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Controlling the relaxation of magnetisation in magnetic nanostructures is key to optimizing
magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic
relaxation mechanisms and with the latter strongly dependent on the interactions between the
nanostructures. In the present work we investigate laser induced magnetization dynamics in a broad
band optical resonance type experiment revealing the role of interactions between nanostructures
on the relaxation processes of granular magnetic structures. The results are corroborated by
constructing a temperature dependent numerical micromagnetic model of magnetization dynamics
based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping
on the key material properties of coupled granular nanostructures in good agreement with the
experimental data. We show that the intergranular magnetostatic and exchange interactions provide
a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed
to an increase in spinwave degeneracy with the ferromagnetic resonance mode as revealed by semi-

analytical spinwave calculations.

I. INTRODUCTION

Over the last few decades the demand for information
storage has increased at unprecedented rates. This
has driven forward huge advances in the areal density
of hard disk drives (HDD) based on magnetic storage.
These increases have led to hard drive (granular) media
containing much smaller grains located in smaller areas.
In an ideal scenario the ability to control the magnetic
orientation of individual grains would be possible without
the effects of interactions between them. However, in
structured magnetic materials at the nanoscale this ideal
can never be reached. In reality the nanostructures
are coupled. This coupling can arise from a number of
mechanisms; the long-ranged dipole-dipole field; direct
exchange between grains through magnetic impurities
across the interstitial region'; or via superexchange via
oxides in the interstitial boundary layer. The role of
interactions in relaxation processes in magnetic materials
has long been studied®> % in magnetic materials, though it
is often very difficult to determine individual mechanisms
by which the system relaxes.

The key measurable quantity that governs the relaxation
of the magnetization is the effective damping. This
parameter determines the dynamics of the magnetization
after an external stimulus and, importantly for granular
magnetic media, it governs the speed at which a bit
can be reversed. A large value of damping is desirable
to speed up the writing process and reduce transition
noise in Perpendicular Magnetic Recording (PMR) and

to reduce the dc noise arising from back-switching
during the Heat Assisted Magnetic Recording (HAMR)
process. Although its effect on recording performance is
significant, the origin of damping is poorly understood.
Mo et. al.® carried out a detailed analysis of FMR data
on CoCrPt perpendicular media, concluding that the
intrinsic damping from magnon-electron scattering was
as low as 0.004, over an order of magnitude smaller than
the values usually obtained for the total damping. Mo
et al ascribe the major contribution to the damping as
arising from inhomogeneity line broadening and grain
boundary two-magnon scattering. However, another
extrinsic candidate contribution to damping arises from
the effects of intergranular interactions. In the present
work we investigate the effects of magnetostatic and
exchange interactions on the effective damping of
perpendicular media. It is shown that the interactions
give rise to an increase in damping which is due to
the presence of long-ranged dipole-dipole spin wave
modes. The introduction of exchange interaction results
in a stiffening of the magnetization and a consequent
reduction in damping, demonstrated experimentally
for a series of CoCrPt granular media, and verified
by micromagnetic modelling. We furthermore use a
simplified model of spinwaves? to show that the interplay
between the magnetostatic interactions and intergranular
exchange determines the number of spinwave modes
with finite k-vectors that share the k=0 (ferromagnetic
resonance) frequency (the degeneracy), which is well
known to affect the damping?.



II. EXPERIMENTAL RESULTS

To determine the damping from the numerical model and
experimentally we use an optical ferromagnetic resonance
(FMR) method. In an optical FMR experiment, a
magnetic field is used to force the magnetic moments
away from their equilibrium. An optical pulse is
applied, heating the sample, and thus leading to a
new equilibrium position for the magnetization. The
initial/new equilibrium configuration arises due to the
minimisation of the competing anisotropy, exchange,
demagnetising and Zeeman energies at the starting/final
temperature. The rapid increase in temperature caused
by the laser induces precession of those moments around
a new position due to thermally induced changes in the
energy contributions. The resulting dynamics can then
be analysed to determine effective parameters governing
the relaxation process. This technique has been applied
to a wide range of materials and structures”™°. In
particular optical FMR is the preferred method for
measuring the damping and resonance frequencies in
materials with a strong magnetocrystalline anisotropy!!,
due to the high fields required to drive the system
to resonance in a typical ferromagnetic resonance
experiment'2. Interestingly, the two methods were shown
to give the same values of the damping by Clinton and
co-workers in Ref. 7.
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Figure 1. (Color online) Hysteresis loops for the series of

CoPt with variable exchange. Increasing exchange leads to
increasingly square loops as expected.

