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Likelihood M Testing for Semiparametric Models with Time Series Data, Econometrics and Statistics

(2017), doi: 10.1016/j.ecosta.2016.12.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service

to our customers we are providing this early version of the manuscript. The manuscript will undergo

copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please

note that during the production process errors may be discovered which could affect the content, and

all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Generalized Empirical Likelihood M Testing for

Semiparametric Models with Time Series Data

Francesco Bravo∗

University of York

Ba M. Chu†

Carleton University

David T. Jacho-Chávez‡
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Abstract

The problem of testing for the correct specification of semiparametric models with time

series data is considered. Two general classes of M test statistics that are based on the

generalized empirical likelihood method are proposed. A test for omitted covariates in a

semiparametric time series regression model is then used to showcase the results. Monte

Carlo experiments show that the tests have reasonable size and power properties in finite

samples. An application to the demand of electricity in Ontario (Canada) illustrates their
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1 Introduction

In this paper we consider testing for the correct specification of smooth semiparametric models

with time series observations. The tests we propose here are important generalizations of the

so-called M tests originally proposed by Newey (1985) (see White 1994 for a review and some

applications to parametric models) and commonly used in empirical work. The basic idea

behind M testing is to use a set of restrictions, expressed in the form of a set of estimating

equations, as indicators of the correct specification of the statistical model under investigation.

For example in linear time series regression models the orthogonality between a set of possibly

irrelevant regressors and the errors gives rise to a natural estimating equation that can be used

to test for the irrelevance of those regressors. White’s (1982) information matrix test based

on a conditional likelihood, which can be used to test for the correct specification of dynamic

parametric models, and Newey’s (1985) conditional moment tests based on a set of unconditional

estimating equations are other examples.

The M tests we consider are cast into Newey and Smith’s (2004) Generalized Empirical

Likelihood (GEL henceforth) framework, in which a preliminary estimator for the infinite di-

mensional parameter and a generic (possibly also semiparametric) estimator for the finite di-

mensional parameter are available. GEL provides a natural framework for estimating and/or

obtaining inferences in statistical models defined by a set of estimating equations. Examples

of GEL include Owen’s (1988) well-known Empirical Likelihood (EL henceforth) and Kitamura

and Stutzer’s (1997) Exponential Tilting.

We assume that the observations are α-mixing (see Doukhan 1994 for a review of the sta-

tistical properties of α-mixing processes) and develop a rather general theory of M testing that

can be applied to various semiparametric possibly nonlinear statistical models (see Gao 2007

for some examples). The results of this paper generalize and extend results of Bertail (2006),

Bravo (2009), Hjort, McKeague, and van Keilegom (2009) and many others on EL inferences

for semiparametric models with independent and identically distributed observations. The new

results are the following: First we use the same kernel based smoothing used by Smith (1997)

and Kitamura and Stutzer (1997) and propose two general types of test statistics, one based

on an appropriately corrected GEL criterion function and one based on a Lagrange Multiplier

(LM henceforth) approach. We show that both the GEL and LM statistics are asymptotically

distribution free under the null hypothesis of correct specification and have power against the

hypotheses of local and global misspecification. We note that smoothing is necessary to obtain

an asymptotic distribution free GEL statistic, but it is also useful to obtain consistent estimators

of the long run variances used in the LM statistic. Second, we explicitly consider the case where

the estimation of the infinite dimensional parameter might affect the asymptotic properties of

the proposed GEL and LM statistics and provide a general formula to characterize it. The

characterization is based on the pathwise derivative as in Newey (1994) and relies on a certain
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linear representation of the infinite dimensional estimator, which is satisfied for example in the

important case of nonparametric regression estimators and can also be used when the infinite

dimensional parameter can depend on estimated random vectors - the so-called nonparametric

generated regressor, see for example Escanciano, Jacho-Chávez, and Lewbel (2014, 2016). Fi-

nally we propose a test for omitted covariates in a partially linear regression model in which we

allow some of the covariates to be endogenous (that is they are correlated with the unobservable

errors) and others not to be directly observable but can be consistently estimated. Examples of

unobservable covariates include individuals’ expectations and risk terms, which are important

in both economics and finance applications.

The rest of the paper is organized as follows: Next section introduces the statistical model and

the test statistics and section 3 derives their asymptotic distributions. Section 4 illustrates the

results of the paper with the partially linear model with unobservable and possibly endogenous

covariates, while Section 5 provides evidence of the small sample performance of the proposed

test statistics, and it also contains an empirical application to the electricity demand in Ontario

(Canada) for the period 1971-1994. All mathematical proofs are gathered in the Appendix.

2 The Model and Test Statistics

Let {zt, t = 1, 2, ...} be a sequence of Z-valued
(
Z ⊂ R

d
)
weakly dependent random vectors

defined on a probability space (Ω,B, P ) and let S (zt, θ, h) denote a statistical model defined on

it, where θ ∈ Θ ⊂ R
k is a finite dimensional parameter and h ∈ H is an infinite dimensional

nuisance parameter where H is a pseudo-metric space. As in Andrews (1994a) h is allowed

to depend on zt and possibly on a finite dimensional parameter α ∈ A ⊂ R
p, so that h0 =:

h0 (zt, α0). If S (zt, θ, h) is correctly specified, then typically there exist measurable functions

m (·) : Z ×B ×H → R
s such that

E [m (zt, β, h)] = 0 iff β = β0 and h = h0, (2.1)

where β ∈ B ⊂ R
p (p ≥ k) might contain θ, and β0, h0 are the true unknown parameters. For

example if S (zt, θ, h) is a correctly specified partially linear time series regression model

yt = x′1tθ0 + g0 (x2t) + εt, t = 1, . . . , T , (2.2)

where g0 is an unknown real valued function and εt is an unobservable error term, then E (εt|It) =
0 a.s., where It is the σ-field generated by a set of variables that contains, but it is larger than

xt = [x′1t, x
′
2t]

′. Thus the null hypothesis

H0 : E (εt|It) = 0 a.s. (2.3)

can be used to test for the correct specification of (2.2). Suppose that a possible source of

misspecification consists of an s × 1 vector of additional (omitted) It - measurable covariates

3
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x3t. Then under (2.3), the covariance between εt and x3t is zero, but possibly not under the

alternative. Noting that (2.2) can be rewritten (see, i.e., Robinson, 1988) as

yt = E (yt|x2t)− (x1t − E (x1t|x2t))′ θ0 + εt, t = 1, . . . , T , (2.4)

the function

m (zt, β, h0) =
[
yt − E (yt|x2t)− (x1t − E (x1t|x2t))′ θ][x3t − E (x3t|x2t)

]
, (2.5)

with β = θ and h0 =
[
E (yt|x2t) , E (x1t|x2t)′ , E (x3t|x2t)′

]′
, provides the basis for an M test

for the omission of relevant in (2.4) (and hence of (2.2)), since under (2.3) E [m (zt, β0, h0)] =

E [εt (x3t − E (x3t|x2t))] = 0.

