but the Cl- group acts as an electron 

acceptor when attached to aromatic rings. This is described by Hammetts substitution constant (t) 

[49] (see Table 1) of the functional group attached to an aromatic ring where negative  and positive 

values indicates the substituent is electron donating  and withdrawing respectively relative to H-. 

Accordingly HO-BP has an increased ring electron density than Cl-BP  and penetrates the DOPC 

bilayer to a greater extent than Cl-BP. In Figure 3(c) it can be seen that the capacitance peak-1 
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height  from the capacitance-potential plot of a DOPC monolayer on Hg correlates with the Cl-BP 

accessible fraction for quenching in DOPC vesicle dispersions. This  indicates that the fluorescence 

results are commensurate with and support the electrochemical results together relating to the extent 

of interaction of the Cl-BP with the DOPC layer.   

 

Figure 4(a) displays the impedance plots of the DOPC coated Hg electrode in the presence of Cl-

BPs in the electrolyte solution. It is clear from the presence of the low frequency "tail" on the right 

hand side of the plot, that the Cl-BPs interact with the DOPC monolayer. Figure 4(b) displays the 

FICsp versus Cl-BP concentration plots and it can be seen that the monolayer capacitance decreases 

in the presence of Cl-BPs in solution. In fact the following order of FICsp decrease  subsequent to 

interaction of the following  Cl-BP s with the DOPC monolayer is: p-Cl-BP > m-Cl-BP > o-Cl-BP 

commensurate with the degree of interaction of these componds with the DOPC monolayer. If  it is 

assumed that the relative permittivity of Cl-BPs (~5-6 [60,61]) is  about two times higher than that 

of the hydrocarbon layer of the monolayer, a decrease in monolayer capacitance clearly indicates 

the formation of a thicker monolayer. Indeed, the increase in monolayer thickness must be the over-

riding factor leading to a decrease in FICsp. Furthermore, the negative shift of the capacitance peaks 

associated with Cl-BP/DOPC interaction can be related to the increasing thickness of the low 

dielectric region. This increases the applied potential required for the instigation of the phase 

transition underlying the capacitance peak (Figure 3 (a)) enabling the phase transition to take place 

at the critical field value [62].  A further explanation for the peak shift is that the polarizability of 

the aromatic rings (assumedly located in the polar group region) lessens the steepness of the 

potential drop across the layer [62]. This leads to a greater applied potential to be used to initiate the 

phase transitions. 

 

Figure 5(a) plots the BP substituent t values against the substituted BP accessible fraction in the 

membrane for all substituted BP/DOPC membrane interactions. It is significant that p-H3C-BP and 
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p-O3
-S-BP are significant outliers on this plot.  The t values employed have been calculated for 

substituted benzenes and include both long range mesomeric (m) and short range inductive (t-m) 

effects of substitution [63]. The benzene molecule is small and the inductive effect is significant in 

changing its properties but in the case of BP and other larger molecules, the inductive effect does 

not extend to the unsubstituted ring   compared to the mesomeric effect [64]. In order to estimate 

the precise and realistic electron density on the unsubstituted BP ring, mesomeric Hammetts 

constants m [49] were used. Figure 5(b) shows the correlation between the substituted BP 

accessible fraction and m of the substituent. The substituent value of m generally showed a good 

correlation with the accessible fraction of BPs subject to I- quenching.   p-O3
-S-BP is a marginal 

outlier to this trend but it is a negatively charged molecule with a large polar O3
-S- group which will 

additionally favour its preference for  the polar region. Figure 6 shows a plot of the FICsp extracted 

from the complex capacitance plots of  BP penetrated DOPC on Hg versus the accessible fraction of 

substituted BPs subject to I- quenching in the presence of DOPC vesicles. The V shaped plot shows 

a minimum FICsp representing a maximum thickness of the DOPC corresponding to the 

intermediate value of the accessible fraction. An outlier to the trend is the point representing the o-

HO-BP/DOPC interaction which could be due to a variety of factors and requires further 

investigation. The accessible fraction is in inverse proportion to  the penetration depth of the 

substituted BP in the bilayer membrane and, assuming that the penetration of BPs in the monolayer 

and bilayer are the same or similar, the mid-location of the Cl-BP in the monolayer is related to a 

maximum thickness of the monolayer. By the same token, when the substituted BP is located 

outside this region either nearer to the surface of the monolayer or deeper in the apolar core, the 

increase in thickness is not so pronounced. 

