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Abstract 
 

The Smoothed Particle Hydrodynamics (SPH) method is a mesh-less numerical 

modeling technique. It has been applied in many different research fields in coastal 

engineering. Due to the drawback of its kernel approximation, however, the accuracy 

of SPH simulation results still needs to be improved in the prediction of violent wave 

impact. This paper compares several different forms of correction on the first-order 

derivative of ISPH formulation aiming to find one optimum kernel approximation. 

Based on four benchmark case analysis, we explored different kernel corrections and 

compared their accuracies. Furthermore, we applied them to one solitary wave and 

two dam-break flows with violent wave impact. The recommended method has been 

found to achieve much more promising results as compared with experimental data 

and other numerical approaches. 

 
Keywords: ISPH; first-order derivative; kernel correction; wave impact; solitary 

wave; dam-break flow 
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1. Introduction 
 

The SPH method can well simulate violent water flows and breaking waves, due to its 

advantageous Lagrangian property. SPH divides the fluid domain into a finite number 

of mass particles. The movement of particles and the pressure distribution in the fluid 

are obtained by solving the momentum and continuity equations using the Lagrangian 

description of the motion. The SPH method was first developed to simulate the 

evolutions in astrophysics (Lucy, 1977), and was then extended to model free surface 

flow problems by Monaghan (1994). Because it does not require any mesh in the 

computational domain, SPH has great potentials to deal with the complex free surface 

in flows. For example, Colagrossi and Landrini (2003) applied the SPH to two-phase 

interfacial flows in a dam-break. Souto-Iglesias et al. (2006) studied the violent 

sloshing at a wide range of rolling frequencies using the SPH. Pu et al. (2013) used 

the SPH with a Large Eddy Simulation (LES) approach to simulate dam-break flows 

and compared with results from the Shallow Water Equations (SWEs) model. More 

benchmark wave breaking and impact SPH applications have been documented by 

Gomez-Gesteira et al. (2005) and Crespo et al. (2007) and the latest state-of-the-art 

review in the field can be found in Violeau and Rogers (2016).  

 

With its increasing popularity in different flow applications, some shortcomings of 

the SPH method emerged, one of which is the low accuracy of kernel approximations 

which usually cause spurious pressure distributions in wave impact simulation. The 

numerical noises in pressure could become so large as to distort the underlying 

physics. As a result, several remedies have been taken such as using higher-order 

kernel approximations to solve the problem, as documented by Liu et al. (1995) and 

Ma (2005). These include well-known second-order derivative correction schemes as 

proposed by Schwaiger (2008), Fatehi and Manzari (2011), Khayyer and Gotoh 

(2011) and Zheng et al. (2014). However, the accuracy of all these higher-order 

interpolations is not clear for the discretized kernel form or disordered particle 

distribution. Besides, the computational expenses could also increase considerably 

with the interpolation of more variables. Therefore, it seems worthwhile to fully 

explore the potential of first-order kernel approximations and improve them with 

robust correction schemes, which is the main aim of present work. 

    

In the previous studies many improvements of the first-order derivative 

approximations have been introduced. These can be classified into the following three 

categories: The first improvement was made by the use of an asymmetric form of the 

pressure gradient or velocity divergence (Monaghan, 1994), but this could not get 

sufficient accuracy when the neighboring particles become highly disordered. The 

second one was introduced by using the corrections of kernel gradient (Bonet and 
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Lok, 1999; Oger et al., 2007), which ensured the SPH pressure gradient term to 

preserve both linear and angular momentums. However, the tensile instability 

associated with this formulation introduced tangible errors leading to the clustering of 

particles (Xu et al., 2009). Thirdly, the Moving Least Square (MLS) principle was 

adopted for this purpose (Atluri and Shen, 2002; Ma, 2005). The MLS method 

requires the inversion of matrix and solution of linear algebraic system, so it is very 

time-consuming when a large number of particles are used in the simulation. Lastly 

Ma (2008) and Zheng et al. (2014) introduced a Simplified Finite Difference 

Interpolation (SFDI) approach. This numerical scheme is largely as accurate as the 

MLS but it does not need the matrix inversion and consumes much less CPU time.  

 

In this study we will comprehensively evaluate the above four correction schemes in 

the incompressible SPH solver, based on the pressure gradient formulation. After the 

accuracy analysis on these correction schemes through two patch tests, solitary wave 

propagation over a constant depth and formation of a standing wave, we will apply 

the models to three different violent water wave impact cases, in which we fully 

evaluate the predictions of water surface and impact pressure in comparisons with 

experimental data documented in the literature. Finally, the optimum correction 

scheme will be identified. The contribution of present study is, although relevant key 

formulations were documented by Ma (2005) and Zheng et al. (2014), there have been 

no extensive comparisons on the accuracy of four different first-order derivative 

approximations (except for one original formula), or any practical wave impact 

applications. 

 

The paper is organized as follows: Section 2 presents a review of the ISPH 

methodology. Section 3 presents the free surface and boundary conditions for the 

ISPH computation. Section 4 presents all four correction schemes on the first-order 

derivative (i.e. pressure gradient) calculation. In Section 5, several benchmark 

numerical tests are carried out to investigate the accuracy and efficiency of various 

numerical correction schemes as discussed in Section 4, based on the comparisons 

with analytical solutions. Finally, in the last section the enhanced calculation of water 

surfaces and impact pressures by the recommended ISPH correction scheme is 

demonstrated by three application cases. They include the solitary wave slamming on 

a slope, dam-break flow impact on a vertical wall and dam-break flow overtopping 

over a trapezoidal structure. 
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2. ISPH Methodology 
 

The fundamental methodology of ISPH can be found in numerous publications, but 

this is outlined here for the completeness of the work. The method is based on the 

Lagrangian form of the continuity equation and Navier-Stokes (N-S) momentum 

equations for the compressible flow, written as 

0
D

D
 u

t
                                                                  (1) 

ug
u 21

D

D
 


p

t
                                                    (2) 

where   is the fluid density, u  is the fluid velocity, t  is the time, p  is the fluid 

pressure, g  is the gravitational acceleration, and   is the kinematic viscosity.  