Let m (zt, β, h) := mt (β, h); to handle the dependent structure of mt (·) we follow the same

approach1 as in Smith (1997) and Kitamura and Stutzer (1997), and consider the following

smoothed version of mt (·)

mts (β, h) =
1

sT

t−1∑

s=1−T

ω

(
s

sT

)
mt−s (β, h) , t = 1, . . . , T , (2.6)

where sT is a bandwidth parameter and ω (·) is a kernel function. Smith (2011) provides a

detailed discussion of different choices of ω (·) and sT in the context of finite dimensional pa-

rameter estimation, using as optimality criterion the asymptotic mean squared error used for

example by Andrews (1991). A close inspection of Andrews’s (1991) arguments reveals that his

results can be applied to automatically select sT in the semiparametric models of this paper.2

To be specific, the optimal bandwidth is

s∗T =

(
qω∗2

q ξ (q)T/

∫
ω∗ (x)2 dx

)1/(2q+1)

, (2.7)

ξ (q) =
2vec (Sq)′Wvec (Sq)

trace[W (I +K) (S ⊗ S)]
,

where ω∗ (x) =
∫
ω (y − x)ω (y) dy/ω2 is the induced kernel, ω∗

q = limx→0 (1− ω∗ (x)) / |x|q,
ωj =

∫
ω (x)j dx, S is the spectral density matrix at the zero frequency of mt (β0, h0), S

q

is the generalized derivative of S defined as
∑∞

s=−∞ |j|sE
[
mt (β0, h0)mt−s (β0, h0)

′
]
, W is a

nonstochastic s2 × s2 weighting matrix, K is the commutation matrix and γ ∈ (0,∞) =

limT→∞ s2q+1
T /T . Thus given a kernel ω (·) in (2.6), the optimal bandwidth s∗T depends on the

induced kernel ω∗ (x) and the unknown quantities S, Sq and W that need to be estimated. The

dependence on the induced kernel ω∗ (·) arises implicitly in GEL estimation of the asymptotic

1For an asymptotically equivalent approach based on blocking techniques see for example Kitamura (1997).
2Details can be obtained from the authors upon request.
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covariance limT→∞ var(
∑T

t=1mt (β0, h0) /T
1/2) and hence in the asymptotic mean squared calcu-

lation used to determine s∗T . For example, if ω (·) is the Bartlett kernel ω (x) = 1−|x| for |x| ≤ 1

and 0 elsewhere, the induced kernel ω∗ (·) is the Parzen kernel ω∗ (x) = 1 − 6 (x/2)2 + 6 |x/2|3

for |x| ≤ 1, 2 (1− |x/2|)3 for 1 < |x| ≤ 2 and 0 elsewhere. To estimate S and Sq one can use

for example Andrews’s (1991) parametric approach or Newey and West’s (1994) nonparametric

approach to obtain Ŝ and Ŝq and Ŵ so that

ξ̂ (q) =
2vec(Ŝq)′Ŵvec(Ŝq)

trace[Ŵ (I +K) (Ŝ ⊗ Ŝ)]
.

It is important to note, however, that although s∗T is consistent, it might not be optimal for the

tests considered here. The selection of optimal bandwidths is still an open problem in testing

and beyond the scope of the present paper.

Let ρ (·) : Q → R denote a twice continuously differentiable function that is concave in its

domain Q - an open interval of the real line that contains 0. The smoothed GEL criterion

function is

Γ (β, h, ψ) =
2

T

T∑

t=1

ρ(ωψ′mts(β, h)), (2.8)

where ω = ω1/ω2 is a normalization constant and ψ is a vector of unknown auxiliary parameters.

(2.8) is the basis for the test statistics that we propose.

Let ĥ denote a preliminary estimator of h0 (which might also depend on a T 1/2 - consistent

estimator α̂ for α0), β̂ denote a T 1/2 - consistent estimator for β0, m̂s (β, h) =
∑T

t=1mts(β, h)/T

and V̂11(β, h) =
∑T

t=1mts(β, h)mts(β, h)
′/T . The M statistic for the null hypothesis (2.1) is

MT =
T

ω2
1

m̂s(β̂, ĥ)
′K̂×(β̂, ĥ, ĝ)−1m̂s(β̂, ĥ),

while the GEL criterion function and the LM statistics for the same hypothesis are given by

DT =
2

sT

(
ω2

ω2
1

)
[Γ(β̂, ĥ, ψ̂)− Γ(β̂, ĥ, 0)], (2.9)

LMT =
T

s2T
ψ̂′V̂11(β̂, ĥ)K̂

×(β̂, ĥ, ĝ)−1V̂11(β̂, ĥ)ψ̂,

where ψ̂ = argmaxψ Γ(β̂, ĥ, ψ) and K̂
×(β̂, ĥ, ĝ) is an estimator of either the matrix K(β0, h0, g0)

or the matrix Ke(β0, h0, g0) defined, respectively, in (3.2) and (3.3) below.

3 Asymptotic Results

We begin this section by introducing some further notation: let ‖ · ‖ denote the standard

Euclidean norm and ‖ · ‖H denote a function norm, such as the sup norm. Let Bδ = {β ∈ B :

5
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‖β − β0‖ ≤ δ}, Hδ = {h ∈ H : ‖h− h0‖H ≤ δ} (possibly uniformly in α ∈ A), and let ∂· denote

the derivative operator with respect to ·, which corresponds to an ordinary partial derivative

with respect to β, and to the pathwise derivative in the direction of h− h0, that is

∂mt(β, h0)

∂h
[h− h0] :=

∂mt(β, (1− τ)h0 + τh)

∂τ
|τ=0

(see Newey, 1994 for some examples).

Assume that:

Assumption 1 {zt, t = 1, 2, . . .} is a sequence of Z-valued
(
Z ⊂ R

d
)
stationary α-mixing ran-

dom vectors with the mixing coefficient α (t) = o
(
t−2(2+γ)

)
for some γ > 0.

Assumption 2 (a) sT → ∞ as T → ∞, and sT = O(T 1/2−η) for 1/6 < η < 1/2;

(b) ω (·) : R → [−ω, ω] for some ω < ∞, ω (0) 6= 0, ω1 6= 0, ω (x) is continuous at 0

and almost everywhere, | (2π)−1 ∫∞

−∞
exp (−ιxu)ω (x) dx| ≥ 0 ∀u ∈ R, where ι =

√
−1, and∫ 0

−∞
supy≤x |ω (y) dx|+

∫∞

0
supy≥x |ω (y) dx| < ∞ (c) |ω∗ (x)| ≤ C1/ |x|−b for b > 1 + 1/q for

some finite C1 > 0 and q ∈ (0,∞) such that ω∗
q ∈ (0,∞) , |ω∗ (x)− ω∗ (y)| ≤ C2 |x− y|

∀x, y ∈ R for some finite C2 > 0.

Assumption 3 (a) E[supβ∈Bδ ,h∈Hδ
‖mt(β, h)‖α1 ] < ∞, E

[
supβ∈Bδ ,h∈Hδ

‖∂βmt(β, h)‖α1
]
< ∞,

E[‖mt(β0, h0)‖α2 ] < ∞, E[supβ∈Bδ ,h∈Hδ
‖∂hmt(β, h)‖α2 ] < ∞ for some α1 > 2, α2 > 4; (b)

E
[
supβ∈Bδ ,h∈Hδ

∥∥∂βm (β, h)m (β, h)′
∥∥] < ∞, E

[
supβ∈Bδ ,h∈Hδ

∥∥∂2ββm (β, h)m (β, h)′
∥∥] < ∞,

E
[
supβ∈Bδ ,h∈Hδ

∥∥∂β∂hm (β, h)m (β, h)′
∥∥] <∞, E

[
supβ∈Bδ ,h∈Hδ

∥∥∂2hhm (β, h)m (β, h)′
∥∥] <∞.