 

4. Model 

The experimental observations  support a model whereby  NC-BP is located within the DOPC polar 

head region, Cl-BP is located at the DOPC polar-apolar interface and HO-BP is located towards the 
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DOPC apolar core.    The model  is commensurate with  the existence  of CH-฀ associations in 

which a  significant contribution comes from dispersion interactions [65] favoured by the increased 

electron density or polarizability of the aromatic ring [65,66].  This is  facilitated by electron 

donating substitutuents (eg for HO-, t-m = -0.37 and  m = -0.735) on the biphenyl aromatic rings 

which will enable deeper insertion of the biphenyl rings into the apolar core. The model is also 

substantiated by the existence of H-bonding between the substituted BPs and the DOPC molecules. 

In the case of aromatic rings acting as electron donors, this  interaction favours CH-฀ association  

where the acyl chain  >CH- group is the electron acceptor [67,68].   On the other hand the aromatic 

ring can act as acceptor   in the presence of electron withdrawing substituents [69].   A particular 

example of this is pentafluorobenzene which forms H-bonds due to the electron withdrawing effect 

of the F- substituents [70]. These effects would favour interactions between electron withdrawing  

(eg for NC-, t-m = 0.66 and m = 0.15 [49])  substituted biphenyl aromatic rings and the DOPC 

polar group region. 

 

The Cl- substituent of p-Cl-BP has a strong inductive electron accepting effect (t-m = 0.42 [49]) 

and a weak mesomeric electron donating effect (m = -0.19) which renders the substituted BP ring 

relatively more electron deficient than the unsubstituted ring. This is because the inductive effect 

only operates on the substituted ring [64]. This difference in electron density of the substituted and 

unsubstituted rings respectively leads to a directional location of p-Cl-BP in the DOPC layer. The 

unsubstituted ring remains in the apolar region through CH-฀ interactions whereas the substituted 

ring tends towards the apolar/polar interface. Such a structure can be stabilized by a halogen bond 

between Cl- of p-Cl-BP and the phosphate group oxygen [71,72] of PC. The head groups of DOPC 

in the liquid phase of the monolayer are oriented parallel to the layer plane [73,74] whereas the 

apolar tails of DOPC molecule are in a plane normal to the monolayer. As a result, the positioning 

of the rigid p-Cl-BP in the right-angled interfacial region will increase the angle between the polar 
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groups and the alkyl chains and cause a thickening of the layer as observed from the capacitance 

decrease  in Figure 4(b).  

 

The propensity for the substituted BPs to form H-bonds with the polar DOPC moieties has been 

explored. This is a semi-quantitative exercise which has been carried out to substantiate the 

conclusions from the preceding experiments. It is acknowledged that a more complete treatment, 

outside the scope of this paper, would take account of the water molecular environment. H-bonding 

energies of substituted BPs with the glycerol-dicarboxylic ester moiety of DOPC have been 

estimated. Methyl acetate (CH3-(CO)O-CH3) was chosen as a molecule to model the glycerol-

dicarboxylic ester grouping of DOPC and its binding with the substituted BPs. The choice of 

methyl acetate is justified since its structure is analagous to each of the two parts of the glycerol-

dicarboxylic ester of DOPC namely R-(CO)O-CH< and R-(CO)O-CH2- where R- is the oleoyl 

chain. It is to be noted that the binding energy between p-X-BP (where X is the substituent) to 

methyl acetate is half that of the binding energy of two p-X-BP molecules with each of the two 

ester groups of one DOPC molecule. The critical H-bonding moieties in both the methyl acetate 

molecule and the glycerol-dicarboxylic ester fragment are C-O-C and >C=O. Binding energies were 

also estimated between the >C=O (methyl acetate) and HO- (p-HO-BP) groups and between the  -

PO2
-- (DOPC) and Cl- (p-Cl-BP) groups to substantiate the conclusions. All energies were 

calculated using the program package Jaguar from Schrodinger, Inc. (Maestro Version 10.2.011, 

MMshare Version 3.0.011, Release 2015-2, Platform Windows-x64) and are displayed in Tables 2 

and 3. The binding energy between two water molecules was calculated with the same program in 

order to compare it with the other estimated binding energies.  