We have carried out measurements on a series of CoPt
perpendicular media in which the exchange coupling
was varied by changing the oxygen content in the
intergranular layers. The applied field is applied
perpendicular to the sample plane (in the z-direction).
The variation of the exchange coupling is immediately
apparent in the measured hysteresis loops as shown in
Fig. 1, where it can be seen that increasing oxygen

content gives rise to increasingly sheared loops as the
intergranular exchange is reduced, due to the distribution
of switching fields and the fact that the reduced exchange
leads to a less coherent reversal mechanism.

From the hysteresis properties we determine the exchange
field using N x 4w My — H;py, where N is a demagnetizing
factor, usually anywhere between 0.75 to 0.85 Ref. 13,
and H;,; is the mean interaction field measured using
FORC!4.

We have carried out measurements of the effective
damping constant using the optically pumped FMR
technique'® in order to investigate the dependence of
the effective damping constant on the exchange. The
magnetic moments are forced away from the equilibrium
position using a 0.8kOe field at a 45 degree angle from
the out of plane anisotropy axis. A 10.8mW laser is
used to heat the media and excite the magnetisation
into precession. An example of the time resolved
magnetisation data obtained is given in figure 2 which
includes an example (inset) of the fit to the data that
was used to determine the damping of the system.
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Figure 2. (Color online) A example of a time resolved

magnetisation trace determined experimentally. Also showing
in the inset an example of the fit to data that was used to
extract the damping, where the raw data is shown as points
and fitted function is shown as a line.

The results are shown in fig. 3, which shows the
dependence of the measured Gilbert damping constant
on the exchange field. The values of the damping
are calculated by fitting the transverse magnetisation
components to a decaying oscillating function, m,(t) =
A cos(wt) exp(—t/7), where the fitting parameters are;
A, the amplitude; w, the resonance frequency; and 7, the
relaxation rate. The damping is then o = 1/7w.

A non-monotonic dependence of o on H., is clear.
In order to interpret the experiments in terms of the
intergranular interactions we have also measured the zero
field cluster size using the method of Nemoto et. al.'®.
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Figure 3. (Color online) Dependence of the measured Gilbert
damping constant on the exchange field. A non-monotonic
dependence of o on He, is clear. (Inset) Variation of the
cluster size with exchange field determined using the method
given in Ref. 13 and described in the text.

The results are given in the inset of Fig. 3. Importantly,
it is found that for the sample with the highest exchange
coupling there is a large increase in the correlation length.
This is consistent with the form of the hysteresis loop
shown in Fig. 1, where the sample exhibits a very square
loop consistent with magnetization by nucleation and
propagation of quasi-domains.

III. NUMERICAL MODEL

To corroborate the effects of increasing intergranular
exchange we have constructed a dynamic numerical
model of granular media using the Landau-Lifshitz-
Bloch (LLB) equation'® combined with a voronoi
construction of the grains typical for magnetic media.
The interactions between the grains are calculated based
on the interaction distances and lengths between the
grains and included into the LLB model, both of which
we describe in the following.