Assumption 4 (a) ‖ ĥ− h0 ‖H = op
(
T−1/4

)
;

(b) v̂T (h) := T−1/2
∑T

t=1 {mt (β0, h)− E [mt (β0, h)]} is stochastically equicontinuous at h0; (c)

the classes of functions M∂β= {∂βm (β, h) , β ∈ Bδ, h ∈ Hǫ}, M(∂β)2={∂βm (β, h) ∂βm (β, h)′ , β ∈
Bδ, h ∈ Hǫ} and M∂2hh= {∂2hhm (β0, h) , h ∈ Hǫ} have, respectively, N[](ε,M∂β, L1 (P )) <∞,

N[](ε,M(∂β)2 , L1 (P )) < ∞ and N[](ε,M∂2hh, L1 (P )) < ∞, where N[] (·) is the bracketing num-

ber (see for example van der Vaart and Wellner, 1996 for a definition); (d) the classes of func-

tions M2
∂β=

{
∂βm (β, h)m (β, h)′ , β ∈ Bδ, h ∈ Hǫ

}
, M2

∂2ββ={∂2ββm (β, h)m (β, h)′ , β ∈ Bδ, h ∈
Hǫ}, M2

∂h=
{
∂hm (β, h)m (β, h)′ , β ∈ Bδ, h ∈ Hǫ

}
, M2

∂β∂h={∂β∂hm (β, h)m (β, h)′ , β ∈ Bδ, h ∈
Hǫ} and M2

∂2hh=
{
∂2hhm (β, h)m (β, h)′ , β ∈ Bδ, h ∈ Hǫ

}
have, respectively, N[](ε,M2

∂β, L1 (P )) <

∞, N[](ε,M2
∂2ββ, L1 (P )) < ∞, N[](ε,M2

∂h, L1 (P )) < ∞, N[](ε,M2
∂β∂h, L1 (P )) < ∞ and

N[](ε,M2
∂2hh, L1 (P )) <∞.

Assumption 5 Either (a) ‖ E[mt(β0, ĥ)] ‖ = op
(
T−1/2

)
; or (b) E[∂m(z2t, θ, τ)/∂τ |τ=h0h̃(zt)] =

0 ∀h̃ ∈ H and z2t ⊂ zt.

6
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Assumption 6 (a) ĥ(w) − h0(w) = T−1
∑T

t=1 ΦT (z2t, w) ⊙ φ (zt) + rT (w), where “⊙” is the

Hadamard product, ΦT (z2t, ·) is some weighting function, supw ‖rT (w)‖ = op
(
T−1/2

)
(possibly

uniformly in α ∈ A);

(b) E [φ (zt) |Ft,z2t ] = 0, where Ft,z2t is the minimum σ-algebra generated by z2t; E
[
φ (zt)φ (zt)

′
]
<

∞; and limT→∞ supwvar(T
−(1/2+δ)

∑T
t=1 ΦT (z2t, w)⊙ φ (zt)) <∞, for some δ ∈ (0, 1/2).

Assumption 7 The estimator β̂ is such that

T 1/2(β̂−β0) = A (β0, g0)
−1 1

T 1/2

n∑

t=1

ft (β0, g0)+op (1)
d→ N(0, A (β0, g0)

−1B (β0, g0)A (β0, g0)
−1′),

(3.1)

where A (β0, g0) is an R
b×b-valued nonsingular matrix, B (β0, g0) is a positive definite matrix and

g0 is an infinite dimensional parameter.

Assumptions 1-3 are mild regularity conditions on the dependent structure of the observa-

tions, the kernel function used to smooth the observations and the existence of certain moments.

Note that 2(c) is satisfied by the Bartlett, Parzen and the quadratic kernel. Assumption 4(a)

assumes uniform consistency (possibly also with respect to α) of the nonparametric estimator

used for h0. For kernel estimators Andrews (1995) provides sufficient conditions including the

case of estimated random variables. Sufficient conditions for Assumption 4(b) are provided for

example in Andrews (1994b) and van der Vaart and Wellner (1996); Assumptions 4(c)-(d) are

satisfied for example when ∂βm (β, h), ∂2hhm (β, h), ∂βm (β, h)m (β, h)′, ∂2ββm (β, h)m (β, h)′,

∂hm (β, h)m (β, h)′, ∂β∂hm (β, h)m (β, h)′ and ∂2hhm (β, h)m (β, h)′ are smooth in β and h, B is

a compact set and h belongs to a class of sufficiently smooth functions, such as a Sobolev class.

Coupled with Assumption 3(a) implies that the classes of functions M∂β and M∂2hh satisfy a

uniform law of large numbers. Assumptions 3(b) and 4(d) are required for the calculation of the

optimal bandwidth s∗T . Assumption 5 implies the asymptotic orthogonality between the finite

dimensional and the infinite dimensional parameter. In such case, it is not necessary to account

for the presence of ĥ in the asymptotic distribution of β̂, which greatly simplifies the calcula-

tion of the asymptotic variance. Condition 5(a) is directly assumed by Andrews (1994a) and is

also considered by Hjort, McKeague, and van Keilegom (2009); condition 5(b) is assumed by

Newey (1994). Note that for h = h (z2t) sufficient conditions for condition 5(a) are Assumptions

5(b) and 4(a). Note also that Assumption 5 is satisfied by many important semiparametric

models, including partially linear, single index and partially additive models. Assumption 6

provides a generic way to account for the potential estimation effect arising from the estimation

of the infinite dimensional parameter. Finally Assumption 7 is satisfied by many semiparamet-

ric estimators including those based on M, GMM (Generalized Method of Moments) and GEL

7
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estimation. Let I denote the identity matrix and

K (β, h, g) = [I,M (β, h)A (β, g)−1]V (β, h, g) [I,M (β, h)A (β, g)−1]′, (3.2)

V (β, h, g) = lim
T→∞

var

(
1

T 1/2

T∑

t=1

[mt(β, h)
′, ft (β, g)

′]′

)
,

Ke (β, h, g) = [I,M (β, h)A (β, g)−1]V e
× (β, h, g) [I,M (β, h)A (β, g)−1]′, (3.3)

V e
d (β, h, g) = lim

T→∞
var

(
1

T 1/2

T∑

t=1

[me
t (β, h)

′, ft (β, g)
′]′

)
and

V e
nd (β, h, g) = lim

T→∞
var

(
1

T 1/2

T∑

t=1

[(
mt(β, h) + h

(1)
T (zt, β, h)

)′
, ft (β, g)

′

]′)
,

where M (β, h) = E [∂βmt (β, h)] ,

me
t (β, h) = mt(β, h) +

1

(T − 1)

t−1∑

s=1

Ψ(zs, zt, β, h) ,

Ψ (zs, zt, β, h) = ∂hmt (β0, h0)
′ ΦT (z2s, z2t)⊙ φ (zs) + ∂hmt (β0, h0)

′ ΦT (z2t, z2s)⊙ φ (zt) , (3.4)

h
(1)
T (·, β0, h0) = E [Ψ (·, zt, β0, h0)] =

∫
Ψ(·, u, β0, h0(u)) fzt(u)du.