 

Table 2 shows complexes of unsubstituted and substituted BPs with CH3-(CO)O-CH3. Complex A 

exhibits two hydrogen bonds between the m- and p- hydrogens of the unsubstituted BP ring and the 

C-O-C and >C=O oxygens respectively of CH3-(CO)O-CH3. Complex B exhibits: (a) two  
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hydrogen bonds between the o- hydrogens of the substituted and unsubstituted BP  rings and  the  

>C=O  oxygen of CH3-(CO)O-CH3 and, (b) a hydrogen bond between the m-hydrogen of the 

substituted BP and   the  C-O-C oxygen of CH3-(CO)O-. Table 2 lists the binding energies 

calculated for complexes between the BPs and CH3-(CO)O-CH3. Complexes A and B with 

unsubstituted BP show similar binding energies. The Complex B of p-Cl-BP shows a higher 

binding energy of 2.27 compared to 1.8 kcal mol-1 for Complex A. The preferable formation of 

Complex B would result in the positioning of the unsubstituted phenyl ring inside the apolar region 

of DOPC layer and the substituted phenyl ring in the interfacial layer of DOPC. The bonding of Cl- 

with the DOPC -PO2
-- grouping with an energy of 2.08 kcal mol-1  (see Table 3) would re-enforce 

this structure. Binding energies of p-HO-BP with CH3-(CO)O-CH3 are 1.31 and 1.03 kcal mol-1 for 

Complexes A and B respectively. This is more than offset by the relatively high binding energy of 

HO- with the methyl acetate, >C=O group, of 7.43 kcal mol-1 (see Table 3) which has a higher 

energy than the HOH-HOH bond energy (5.05 kcal mol-1). This favours the positioning of both p-

HO-BP rings within the apolar core of DOPC. The binding of p-NC-BP rings with CH3-(CO)O-

CH3 favours Complex A (2.86 kcal mol-1). The relatively high binding energy in this case is 

enabled by the electron withdrawing NC- group. The bonding of the unsubstituted ring and the high 

polarity of the NC- group [75] will  promote the positioning of the p-NC-BP substituted ring within 

the polar head region of the DOPC layer. 

 

5. Conclusions 

The interaction of monosubstituted BPs with DOPC bilayers and monolayers is strongly dependent 

on the structural and electronic configuration of the molecules and specifically:-. 

1. p-substituted BPs compared to o- and m-substituted BPs exhibit stronger interactions with DOPC 

bilayers and monolayers because of retained co-planarity of the two aromatic rings irrespective of 

the nature of substituent.  
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2. BPs with electron donor substituents penetrate the apolar core of the bilayer whereas BPs with 

electron acceptor substituents are incorporated in the polar group region of the DOPC bilayer. BPs 

located at the interface between the polar and apolar region increase the DOPC monolayer 

thickness. 

3. Experimental results and binding energy calculations indicate that the three structural and 

electronic features influencing the location of substituted BPs in DOPC bilayers and monolayers are 

respectively: (i) The position of the substituent, (ii) the electron density or polarizability of the BP 

rings and, (iii) the hydrogen bonding capability of the aromatic rings. 

4. Both electrochemical and fluorescence studies exhibit a consistent pattern of interactions between 

substituted BPs and DOPC bilayers and monolayers respectively suggesting that the Hg electrode 

support has an insignificant influence on the interactions of  the  substituted biphenyl compounds 

with DOPC. 

These findings are directly relevant to the initial objective of the work in that they relate the 

molecular properties of substituent position and ring polarizability  to the extent of interaction of the 

substituted biphenyl with  phospholipid monolayers/bilayers as a model for biological membranes.  

This has important relevance to biological membrane function not only with respect to the 

interaction of aromatic pharmaceuticals with biomembranes but also in relation to the conformation 

of proteins containing aromatic rings within biomembranes.  In both cases the biomembrane 

structure, function and biomolecular organization is strongly affected by the nature of the  aromatic 

ring/biomembrane associations. 
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Captions 

 

Figure 1.   

(a) DLS measurement of prepared vesicle dispersion. (b) Fluorescence of 1 mol dm-3; o-HO-BP at 

excitation = 295 nm (blue), m-HO-BP at excitation= 290 nm (black)  and p-HO-BP at excitation = 

288 nm (red),  in the presence of 0.249 DOPC mmol dm-3  and 0.12 mol dm-3 of KI. All 

fluorescence values corrected  for fluorescence in absence of BP and KI. (c) Modified Stern-Volmer 

plots for I- quenching of 1 mol dm-3 p- (filled circle), m- (triangle) and o- (square) HO-BP in the 

presence of 0.249 mmol dm-3 DOPC vesicles in 0.1 mol dm-3 KCl with 0.001 mol dm-3 of 

phosphate. 

 

Figure 2.  