A. Landau-Lifshitz-Bloch Model

The LLB equation of motion describes the time evolution
of a magnetic macrospin. The equation allows for
longitudinal relaxation of the magnetization, and was
derived by Garanin'® within a Mean Field approximation
from the classical Fokker-Planck equation for atomic
spins interacting with a heat bath. Models based
on the resulting expressions have been shown to be

consistent with atomistic spin dynamics simulations'?, as

well as comparisons with experimental observations, for
example, in laser induced demagnetization'® and domain
wall mobility measurements in Yttrium Iron Garnet
crystals close to the Curie point'® (7). The equation is
similar to the Landau-Lifshitz-Gilbert (LLG) equation®°,
with precessional and relaxation terms, but with an extra
term that deals with changes in the magnitude of the
magnetization:

tin = —y[m; x B+ ) (mg - HET) my
1% I x [m, x HT]], (1)

i

where m; is a spin polarisation. The spin polarisation
tends towards equilibrium, m,., which is a temperature
dependent input parameter (discussed below). Q
and « are dimensionless longitudinal and transverse
damping parameters. - is the gyromagnetic ratio taken
to be the free electron value. The LLB equation is
valid for finite temperatures and even above T¢, though
the damping parameters and effective fields are different
below and above T,. For the transverse damping
parameter:

T
C“:{A(z;_ ) I<L ©)
A7 T>T,

and for the longitudinal:

2T
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with free energy density f,
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is given by!'®
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where B represents an external magnetic field, Haip ; is
the dipolar field and Hy; = — (m¥ef + m/e!) /x. an
anisotropy field. M;(0) is the saturation magnetlsatlon
(magnetisation at 0K), V; represents the volume of grain
i. Here, the susceptibilities X; are defined by x; =
omy/OH;. H, is the (intergranular) exchange field,
which we assume is based on the contact area between
the grains, arising from the Voronoi construction, as
discussed below. In these equations, A is a microscopic
parameter which characterizes the coupling of the
individual, atomistic spins with the heat bath (the
intrinsic damping). We choose the value of A to be 0.05
for this work. It is worth pointing out that we expect the
results and conclusions presented here to be qualitatively
the same for all values of the damping. The calculation
of the dipolar field is truncated at 8 grain diameters to
reduce the N? calculation over all pairwise interactions.
The long-ranged contribution is then treated within a
mean-field approximation.

For application of the LLB equation one has to know the
spontaneous equilibrium magnetisation m(T), the per-
pendicular (Y1 (7)) and parallel (x(7")) susceptibilities
beforehand. In this work, the input functions are based
on that of Ref. 17 for FePt and scaled to give the correct
Curie temperature. For the transverse susceptibility
(that determines the anisotropy) the function is scaled
to give an anisotropy constant of 13.5x10%rg/cc. The
functions are scaled in the same manner as that of
Ref. 21:

FePt
M,(T) = MME?()O) F‘““(TTC ),  (©
W) = et (=), @
FePt
(1) = geghd (). ®

B. Granular Model

The model of the magnetic nanostructures is based on a
Voronoi construction which creates structures and grain
size dispersions similar to those produced in magnetic
hard disk drives (see Fig. 5). The seed points for the
Voronoi algorithm are based on a 2D hexagonal structure
with the points moved by a random value, linearly, to
generate structural disorder. This results in a log-normal
distribution of grain volumes, V;, as seen experimentally.

The average grain diameter in our numerical simulations
is 8nm with a thickness of 8nm. The standard deviation
in the grain diameter is 2.63nm. In the present work
we assume no dispersion in the anisotropy easy axes
of the grains and we numerically simulate a system
approximately 700nm x 700nm laterally, corresponding to
7558 grains. Furthermore, we do not assume a spatial
variation of the anisotropy strength per grain, though
the voronoi construction gives a volume distribution
giving rise to a variation of energy barrier, K'V. This
means that to first order the extrinsic contributions, from
anisotropy, to the damping are zero to first order?.

The IGE is formulated on the basis of the contact
area between grains as was implemented in Ref. 22.
Considering neighbouring grains k& and [. The exchange
energy between them can be written

EF h = —NuJude - 81, 9)
where N; is the number of atoms in the contact area
between (k,l). Assuming a film of uniform thickness ¢,
Ny = Ligt/a?, where Ly, is the contact length between
the grains and a is the lattice constant. The exchange
field on grain k due to [ is therefore

aE‘ea:ch _ Lkl‘]kl 8
oy, a2M A, !