 

In the incompressible SPH approach, the fluid density is considered as a constant, so 

the continuity equation is further written as  

0/ DtD     or   0 u                                                  (3) 

The momentum equation remains the same as Eq. (2).  

 

The computational process of ISPH is composed of two steps: The first step is a 

prediction, where the velocity field is computed without imposing the 

incompressibility. The second step is a correction, in which the incompressibility is 

enforced, with a pressure Poisson equation (PPE) for solving the pressure.  

 

(a) Prediction step 

Assuming that the velocities and positions of particles at time t  have been found, the 

values at tt   are predicted by considering the gravitational and viscous terms in Eq. 

(2) as   

** uuu  t                                                                   (4) 

t )( 2
* ugu                                                             (5) 

tt  ** urr                                                                  (6) 

where tu  and tr  are the velocity and position, respectively, at time t . t  is the time 

step, and *u  and *r  are the intermediate velocity and position of the particles. 

 

(b) Correction step 

The velocity update in the correction step is by 

ttp
t





**u

                                                          
(7) 
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where ttp   is the pressure at tt  . So the velocity and position of particles at tt   

are given by  

*** uuu  tt                                                              (8) 

tttt
ttt 


 

 2

uu
rr                                                       (9) 

Combining Eq. (8) with Eq. (3), the following PPE is obtained as  

t
p tt 


 

*2 u
                                                         (10) 

Similarly, Gui et al. (2014) proposed a projection-based incompressible method by 

imposing density invariance on Eq. (10), which leads to the equation below 

2

*

*
)

1
(

t
p tt 


  




                                                  (11) 

where *  is the particle density at the intermediate time step and is calculated by 





N

j
ijjWm

1

* , where m  is the particle mass and W  is the SPH kernel function. For 

the incompressible fluid, the intermediate density is only slightly different from the 

original density. As indicated by Hu and Adams (2007), Eqs. (10) and (11) are 

essentially equivalent and thus they suggested to solve the two incompressibility 

equations simultaneously, in which the solution of density invariant equation (Eq. 

(11)) was used to adjust the position of particles while the solution of velocity-

divergence-free equation (Eq. (10)) was used to adjust their velocities.  

 

By combining the merits of both, Zhang et al. (2006) proposed the following mixed 

PPE formulation as 

tt
p tt 







 
*

2

*
2 )1(

u
                                        

(12) 

The above equation was also used by Ma and Zhou (2009) in their MLPG_R method, 

where   is an artificial coefficient and in the range of 0 ~ 1. According to Zhang et al. 

(2006), the numerical predictions on violent water wave impact seem to be most 

satisfactory if   is specified a properly small value. On the other hand, in order to 

achieve accurate results without the need of using density term (i.e.   = 0), the 

position of particles should be shifted at each time step in a way similar to the re-

meshing or dynamic re-gridding, such as based on the Fick’s law (Lind et al., 2012). 

In this paper, a fixed value of   = 0.01 is simply used based on our previous 

computational experiences. More detailed study on this coefficient in different flow 

applications can be found in Gui et al. (2014). 
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For solving the pressure Poisson equation (Eq. (10), (11) or (12)), the often employed 

SPH scheme is   

 

 


N

j
ij

ij

ijij

j

j
i p

Wm
p

1
22

2
)(

2




r

rr
                                          (13) 

where jiij ppp 
 
and jiij rrr  , subscript Į denotes the spatial directions, which 

correspond to x and y in 2D. )( ijW r
 
is the partial derivative of kernel function with 

respect to coordinate Į direction,  
ijr

 
is the component of vector ijr , and 

  
)( ijij W rr  is calculated by )( ijij W rr  .   is a small value to prevent singularity 

of the denominator.  

 

Here it should be pointed out that in the current SPH application field, the accuracy of 

the method is influenced by quite a few complex factors, some of which are still under 

intensive debate. Turbulence is one of these issues and its influence also varies 

depending on the situations. In this study the turbulence was not taken into 

consideration by adding the sub-particle-scale (SPS) turbulence model, since our 

primary goal is to evaluate different correction schemes. Besides, in our numerical 

simulations, the effect of SPS turbulence on the macroscopic behavior of 

hydrodynamics, such as the water surface and impact pressure, etc seems to be 

relatively small due to the use of refined particle size. However, when coarser 

particles are used in more practical engineering domain, the SPS turbulence could 

become quite significant and thus the explicit turbulence model should be considered. 

Non-turbulence modeling in wave breaking and impact has also been reported by 

Khayyer et al. (2008) and Jian et al. (2016). 

 

 

3. Free Surface and Boundary Conditions 
 

3.1 Free surface boundary 

 

The condition on the free surface is very simple in the SPH, which states that the 

pressure of water on its free surface is equal to the atmospheric pressure, i.e. 

0p                                                                  (14) 

In the Weakly Compressible SPH (WCSPH) method, this condition can be 

automatically satisfied, as long as the density on the free surface is estimated correctly. 

However, for the ISPH approach the free surface particles have to be identified. The 

pressure value on the free surface particles is then used as Dirichlet boundary 

condition to solve the Pressure Poisson equation. In this paper, the identification of 
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free surface particles is achieved through the local density and additional three 

auxiliary functions (Zheng et al., 2014).  

