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PREFERENTIAL DUPLICATION GRAPHS
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Abstract

We consider a preferential duplication model for growing random graphs,

extending previous models of duplication graphs by selecting the vertex to be

duplicated with probability proportional to its degree. We show that a special

case of this model can be analysed using the same stochastic approximation as

for vertex-reinforced random walks, and show that “trapping” behaviour can

occur, such that the descendants of a particular group of initial vertices come

to dominate the graph.
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1. Introduction

Many naturally occurring networks ranging from subcellular biological networks to

a variety of social networks are believed to grow by processes of vertex duplication.

Indeed, graph growing models based on vertex duplications have been the subject of
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2 COHEN, JORDAN AND VOLIOTIS

investigation over recent years (for example [1, 5, 6, 7, 10]). In most of these models

vertices are chosen for duplication according to a uniform distribution, while in the

model of [5] all vertices are duplicated simultaneously. By contrast, other graph grow-

ing algorithms rely on the preferential attachment of new vertices to highly connected

existing ones to reproduce the broad, often scale-free, degree distributions (see [4] for

a survey) found in many real world networks. Here we present a generalisation of

a duplication graph growing algorithm that is inspired by a “friend-brings-a-friend”

growth process, and reduces to the preferential attachment model in one limit. We call

this growth algorithm preferential duplication.

Our model is defined as follows. Let G0 be a finite (connected) graph with n0 vertices

(labelled with the integers 1, . . . , n0). There are two versions of the model, which we

will call the “false twins” version and the “true twins” version.

In both models, we construct a sequence of graphs (Gn)n∈N by a procedure which, to

construct Gn+1 from Gn, chooses a vertex vn+1 of Gn with probability proportional

to its degree (that is, vn+1 = v with probability

degGn
(v)∑

w∈V (Gn)
degGn

(w)
,

as in the preferential attachment graph), and duplicates vn+1 together with each of

its edges with probability p, independently of each other. That is, if vn+1 = v, a

new vertex v′ is added to the graph. An edge exists in Gn+1 between v′ and w with

probability p if an edge existed in Gn between v and w, and not otherwise, the existence

of edges from v′ to different neighbours of vn+1 being independent. Additionally, in

the “true twins” version of the model only, v′ is connected to v with probability 1.

In the remainder of this paper we concentrate on the case p = 1; we intend to investigate

the case p < 1 in a later paper. We note that the true twins model with p = 0 becomes

the preferential attachment model of [4] with the parameter m = 1.

The behaviour of preferential duplication graphs bares some resemblance to that of a

completely different graph model - that of vertex-reinforced random walks (VRRW, see

[3, 8, 11]). For a specific duplication event, with p = 1, the vertex and associated edges
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duplicated are simply a reproduction of the existing structure of the duplicated vertex.

Therefore, it is convenient to collapse the new vertex and its associated edges onto the

duplicated vertex and edges, while “reinforcing” that vertex to indicate that such a

collapse has taken place. This process would then be identical to the reinforcement in

VRRWs. However, in the former, vertices are selected for duplication from the graph

only as a function of their degree, whereas in the latter there is an additional constraint

that any two successively reinforced vertices must be neighbours.

We show, in the special case of the preferential duplication model where p = 1, that

a process representing the numbers of descendants of the original vertices becomes

“trapped” on certain subgraphs of the initial graph. In other words, given an initial

graph G0, we can find subgraphs of G0 such that there is a positive probability that

after a sufficient number of generations, all new vertices are descendants of vertices in

G0. Interestingly, such trapping is of the same nature as that which has been shown to

occur in VRRWs; our proof method is to show that preferential duplication with p = 1

has a stochastic approximation equation linking it to the same dynamical system as

is linked to VRRW in [8, 3]. We conjecture that with probability 1, there exists one

subgraph that traps the process.

In the “false twins” case we show in Theorem 2.2 that the trapping subgraphs are of

the form S ∪ B where S is a complete m-partite subgraph of G0 satisfying certain

conditions and B consists of those vertices with a neighbour in S. These trapping

subgraphs are the same as those found in a VRRW on the initial graph G0. In the

“true twins” case we show in Theorem 2.3 that the trapping subgraphs are of the form

S ∪ B where S is a maximal clique of G0 and B again consists of those vertices with

a neighbour in S. In both cases any trapping subgraph has positive probability of

trapping the process.