HH (10)

Ay is the area of the face of grain & in the plane of thin
film and Ly, is the contact length between grains k and
l. In addition, we allow for some dispersion in the Ji; by
generating a normal distribution with a given width. We
now write Eq. 10 in terms of reduced parameters (relative
to the median values L,,, A, Ji)

Ikt Ly An\ .
Kl _
He' = Heaen <Jm) ( > (Ak > o ()

where Heper, = JyLm/(a?MA,,). In practice Hegen
is set by the requirement that the average exchange at

saturation has a certain value H3%, = which is the more

accessible value experimentally, that is

s 5 () () ()

k len.n
(12)

Hsat

exch —

We have verified that the model gives consistent static
results by initially simulating hysteresis loops for a range
of intergranular exchange. Qualitatively Fig. 4 shows
increasingly square loops with increasing intergranular
exchange.

There are some expected quantitative differences between
the experimental and numerically determined loops that
primarily arise from the fact that the Landau-Lifshitz-
Bloch equation is integrated numerically as a function
of time, however, the total simulation time is orders of
magnitude lower than those measured experimentally.
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Figure 4. (Color online) Numerically calculated hysteresis
curves for a range of intergranular exchange constants in good
qualitative agreement with the experimental hysteresis loops

(Fig. 1).

Furthermore, the numerical simulations do not take
into account the detailed variations in the experimental
structure, saturation magnetization, anisotropy or grain
size variations. Not taking these specific aspects into
account allows us to use the numerical model to interpret
the experimental results without these extra degrees of
freedom.

During the simulations of optically induced FMR we
apply a magnetic field in the x-z plane at an angle 6 which
we take to be at 45° from the z axis of magnitude 10kOe.
The anisotropy is assumed to be uniaxial and points out
of the plane of the sample. The large angle at which we
apply the field gives rise to large amplitude precession
giving excellent fits to the magnetisation (discussed
below). Even in the presence of the field at 45°, the large
anisotropy ensures that the magnetisation lies strongly
out-of-plane. In our optical FMR approach we assume a
square pulse in temperature rising from ambient to 600K
for 400ps, returning to ambient after the pulse. In a real
optical FMR experiment on the picosecond timescale the
laser generates a hot electron distribution that can reach
temperatures of thousands of Kelvin?®. Subsequently,
the hot electrons reach a quasi-equilibrium state with
the phonons at the same temperature. Depending on
the relaxation time of the magnetic system the spin
system will reach equilibrium with this quasi-equilibrium
at around 0.1-1 picoseconds?*, though this can be
considerably longer for pure rare earth metals?®. For
metallic ferromagnets, the changes in the magnitude
of the magnetisation occur on a much faster timescale
than the resulting precession (see inset of Fig. 6, thus
we probe the dynamics at the temperature after the
pulse. Experimentally the long cooling-time to the initial
temperature occurs by transfer of energy out of the

Figure 5.
simulations.

(Color online) Schematic of the set-up of the

The anisotropy is perpendicular to the plane
with the applied field at an angle 6 to the plane. The
magnetization equilibrates to M before the laser pulse

is applied. The laser pulse results in relaxation of the

magnetization by precession to the new orientation, M.

magnetic material to the substrate and the surroundings
via phonon processes on the nanosecond time-scale.

Using the LLB model, we have investigated the effects
of varying the saturation magnetisation and IGE on
the damping of our granular material after excitation
with a heat pulse. As discussed above, the change in
temperature alters the equilibrium position, which causes
the magnetization to precess back the initial state. An
example of the resulting dynamics within the LL.B model
is shown in Fig. 6 (points). On the picosecond timescale
the magnetization is quickly reduced, in agreement with
experimental®®~?® and numerical results?®3° so that the
quenching and recovery of the anisotropy field is much
faster than the timescale of the precessional dynamics.

Using the numerical model we first calculate the damping
as a function of the saturation magnetization, as
presented in Fig. 7, for a range of values of the IGE.
The values for the damping are calculated as with the
experimental data.

