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Abstract

The problem of testing for the correct specification, of semiparametric models with time
series data is considered. Two general classes of\M test statistics that are based on the
generalized empirical likelihood method arepreposed. A test for omitted covariates in a
semiparametric time series regression model i§ then used to showcase the results. Monte
Carlo experiments show that the tests haye reasonable size and power properties in finite
samples. An application to the demand of electricity in Ontario (Canada) illustrates their

usefulness in practice.
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1 Introduction

In this paper we consider testing for the correct specification of smooth semiparametric models
with time series observations. The tests we propose here are important generalizations of the
so-called M tests originally proposed by Newey (1985) (see White 1994 for a review and some
applications to parametric models) and commonly used in empirical work. The basic idea
behind M testing is to use a set of restrictions, expressed in the form of a setdof estimating
equations, as indicators of the correct specification of the statistical model under investigation.
For example in linear time series regression models the orthogonality between.a set of possibly
irrelevant regressors and the errors gives rise to a natural estimating equation that can be used
to test for the irrelevance of those regressors. White’s (1982) information matrix test based
on a conditional likelihood, which can be used to test for the cotrect specification of dynamic
parametric models, and Newey’s (1985) conditional moment tests based/on a set of unconditional
estimating equations are other examples.

The M tests we consider are cast into Newey and{Smith’s (2004) Generalized Empirical
Likelihood (GEL henceforth) framework, in which & preliminary estimator for the infinite di-
mensional parameter and a generic (possibly also semiparametric) estimator for the finite di-
mensional parameter are available. GEL provides,a natural framework for estimating and/or
obtaining inferences in statistical models defined by a set of estimating equations. Examples
of GEL include Owen’s (1988) well-known Empirical Likelihood (EL henceforth) and Kitamura
and Stutzer’s (1997) Exponential Tilting.

We assume that the observations are a-mixing (see Doukhan 1994 for a review of the sta-
tistical properties of a-mixing/processes) and develop a rather general theory of M testing that
can be applied to various semiparametric possibly nonlinear statistical models (see Gao 2007
for some examples). The results of this paper generalize and extend results of Bertail (2006),
Bravo (2009), HjortgMc¢Keague, and van Keilegom (2009) and many others on EL inferences
for semiparametri¢ models with independent and identically distributed observations. The new
results are theMollowing: First we use the same kernel based smoothing used by Smith (1997)
and Kitamura and Stutzer (1997) and propose two general types of test statistics, one based
on an appropriately corrected GEL criterion function and one based on a Lagrange Multiplier
(LM heneeforth) approach. We show that both the GEL and LM statistics are asymptotically
distribution free under the null hypothesis of correct specification and have power against the
hypotheses of local and global misspecification. We note that smoothing is necessary to obtain
an asymptotic distribution free GEL statistic, but it is also useful to obtain consistent estimators
of the long run variances used in the LM statistic. Second, we explicitly consider the case where
the estimation of the infinite dimensional parameter might affect the asymptotic properties of
the proposed GEL and LM statistics and provide a general formula to characterize it. The

characterization is based on the pathwise derivative as in Newey (1994) and relies on a certain
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linear representation of the infinite dimensional estimator, which is satisfied for example in the
important case of nonparametric regression estimators and can also be used when the infinite
dimensional parameter can depend on estimated random vectors - the so-called nonparametric
generated regressor, see for example Escanciano, Jacho-Chévez, and Lewbel (2014, 2016). Fi-
nally we propose a test for omitted covariates in a partially linear regression model in which we
allow some of the covariates to be endogenous (that is they are correlated with the unobservable
errors) and others not to be directly observable but can be consistently estimatedsy, Examples of
unobservable covariates include individuals’ expectations and risk terms, which are important
in both economics and finance applications.

The rest of the paper is organized as follows: Next section introducesthe statistical model and
the test statistics and section 3 derives their asymptotic distributions.wSection 4 illustrates the
results of the paper with the partially linear model with unobservable and possibly endogenous
covariates, while Section 5 provides evidence of the small sample performance of the proposed
test statistics, and it also contains an empirical application to the électricity demand in Ontario
(Canada) for the period 1971-1994. All mathematical preofs are gathered in the Appendix.