The trapping behaviour we find may give insight on the emergence of certain types of

structures in a variety of complex systems with similar growth properties. In particular,

the principle of a “friend-brings-a-friend” is commonly used in real world networks

(though rarely with p = 1). Where such growth rules indeed lead to trapping behaviour,
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one would find that ancestry may be affected more by nuances such as the specific

structure of G0 than merely the distinctive features of a particular ancestor. Another

interesting phenomenon is the symmetry breaking that can occur in this model, with an

initial symmetric graph G0 that has more than one trapping subgraph. More generally,

the fact that trapping appears in two very different models of graph processes suggests

that it may be a more universal property of particular classes of systems than previously

known.

2. The case p = 1

We show that the case where p = 1 (so the new vertex is an exact copy of the vertex it

was duplicated from) is closely related to a VRRW (see [3, 8, 11] for more on VRRW)

on the initial graph.

2.1. Preliminaries and notation

Lemma 2.1. In the “false twins” case, all vertices of Gn will have the same set of

neighbours in Gn as one of the initial vertices 1, . . . , n0.

Proof. The new vertex added to Gn to form Gn+1 has the same set of neighbouring

vertices in Gn+1 as the vertex it is a duplicate of. Hence if two vertices have the same

set of neighbours in Gn, then they will continue to do so in Gm (m > n), and so all

vertices of Gn will have the same set of neighbours in Gn as one of the initial vertices

1, . . . , n0.

This will also hold in the “true twins” case if the set of vertices within distance 1 of

each vertex (i.e. including the vertex itself) is considered.

We will describe a vertex as being descended from initial vertex i either if it was

duplicated directly from vertex i or if it was duplicated from a vertex descended from
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vertex i. Hence all vertices descended from vertex i have the same set of neighbours

in Gn as vertex i.

For n ≥ 0 and 1 ≤ i ≤ n0, let d
(n)
i be the degree of vertex i in Gn, and let c

(n)
i be the

number of vertices of Gn which are descended from vertex i (including vertex i itself).

Let Xn be a random variable taking values in {1, . . . , n0} whose value is the original

vertex that vn is descended from, so that c
(n+1)
Xn+1

= c
(n)
Xn+1

+ 1 and that c
(n+1)
i = c

(n)
i for

i ̸= Xn+1.

Let x
(n)
i be the proportion of vertices of Gn descended from vertex i,

x
(n)
i =

c
(n)
i

n + n0
,

and let x(n) be the vector of proportions, x(n) = (x
(n)
1 , x

(n)
2 , . . . , x

(n)
n0 ), which can be

regarded as an element of the (n0 − 1)-dimensional simplex

∆n0−1 = {x ∈ Rn0−1;xi ≥ 0 ∀ i,

n0−1∑
i=1

xi ≤ 1}.

Let A = (aij)i,j∈V (G0) be the adjacency matrix of G0, and define a σ-algebra Fn =

σ(G0, G1, . . . , Gn).

For the “false twins” case, let f(x) : Rn0 → Rn0 be a function with co-ordinates of

f(x) given by

fi(x) =
xi

∑n0

j=1 aijxj∑n0

k=1 xk

∑n0

j=1 akjxj
=

xi(Ax)i
xTAx

,

and let F (x) = f(x) − x. Following [3], for x ∈ ∆n0−1 we write Ni(x) = (Ax)i and

H(x) =
∑n0

i=1 xiNi(x) = xTAx, so that

fi(x) =
xiNi(x)

H(x)

and

Fi(x) =
xi(Ni(x) −H(x))

H(x)
.

Similarly, for the “true twins” case, define N̂i(x) = [(A+ I)x]i (where I is the n0 × n0

identity matrix), Ĥ(x) = xT (A + I)x, f̂i(x) = xiN̂i(x)

Ĥ(x)
and F̂ (x) = f̂(x) − x.
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For i ∈ {1, . . . , n0}, let ι(i) be the unit vector in Rn0 with 1 in position i and zero

elsewhere.

2.2. Stochastic approximation and analysis of attractors

Theorem 2.1. In the “false twins” case, the sequence (x(n))n∈N satisfies the stochastic

approximation equation

x(n+1) − x(n) =
1

n + n0 + 1
F (x(n)) + ϵ(n+1),

with E(ϵ(n+1)|Fn) = 0 and where ϵ(n+1)(n + n0 + 1) is bounded.