Figure 7 shows a strong variation and a subtle
combination of contributions from magnetostatic and
exchange interactions. Consider first the case H32t, = 0.
From Fig. 7 it can be seen that there is a very strong
dependence of effective damping on Mj, specifically an
increase of around a factor of 2.5 for M, values around
those of Co and Fe. For low values of My the damping
for all values of IGE converge to the value of the input
damping due to the very low contribution from the
demagnetizing fields.

The variation of damping with IGE, determined
numerically, is shown in Fig. 8 and is consistent with
the experimentally observed decrease (Fig. 3) in damping
with increasing intergranular exchange. For low values of
the saturation magnetization the value of the damping
shows very little variation and remains close to the value
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Figure 6. (Color online) Example of the transverse

magnetization dynamics after a heat pulse (points) with a
fit to the dynamics (lines).

T T T T T d T T T
0.16 4 e 0kOe -
—e—5k0e
0.14 4 —a— 10 kOe g
=) —w— 15 kOe
Sor —+—20kOe i
I
o
2010+ -
©
£
i 0.08 g
0.06 i
0.04 T T

T T T
400 600 800 1000 1200
Saturation Magnetisation M, (emu/cc)

Figure 7. (Color online) Damping as a function of saturation
magnetization for a range of values of the intergranular

exchange, HE2S, .

for the intrinsic damping used for the calculations. For
larger values of M, there is a much larger variation
with IGE where there is a strong interplay between the
demagnetizing energy and the IGE.

Overall, the numerical simulations are consistent with
the experimental data for small exchange fields, where
the effective damping is seen to decrease with He,.
However, the model does not reproduce the increase
in damping for the sample with the largest exchange
(see Fig. 3). This is likely related to the dramatic
increase in the measured cluster size for this particular
sample as shown in the inset of Fig. 3. For this sample,
the oxide concentration was reduced to zero, and it is
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Figure 8. (Color online) Damping as a function of

intergranular exchange for a range of values of saturation
magnetization. For low values of M the value of the damping
varies very little and remains around the value of the input
damping parameter. As M, increases, the variation with
intergranular exchange becomes much greater as the interplay
between the demagnetizing fields and exchange becomes
important.

possible that the determined exchange field is an under-
estimate. The large cluster size and the form of the
hysteresis loop for this sample is indicative of a change
to a nucleation/propagation mechanism which is not
observed in the model calculations for values of H., up
to 5kOe. For a very strongly exchange coupled sample it
is likely that additional damping mechanisms will arise
from interaction of the domain walls with defects and
impurities resulting in the increase in Gilbert damping
at large exchange fields.

IV. SEMI-ANALYTICAL SPINWAVE MODEL

So far we have presented numerical and experimental
results that show good agreement on the effects
of interactions on the damping in granular media,
however, the underlying mechanism remains somewhat
ambiguous. In the following we ascribe the reduction
in damping due to increasing intergranular exchange as
arising from a reduction in the degeneracy of finite k-
vectors with the frequency of the k=0 (ferromagnetic
resonance) mode (see schematic inset of Fig. 9).
In general, the presence of defects, inhomogeneities,
boundaries, etc. can act as scattering centres leading
to the energy transfer from the uniform magnetization
precession into degenerate spinwave modes. A reduction
in this degeneracy reduces the number of possible
spinwave modes that can be scattered to or from. The
process involves the annihilation of a zero-wavenumber



magnon and the creation of a nonzero-wavenumber
magnon. The consequence of this process is that
the magnetization precession undergoes rapid relaxation
(damping)3!. Reducing this degeneracy will then result
in a reduced damping. We conclude that the reduction
of two-magnon scattering processes is dominating the
reduction in damping due to increased intergranular
exchange. To elucidate this we follow the method of
McMichael?:3:32,