Note that V (β0, h0, g0) corresponds to the asymptotic orthogonality case implied by Assumption

5, while the two alternative formulations V e
d (β0, h0, g0) and V

e
nd (β0, h0, g0) correspond to the esti-

mation effect of Assumption 6, which can be expressed as either a degenerate or a nondegenerate

U statistic (see equation (A-11) in the Appendix for more details). Let

ζ̂× (β, h, g) =
trace[K̂× (β, h, g)−1 B̂m (β, h)]

trace[V̂11 (β, h)
−1 B̂m (β, h)]

,

where B̂m (β, h) = [
∑T

t=1mts(β, h)/ω1][
∑T

t=1mts(β, h)/ω1]
′.

Theorem 3.1 Assume that K (β0, h0, g0) and K
e
× (β0, h0, g0) are positive definite, and ‖ K̂(β̂, ĥ, ĝ)−

K (β0, h0, g0) ‖ = op (1), ‖ K̂e
∗(β0, ĥ, ĝ)−Ke (β0, h0, g0) ‖ = op (1). Then under Assumptions 1-7

and the null hypothesis that (2.1) holds

ζ̂×(β̂, ĥ, ĝ)DT , LMT
d→ χ2

s.

We now consider the local power and consistency of the proposed test statistics. To obtain

the local power we assume that

E [mt (β0, h0)] =
δ

n1/2
, (3.5)

for some fixed vector δ ∈ R
s.

8
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Theorem 3.2 Under the Assumptions of Theorem 3.1 and the local hypothesis (3.5)

ζ̂(β̂, ĥ, ĝ)DT , LMT
d→ χ2

s (κ
·)

with the noncentrality parameter κ· = δ′K× (β0, h0, g0)
−1 δ and K× (·) is either (3.2) or (3.3).

To establish the consistency of the proposed test statistics we first note that under alternative

distributions the probability limits of the estimators β̂, ĥ, ĝ are typically different from β0, h0, g0

defined under the null hypothesis of correct specification. Thus we assume that ‖ β̂−β ‖ = op (1),

‖ ĥ− h ‖H = op (1) and ‖ĝ − g‖G = op (1) where β, h and g are not necessarily β0, h0, g0 under

a given alternative distribution.

Theorem 3.3 Under the Assumptions of Theorem 3.1 and the Assumption that
∥∥E
[
mt

(
β, h

)]∥∥ >
0,

ζ̂(β̂, ĥ, ĝ)DT , LMT
p→ ∞.

4 Example: An M Test for Omitted Variables in a Par-

tially Linear Model with a Generated Regressor

We consider a test for the omission of a set of relevant covariates in the same partially linear

model

yt = x′1tθ0 + g0 (x2t) + εt t = 1, . . . , T , (4.1)

where θ0 is an R
k-valued vector of unknown parameters and g0 (·) in an unknown real valued

function. We assume that E[εt|x1t] 6= 0 and that x2t =: x2t (α0) is generated as a residual from

the following linear regression model

qt = v′tα0 + x2t,

where α0 is a vector of unknown parameters and vt is a vector of auxiliary covariates such

that E (x2t|vt) = 0. Thus (4.1) is a partially linear regression model where the x1t covariates are

endogenous and x2t is not directly observable but it can be consistently estimated as a regression

residual. Suppose that there exists a vector it of so-called instruments such that E (εt|x2t, it) = 0,

assumed for simplicity to have the same dimension as that of x1t. Let x̂2t = qt − v′tα̂, where α̂

is the least squares estimator for α0, and let

θ̂ =

(
T∑

t=1

itx̃
′
1t

)−1 T∑

t=1

itỹt,

9
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denote the semiparametric instrumental variable (SIV) estimator, where

ỹt = yt − Ê (yt|x̂2t) , x̃1t = x1t − Ê (x1t|x̂2t) ,

Ê (·t|x2t) =
∑T

s 6=t=1(·t)KbT ((x2s − x2t) /bT )∑T
s 6=t=1KbT ((x2s − x2t) /bT )

,

and KbT (·) := K (·) /bT is a kernel function with bandwidth bT =: b (T ) . Under the regularity

conditions given in Proposition 4.1 below, some calculations show that the SIV estimator admits

the following asymptotic representation

T 1/2(θ̂ − θ0) = E [(x1t − E (x1t|x2t)) i′t]
−1 1

T 1/2

T∑

t=1

(
itεt +

[
it

f(x2t)
∂α[f(x2t)g0(x2t, θ0)]−

wt[g0(x2t, θ0)]

f(x2t)
∂αf(x2t))

)
r(vt)x2t

)
,

where f(x2t) is the marginal density of x2t, r(vt) = E (vtv
′
t)

−1 vt and g0(x, θ) = E (yt − x′1tθ|x2t = x).

As in Section 2, an M test for the omission of an R
s-valued vector of relevant covariates x3t

can be constructed using the sample version of the same function given in (2.5), that is

mt(θ̂, ĥ) = ε̂t[x3t − Ê (x3t|x̂2t)], (4.2)

where ε̂t = ỹt− x̃′1tθ̂ denote the SIV residual. In this case the three statistics MT , DT and LMT

are computed as

MT =
T

ω2
1

m̂s(β̂, ĥ)
′K̂e(β̂, ĥ, ĝ)−1m̂s(β̂, ĥ), (4.3)

ζ̂(β̂, ĥ, ĝ)DT with ζ̂(θ̂, ĥ, ĝ) =
trace[K̂e(θ̂, ĥ, ĝ)−1B̂m(θ̂, ĥ)]

trace[V̂11(θ̂, ĥ)−1B̂m(θ̂, ĥ)]
,

LMT =
T

s2T
ψ̂′V̂11(β̂, ĥ)K̂

e(β̂, ĥ, ĝ)−1V̂11(β̂, ĥ)ψ̂ and

K̂e(θ̂, ĥ, ĝ) = [I, M̂(θ̂, ĥ)]V̂ e(θ̂, ĥ, ĝ)[I, M̂(θ̂, ĥ)]′,

10
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where M̂(θ̂, ĥ) and V̂ e(θ̂, ĥ, ĝ) are consistent estimators of

M (θ0, h0) = E
[
(x3t − E (x3t|x2t)) (x1t − E (x1t|x2t))′

]
, A (θ0, g0) = E [(x1t − E (x1t|x2t)) i′t] ,

V11 (θ0, h0) = lim
T→∞

var

(
1

T 1/2

T∑

t=1

mt (θ0, h0)

)
, V e

22 (θ0, g0) = A (θ0, g0)
−1 Ωe (θ0, g0) (A (θ0, h0)

−1)′,

Ωe (θ0, g0) = lim
T→∞

var

(
1

T 1/2

T∑

t=1

(
itεt +

[
it

f(x2t)
∂α[f(x2t)g0(x2t, θ0)]−

it[g0(x2t, θ0)]

f(x2t)
∂αf(x2t))

)
r(vt)x2t

))
,

V e
12 (θ0, h0, g0) = lim

T→∞

1

T
E

[
T∑

t=1

mt (θ0, h0) , [A (θ0, g0)
−1

(
T∑

t=1

itεt +

[
it

f(x2t)
∂α[f(x2t)g0(x2t, θ0)]−

it[g0(x2t, θ0)]

f(x2t)
∂αf(x2t))

)
r(vt)x2t

)′]
and

V e (θ0, h0, g0) =

[
V11 (θ0, h0) V e

12 (θ0, h0, g0)

V e
12 (θ0, h0, g0)

′ V e
22 (θ0, h0, g0)

]
.

The following proposition provides sufficient conditions for the results of Theorems 3.1-3.3 to

hold for the M test based on (4.2); note that because the unknown parameters enters linearly

in the model, some of the conditions are weaker than those assumed in Assumptions 1-7.