In the “true twins” case, the sequence satisfies a different stochastic approximation

equation,

x(n+1) − x(n) =
1

n + n0 + 1
F̂ (x(n)) + ϵ(n+1) + R(n+1),

with E(ϵ(n+1)|Fn) = 0, ϵ(n+1)(n+n0 +1) bounded and with the remainder term R(n) =

O(n−2).

Proof. The graph Gn has n + n0 vertices. The new vertex vn+1 will be descended

from vertex i if and only if the selected vertex vn+1 is. Hence, in the “false twins” case,

c
(n+1)
i =


c
(n)
i + 1 with probability

c
(n)
i d

(n)
i∑n0

k=1 c
(n)
k d

(n)
k

c
(n)
i with probability 1 − c

(n)
i d

(n)
i∑n0

k=1 c
(n)
k d

(n)
k

Let aij , 1 ≤ i, j ≤ n0, be the entries of the adjacency matrix of G0. Then d
(n)
i =∑n0

j=1 aijc
(n)
j , so we can rewrite the above as

c
(n+1)
i =


c
(n)
i + 1 with probability

c
(n)
i

∑n0
j=1 aijc

(n)
j∑n0

k=1 c
(n)
k

∑n0
j=1 akjc

(n)
j

c
(n)
i with probability 1 − c

(n)
i

∑n0
j=1 aijc

(n)
j∑n0

k=1 c
(n)
k

∑n0
j=1 akjc

(n)
j

Hence this can be treated as a generalisation of the Pólya urn model where category i
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is chosen with probability

c
(n)
i

∑n0

j=1 aijc
(n)
j∑n0

k=1 c
(n)
k

∑n0

j=1 akjc
(n)
j

= fi(x
(n))

instead of with probability simply proportional to c
(n)
i .

We see that

x
(n+1)
i − x

(n)
i =

1

n + n0 + 1
(1 − x

(n)
i )I{Xn+1=i} −

1

n + n0 + 1
x
(n)
i (1 − I{Xn+1=i}),

and hence

x(n+1) − x(n) =
1

n + n0 + 1
(ι(Xn+1) − x(n)).

Taking conditional expectations,

E(x(n+1) − x(n)|Fn) =
1

n + n0 + 1
(f(x(n)) − x(n))

Letting ϵ(n+1) = 1
n+n0+1 (ι(Xn+1) − f(x(n))), we have E(ϵ(n+1)|Fn) = 0 and that

ϵ(n+1)(n + n0 + 1) is bounded, giving the result.

In the “true twins” case,

d
(n)
i =

n0∑
j=1

aijc
(n)
j + c

(n)
i − 1.

So the probability that some vertex descended from vertex i is chosen for duplication

is

p
(n)
i =

c
(n)
i

(∑n0

j=1 aijc
(n)
j + c

(n)
i − 1

)
∑n0

k=1 c
(n)
k

∑n0

j=1(akjc
(n)
j + c

(n)
k − 1)

=
x
(n)
i

(∑n0

j=1 aijx
(n)
j + x

(n)
i − 1

n+n0

)
∑n0

k=1 x
(n)
k

∑n0

j=1(akjx
(n)
j + x

(n)
k − 1

n+n0
)
,

so

p
(n)
i =

x
(n)
i (N̂i(x

(n)) − 1
n+n0

)

Ĥ(x(n)) − 1
n+n0

=
x
(n)
i N̂i(x

(n))

Ĥ(x(n))
+

x
(n)
i

(
N̂i(x

(n)) − Ĥ(x(n))
)

Ĥ(x(n))(Ĥ(x(n))(n + n0) − 1)

= f̂i(x
(n)) + O(n−1).
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Hence stochastic approximation theory [2, 9] relates the behaviour of x(n) to the

behaviour of the continuous-time dynamical system given by the function F (x). This

is the same stochastic approximation as occurs for vertex-reinforced random walks in

[3, 8].

An attractor for a flow Φ on a metric space (M,d) is defined (e.g. in [2]), to be

a subset A ⊆ M which is invariant under Φ and has a neighbourhood W such that

d(Φtx,A) → 0 as t → ∞ uniformly for x ∈ W .