 
3.2 Solid wall boundary 

 

On the impermeable solid wall, the following condition should be satisfied 

nUnu                      (15) 

and 

 unUngnn 2  p                       (16) 

where n  is the unit vector that is normal to the solid boundary, U and U  are the 

velocity and acceleration of the solid boundary, respectively. It is noted that the 

traditional WCSPH does not need the condition specified by Eq. (16), as it does not 

solve the boundary value problem for the pressure. In ISPH model, however, the 

condition in Eq. (16) should be necessary. It is obvious that one must compute the 

term u2  when using Eq. (16), in which a second-order derivative on the solid 

boundary is required. To avoid this, Ma and Zhou (2009) combined Eqs. (4) and (16) 

and proposed an alternative form of the equation and this is used here  

)( * Uunn 



t

p


                                               (17) 

Numerical implementation of Eq. (15) is quite straightforward, i.e., the normal 

velocity of fluid particles is imposed to be equal to that of the wall.  

 

Besides, the pressure condition on the solid boundary is described by the following set 

of equations. One distinct feature is that the normal pressure gradient is computed at 

the boundaries without the need of using ghost particles. This could significantly 

improve the simulation accuracy near the solid walls and meanwhile, effectively 

reduce the computational cost  

)(
,1

2
,,,

,,,,
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N

ijj xyiyixi

yijxyixijyi

i

pp
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BnBn

x

p








 
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                                 (18) 
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p
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
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where 

   

   








N

ijj
ij

ij

xixj
xi W

rr
n mm

m
,1

2

2
,,

, rr
rr

          (m = 1 or 2)          (20) 

   
    









N

ijj
ij

ij

xixjxixj
xyi W

rrrr
n kkmm

,1
2

,,,,
, rr

rr
   (m = 1 or 2; k = 1 or 2, m ≠ k)    (21) 
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   ij

ij

xixj
xij W

rr
B mm

m
rr

rr





 2

,,
,

                                            

 (22) 

More details on the solid boundary discretization scheme can refer to Ma and Zhou 

(2009). It should be mentioned here that all the numerical results in the paper have 

been obtained with these improved solid boundary treatments. The difference only 

lies in the use of different first-order derivative calculations for the inner particles. 

Thus all of the following correction models are compared on an equal basis.    

 

 

4. Correction Schemes on First-order Derivative  
 
In this section, we will fully review and compare four commonly used SPH 

formulations on the first-order derivative, e.g. the pressure gradient. 

 

Two important SPH representations of first-order derivative term are the pressure 

gradient and velocity divergence, respectively, as 





N

j
iji

i

i

j

j
jii W

pp
mp

1
22

)()( r


                                          (23) 





N

j
ijiijj

i
i Wm

1

)(
1

ruu


                                         (24) 

where jiij uuu  . In this paper, the kernel is based on a cubic spline function which 

has been widely used in SPH hydrodynamics. In previous SPH works, most of the 

improved first-order derivative computations were documented on the pressure 

gradient and this practice is also followed here. 

 

4.1 Anti-symmetric form 

 

This is the earliest formulation used in SPH free surface flows and is still widely 

accepted today due to its simplicity and effectiveness 

                                        







N

j
ij

j

j

i

ii W
ppp

1
,22

0

, )( 



                                                 (25) 

Since originally proposed by Monaghan (1994), Eq. (25) has been successfully used 

in incompressible SPH solvers as well with promising result in coastal hydrodynamics. 

However, it was later found that this formulation can only guarantee the linear 

momentum conservation but the angular momentum is not conserved. As a result, it 

has significant weakness when applied to the breaking waves, in which the collapse 

and coalescence of free surfaces cannot be clearly illustrated. 
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4.2 Kernel correction form 

 

To address the drawback of Eq. (25), Khayyer et al. (2008) proposed a corrected 

kernel formulation of the pressure gradient from  Bonet and Lok (1999) as follows  
 

                                         







N

j
ijij

j

ji WLpp
mp

1
,

00

, )(
1




  
                                 (26) 

                                              

1

1
,,, )(












 

N

j
ijij WrrL 

                                              (27) 

The above two equations improved the SPH simulation accuracy and were 

increasingly adopted in subsequent SPH applications. However, as pointed out by Xu 

et al. (2009), although the accuracy of first-order derivative has been improved by 

using Eqs. (26) and (27), they could generate tensile instability on the neighboring 

particles and this might influence the practical model applications. 

 

4.3 Mixed symmetric kernel gradient correction form 

 

To further improve the accuracy and stability of SPH method, the mixed symmetric 

correction of kernel gradient, which was based on the concept of symmetric SPH by 

Zhang and Batra (2009), has been proposed by Xu and Deng (2016) for the study of 

viscous and viscoelastic flows. The method is referred as mixed and symmetric, since 

it combines the advantages of traditional and symmetric SPHs, which takes the 

following form  

                            






N

j
ijijij

j

ji WrrLpp
mp

1
,,

00

, )()(
1





                                (28) 

where 
1

1
,,,, ))((












 

N

j
ijijij WrrrrL 

  is an inverse matrix. 

Here it should be noted that the above mixed and symmetric approach requires the 

inversion of matrix, which might be singular for highly irregular particle distributions. 

The good point is that the matrix L  in Eq. (28) is symmetric with a reduced storage 

requirement. Also, because there are no kernel derivatives involved, it can allow for a 

wide range of kernel functions and improve the stability of computation to avoid the 

tensile instability issue.  