Proposition 4.1 Assume that: (a)
{
zt = [yt, x

′
1t, x2t, x

′
3t, i

′
t]
′
}T
t=1

is a sequence of α-mixing ran-

dom vectors with α (t) = o
(
t−2(2+γ)

)
; (b) Assumption 2 holds; (c) the joint density f (zt) of zt

and the marginal density f (x2t) of x2t are twice continuously differentiable with bounded deriva-

tives, the support X2 of x2t is a compact set, infx2t∈X2
f (x2t) > 0 and f (x2t) is continuously

differentiable with respect to α with bounded derivative uniformly in A; (d) h0 (x2t) is twice

continuously differentiable, supx2t∈X ∗ ‖ h(j)0 (x2t) ‖ <∞ (j = 0, 1, 2) uniformly in A where h
(j)
0 (·)

is the jth derivative of h0 (·) and h0 (x2t) is continuously differentiable with respect to α with

bounded derivative uniformly in A; (e) E ‖ it(yt −E (yt|x2t)− (x1t − E (x1t|x2t))′ θ0) ‖4+γ <∞;

(f) rank
(
E
[
it (x1t − E (x1t|x2t))′

])
= k, rank(M (θ0, h0)) = s, the matrix V e (θ0, h0, g0) in (4.3)

is positive definite; (g) the function K (·) is a nonnegative second-order kernel with second or-

der continuous bounded derivatives, and bT satisfies T 1/2b2T → ∞, T 1/2b4T → 0. Moreover∣∣K (·+ u)−K (u)−K(1) (·) u
∣∣ ≤ K (·) u2 where K(1) (·) is the first derivative of the kernel func-

tion and K (·) is a bounded function. Then the conclusions of Theorems 3.1-3.3 hold for the test

statistics defined in (4.3), where h(x, θ) := E[yt − x′1tθ|x2t = x] and x2t = qt − v′tα0.

In the next section we operationalize these test statistics in various Monte Carlo experiments

and an empirical application using bandwidths calculated by Silverman’s (1986) rule of thumb.

Although these are only optimal for estimation and not for testing (see, e.g., Gao and Gijbels,

2008), as shown below they seem to work quite well in practice.
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5 Numerical Results

5.1 Monte Carlo Results

In this section we present Monte Carlo results for the size and power of the three statistics

MT , ζ̂(β̂, ĥ, ĝ)DT and LMT used to test for omitted variables in the partially linear model with

endogenous regressor and a generated regressor described in the previous section. The following

design is a modified version of that used in Bravo, Chu, and Jacho-Chávez (forthcoming):

yt = x11tθ10 + x12tθ20 +m0(x2t) + εt,

x11t = π10v1t + π20v2t + ut,

where v1t = ρ1v1t−1 + ǫ1t, v2t = ρ2v2t−1 + ǫ2t, εt = ρεεt−1 + ǫεt, ut = ρuut−1 + ǫut and

[
ǫ1t

ǫ2t

]
∼ N

([
0

0

]
,

[
1 0

0 1

])
,

[
ǫεt

ǫut

]
∼ N

([
0

0

]
,

[
1 ρεu

ρεu 1

])
.

Let ζlt ∼ N (0, 1) (l = 2, 3, 4, 5) independent of v1t and v2t, and set x12t = v2t + ζ2t, x2t =

v1t + v2t + ω3t such that qt = ζ4tα0 + x2t. For ρ1 = ρ2 = 0.4, ρε = ρu = 0.95, and m0 (v) = Φ (v)

(Φ (·) is the CDF of a standard normal), we generate 1000 samples, {yt, x11t, x12t, x2t, v1t, v2t}Tt=1,

with T ∈ {100, 400} , three different scenarios ρεu ∈ {0.1, 0.5, 0.9} representing an increasing

degree of endogeneity and θ0 = [1, 1]′, π0 = [1,−1]′. Finally x3t = 0.5x3t−1+0.2x3t−2+ ζ5t is the

the additional covariate suspected of being erroneously omitted.

The SIV estimator θ̂ is computed using as instruments it := [x12t, v1t]
′ whereas ĥ = [Ê (yt|x̂2t) ,

Ê (x12t|x̂2t) , Ê (x3t|x̂2t)]′ is computed using the Nadaraya-Watson estimator with a Gaussian

kernel and bandwidth bT chosen by the Silverman’s rule-of-thumb and α̂ is the least squared

estimator of α0 obtained from regressing qt on ζ4t.

We calculate the ζ̂(β̂, ĥ, ĝ)DT := D×
T and LM×

T statistics using as ω (·) the Bartlett ker-

nel with bandwidth parameter s∗T selected using (2.7) with ξ (q) chosen by Andrews’s (1991)

parametric specification and for three specifications of the GEL objective function ρ (·) given in

(2.8), that is ρ(v) = log (1− v) corresponding to Empirical Likelihood (EL), ρ(v) = − exp (v)

corresponding to the Exponential Tilting (ET) and ρ (v) = − (1 + v)2 /2 corresponding to Eu-

clidean Likelihood (EU). To assess the sensitivity of the statistics to the chosen bandwidth bT ,

we also consider two other bandwidths: b1T = 0.5bT and b2T = 1.5bT . Tables 1 and 2 report the

finite sample sizes of the nine statistics for all the different scenarios, bandwidth bT choices and

12
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the two chosen sample sizes using 5000 replications.

Table 1. Finite sample sizes for T = 100

b1T bT b2T

ρεu = 0.1 0.010 0.050 0.010 0.050 0.010 0.050

MT

LMEL
T

LMET
T

LMEU
T

DEL
T

DET
T

DEU
T

0.018 0.061

0.019 0.060

0.020 0.057

0.019 0.056

0.020 0.056

0.018 0.055

0.021 0.054

0.017 0.059

0.020 0.058

0.019 0.057

0.018 0.056

0.017 0.057

0.018 0.056

0.019 0.055

0.018 0.060

0.019 0.057

0.018 0.056

0.020 0.055

0.018 0.056

0.019 0.057

0.019 0.056

ρεu = 0.5 0.010 0.050 0.010 0.050 0.010 0.050

MT

LMEL
T

LMET
T

LMEU
T

DEL
T

DET
T

DEU
T

0.021 0.064

0.020 0.061

0.021 0.058

0.020 0.058

0.018 0.056

0.017 0.057

0.020 0.055

0.023 0.063

0.019 0.060

0.022 0.058

0.021 0.059

0.017 0.055

0.018 0.056

0.019 0.057

0.025 0.065

0.018 0.059

0.020 0.057

0.022 0.058

0.016 0.054

0.016 0.055

0.018 0.056

ρεu = 0.9 0.010 0.050 0.010 0.050 0.010 0.050

MT

LMEL
T

LMET
T

LMEU
T

DEL
T

DET
T

DEU
T

0.026 0.073

0.021 0.061

0.021 0.059

0.022 0.060

0.018 0.057

0.018 0.058

0.022 0.058

0.027 0.076

0.023 0.059

0.023 0.061

0.021 0.062

0.020 0.058

0.019 0.059

0.021 0.059

0.029 0.078

0.022 0.061

0.024 0.063

0.022 0.062

0.022 0.059

0.021 0.057

0.020 0.061

Note: Results are based on 1000 Monte Carlo replications. EL, ET, EU stands for Empirical