In the present work we only briefly outline the method
of determining the frequencies of the spinwave modes. In
Refs. 2, 3, and 32 the Landau-Lifshitz-Gilbert equation
is linearised. The resulting linearised components of the
magnetization and fields are written in Fourier space
through:

b(r) = / (Qd:)zb(k) exp(ik - r) (13)

where b represents the magnetization or the fields.
The effective field has contributions from the Zeeman,
demagnetising, anisotropy and exchange terms and is
written in terms of a sum over the magnetization
multiplied with a kernel, G and is translationally
invariant. Due to the r — r’ term, on-site terms would
be represented by delta functions multiplied by a scalar.
The Fourier components of the field are then written:

Hrs(r) = /dr'G(r — ' m(r"). (14)

where hy are the elements of the normalized stiffness
tensor:

hgg,k = ]\40_1 [Hz + Dk?

S

+ M (1 — Ny,) sin®(6y,)] (15a)
hoox = MO [H; + DE* + MO Ny, cos®(¢)]

+ MP(1 — Ny) sin?(¢) cos®(6},) (15b)
hoge = MO~ [MO(1 — Ny) cos(6y)

x sin(6y) sin(¢)] (15¢)
heox = hog x (15d)

where Dk? = (24/poM,)k? is the exchange field
for a spinwave with wavevector k, assuming that the
wavelengths of interest are much larger than the lattice
spacing. A is the exchange stiffness and H; = B cos(¢ —
b)) — (M? — Hy,) sin?(¢) is the “internal field” consisting
of the component of; the applied field B (at an angle
¢u to the plane) parallel to the magnetization, which
is at an angle, ¢, to the plane; the static part of
the demagnetization field; and the anisotropy field Hy.
The k-dependent demagnetization factor for a film of
thickness d is given by:
1— e—kd

Ny, = d (16)

The susceptibility tensor, xi(w), can be obtained from
the linearised LLG equations of motion. For an applied
field with spatial frequency k and angular frequency w,
the transverse susceptibility tensor is given by:

hdx;b,k + low

WM

1

Xk(w) = Z

—hoox + 53
7hd>9,k _ ia]\c; h09,k + iaw

w WM

(17a)

w 2
Zye = hoo xhsox — hooxheox — (1 +a?) (—)
WMh

. w
+ za(w) (hoox + hos ), (17b)

where wy; = yM?. The dispersion relation is obtained
by noting that | Zx | is minimum and the susceptibility
is in resonance when

WM

1/2
Ww=wx = ——— |h h —h h
k /71 3 [ 00, koo k 0¢.k ¢0,k}

(18)

To make a consistent comparison between the LLB
numerical model and the spinwave model we use the
values of My, anisotropy, thickness (d), applied field
and applied field angle that are the same in both cases.
Furthermore, the angles of the magnetization (¢) from
the film plane are taken directly from the numerical
simulations at equilibrium after the pulse (from the
end of the numerical simulation). Using the physical
parameters that enter into the LLB model we have
calculated the spinwave properties of the numerically
simulated samples using equations 15, 16, 17 and 18 and
determined the degeneracy of those modes with the k=0
mode. This plays an important role in the damping
arising from inhomogeneities? due to non-uniformities
that are present in granular media. We note that
the value of the exchange stiffness that enters into the
equations is in the correct range* for granular media but
it is not trivial to relate the intergranular exchange field
in the LLB with the long-wavelength exchange, A used
in the spinwave model. We note here that the presented
form of the semi-analytical spinwave model does not take
into account inhomogeneous line broadening effects, thus
contains contributions only from inhomogeneities which
arise in the LLB model from the distribution of the grain
volumes. The results of the semi-analytical spinwave
model are shown in Fig. 9 and show a decreasing trend
with increasing exchange stiffness.