 

4.4 Simplified Finite Difference Interpolation (SFDI) form 
 
 

During the inverse matrix calculations in Eq. (26) and (28), the ill -conditioned 

matrixes can be generated when the particles are close to the free surface or there is 

only one single particle in the simulation system. To solve this problem, Ma (2008) 

and Zheng et al. (2014) introduced a simplified Finite Difference Interpolation (SFDI) 
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method for the first-order derivative calculation. This method arises from the Taylor 

series expansion by multiplying it with a weight derivative 
 

ij

ij

ij W
rr

rr
2
,,



   to both sides 

of the pressure gradient equation. In summary, the gradient of pressure ip  in a two-

dimensional space can be approximated by the following set of equations as 
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where N is the number of neighbouring particles affecting particle i,   = 1 or 2, k  = 

1 or 2, k , ,jr
 
or kjr ,  

is the component of position vector in x or y direction, 

respectively. More detailed mathematical derivations can be refereed to Ma (2008). 

As Eq. (29) does not involve the inverse matrix calculation, it can avoid the 

occurrence of ill-conditioned matrix. Furthermore, following the accuracy analysis 

carried out by Ma (2008) and Zheng et al. (2014), the error of this method is very 

close to that in the Moving Least Square (MLS) method, but the CPU expenses are 

much lower. Here it should be noted that our simplified SFDI is actually another kind 

of kernel approximation method for the first-order derivative calculation, but not 

related to either conventional FDM or Generalized FDM. 

 

 

5. Numerical Test on Different Correction Schemes  
 

Before investigating the accuracy of different SPH first-order derivative schemes, we 

make the following classifications: 

(1) ISPH - standard incompressible SPH formulation based on Eq. (25); 

(2) CISPH1 - incompressible SPH based on kernel correction Eq. (26); 

(3) CISPH2 - incompressible SPH based on mixed/symmetric kernel gradient 

correction Eq. (28); 

(4) CISPH3 - incompressible SPH based on Simplified Finite Difference Interpolation 

Eq. (29). 
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5.1 Analytical patch test 

 

Although Bonet and Lok (1999) and Ma (2008) initiated benchmark patch tests to 

estimate the first-order derivative of analytical functions on a set of randomly 

distributed particles, more detailed studies will be carried out in this section to 

compare the performance of ISPH, CISPH1, CISPH2 and CISPH3. 

 

For such a purpose, we consider a function of 22),( yxyxf  . The spatial domain 

is chosen as a square with the side length of 1 within 10  x  and 10  y . The 

domain is first divided into a series of small square elements (using x × y  with x  

= y  = s ). Then the particles are redistributed by )]5.0(1[  nRksyx , 

where nR  is a random number between 0 and 1, and k  is a constant. k  = 0 leads to a 

regular particle distribution, which is shown in Fig. 1 (a) with particle number N  = 

900. 0k  corresponds to a disordered particle distribution and Fig. 1 (b) illustrates 

the situation when k  = 0.2 with the same particle number. 
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                                  (a)                                                             (b) 

 

Fig. 1 Particle distributions within a square domain with particle number N  = 900.   

(a) k  = 0 for a uniform distribution; (b) k  = 0.2 for a disordered distribution. 

 

The first-order derivative of 22),( yxyxf  , f , is calculated directly by taking its 

analytical derivative denoted as aif , . This will also be computed numerically by 

using our four SPH first-order formulations as mentioned above, which is denoted by 

cif , . The averaged error between the analytical and numerical approaches are 

quantified by 

                                    



N

i
aici ff

N
Er

1

2
,, )(

1
                                             (33) 
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The test cases with different particle numbers of N  = 900, 1600, 3600, 6400 and 

10000, are considered. The results are presented in Figs. 2 and 3, respectively, for the 

uniform and random particle configurations.  
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                                  (a)                                                                (b) 

 

Fig. 2 Errors for different first-order derivative schemes under uniform particle 

distributions: (a) x - component error; (b) y - component error. 
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Fig. 3 Errors for different first-order derivative schemes under disordered particle 

distributions: (a) x - component error; (b) y - component error. 

 

Fig. 2 shows the average errors calculated by Eq. (33) for different values of N  under 

k  = 0. It shows that when the particles are uniformly distributed, the error computed 

by using the standard ISPH formulation keeps nearly constant. In comparison, the 

errors computed by CISPH1, CISPH2 and CISPH3 unanimously demonstrate a 

deceasing trend with the increasing particle number. Besides, the slopes of error 

curves correlating logarithmic Er and N  approach unity, which suggests that their 

numerical accuracies are close to the first-order. Besides, the comparisons among 

different error lines clearly indicate that CISPH3 based on Eq. (29) can achieve the 
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highest accuracy leading to the minimum errors across a range of particle sizes. Fig. 2 

(a) and (b) showed the two components of first-order derivative error in x and y 

directions, respectively, and both demonstrated the same trend.  

 

On the other hand, when the particles become highly disordered, Fig. 3 shows that the 

averaged error computed by standard ISPH Eq. (25) surprisingly increase with an 

increase in the particle numbers. This implies that higher particle resolution alone is 

not sufficient to achieve a converged solution. In contrast, the computational results of 

CISPH1, CISPH2 and CISPH3 can still maintain the first-order accuracy even under 

irregular particle configurations. Again, CISPH3 which is based on Eq. (29), achieved 

the highest accuracy as compared with other correction schemes.  

 

One common feature found in both Fig. 2 and 3 is that the numerical errors decrease 

with the increasing particle numbers, which shows the convergence of the model 

based on modified Equations (26), (28) and (29). Another feature is that Eqs. (26) and 

(28) have very similar accuracy and convergence behaviors while Eq. (29) clearly 

improved these. 