In [3], a stable equilibrium for the dynamical system of interest is defined as being

an equilibrium where all eigenvalues of the Jacobian matrix are non-positive. This

does not necessarily imply that the stable equilibrium is in an attractor.

As H is a Lyapunov function for the stochastic approximation, and letting L(x) be the

limit set of the process (x(n))n∈N, we can conclude the following:

Corollary 2.1. If A is an attractor of the continuous-time dynamical system given by

the function F (x) (or F̂ (x)), then P(L(x) ⊆ A) > 0. Furthermore, L(x) consists of

equilibria for the dynamical system, and H(x(n)) (or Ĥ(x(n))) converges as n → ∞.

Proof. The first statement follows from Theorem 7.3 of [2], and the second from

Proposition 6.4 of [2].

We now discuss the attractors and stable equilibria for the dynamical system in the

“false twins” case. First consider the case where G0 is a complete m-partite graph. In

this case vertices which belong to the same part have the same neighbours and so are

indistinguishable, so we can just consider the case where G0 is a complete graph on m

vertices. The convergence of the stochastic approximation in this case is discussed in

[8].

We now consider finding attractors for the dynamical system in more general graphs.

Consider the case where G0 contains a subgraph consisting of a “core” S and its outer

boundary B, S being a complete m-partite graph, S = V1 ∪ V2 ∪ · · · ∪ Vm and B
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consisting of exactly those vertices which are outside S but have a neighbour in S. We

have already dealt with the case where S is the whole graph above, so without loss of

generality assume that n0 /∈ S. In [11] such a subgraph is defined to be a trapping

subgraph if for any vertex v in B two criteria are met:

1. There is at least one part of S, Vi, such that v is not connected to Vi;

2. There is at least one vertex in x′ ∈ S \ Vi such that v is not connected to x′.

The following result shows that trapping subgraphs (under the definition in [11])

produce attractors of the dynamical system.

Proposition 2.1. Let S be the core of a trapping subgraph, and let y ∈ ∆n0−1 be such

that
∑

i∈Vj
yi = 1/m and that yi = 0 if i /∈ S, i.e. y represents a proportion 1/m of

the vertices being in each part of the m-partite graph, and a proportion 0 outside the

graph. The set of points of this form is an attractor for the dynamical system driven

by F .

Proof. It is fairly easy to see that y is a fixed point of F : the definition implies

that H(y) = m−1
m and that Ni(y) = H(y) for all i ∈ S. It remains to prove that

the set of fixed points of this form is an attractor for the dynamical system. To do

this, we will evaluate the partial derivatives dij = ∂Fi

∂xj
at the fixed point y, and show

that the eigenvalues of the resulting Jacobian are at most 0, and that the eigenspace

corresponding to the eigenvalue 0 is contained within the set of fixed points.

Using the fact that
∑n0

i=1 x
(n)
i = 1, we write xn0 = 1 −

∑n0−1
i=1 xi and treat f as a

function from ∆n0−1 to itself. Hence, we can rewrite the components of f :

fi(x) =
xi

∑n0−1
j=1 (aij − ai,n0)xj + xiai,n0∑n0−1

k=1

(∑n0−1
j=1 (akj − 2ak,n0)xkxj + 2ak,n0xk

) .
(We assume that G0 has no loops, so aii = 0 for all i.)
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Differentiating and substituting the above values for the xi at the fixed point, we find

dij =
∂Fi

∂xj

∣∣∣∣
x=y

=



−mai,n0yi

m−1 − 2yi + 2myi

m−1

∑
k∈S ak,n0yk i = j ∈ S

maijyi

m−1 − mai,n0yi

m−1 − 2yi + 2myi

m−1

∑
k∈S ak,n0yk i ̸= j, i, j ∈ S

maijyi

m−1 − mai,n0yi

m−1 − 2myi

m−1

∑
k∈S akjyk + 2myi

(m−1)

∑
k∈S ak,n0yk i ∈ S, j /∈ S

m
m−1

∑
k∈S aikyk − 1 i = j /∈ S

0 i /∈ S, j ̸= i

The off-diagonal zero entries where i /∈ S mean that the eigenvalues of this matrix

are the eigenvalues of the matrix obtained by restricting to the rows and columns

corresponding to S, together with the diagonal entries

ηi =
m

m− 1

∑
k∈S

aikyk − 1, i /∈ S.