2 The Model and Test Statistics

Let {z;,t=1,2,...} be a sequence of Z-valued (Z - Rd) weakly dependent random vectors
defined on a probability space (€2, B, P) andset’S (2,6, h) denote a statistical model defined on
it, where § € © C R* is a finite dimensional parameter and h € H is an infinite dimensional
nuisance parameter where H is”a,pseudo-metric space. As in Andrews (1994a) h is allowed
to depend on z; and possibly omn a finite dimensional parameter a« € A C RP, so that hg =:
ho (z¢, ). It S (2,6, h) 8 correctly specified, then typically there exist measurable functions
m(-) : Z2 x B x 'H — R such,that

E[m(z,5,h)] =0 iff 8= Fy and h = hg, (2.1)

where 8 € B/C RP(p> k) might contain 6, and Sy, ho are the true unknown parameters. For

example if.5(z, 0/h) is a correctly specified partially linear time series regression model
yr = 27,00 + go (20) + &, t=1,...,T, (2.2)

where go 1§ an unknown real valued function and ¢; is an unobservable error term, then E (;|Z;) =
0 a.s.,where Z; is the o-field generated by a set of variables that contains, but it is larger than
xy = [v),,7h,)". Thus the null hypothesis

Hy: E(e/Zy) =0 a.s. (2.3)

can be used to test for the correct specification of (2.2). Suppose that a possible source of

misspecification consists of an s x 1 vector of additional (omitted) Z; - measurable covariates
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x3;. Then under (2.3), the covariance between ¢; and x3; is zero, but possibly not under the

alternative. Noting that (2.2) can be rewritten (see, i.e., Robinson, 1988) as

Yt = E (yt"r?t) - (xlt - F (xlt‘th))/ 90 + &t t= ]-7 s 7T7 (24)

the function

m (21, B, ho) = [y — E (gelvar) — (210 — E (vuilwar)) O][zs — E (23] 20), (2.5)

with 8 = 6 and hy = [E (ye|xar) ,E(xlt\xgt)/,E(xgt\xgt)/]/, provides the basis for an M test
for the omission of relevant in (2.4) (and hence of (2.2)), since under (2.3)%E [m (zt, Bo, ho)] =
Eley (x3 — E (w3]xar))] = 0.

Let m (z, 8, h) := my (5, h); to handle the dependent structure of m, () we follow the same
approach’ as in Smith (1997) and Kitamura and Stutzer (1997)p.and consider the following

smoothed version of my (-)

t—1
mys (B, h) = Zw( )mts(ﬂh) t=1,...,T, (2.6)
Tsmior

where sr is a bandwidth parameter and w (-) is/a‘kernel function. Smith (2011) provides a
detailed discussion of different choices of w\(+) and sy in the context of finite dimensional pa-
rameter estimation, using as optimality criterion the asymptotic mean squared error used for
example by Andrews (1991). A closesdnspection of Andrews’s (1991) arguments reveals that his
results can be applied to automatically select s; in the semiparametric models of this paper.?

To be specific, the optimal bandwidth’ is

1/(2¢+1)
5= (qw”& )T/ / ) , (2.7)

2vec (S9)" Wvec (S9)

£(q) = trace[W (I + K) (S® 9)]’

where w* = [w(y (y) dy/ws is the induced kernel, w} = lim, o (1 —w* (2)) / |z,
f w ( ] dr, S is the spectral density matrix at the zero frequency of my (5o, hg), S?
is the generahzed derivative of S defined as > . _ |j|'F [mt (Bo, ho) my—s (Bo, ho) }, W is a

nonstechastic s2 2

x s° weighting matrix, K is the commutation matrix and v € (0,00) =
limy_,5 527" /T. Thus given a kernel w (-) in (2.6), the optimal bandwidth s} depends on the
induced kernel w* (x) and the unknown quantities S, S? and W that need to be estimated. The

dependence on the induced kernel w* (+) arises implicitly in GEL estimation of the asymptotic

IFor an asymptotically equivalent approach based on blocking techniques see for example Kitamura (1997).
2Details can be obtained from the authors upon request.



covariance limy_, o Var(Z:tT:1 my (Bo, ho) /T?) and hence in the asymptotic mean squared calcu-
lation used to determine s.. For example, if w (+) is the Bartlett kernel w () = 1—|z| for |z| < 1
and 0 elsewhere, the induced kernel w* (-) is the Parzen kernel w* (z) = 1 — 6 (z/2)* + 6 |z/2|
for |z] < 1,2(1—|z/2|)® for 1 < |z| < 2 and 0 elsewhere. To estimate S and S¢ one can use
for example Andrews’s (1991) parametric approach or Newey and West’s (1994) nonparametric
approach to obtain S and S7 and W so that

) = 2vec(S7) W vec(S57)
trace[W (I + K) (S® )]

It is important to note, however, that although s%. is consistent, it mightynot*be optimal for the
tests considered here. The selection of optimal bandwidths is stillantepén’problem in testing
and beyond the scope of the present paper.