 

Moreover, we investigated another test function f(x,y) = exp (2x+3y), which is much 

more complex than the original one due to its highly non-linear property. The error 

and convergence behaviors are found to be almost the same as those from the 

previous test function. The relevant figures corresponding to Figs. 2 and 3 are shown 

in Figs. 4 and 5. 
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Fig. 4 Errors for different first-order derivative schemes under uniform particle 

distributions for 2 3( , ) x yf x y e  : (a) x - component error; (b) y - component error. 
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Fig. 5 Errors for different first-order derivative schemes under disordered particle 

distributions for 2 3( , ) x yf x y e  : (a) x - component error; (b) y - component error. 

 

5.2 Solitary wave propagation on a constant depth 

 

As a further test on different numerical schemes for the first-order derivative 

corrections, the solitary wave propagation on a constant water depth is considered. 

The interaction between tsunami waves and coastal structures is the topic related to 

many coastal and ocean engineering problems and has attracted increasing attentions. 

In most cases, the solitary wave is used to represent certain characteristics of the 

tsunami wave (Jian et al., 2011). To verify the numerical results, the computed 

solitary wave profiles by the SPH will be compared with the analytical solution 

derived from the Boussinesq equation, which is represented as 

                                     
)](

4

3
[sec),(

3
2 ctx

d

a
hatx                                           (34) 

where   is the water surface elevation, a  is the wave amplitude, d  is the constant 

water depth and  adgc   is the solitary wave celerity.  

 

We consider a wave amplitude a  = 0.05 m, water depth d  = 0.25 m and total length 

of the tank l  = 10.0 m. Fig. 6 shows the computed free surface profiles with the 

analytical one for the different ISPH methods, at time t  = 5.0 s and for the vertical 

particle number in the water depth yN  = 30. The computational time step is t  = 

0.001 s. The solitary wave was generated by a piston wave maker. It shows that the 

wave surface profile computed by CISPH3 of Eq. (29) achieved the best agreement 

with the analytical solution as compared with other three ISPH methods. Especially 

the original ISPH significantly under-predicted the solitary wave height. It is obvious 

that the accuracy of first-order derivative of pressure gradient (i.e. pressure gradient) 

can greatly influence the computed wave height.  
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Fig. 6 Free surface comparisons between analytical and different ISPH correction 

schemes for solitary wave propagation when t  = 5.0 s and yN  = 30. 

 

To shed quantitative insight into the numerical errors, Fig. 7 gives the convergence 

tests on free surface elevation with different particle numbers and various ISPH 

correction schemes as represented by Eqs. (25), (26), (28) and (29), at time t  = 5 s. 

The error of free surface elevations is defined as 

                                        



Ntf

i
ia

Ntf

i
iciaErr

1
,

1

2
,, )(                                      (35) 

where ia ,  is the analytical wave surface elevation, ic,  is the numerical one, and Ntf  

is the total number of particles that stay on the free surface. According to Fig. 7, all 

four ISPH methods showed convergence behavior with an increase in the particle 

numbers. Among them CISPH3 result has the steepest slope of the error line, which 

indicates it is the most accurate first-order derivative scheme. Besides, the trend of all 

error lines in Fig. 7 is consistent with the wave surface profiles as shown in Fig. 6. 

That is to say, CISPH3 achieved the best performance, followed by CISPH2 and 

CISPH1. In comparison, the standard ISPH pressure gradient formulation as 

represented by Eq. (25) is least accurate. 
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Fig. 7 Convergence test on wave surface errors by using different ISPH methods with 

different vertical particle numbers yN . 

 

To show the wave evolution pattern under different particle resolutions, Fig. 8 gives 

the comparisons of wave surface profile computed by SPH using different yN  values, 

with the analytical solution at several time instants. Here we just present the results of 

CISPH3 computation. It shows that the numerical wave surfaces approach to the 

analytical one with the increasing particle number in vertical direction. Both the wave 

height and wave shape are well maintained during the wave propagation.  
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Fig. 8 Comparisons of wave surface profile computed by CISPH3 using different yN  

values with analytical solution. 
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5.3 Standing wave generation 

 

The modeling system of standing wave is shown in Fig. 9, where the reference level 

ox is located on the still water surface and vertical axis oy is pointing upwards. The 

considered water depth is d  = 1.0 m and tank length l  = 2.0 m.  

                                
Fig. 9 Modeling system of standing wave. 

 

When the wave amplitude is small, liner wave theory is accurate enough to obtain the 

analytical solution of the standing wave model (Zou, 2005). The analytical wave 

surface profile is represented as 

                                                  cos sina kx t                                                    (36) 

where a  is the wave amplitude, k  is the wave number,   is the angular frequency, 

and )tanh(2 kdgk . The velocities of water particles under a standing wave can be 

analytically represented by 

                              cos [cosh ( )sin ]
sinhx

a
u t k y d kx

kd

                                 (37) 

                               cos [sinh ( )cos ]
sinhy

a
v t k y d kx

kd

                                  (38) 

 

In the numerical test we assumed a  = 0.025 m and   = 1.769 s-1. Four different 

particle numbers of 3200, 7200, 12800 and 20000 were used, corresponding to 

vertical particle number of yN  = 40, 60, 80 and 100, respectively. The computational 

time step is fixed at t  = 0.001 s. The initial setup of SPH particle system is shown in 

Fig. 10, in which they are assigned the analytical wave profiles and 2D velocities 

based on the above equations. The computed time histories of wave surface profile at 

the center of tank x  = 1.0 m are shown in Fig. 11. Four different ISPH results and 

analytical solution are given for a comparison, which again shows the superiority of 

CISPH3 computation.  