So we need to find the eigenvalues of the |S| × |S| matrix D with entries

dij =
∂Fi

∂xj

∣∣∣∣
x=y

=

 −mai,n0yi

m−1 − 2yi + 2myi

m−1

∑
k∈S ak,n0yk i = j ∈ S

maijyi

m−1 − mai,n0yi

m−1 − 2yi + 2myi

(m−1)

∑
k∈S ak,n0yk i ̸= j, i, j ∈ S

Label the parts of the complete m-partite graph S 1, . . . ,m, and let p(i) be the part

containing vertex i. Then, given a set of constants α1, α2, . . . , αm with
∑m

k=1 αk = 0,

define a vector v ∈ R|S| by vi = yiαp(i). Then, as aij is 1 if p(i) ̸= p(j) and zero

otherwise,

(Dv)i =
myi
m− 1

∑
j:p(j)̸=p(i)

yjαp(j) =
yi

m− 1
(−αp(i)) = − 1

m− 1
vi,

so this gives an eigenspace of dimension m− 1 with eigenvalue − 1
m−1 .

Now let w be a vector with wj = 1 for all j.

(wTS)j =
∑
i∈S

(
maijyi
m− 1

− mai,n0yi
m− 1

− 2yi +
2yi

m− 1

∑
k∈S

mak,n0yk

)

= 1 − 1

m− 1

∑
i∈S

mai,n0
yi − 2 +

2

m− 1

∑
i∈S

mai,n0
yi

=
m

m− 1

∑
i∈S

ai,n0yi − 1,
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so there is a dimension 1 eigenspace with eigenvalue

ηn0 =
m

m− 1

∑
i∈S

ai,n0yi − 1.

If p(i) = p(j) aij = 0, so rows i and j of D are identical. Hence each part k gives

an eigenspace with eigenvalue 0 and dimension |Vk| − 1. The eigenspace of the zero

eigenvalues is in the direction where F is constant.

We now need to consider the eigenvalues ηi for i /∈ S. If our subgraph is a trapping

subgraph then this ensures that, as i is outside S,

∑
k∈S

aikyk <
m− 1

m
,

and so these eigenvalues are negative for all choices of yk, k ∈ S. Hence in this case all

the eigenvalues are negative or zero, and the eigenspace of the zero eigenvalues is in

the direction where F is constant, so the set of fixed points is an attractor.

A slightly weaker condition than that of a trapping subgraph in [11] arises if it is

possible to find an equilibrium y with support S such that

∑
k∈S

aikyk <
m− 1

m
,

or equivalently

Ni(y) < H(y), (2.1)

simultaneously for all i /∈ S. In this case there is a region of the family of fixed points

where all the eigenvalues are negative or zero, and the eigenspace of the zero eigenvalues

is in the direction where F is constant, but this does not apply throughout the family

of fixed points, so the family is not an attractor according to the standard definition.

In what follows, we will extend the definition of a trapping subgraph from that in [11]

by including those where it is possible to find such an equilibrium y.

For example, the simplest case where this arises is this graph with 5 vertices:
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u uu
u u

This graph contains a trapping subgraph according to the definition in [11], where

S is the triangle formed by vertices {2, 4, 5}. However, if S is the bipartite graph

{1, 2}∪{3, 4} and y2 +y4 < 1
2 , then the eigenvalues other than those within the family

of fixed points are all negative.

In the context of VRRW, it is shown in [3] that any stable equilibrium y of the

dynamical system has support consisting of a complete m-partite graph S, and that the

condition mentioned above that (2.1) is satisfied simultaneously for all i /∈ S, implies

that there is positive probability of VRRW being trapped in a neighbourhood of y.

The results for VRRW in [3] also show that stable equilibria of the dynamical system

driven by F̂ which appears in the “true twins” case are localised on cliques of the

original graph G0: if S is a clique of G0 then any y with
∑

i∈S yi = 1 is a stable

equilibrium. The condition that N̂i(y) < Ĥ(y), simultaneously for all i /∈ S, implies

that S is not contained within a larger clique.

2.3. Convergence to stable equilibria

In this section we show that in the “false twins” case any trapping subgraph (in the

weaker sense described above) has a positive probability of trapping the process x(n).