Likelihood, Exponential Tilting and Euclidean Likelihood respectively. Bandwidths bT corre-

spond to Silverman’s rule of thumb, b1T = 0.5bT and b2T = 1.5bT .
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Table 2. Finite sample sizes for T = 400

b1T bT b2T

ρεu = 0.1 0.010 0.050 0.010 0.050 0.010 0.050

MT

LMEL
T

LMET
T

LMEU
T

DEL
T

DET
T

DEU
T

0.017 0.057

0.018 0.060

0.019 0.055

0.019 0.054

0.019 0.055

0.017 0.054

0.020 0.054

0.016 0.058

0.018 0.056

0.018 0.055

0.017 0.055

0.016 0.057

0.017 0.055

0.018 0.054

0.016 0.057

0.019 0.057

0.016 0.056

0.019 0.055

0.017 0.054

0.017 0.056

0.018 0.055

ρεu = 0.5 0.010 0.050 0.010 0.050 0.010 0.050

MT

LMEL
T

LMET
T

LMEU
T

DEL
T

DET
T

DEU
T

0.020 0.062

0.019 0.060

0.020 0.057

0.020 0.058

0.017 0.054

0.017 0.056

0.019 0.056

0.022 0.063

0.019 0.060

0.022 0.058

0.019 0.059

0.015 0.054

0.018 0.056

0.017 0.057

0.024 0.062

0.016 0.059

0.020 0.057

0.020 0.057

0.016 0.054

0.014 0.055

0.017 0.056

ρεu = 0.9 0.010 0.050 0.010 0.050 0.010 0.050

MT

LMEL
T

LMET
T

LMEU
T

DEL
T

DET
T

DEU
T

0.022 0.072

0.020 0.056

0.019 0.059

0.020 0.056

0.017 0.057

0.015 0.056

0.018 0.056

0.024 0.075

0.021 0.057

0.020 0.058

0.018 0.057

0.016 0.055

0.018 0.057

0.020 0.058

0.028 0.075

0.022 0.061

0.021 0.063

0.020 0.060

0.018 0.058

0.019 0.056

0.021 0.056

Note: Results are based on 1000 Monte Carlo replications. EL, ET, EU stands for Empirical

Likelihood, Exponential Tilting and Euclidean Likelihood respectively. Bandwidths bT corre-

spond to Silverman’s rule of thumb, b1T = 0.5bT and b2T = 1.5bT .

The results of Tables 1 and 2 can be summarized as follows: first, all of the test statistics

are characterized by good finite sample sizes close to the nominal level. As expected the size

distortion is more evident when the degree of endogeneity is higher (that is for ρεu = 0.9) and

decreases when the sample sizes increases. Between the nine statistics, MT (that is the one

based on the standard M formulation) is the one with the largest size distortion, whereas the

GEL objective function statistics have typically the smallest one. Between EL, ET and EU

14
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Figure 1: Finite sample size adjusted power for MT , D
EL
T , DET

T and DEU
T statistics. Left panel

corresponds to ρεu = 0.1, right panel corresponds to ρεu = 0.9

likelihood, the former two seems to have a slight edge over the latter one in terms of (smaller)

size distortion. Finally, the results seem to be robust to the choice of bandwidth bT .

Figure 1 reports the finite sample (size adjusted) power of the MT and the three GEL ob-

jective functions statistics DEL
T , DET

T and DEU
T for a sequence of alternative hypotheses indexed

by δ = [0.05, 0.1, 0.2, 0.25, 0.30, 0.35, 0.40, 0.45] for both cases of low and high endogeneity with

bandwidth set at Silverman’s rule-of-thumb and sample size T = 100.

Figure 1 shows that all test have good finite sample power against the alternative hypothesis

with that of DEL
T and DET

T having an edge on that of DEU
T and MT .

Taken together the results of the simulation study suggest that all of the proposed tests are

characterized by good finite sample properties that are robust to the choice of bandwidth bT .

Among the statistics considered, those based on either the empirical likelihood or exponential

tilting objective functions seem to have an advantage in terms of smaller finite sample size
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distortion and larger finite sample power.

5.2 Empirical Application

In this section we proceed to implement the proposed test statistics to test whether lagged

dependent variables, what is often called in the economic literature state dependency, have

been omitted in the partially linear specification of the electricity demand function in Yatchew

(2003). The data is publicly available and it comes from the Ontario Hydro Corporation. It has

been previously used by Chu, Huynh, and Jacho-Chávez (2013), and it consists of 288 quarterly

observations from the Canadian province of Ontario between 1971 and 1994. Yatchew’s (2003,

eq. 4.6.9, pp. 81) model is

elect − gdpt = θ0relpricet + g0(tempt) + εt, for t = 2, . . . , 288, (5.1)

where elect is the log of electricity sales in millions of Canadian dollars, gdpt is the log of Ontario

gross domestic product in millions of Canadian dollars, relpricet is defined as the log of ratio

of price electricity to the price of natural gas, and tempt is the difference between the number

of days the temperature is above 68◦F and the number of days is below it. We proceed to

calculate MT , DT and LMT test statistics to check for the presence of state dependency or

seasonal state dependency in (5.1), using, respectively, elect−1−gdpt−1 and elect−4−gdpt−4 as

x3t in (2.5). As in Section 5.1, the test statistics are calculated using a Gaussian kernel function

with Silverman’s rule-of-thumb bandwidths for all the conditional expectations and a Barlett

kernel for ω (·) with bandwidth s∗T = 7. The estimator in Robinson (1988) is used to calculate

θ̂ = −0.0722, which is statistically significant at all levels. EL is used to calculate the sample

values of the test statistics MT ,DT and LMT , which are, respectively, 0.0007, 0.0019 and 0.0121

(p = 1) and 0.0112, 0.0243 and 0.118 (p = 4). These test statistics are statistically insignificant

(at 10%) when comparing them to the 2.71 critical value from a χ2
1 distribution under the null

hypothesis. As a robustness check we also calculated all the test statistics using half and one

and a half times the original rule-of-thumb bandwidths yielding the same results. For example,

when using half the original rule-of-thumb bandwidths, the test statistics MT ,DT and LMT are

respectively, 0.0000, 0.0002 and 0.0015 (p = 1) and 0.0061, 0.0152 and 0.0841 (p = 4). Similarly,

when using one and a half the original rule-of-thumb bandwidths, the calculated test statistics

are 0.0018, 0.0048 and 0.0276 (p = 1) and 0.0157, 0.0334 and 0.1576 (p = 4). This confirms that

there is neither state nor seasonal state dependency in the demand for electricity as estimated

in Yatchew (2003), and this finding seems to be robust to bandwidth choice.
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6 Conclusions

In this paper we have considered the problem of M testing in the context of smooth semipara-

metric models with time series observations. The statistical models we have considered are fairly

general and can allow for endogeneity and generated regressors. We have derived the asymptotic

properties of a number of test statistics based on a smoothed version of GEL method and illus-

trated them by considering a test for omitted variables in a semiparametric time series regression

model with endogenous covariates and a nonparametric generated regressor. The results of a

Monte Carlo study suggest that the proposed test statistics have competitive finite sample prop-

erties, and its application to test for state dependency in an estimated semiparametric electricity

demand model shows its practical usefulness.
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Appendix A Proofs

Proof of Theorem 3.1: Without loss of generality we normalize the first two derivatives

ρj (0) = −1 (j = 1, 2) of ρ (·), where ρj (0) := ∂jρ (q) /∂qj|q=0. Let Ψ
r
T = {ψ : ‖ψ‖ ≤ RT} where