 

Finally, following Eq. (35) we provided the convergence test on wave surface errors 

for different ISPH methods with different vertical particle numbers yN  as shown in 

x

y

o
 

 

l

d  



18 

 

Fig. 12. It shows CISPH3 is the most accurate one and also the numerical errors 

decrease with the increasing particle number for all four methods. The data are 

extracted at location x = 1.0 m and at simulation time t = 9 s.   

 
 

Fig. 10 Initial particle profile and velocity distributions of standing wave system. 
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Fig. 11 Time histories of wave surface profile computed by different ISPH methods 

and analytical solution. 
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Fig. 12 Convergence test on wave surface errors by using different ISPH methods 

with different vertical particle numbers yN . 

 

 

6. Model Applications in Violent Wave Impact 
 
In this section, we will use the proposed CISPH3 method as shown in Eq. (29) to 

study three practical wave impact problems: the solitary wave impact on a slope and 

two dam-break flow interactions with the structure, by examining the water surface 

profile and flow impact pressure. The numerical results will be validated against the 

documented experimental data. The robustness of CISPH3 correction scheme will be 

demonstrated through comparisons with the others using practical model applications. 

 

6.1 Solitary wave impact on a slope 

 

In order to justify the improvement of impact pressure computation of a solitary wave 

during its interaction with a slope, Fig. 13 illustrates the model of a wave tank. The 

numerical settings are based on the physical experiment carried out at Harbin 

Engineering University, China. The constant water depth and total length of the tank 

are the same as those given in Section 5, i.e. d  = 0.25 m and l  = 10.0 m, except with 

a larger incident wave amplitude a  = 0.15 m. In this setting, there is an added slope 

on the right-hand side of the flume with an inclination angle   = 60°. A pressure 

sensor p1 is located on the slope surface at a distance of 1h  = 0.05 m from the bottom. 

The total vertical height of the slope is h  = 1.0 m. All ISPH computations are carried 

out with a particle spacing dx = 0.008 m and time step t  = 0.001 s, including the 

original ISPH and three corrected CISPHs. 
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Fig. 13 Numerical wave tank for solitary wave impact on a slope. 

 

From our most promising CISPH3 computations, Fig. 14 shows the solitary wave 

profile and pressure contours at different times during its propagation and run-up, and 

Fig. 15 (a) – (d) is the enlarged figure showing the coastal wave process such as its 

running-up, running-down and overturning. In these figures, the value of pressures 

has been normalized by the height of slope, i.e. gh . Fig. 14 shows the solitary wave 

propagating stably in a constant depth with little variation in the wave height and 

wave shape. The pressures under the wave follow hydrostatic law with almost no 

numerical noise. This is a strong indication of the improved ISPH numerical scheme 

in the pressure calculations. From Figure 15, the near-shore solitary wave process can 

be divided into four distinct stages: First the wave approaches the shoreline and starts 

to run up along the slope, and the wave front is elevated as shown in Fig. 15 (a); 

Second when the wave front reaches the highest climbing point of the slope, it starts 

to run down as shown in Fig. 15 (b); Then as shown in Fig. 15 (c) when the wave 

reaches the maximum run-down point, there appears a wave over-overturning feature 

evidenced by a backwash. At this moment, the local pressures under the wave exceed 

the hydrostatic value due to the additional vertical acceleration of the fluid particles. 

Finally, after the wave has fully retreated it restarts to run up against the slope again, 

but with a much smaller intensity. As a result, the maximum run-up point as shown in 

Fig. 15 (d) is significantly lower than the first run-up point in Fig. 15 (b).  

 

p/( gh ): 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3  

 
 

Fig. 14 Solitary wave profile and pressure contours during propagation and run-up. 
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p/( gh ): 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3  

 
Fig. 15 Enlarged wave profile and pressure contours of coastal wave process: (a) run-

up; (b) run-down; (c) over-turning; and (d) re run-up. 

 

To quantitatively validate the wave impact pressures computed by CISPH3, Fig. 16 

gives the comparisons of pressure time histories at sensor point p1 with the 

experimental data. It shows that the maximum wave impact pressure computed by 

CISPH3 agrees quite well with the experimental value at time 2/1)/( hgt  = 18.5. 

However, during the solitary wave running-down and over-turning around 2/1)/( hgt  

= 22.5, there exist severe pressure oscillations in the experimental data. Similar 

oscillations are also found in the CISPH3 numerical results, but the arrival time and 

amplitude of this oscillating pressure are reasonably predicted. It is also found that 

there is particle overshooting in the SPH results at this moment, which could be due to 

the lack of two-phase SPH modeling, in which the influence of air could adequately 

dampen the violent pressure oscillations. In general, we can see that the proposed 

CISPH3 method has well reproduced the entire experimental pressure history. Besides, 

to demonstrate the superiority of CISPH3 over the original and two other ISPH 

correction schemes, Fig. 16 includes the relevant numerical results as well. The 

enlarged figure shows that the original ISPH model predicted a later arrival of peak 

pressure although the pressure amplitude has been well predicted. On the other hand, 

both CISPH1 and CIPSH2 models predicted an early arrival and smaller peak 

pressure values.   
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Fig. 16 Comparisons of time history of wave impact pressures between experimental 

data and different ISPH results. 

 

6.2 Dam-break flow impact on a vertical wall 

 

Dam-break flow and its impact against a vertical wall have been widely used as a 

benchmark test for the assessment of numerical models, and this is also used here for 

our CISPH3 pressure gradient algorithm. A rectangular column of water is contained 

in a tank. The initial column of water is 0.68 m wide and 0.12 m high, and the 

horizontal length of the tank is 1.18 m. The flows are allowed to move toward the 

right vertical wall. The schematic sketch of the dam-break domain is shown in Fig. 