Throughout the proofs, similar arguments can be applied in the “true twins” case to

show that any clique of G0 which is not contained within a larger clique can trap the

process. The method, and the proofs of Lemmas 2.2 and 2.3, are based on those used

for VRRW in [3].

The following definitions and notation follow [3]. Let S be a complete k-partite

subgraph of G0 with outer boundary B. Let S consist of elements of ∆n0−1 whose
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support is S, and let S ′ consist of elements of ∆n0−1 which are non-zero at all elements

of S. Let L(U) be the event that x(n) converges to a stable equilibrium x(∞) ∈ S ∩U .

Given q ∈ S, define the entropy function

Vq(y) =

 −
∑

i∈S qi log(yi/qi) + 2
∑

i/∈S yi y ∈ S ′

∞ otherwise.

We define two types of balls around q, one based on the entropy function,

BVq (r) = {y ∈ ∆n0−1 : Vq(y) < r},

and one based on the ∞-norm,

B∞(q, r) = {y ∈ ∆n0−1 : ∥y − q∥∞ < r}.

As stated in [3], there are increasing continuous functions u1,q and u2,q : R+ → R+

such that u1,q(0) = 0 and u2,q(0) = 0 and for all r > 0 B∞(q, u1,q(r)) ⊂ BVq
(r) ⊂

B∞(q, u2,q(r)).

Let

ζ
(n+1)
i =


ϵ
(n+1)
i

x
(n)
i

i ∈ S, x
(n)
j ̸= 0 for all j ∈ S

0 otherwise.,

Still following [3], for q, z ∈ ∆n0−1, let

Iq(z) = −
∑
i∈S

qi(Ni(z) −H(z)) + 2
∑
i/∈S

zi(Ni(z) −H(z))

= −H(z)

(
−
∑
i∈S

qi
Fi(z)

zi
+ 2

∑
i/∈S

Fi(z)

)
.

In the following lemma, this quantity will be related to the increment in entropy relative

to q between x(n) and x(n+1).

The following lemma corresponds to Lemma 5 in [3], with a virtually identical proof:

Lemma 2.2. Let q ∈ S be a stable equilibrium of the dynamical system with Ni(q) <

H(q) for all i ∈ B. There exists ϵ such that if n is large enough and x(n) ∈ BVq (ϵ),
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then

Vq(x(n+1))−Vq(x(n)) =
Iq(x(n))

(n + n0 + 1)H(x(n))
−⟨q, ζ(n+1)⟩+2

∑
i/∈S

ϵ
(n+1)
i +O

(
1

(n + n0)2

)
,

and furthermore,

Iq(x(n)) ≤ −

(
H(q) −H(x(n)) + C1

∑
i/∈S

x
(n)
i

)
,

for a positive constant C1.

Proof.

Vq(x(n+1)) − Vq(x(n)) = −
∑
i∈S

qi(log(x
(n+1)
i /qi) − log(x

(n)
i /qi)) + 2

∑
i/∈S

(x
(n+1)
i − x

(n)
i )

= −
∑
i∈S

qi
x
(n+1)
i − x

(n)
i

x
(n)
i

+ 2
∑
i/∈S

(x
(n+1)
i − x

(n)
i ) + O

(
1

(n + n0)2

)
(by Taylor expansion)

= −
∑
i∈S

qi
Fi(x

(n))

(n + n0 + 1)x
(n)
i

−
∑
i∈S

qiζ
(n+1)
i + 2

∑
i/∈S

(
Fi(x

(n))

n + n0 + 1
+ ϵ

(n+1)
i

)
+ O

(
1

(n + n0)2

)

=
Iq(x(n))

(n + n0 + 1)H(x(n))
− ⟨q, ζ(n+1)⟩ + 2

∑
i/∈S

ϵ
(n+1)
i + O

(
1

(n + n0)2

)
.

For the inequality for Iq(x(n)), observe that∑
i∈S

qiNi(z) =
∑
i∈G

qiNi(z) =
∑
i∈G

ziNi(q) = H(q) +
∑
i∈B

zi(Ni(q) −H(q))

by the definition of Ni and the fact that q is an equilibrium. So

Iq(z) = H(z) −H(q) +
∑
i∈B

zi(2(Ni(z) −H(z)) − (Ni(q) −H(q))),

so the inequality is satisfied if we choose ϵ small enough that if z ∈ BVq (ϵ), 2(Ni(z) −

H(z)) − (Ni(q) −H(q)) < −C1 for all i /∈ S.