RT = Op (sT/T )
ξ for ξ < 1/2; we first show that

∥∥∥m̂s(β̂, ĥ)− ω1E [mt (β0, h0)]
∥∥∥ = op (1) , (A-1)

max
1≤t≤T

sup
ψ∈Ψr

T

∣∣∣ψ′mts(β̂, ĥ)
∣∣∣ = op (1) and (A-2)

∥∥∥∥∥∥

(
1

sT

T−1∑

s=1−T

ω

(
t

sT

)2
)−1

sT
T

T∑

t=1

mts(β̂, ĥ)mts(β̂, ĥ)
′ − V11 (β0, h0)

∥∥∥∥∥∥
= op (1) . (A-3)

By the triangle inequality

∥∥∥m̂s(β̂, ĥ)− ω1E [mt (β0, h0)]
∥∥∥ ≤

∣∣∣∣∣
T−1∑

j=1−T

1

sT
ω

(
s

sT

)∣∣∣∣∣ sup
β∈Bδ ,h∈Hδ

‖m̂ (β, h)− E [mt (β, h)]‖+

(A-4)
∣∣∣∣∣
T−1∑

s=1−T

1

sT
ω

(
s

sT

)
− ω1

∣∣∣∣∣E sup
β∈Bδ ,h∈Hδ

‖mt (β, h)‖+

+ ω1

∥∥∥E[mt(β̂, ĥ)]− E [mt (β, h0)]
∥∥∥ = op (1) .

The first term on the right hand side of (A-4) converges in probability to zero by the uniform

law of large number (implied by Assumptions 3(a) and 4(b)), see e.g. Newey, 1991), while the

second term is o (1) since
∣∣∣
∑T−1

s=1−T ω (j/sT ) /sT − ω1

∣∣∣ = o (1) ; finally the third term on the right

hand side of (A-4) is o (1) by dominated convergence hence

supβ∈Bδ ,h∈Hδ
‖m̂ (β, h)− E [mt (β, h)]‖ = op (1). To show (A-2), note that by triangle inequality

and the (functional) mean value theorem one has

max
1≤t≤T

∣∣∣ψ′mts(β̂, ĥ)
∣∣∣ ≤RT

∣∣∣∣∣
T−1∑

s=1−T

1

sT
ω

(
s

sT

)∣∣∣∣∣ max
1≤t≤T

[‖mt (β0, h0)‖+

sup
β∈Bδ ,h∈Hδ

‖∂hmt (β, h)‖
∥∥∥ĥ− h0

∥∥∥
H

+ sup
β∈Bδ ,h∈Hδ

‖∂βmt (β, h)‖
∥∥∥β̂ − β0

∥∥∥
]
= op (1) ,

since the Borel-Cantelli lemma and the moment conditions in Assumptions 3 imply that

max
1≤t≤T

‖mt (β0, h0)‖ , max
1≤t≤T

sup
β∈Bδ ,h∈Hδ

‖∂hmt (β, h)‖ ,

sup
β∈Bδ ,h∈Hδ

‖∂βmt (β, h)‖
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are all op
(
T 1/2

)
. Finally from the triangle inequality

∥∥∥∥∥
sT
T

T∑

t=1

mts(β̂, ĥ)mts(β̂, ĥ)
′ − ω2V11 (β0, h0)

∥∥∥∥∥ ≤
∥∥∥∥∥
sT
T

T∑

t=1

mts (β0, h0)mts (β0, h0)
′ − ω2V11 (β0, h0)

∥∥∥∥∥+

2

∥∥∥∥∥
sT
T

T∑

t=1

mts (β0, h0) [
T∑

t=1

mts(β̂, ĥ)−mts (β0, h0)]
′

∥∥∥∥∥+
∣∣∣∣∣
sT
T

T∑

t=1

∥∥∥mts(θ̂, ĥ)−mts (θ0, h0)
∥∥∥
2

∣∣∣∣∣ ;

a similar calculation to that used by Smith (2011) shows that

∥∥∥∥∥
sT
T

T∑

t=1

mts (β0, h0)mts (β0, h0)
′ − ω2V11 (β0, h0)

∥∥∥∥∥ = op (1) ,

while
∣∣∣∣∣
sT
T

T∑

t=1

∥∥∥mts(θ̂, ĥ)−mts (θ0, h0)
∥∥∥
2

∣∣∣∣∣ ≤ sup ‖ ĥ− h0 ‖2H
1

T

T∑

t=1

sup
θ∈Θδ ,h∈Hδ

‖∂hmt (θ, h)‖2 = op (1)

(A-5)

by the uniform convergence of kernel estimators, see for example Masry (1996) and the uniform

law of large numbers (implied by Assumptions 3(a) and 4(b)); finally by the Cauchy-Schwarz

inequality and (A-5)

∥∥∥∥∥
sT
T

T∑

t=1

mts (β0, h0) [
T∑

t=1

mts(β̂, ĥ)−mts (β0, h0)]
′

∥∥∥∥∥ ≤

(
sT
T

T∑

t=1

‖mts (β0, h0)‖2
)1/2(

sT
T

T∑

t=1

∥∥∥mts(θ̂, ĥ)−mts (θ0, h0)
∥∥∥
2
)1/2

= op (1) .

The continuous mapping theorem implies that for j = 1, 2

sup
ψ∈Ψr

T

max
1≤t≤T

∣∣∣ρj(ψ′mts(β̂, ĥ)))− ρj (0)
∣∣∣ = op (1) ,

thus by a second-order Taylor expansion about ψ = 0, we have that

DT =
T

ω2
1

m̂s(β̂, ĥ)
′V̂11(β̂, ĥ)

−1m̂s(β̂, ĥ) + op (1) , (A-6)

where we have used the fact that

T 1/2 ψ̂

sT
= V11 (β0, h0)

−1 T
1/2

ω1

m̂s(β̂, ĥ) + op (1)

(see e.g. Newey and Smith, 2004). A mean value expansion, Assumption 7, similar arguments

to those used in (A-4) and the uniform law of large numbers (implied by Assumptions 3 and
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4(c)) show that

T 1/2

ω1

m̂s(β̂, ĥ) =
T 1/2

ω1

m̂s(β0, ĥ) +
∂m̂s(β, ĥ)

ω1∂βT
A (β0, g0)

−1 1

T 1/2

n∑

t=1

ft (β0, g0) + op (1)

= T 1/2m̂(β0, ĥ) +M (β0, h0)A (β0, g0)
−1 1

T 1/2

n∑

t=1

ft (β0, g0) + op (1) .

Simple algebra shows that

T 1/2m̂(β0, ĥ) = [v̂T (ĥ)− v̂T (h0)] + T 1/2m̂(β0, h0) + T 1/2E[mt(β0, ĥ)],

where v̂T (h) = T−1/2
∑T

t=1 {mt (β0, h)− E [mt (β0, h)]}, so that by Assumptions 4(b), 5(a) and

a standard central limit theorem for α-mixing random vectors (Doukhan, 1994), we have

T 1/2m̂(β0, ĥ)
d→ (0, K (β0, h0, g0)) ,

hence the conclusion follows by the continuous mapping theorem and standard results on

quadratic forms of normal random vectors (see e.g. White, 1994). Under Assumption 6, a

further Taylor expansion shows that

mt(β̂, ĥ) = mt(β0, h0) + sup
β∈Bδ

∂βmt (β, h)
(
β̂ − β0

)
+ ∂hmt (β0, h0) (ĥ− h0)+

1

2

∫ 1

0

∂2hhm
h
t (β0, h0 + ξ(ĥ− h0))dξ,

where ∂2hhm
h
t (·) =

∑lh
j=1(ĥ − h0)j∂

2
hhj
mt (·) (ĥ − h0). Using the linear representation of ĥ − h0

given in Assumption 6(a) ,we have that

T 1/2

ω1

m̂s(β0, ĥ) = T 1/2m̂(β0, h0) +
1

T 3/2ω1

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)
∂hmt−s (β0, h0)× (A-7)

T∑

τ=1,τ 6=t

ΦT (z2t, z2t−τ )⊙ φ (zt) +
1

T 3/2ω1

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)
rT (z2t−s)+

1

T 3/2ω1

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)∫ 1

0

∂2hhmt−s(β0, h0 + ξ(ĥ− h0))dξ.