We can conclude that the two-magnon scattering process
is the leading term in our reduction in damping with
intergranular exchange and is strongly affected by the
interactions due to intergranular exchange and the
demagnetising fields. This is supported by the fact that
the LLB model does not include any specific detail about
the grain boundaries or dispersions in the anisotropy
axes or on-site magnitudes, though does take into
account different demagnetising fields, size distribution
etc., so there is inevitably a distribution in the cone-
angle of the macrospins. Therefore, scattering with
impurities cannot occur. The role of grain-to-grain
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Figure 9. (Color online) Spinwave degeneracy as a function
of exchange stiffness for a range of values of saturation
magnetisation. There is clearly a direct correlation between
the degeneracy and the damping shown in Fig. 3 and a similar
trend for fixed exchange stiffness and varying M.

scattering due to slight dispersions in the anisotropy
axes is zero in our LLB model as we assume perfectly
aligned anisotropy axes. Similarly, we assume that
our grains are uniform single macrospins and therefore
grain-boundary scattering cannot contribute to this two-
magnon scattering process. In terms of a macrospin
picture, the decreased damping can be explained by a
stiffening of the system resulting in a more coherent
precession so that demagnetizing effects become less
important and the system as a whole acts more like a
single macrospin.

V. CONCLUSION

In summary we have carried out an investigation of
the effects of intergranular interactions on the effective
damping constant of perpendicular media. Experiments
show a non-monotonic variation of of the damping with

increasing exchange strength. ’Contributions to the
experimental damping constant due to inhomogeneous
line broadening cannot be ruled out, however, these are
expected to be consistent between samples; the major
effect of reducing the thickness of the grain boundaries
is the variation in the exchange coupling as shown in
the hysteresis behavior. We have constructed a realistic
model of granular media using the Landau-Lifshitz-Bloch
model. By simulating the optical FMR technique to
probe relaxation processes we have determined how the
damping is affected by the key parameters governing the
interactions (exchange and saturation magnetisation).
The model calculations show a decrease of effective
damping with increasing exchange, consistent with the
experimental data for small exchange. It is argued
that the increase in damping for the largest exchange
field, arising in a film without exchange coupling, is
due to the onset of a different reversal mechanisms
involving domain nucleation and propagation. For
practical perpendicular recording media, which are more
exchanged decoupled, the decrease in damping with
exchange strength predicted by the model calculations
is the most likely scenario.  Further investigations
of the phenomenon using spin wave theory provide
further insight and ascribe the reduction in damping
due to increasing intergranular exchange as arising from
a reduction in the degeneracy of finite k-vectors with
the frequency of the k=0 (ferromagnetic resonance)
mode. These calculations show a direct correlation
between the degeneracy and the damping shown by
the numerical model with a similar trend for fixed
exchange stiffness and varying M. Our numerical
calculations do not include extrinsic contributions to
damping due to variations in on-site quantities, such as
anisotropy or saturation magnetisation, thus we have
shown that it is possible to describe the decrease in
damping with intergranular exchange based on the effects
of intergranular exchange and demagnetising fields, thus
we conclude that their contribution is large.

This work was supported by the European Commission
under contract No. 281043, Femtospin. The financial
support of the Advanced Storage Technology Consortium
is gratefully acknowledged. T. A. Ostler gratefully ac-
knowledges the Marie Curie incoming BeIPD-COFUND
fellowship program at the University of Liege.

1'V. Sokalski, D. E. Laughlin, and J.-G. Zhu, Applied
Physics Letters 95, 102507 (2009).

2 R. D. McMichael, Journal of Applied Physics 95, 7001
(2004).

8 R. McMichael and P. Krivosik, IEEE Transactions on

Magnetics 40, 2 (2004).

P. Krone, M. Albrecht, and T. Schrefl, Journal of

Magnetism and Magnetic Materials 323, 432 (2011).

® A. Butera, The European Physical Journal B 52, 297
(2006).

N

6 N. Mo, J. Hohlfeld, M. ul Islam, C. S. Brown, E. Girt,
P. Krivosik, W. Tong, A. Rebei, and C. E. Patton, Applied
Physics Letters 92, 022506 (2008).

" T. W. Clinton, N. Benatmane, J. Hohlfeld, and E. Girt,
Journal of Applied Physics 103, 075546 (2008).

8 . Kalarickal, N. Mo, P. Krivosik, and C. Patton, Physical

Review B 79, 094427 (2009).