The next lemma corresponds to Lemma 7 in [3].

Lemma 2.3. Let q ∈ S be a stable equilibrium of the dynamical system with Ni(q) <

H(q) for all i ∈ B. For ϵ sufficiently small and n sufficiently large, if x(n) ∈ BVx(ϵ/2),

P(L(BVq (ϵ))|Fn) ≥ 1 − exp(−ϵ2C2(n + n0)).
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Proof. This follows the proof of Lemma 7 in [3].

Fix ϵ small enough that for all x ∈ BVq (ϵ) xi ≥ α for all i ∈ S and for some positive

α. Define martingales (Ak)k≥n, (Bk)k≥n and (κk)k≥n by An = Bn = κn = 0 and, for

k > n,

Ak =
k∑

j=n+1

ζ(j)I{Vq(x(j−1))<ϵ}

Bk =

k∑
j=n+1

∑
i∈B

ϵ
(j)
i I{Vq(x(j−1))<ϵ}

κk = −⟨q,Ak⟩ + 2Bk.

By martingale convergence, all three converge a.s. and in L2, and as increments of κ

have modulus at most C3/(k + n0) for some constant C3,

E(exp(θ(κk − κk−1)|Fk−1) ≤ exp

(
C2

3

2

θ2

(k + n0)2

)
.

As (κk)k≥n is a martingale, (exp(κk))k≥n is a submartingale, so Doob’s submartingale

inequality implies that

P(sup
k≥n

κk ≥ c|Fn) ≤ e−θcE(eθκ∞ |Fn) ≤ exp

(
−θc +

θ2C2
3

2(n + n0)

)
,

so if θ = c(n + n0)/C2
3 then

P(sup
k≥n

κk ≥ c|Fn) ≤ exp

(
− c2

2C2
3

(n + n0)

)
.

Let Υ be the event that supk≥n κk < ϵ
4 ; then

P (Υ|Fn) ≥ 1 − exp(−ϵ2C2(n + n0)),

for a new constant C2.

Lemma 2.2 implies that

Vq(x(k)) − Vq(x(n)) ≤ κk +
ϵ

4

if n is large enough (as in [3], we use the fact that Lemma 4 of [3] implies that H(q)−

H(x(n)) ≥ 0 if x(n) ∈ BVq (ϵ) for ϵ small enough). Hence, on Υ, Vq(x(k)) < ϵ for all

k ≥ n.
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Lemma 2.2 now implies that, as κk converges as k → ∞, that lim infk→∞(−Iq(x(k)) = 0

(otherwise Vq(x(k)) → −∞, but Vq(x) > 0 for all x) and so

lim inf
k→∞

(
H(q) −H(x(k)) + C1

∑
i/∈S

x
(k)
i

)
= 0.

Hence there exists a subsequence (jk){k≥0} with

lim
k→∞

H(x(jk)) = H(q)

and

lim
k→∞

∑
i/∈S

x
(jk)
i = 0.

As in [3], we identify an accumulation point r of (x(jk)){k≥0}, which will have H(r) =

H(q) and hence (by the lemmas in [3]) be a stable equilibrium if ϵ is small enough.

Redefine the martingale (κk)k≥n in terms of r instead of q, and let jk be far enough

along this subsequence that Vr(x(jk)) < ϵ/2 and supk≥jk
|κk−κj | < ϵ/4. Then Lemma

2.2 implies that, for j′ > j > jk,

Vr(x(j′)) ≤ Vr(x(j)) + sup
k>j

|κk − κj | +
C4

j
.

As lim infj→∞ Vr(x(j)) = 0 and limj→∞(supk>j |κk−κj |+ C4

j ) = 0, we have Vr(x(n)) →

limk→∞ Vr(x(jk)) = 0 and so x(n) → r.

Lemma 2.4. Assume that that for a give vertex i,
Ni(x

(n))

H(x(n))
converges to λi ∈ (0,∞).

Then, for i ∈ B,
c
(n)
i

nλi
converges to a limit in (0,∞) almost surely.