(a) Specific capacitance (Csp)-potential (-E)  plot of DOPC coated Hg electrode in 0.1 mol dm-3 KCl 

containing 0.001 mol dm-3 phosphate buffer as control (black) in the presence of 1.0 mol dm-3 o- 

(blue), m- (green) and p- (red) HO-BP; (b) Peak-1 specific capacitance (from (a)) versus BP 

concentration (cBP)  plots of o- (filled triangle), m- (filled inverted triangle) and p-(open square) 

HO-BP; (c) % peak-1 capacitance (relative to control from (a)) against accessible fraction from 

fluorescence measurements in 0.249 mmol dm-3 DOPC  vesicle dispersion with 1.0 mol dm-3 of 

HO-BP; (d) Complex capacitance plane plots of DOPC coated Hg electrode in 0.1 mol dm-3 KCl 

containing 0.001 mol dm-3 phosphate buffer (black) in the presence of 1.0 mol dm-3 o- (blue), and 

p- (red) HO-BP. 

 

Figure 3.  

(a) Specific capacitance (Csp)-potential (-E)  plot  of DOPC coated Hg electrode in 0.1 mol dm-3 

KCl containing 0.001 mol dm-3 phosphate buffer as control (black) in the presence of 1.0 mol dm  

o- (blue), m- (green) and p- (red) Cl-BP; (b) Peak-1 specific capacitance (from (a)) versus 

concentration ((cBP) plots of o- (filled triangle), m- (open triangle) and p-(filled square) Cl-BP; (c) 
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% peak-1 capacitance (relative to control from (a)) against accessible fraction from fluorescence 

measurements of DOPC vesicle dispersion  with 1.0 mol dm-3 Cl-BP. 

 

Figure 4. 

(a) Complex capacitance plane plot of representative impedance data of DOPC coated Hg chip 

electrode in 0.1 mol dm-3 KCl with 0.001 mol dm-3 phosphate buffer (black) containing 1.0 mol 

dm-3 of o- (blue) and p- (red) Cl-BP acquired using EIS at -0.4 V applied potential; (b) FICsp from 

(a), versus BP concentration (cBP) plot of o- (filled triangle), m- (open triangle) and p- (filled 

square) Cl-BP. Error bars are within the symbol size. 

 

Figure 5.  

Plot of BP substituent's Hammetts constants:- (a) t and, (b) m [35] against BPs accessible fraction 

to I- quenching  on the DOPC bilayer with 1 mol dm-3 BP in solution. Error bars within symbol 

size. 

 

Figure 6.  

Plot of FICsp (closed triangle) of DOPC coated Hg against accessible fraction to I- quenching of 

substituted BP on the DOPC bilayer with 1 mol dm-3 BP in solution. Horizontal red dashed line 

corresponds to FICsp of pure DOPC.  Error bars are within the symbol size. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1. 

 
Log P [48], Hammetts constant (t and m) [49] and torsional angle [16] () values. 

 
Position o m p 

Substitution Cl- HO- Cl- HO- O3
-S- NC- Cl- HO- H3CO- H3C- 

Log P 4.54 3.1 4.6 3.2 n/a 3.7 4.61 3.2 4.0 4.6 

t  0.35 0.66 0.23 -0.37 -0.27 -0.17 

m 0.06 0.15 -0.19 -0.7 -0.56 -0.18 

 45˚≤≥60 ˚ ~45˚ <45˚ 
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Table 2. 

 
Binding energies of BP, Cl-BP, HO-BP and NC-BP molecules with CH3-(CO)O-CH3 (calculated 

with Schrodinger Jaguar software). 
  

Complex A: structure Binding 
energy, kcal 
mol-1 

Complex B: structure Binding 
energy, kcal 
mol-1 

 

1.55 

 

1.5 
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Table 3. 

 
Binding energies of HO- (p-HO-BP)  with CH3-(CO)O-CH3,  Cl- (Cl-BP) with –PO2-- of DOPC 
molecule and HOH with HOH; normalised per single bond (calculated with Schrodinger Jaguar 

software). 
 

Structure Binding 
energy, kcal 
mol-1 

Structure Binding 
energy, kcal 
mol-1 

 

7.43 

 

2.18 

 

5.05 
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Graphical abstract 
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Highlights 
 

Substituents modulate  biphenyl penetration into lipid membranes 
 

 Substituted biphenyls (BP) interact with DOPC membranes in the order p- > m- > o- 
 
 Substituents modulate the penetration of BPs  into DOPC membranes  
 
 BP substituent position  and ring polarizability influence  BP/membrane interaction 
 
 Monolayer/bilayer experiments give consistent results for BP/membrane interaction 