A. Mekonnen, M. Cormier, A. V. Kimel, A. Kirilyuk,

A. Hrabec, L. Ranno, and T. Rasing, Physical Review

Letters 107, 117202 (2011).

©



11

12

13

14

15

16
17

18

19

20

21

22

23

X. Zou, J. Wu, P. K. J. Wong, Y. B. Xu, R. Zhang, Y. Zhai,
C. Bunce, and R. W. Chantrell, Journal of Applied Physics
109, 07D341 (2011).

J. Becker, O. Mosendz, D. Weller, A. Kirilyuk, J. C. Maan,
P. C. M. Christianen, T. Rasing, and A. Kimel, Applied
Physics Letters 104, 152412 (2014).

T. A. Ostler, M. O. A. Ellis, D. Hinzke, and U. Nowak,
Physical Review B 90, 094402 (2014), arXiv:1407.1174.
H. Nemoto, I. Takekuma, H. Nakagawa, T. Ichihara, A. R..,
and H. Y., J Magn. Magn. Mater. 320, 3144 (2008).

C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl.
Phys. 85 (1999).

M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair,
L. Lagae, W. J. M. de Jonge, and B. Koopmans, Physical
Review Letters 88, 227201 (2002).

D. A. Garanin, Physical Review B 55, 3050 (1997).

N. Kazantseva, D. Hinzke, U. Nowak, R. Chantrell,
U. Atxitia, and O. Chubykalo-Fesenko, Physical Review
B 77, 184428 (2008).

J. Mendil, P. Nieves, O. Chubykalo-Fesenko, J. Walowski,
T. Santos, S. Pisana, and M. Miinzenberg, Scientific
reports 4, 3980 (2014), arXiv:1306.3112.

J. Kotzler, D. Garanin, M. Hartl, and L. Jahn, Physical
Review Letters 71, 177 (1993).

T. Gilbert, IEEE Transactions on Magnetics 40, 3443
(2004).

K. M. Lebecki and U. Nowak, Journal of Applied Physics
113, 023906 (2013).

Y. Peng, X. W. Wu, J. Pressesky, G. P. Ju, W. Scholz, and
R. W. Chantrell, Journal of Applied Physics 109, 123907
(2011).

J. Chen, D. Tzou, and J. Beraun, International Journal of
Heat and Mass Transfer 49, 307 (2006).

25

26

27

28

29

30

31

32

I. Radu, C. Stamm, A. Eschenlohr, F. Radu, R. Abrudan,
K. Vahaplar, T. Kachel, N. Pontius, R. Mitzner,
K. Holldack, A. Fohlisch, T. A. Ostler, J. Mentink,
R. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh,
A. Kirilyuk, A. Kimel, and T. Rasing, SPIN 5, 1550004
(2015).

B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf,
M. Fahnle, T. Roth, M. Cinchetti, and M. Aeschlimann,
Nature materials 9, 259 (2010).

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot,
Physical Review Letters 76, 4250 (1996).

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius,
H. A. Diirr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W.
Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing,
A. V. Kimel, and H. a. Diirr, Nature 472, 205 (2011).
K. Vahaplar, A. Kalashnikova, A. V. Kimel, D. Hinzke,
U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh,
A. Kirilyuk, and T. Rasing, Physical Review Letters 103,
117201 (2009).

T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell,
U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le
Guyader, E. Mengotti, L. J. Heyderman, F. Nolting,
A. Tsukamoto, A. Itoh, D. Afanasiev, B. A. Ivanov,
A. M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk,
T. Rasing, and A. V. Kimel, Nature communications 3,
666 (2012).

U. Atxitia, J. Barker, R. W. Chantrell, and O. Chubykalo-
Fesenko, Physical Review B - Condensed Matter and Mate-
rials Physics 89, 224421 (2014), arXiv:arXiv:1308.0993v1.
L. Lu, Z. Wang, G. Mead, C. Kaiser, Q. Leng, and M. Wu,
Applied Physics Letters 105, 012405 (2014).

R. D. McMichael, D. J. Twisselmann, and A. Kunz,
Physical Review Letters 90, 227601 (2003).