17. The numerical settings follow the physical experiment carried out by Hu and 

Kashiwagi (2004). Two sensor points P1 and P2 are located on the left and right walls, 

respectively, at a distance of 0.01 m from the tank bottom to record time history of the 

fluid pressures. In CISPH3 computations, we take the particle size dx = 0.0012 m 

and time step dt  = 0.0003 s. 

 

 
 

Fig. 17 Schematic view of dam-break flow impact on vertical wall (Hu and 

Kashiwagi, 2004).  
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Fig. 18 gives the snapshots of dam-break flow and pressure distributions at different 

times. The simulations clearly demonstrate the dam collapse process, with subsequent 

flood wave propagating, hitting on the right side of vertical wall, returning back and 

over-turning, generating flow jet and cavity region, etc. Many complex violent flow 

features have been adequately captured by our CISPH3 computations. One important 

phenomenon we have observed is that the left side wall is always located within the 

quasi-hydrostatic pressure region, where the flow situation is relatively quiet. In 

contrast, the right side wall experiences frequent dynamic impact pressures, due to the 

violent flow oscillations and interactions. Fig. 18 (c) gives an enlarged snapshot of 

the overturning wave, which is an indication that CISPH3 can accurately capture the 

complex free surface and provide the stable pressure distribution. 

 

p(kpa): 0.1 0.2 0.4 0.5 0.6 0.8 0.9 1.1  

 

 
 

Fig. 18 Snapshots of dam-break flow with pressure contours at different times. 
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Fig. 19 gives the time history of pressures at two sensors on the left and right walls, 

P1 and P2, respectively. For both P1 and P2, different vertical locations are considered 

at a distance of 0.01 m, 0.02 m, 0.03 m, 0.04 m and 0.05 m from the reference level to 

make a comparison. According to the result shown in Fig. 19 (a), we could see that 

the pressure distributions at all P1 locations follow nearly the hydrostatic pressure. 

This can be clearly seen from a cluster of the parallel pressure lines which are equally 

spaced and decrease with the retreat of free water surfaces. On the other hand, the 

pressure histories at all P2 locations are rather complex as shown in Fig. 19 (b), in that 

wave impact pressures rise drastically and the maximum impact pressure is much 

larger than the hydrostatic pressure. Besides, the impact pressures at different vertical 

levels demonstrate different characteristics. For example, the impact pressure 

measured at y = 0.01 m indicates a clear double-peak pattern, while a single-peak 

feature has been observed at all the other locations. Also, the gaps between adjacent 

pressure lines are no longer uniform and this is more obvious during the first wave 

impact process.   
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Fig. 19 Pressure time history at different sensor points of dam-break flow. 

 

In order to quantify the accuracy of numerical model, Fig. 20 gives the comparison of 

pressure time histories between the experimental data (Hu and Kashiwagi, 2004) and 

CISPH3 results on sensor point P2 at a distance of 0.01 m from the tank bottom. It 

shows that CISPH3 computations can accurately predict the first maximum impact 

pressure around time t = 0.36 s. Furthermore, it can also well capture the rise and 

magnitude of the second pressure peak, which was caused by the over-turning of 

wave during running-down. However, we should see that some kinds of oscillations 

exist in the pressure time history, due to the violent dam-break flow impact. It is also 

found out that the pressures are overestimated by the CISPH3 model after the second 

pressure peak. As recently reported by Gui et al. (2014), the lack of turbulence 

modeling could be one of the main reasons for this. They pointed out that the 
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turbulence modeling coupled with an ISPH solver could significantly improve over 

the non-turbulent modeling and reduce the pressure errors by about 50% for the same 

test case. In spite of these uncertainties, the general pressure evolution profile and 

peak pressure values, which are the two important reference parameters widely used 

in the practical design, have been satisfactorily predicted by the present CISPH3 

model with the improved first-order pressure derivative scheme.   
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Fig. 20 Comparisons of time history of impact pressure between experimental data 

(Hu and Kashiwagi, 2004) and CISPH3 results. 

 

6.3 Dam-break flow overtopping on a trapezoidal structure 

 

The existence of downstream structure can significantly influence the complexity of 

dam-break flood wave during its propagation by changing the maximum flow depth, 

propagation velocity and flow regime, etc. Moreover, it can also cause the formation 

of negative waves that travel against the upstream direction (Pu et al., 2013). Here the 

proposed model is tested by using the experiment data of Ozmen-Cagatay and 

Kocaman (2011) for a dam-break flow over a trapezoidal obstacle. The 2-D sketch of 

the laboratory flume is shown in Fig. 21, which is 9 m long, 0.3 m wide and 0.34 m 

high. A plate (dam) is located 4.65 m from the upstream channel entrance. The initial 

water depth in the reservoir is 0.25 m and the downstream area is dry. A symmetrical 

trapezoidal shaped obstacle, which is 0.075 m high and 1.0 m base wide, is located 

1.5 m downstream from the dam site. This case will be simulated by using the 

proposed CISPH3 model as shown in Eq. (29) and a particle size dx = 0.007 m and 

time step dt  = 0.001 s are used. Similar spatial resolution was also used by Ozmen-

Cagatay and Kocaman (2011) in their RANS and SWE computations. 
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Fig. 21 Sketch of laboratory flume of dam-break flow over a trapezoidal structure. 