Assumption 6(a) implies that

∥∥∥∥∥
1

T 3/2ω1

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)
rT (z2t−s)

∥∥∥∥∥ ≤ 1

sTω1

T−1∑

s=1−T

∣∣∣∣ω
(
s

sT

)∣∣∣∣
‖rT (z2t−s)‖H

T 1/2
= op(1),

(A-8)
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whereas by the uniform law of large numbers
∥∥suph∈Hδ

∂2hhm̂ (β0, h)− E[suph∈Hδ
∂2hhmt (θ0, h)]

∥∥ =

op (1), which implies that

∥∥∥∥∥
1

T 3/2ω1

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)∫ 1

0

∂2hhmt−s(β0, h0 + ξ(ĥ− h0))dξ

∥∥∥∥∥ ≤ (A-9)

1

T 1/2sTω1

T−1∑

s=1−T

∣∣∣∣ω
(
s

sT

)∣∣∣∣
1

T

T∑

t=1

∣∣∣∣
∫ 1

0

(1− ξ)∂2hhmt (β0, ξ (h− h0)) dξ

∣∣∣∣ = Op

(
T−1/2

)
.

Note that

1

T 3/2ω1

T∑

t=1

1

sT

t−1∑

s=1−T

ω

(
s

sT

)
∂hmt−s (β0, h0)

T∑

τ=1,τ 6=t

ΦT (z2t, z2t−τ )⊙ φ (zt) =

1

sTω1

T−1∑

s=1−T

ω

(
s

sT

)
1

T 3/2

min(T,T−s)∑

t=max(1,1−s)

T∑

τ=1,τ 6=t

∂hmt (β0, h0) ΦT (z2t, z2t−τ )⊙ φ (zt) =

1

sT

T−1∑

s=1−T

ω

(
s

sT

)
UT,s,

and that the difference between UT,s and UT =
∑T

t=1

∑T
τ=1,τ 6=t ∂hmt (β0, h0) ΦT (z2t, z2t−τ ) ⊙

φ (zt) /T
3/2 consists of s terms. The Markov inequality and Assumption 6(b) yield

P

(
1

T 3/2

∣∣∣∣∣
s∑

t=1

T∑

τ=1,τ 6=t

∂hmt−s (θ0, h0) ΦT (z2t, z2t−τ )⊙ φ (zt)

∣∣∣∣∣ ≥ ǫ

)
≤

1

ǫT 3/2

s∑

t=1

T∑

τ=1,τ 6=t

E |∂hmt−s (θ0, h0) ΦT (z2t, z2t−τ )⊙ φ (zt)| ≤

1

ǫT 3/2

s∑

t=1

‖∂hmt (θ0, h0)‖2 sup
z2t

∥∥∥∥∥
T∑

τ=1

ΦT (z2t, z2t−τ )⊙ φ (zt)

∥∥∥∥∥
2

≤ O

( |s|
T 1−δ

)
,

so that again by Markov inequality and Assumption 2(a)

P

(∣∣∣∣∣
1

sT

T−1∑

s=1−T

ω

(
s

sT

)
{UT,s − UT}

∣∣∣∣∣ > ǫ

)
≤ 1

ǫ

1

sT

T−1∑

s=1−T

ω

(
s

sT

)
E |UT,s − UT | (A-10)

≤ CT δ
1

sT

T−1∑

s=1−T

|s|
T

∣∣∣∣ω
(
s

sT

)∣∣∣∣ = O(T δ−η−1/2) = o(1).

Combining (A-8), (A-9) and (A-10) we have that (A-7) can be written as

T 1/2

ω1

m̂s(β0, ĥ) = T 1/2m̂(β0, h0) + T 1/2U∗
T (β0, h0) + op (1) ,
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where U∗
T (β0, h0) can be represented as a second order U-statistic with a varying symmetric

kernel, that is

U∗
T (β0, h0) =

1

T (T − 1)

T∑

t=1

T∑

s=1,s 6=t

(
Φ̃T (z2s, z2t) + Φ̃T (z2t, z2s)

)
(A-11)

where Φ̃T (z2s, z2t) = ∂hmt (β0, h0) ΦT (z2s, z2t)⊙φ (zs). The asymptotic normality of T 1/2m̂s(β0, ĥ)/ω1

follows by the continuous mapping theorem, combining the asymptotic normality of T 1/2m̂(β0, h0)

with the asymptotic normality of T 1/2U∗
T (β0, h0), which follows by a central limit theorem for

second order degenerate or nondegenerate U-statistics of α mixing random vectors (see e.g.

Bravo, Chu, and Jacho-Chávez, forthcoming), hence

T 1/2m̂s(β̂, ĥ)/ω1
d→ N (0, Ke (β0, h0, g0)) .

The conclusion follows by the continuous mapping theorem and standard results on the distri-

bution of quadratic forms of normal random vectors (see e.g. White, 1994).

Proof of Theorem 3.2: The same arguments used in the proof of Theorem 3.1 imply that

under the local hypothesis (3.5)

T 1/2m̂s(β̂, ĥ)/ω1
d→ N

(
δ,K× (β0, h0, g0)

)
,

and first conclusion follows by the quadratic approximation A-6, the continuous mapping theo-

rem and standard result on quadratic forms of nonzero mean normal random vectors (see e.g.

White, 1994).

Proof of Theorem 3.3: By the same arguments as those used to show A-1

∥∥∥m̂s(β̂, ĥ)− ω1E
[
mt

(
β, h

)]∥∥∥ = op (1) ,

and the conclusion follows by continuous mapping theorem as ρ̂×(β̂, ĥ, ĝ)DT/T and LMT/T =

Op (1).

Proof of Proposition 4.1: We verify Assumptions 1- 4 and 6-7. Assumptions 1 and 2 are

assumed in (a) and (b); the linearity in both θ and h imply that Assumption 3 is stronger than

necessary and can be replaced by the moment Assumption (d). Assumption (c) is sufficient for

using the uniform consistency results of kernel estimators of Andrews (1995) to imply Assump-

tions 4(a) and 4(c) for an appropriate choice of the bandwidth. The stochastic equicontinuity

Assumption 4(b) follows directly by the results of Andrews (1994b). Assumptions 6 (a) and (b)

hold with ΦT (zt, w) = ΦT (x2t, x) = fx2t (x)KbT (x2t − x), φ (zt) = yt − x′1tθ0 using a standard

kernel calculation, whereas Assumption 6(c) is not necessary. Finally Assumption 7 follows by

(c), (e), (f), standard algebra of least square estimation and the uniform consistency of kernel

estimators.
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