Proof. Let

Y
(n)
i =

n∑
k=1

I{Xk=i}

c
(k−1)
i

,

and let

M
(n)
i = Y

(n)
i −

n∑
k=1

Ni(x
(k−1))

H(x(k−1))(k + n0)
.

Then

E(Y
(n+1)
i − Y

(n)
i |Fn) =

Ni(x
(n))

H(x(n))(n + n0)
,
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so (M
(n)
i )n≥1 is a martingale.

Now,

E

( ∞∑
n=1

(M
(n)
i −M

(n−1)
i )2

)
= E

 ∞∑
n=1

(
I{Xn=i}

c
(n−1)
i

− Ni(x
(n−1))

H(x(n−1))(n + n0)

)2


≤ E

 ∞∑
n=1

(
I{Xn=i}

c
(n−1)
i

)2

+

(
Ni(x

(n−1))

H(x(n−1))(n + n0)

)2


≤ ∞,

so martingale convergence implies that

log c
(n)
i ≡ Y

(n)
i ≡ λi logn,

giving the result.

Let Rn,k be the range of the process (Xj)j∈N between times n and k, and let Rn,∞ be

the range of the process (Xj)j∈N for times j ≥ n

We now combine our results:

Theorem 2.2. In the “false twins” case, let G0 contain a complete m-partite graph

S with outer boundary B such that there exists a stable equilibrium q of the dynamical

system driven by F with support S and with Ni(q) < H(q) for all i ∈ B. Then with

positive probability, for some stable equilibrium r ∈ BVq (ϵ) with support S,

1. x(n) → r,

2. for i ∈ B,
c
(n)
i

nNi(r)/H(r) converges to a limit in (0,∞) almost surely,

3. for some (random) time n, Rn,∞ = S ∪B.

Furthermore, if there is a stable equilibrium r in the limit set L(x) of (x(n))n∈N with

support S and with Ni(r) < H(r) for all i ∈ B then, almost surely, x(n) → r as n → ∞.
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Proof. That convergence occurs with positive probability follows from Lemma 2.3,

and the behaviour of c
(n)
i for i ∈ B follows from Lemma 2.4.

For i /∈ § ∪ B, for which Ni(r)/H(r) → 0 as n → ∞ on x(n) → r, the same argument

as in Lemma 2.4 shows that
c
(n)
i

nα → 0 for any α > 0, from which it follows that

fi(x
(n))

nα → 0 as n → ∞ if α > maxj∈B(Nj(r)/H(r)) − 2, which implies that, almost

surely, i is visited only finitely many times.

The last part is also a consequence of Lemma 2.3.

Theorem 2.3. In the “true twins” case, let G0 contain a clique S with outer boundary

B such that S is not contained in a larger clique, and let q be a stable equilibrium with

support S. Then with positive probability, for some stable equilibrium r ∈ BVq (ϵ) with

support S,

1. x(n) → r,

2. for i ∈ B,
c
(n)
i

nN̂i(r)/Ĥ(r)
converges to a limit in (0,∞) almost surely,

3. for some (random) time n, Rn,∞ = S ∪B.

Furthermore, if there is a stable equilibrium r in the limit set L(x) of (x(n))n∈N with

support S then, almost surely, x(n) → r as n → ∞.

Proof. The proofs of Lemmas 2.2 and 2.3 apply in this case as well, with Ni and H

replaced by N̂i and Ĥ. For Lemma 2.4, if we define

Y
(n)
i =

n∑
k=1

I{Xk=i}

c
(k−1)
i

,

as before, then

E(Y
(n+1)
i − Y

(n)
i |Fn) =

N̂i(x
(n))

Ĥ(x(n))(n + n0)
+

N̂i(x
(n)) − Ĥ(x(n))

[Ĥ(x(n))(n + n0) − 1]Ĥ(x(n))(n + n0)
,

so we redefine the martingale M
(n)
i by

M
(n)
i = Y

(n)
i −

n∑
k=1

(
Ni(x

(k−1))

H(x(k−1))(k + n0)
+

N̂i(x
(n)) − Ĥ(x(n))

[Ĥ(x(n))(n + n0) − 1]Ĥ(x(n))(n + n0)

)
.
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The rest of the argument is the same as in the proof of Lemma 2.4.
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