 

Fig. 22 shows the snapshot of dam-break wave profiles and pressure distributions at 

different times computed by CISPH3. In general, the simulated flow patterns are very 

similar to those reported by Ozmen-Cagatay and Kocaman (2011) in their numerical 

simulations and laboratory experiments. It shows that after the dam breaks, very 

complex flow patterns developed due to the presence of the obstacle. In the dam area 

the pressures under the water surface are nearly hydrostatic, while the pressures near 

the interaction region between dam-break wave and trapezoidal structure demonstrate 

very strong dynamic behaviors. Fig. 22 also gives zoomed snapshot of free surface 

profiles near the trapezoidal structure. According to the comparison between 

experimental data and numerical results, CISPH3 is found to achieve very good 

agreement with the physical details, including both smooth and breaking free surfaces. 

It is shown that when the dam-break flood wave reaches the obstacle, part of the flow 

is reflected to form a negative bore travelling towards the upstream direction, while 

another part overtops over the structure crest and propagates in the downstream 

direction. Ozmen-Cagatay and Kocaman (2011) observed a spilling type wave 

breaker in the laboratory experiment but we found a plunging one in the present 

numerical simulations, which is consistent with their numerical RANS results.   

 

Fig. 23 (a) – (f) shows the comparisons of computed free surface profiles with 

experimental data measured by Ozmen-Cagatay and Kocaman (2011), from t = 1.9 s 

to t = 6.7 s. It is shown that when the dam-break wave reaches the obstacle, the flow 

forms a hydraulic jump and overtops over the step at t = 1.9 s. Then the wave height 

continues to rise until t = 2.8 s, when the reflective negative wave starts to propagate 

upstream in the form of a bore. Throughout all the times shown in Fig. 23, the ISPH 

computed water surfaces are in very good agreement with the measured data along 

the whole channel region.  
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Fig. 22 Snapshots of dam-break flow profiles and pressure distributions at different 

times. 
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Fig. 23 Comparisons of water surface profiles between experimental data and 

CISPH3 results. 

 

In the numerical simulations of Ozmen-Cagatay and Kocaman (2011), their SWE 

results demonstrated obvious deviations with the experimental data as compared with 

their RANS results. However, they found obvious errors in the reflected wave profile 

in RANS results at the early stage of negative wave generation (at t = 3.3 s and 3.7 s). 

They attributed this to the formation of plunging wave breaker in the computation 

while a spilling wave breaking was found in the laboratory experiment. They 

suggested different turbulence models should be tested to capture the plunging wave 

breaking. On the other hand, our proposed ISPH model can well reproduce the whole 

process of negative wave initiation, formation and propagation with very promising 

results. We may keep in mind that our CISPH3 used a slightly rough spatial resolution 

of dx = 0.007 m, compare with a grid size of 0.005 m used in the RANS model of 

Ozmen-Cagatay and Kocaman (2011). Also, no explicit turbulence model is coupled 

with the ISPH solver. The good performance could be due to that ISPH is a mesh-free 

particle modeling technique and thus it is equipped with unique advantages to deal 

with the large deformation of free surfaces and complex fluid-structure interactions. 
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Finally, to show the robustness of CISPH3 correction scheme over existing first-order 

derivative calculation models (i.e. original ISPH, CISPH1 and CISPH2), Fig. 24 (a) – 

(b) compares different numerical results based on the same particle resolution with the 

experimental data of Ozmen-Cagatay and Kocaman (2011). It shows that at the early 

stage of the dam-break flow, i.e. t  = 1.9 s, almost the same profiles were obtained for 

the original and three corrected ISPH computations. However, as the simulations 

continue to the later stage of flow-structure interactions at t  = 6.7 s, the differences 

among different ISPH methods become more obvious. Again the proposed CISPH3 

correction model seems to perform the most satisfactorily in this case as well.  
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Fig. 24 Comparisons of water surface profiles between experimental data and 

different ISPH results at early and later stages of dam-break flow. 

 

 

7. Conclusions 
 
The paper reviewed four different first-order derivative schemes of pressure, which is 

essential in the mesh-free SPH modelling techniques. The recommended formulation 

of CISPH3 uses a simple FDM representation based on the Taylor series expansion 

and leads to a satisfactory improvement in the wave impact predictions. By using the 

benchmark patch test, solitary wave propagation over a constant depth and standing 

wave generation, it has been found that CISPH3 correction scheme improved the 

ISPH accuracy by achieving either higher convergence rate or less numerical error. As 

practical model application, CISPH3 is further used in three engineering scenarios, 

including solitary wave impact on a slope, dam-break flow impact on a vertical wall 

and overtopping on a structure. The computed free surface profiles and hydrodynamic 

impact pressures have been found to agree well with the experimental data.   
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Essentially the simplified FDM scheme used in CISPH3 was derived from the Taylor 

series by ignoring the terms of second and higher order derivatives and is therefore 

second-order accurate. Numerical tests in Ma (2008) have demonstrated that it is as 

accurate as the MLS or even more under certain circumstances. It could also be 

efficiently used in other mesh-free methods especially when the particles are highly 

irregularly distributed, i.e. under wave breaking or wave impact. In spite that SFDM 

was originally developed for the MLPG_R method (Ma, 2008), we would think it can 

also be adopted for the interpolation of a function and calculation of its gradient in 

other mesh-less methods as well, such as general SPH field. This is partially 

supported by the fact that a sensitivity test with different   coefficient in Eq. (12) (i.e. 

0.05 other than 0.01) on the solitary wave propagation case showed CISPH3 still 

performed much better than the other three calculation models. 

 

However, we should note that a better prediction of wave impact pressures actually 

relies on the accurate modeling of a variety of influence factors such as the air 

entrainment, two-phase flow, turbulence and compressibility of air bubbles.  
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