Let p(-) : @ — R denote a twice continuously differentiable fumetion that is concave in its
domain () - an open interval of the real line that contains 0. The smoothed GEL criterion

function is

(8, h,) = 3 plsuiiti(5, 1)), (2.8)

where w = w; /wy is a normalization constant, and ¢ isva vector of unknown auxiliary parameters.
(2.8) is the basis for the test statistics that we propose.

Let h denote a preliminary estimator.6f«y (which might also depend on a T/2 - consistent
estimator & for o), B\ denote a T'/%.- consistent estimator for Sy, M, (5, h) = ZtT:1 mys(B,h) /T
and Vi,1(B,h) = ST mus(B, h)mie(B, hY /T. The M statistic for the null hypothesis (2.1) is

Dr =2 (%) rG.AD - rERO) 29)
T \W1
LMT - ZA/All(B:/]’;)]?X(Buﬁ7§>il‘/}ll(§7/]’;){p\7

where 7,5 = arg maxy F(B\,E, ¥) and K> (B,ﬁ, g) is an estimator of either the matrix K (5, ho, go)
or the matrix K°(5y, ho, go) defined, respectively, in (3.2) and (3.3) below.

3 Asymptotic Results

We begin this section by introducing some further notation: let || - || denote the standard

Euclidean norm and || - |3 denote a function norm, such as the sup norm. Let Bs = { € B :
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18 = Boll <6}, Ho ={h € H :|h— hol|y <0} (possibly uniformly in o € A), and let 0. denote
the derivative operator with respect to -, which corresponds to an ordinary partial derivative

with respect to 5, and to the pathwise derivative in the direction of h — hg, that is

omy (B, ho) omy(B, (1 —7) hg + Th)

o = hli= ar =0

(see Newey, 1994 for some examples).

Assume that:

Assumption 1 {z,t=1,2,...} is a sequence of Z-valued (Z - Rd) statienary. o-miring ran-

dom vectors with the mixing coefficient o (t) = o (t*2(2+7)) for some 2> 0.

Assumption 2 (a) sy — 00 as T — oo, and s = O(TY?>7") for 1/6 <'n < 1/2;

(b) w(-) : R—=[-w,w] for some W < oo, w(0) # 0, wi # 0w (x) is continuous at 0
and almost everywhere, | (2m)™" J7 exp (—zu)w (z) de| >0 Yu € R, where v = /=1, and
2 supye, |w (y) dal + [57 sup,s, [w (y) dz| < oo (c) foi(@)])< C1/|al™ for b > 1+ 1/q for
some finite C1 > 0 and q € (0,00) such that wy € (0,00) , |w*(z) —w*(y)| < Cylz —y|
Vz,y € R for some finite Cy > 0.

Assumption 3 (a) E[supsep, new, (8, W] < 00, E [supgep, ner, 105me (8, 0)[|'] < o0,
E|lmi(Bo, ho)|*?] < o0, E[supsep, nerilOnini (B, h)||*?] < oo for some oy > 2, ay > 4; (b)
E[SupﬁeB&heH& Haﬂm (B, h)m(ﬁ,h)/m <o, E[SupﬁeB(;,heH(; H(')gﬁm (B, h)m(ﬁ,h)/m < 00,
E [Supsep, news H@g@hm (8, h)m(ﬁ,h)'“] < 00, E [Supsep, news H@,%hm (B,h)m (B, h)/m < 00.

Assumption 4 (a) || h — Ky g =)o, (T7/%);
(b) p (h) == T-Y2 2T A, (Bovh) — E [my (Bo, h)]} is stochastically equicontinuous at ho; (c)
the classes of functions Mas={0sm (8,h),B € Bs,h € H}, M g52={0sm (8, h) Igm (B, h) B €
Bs,h € He} and Mazpn={07,m (Bo, h) . h € He} have, respectively, Ny(e, Mag, Ly (P)) < o0,
Ny(e, Mgz, L (R)) < 00 and Ny(e, Mazpn, L1 (P)) < oo, where Ny (+) is the bracketing num-
ber (see for example’ van der Vaart and Wellner, 1996 for a definition); (d) the classes of func-
tions MZz= {0 (8,h)m (8,h)', 5 € Bs,h € Hc}, M3y z5={035m (B, h)m (8, h), 5 € Bs,h €
He, M= {0wm (B,h)m (8,h)", 5 € Bs,h € He}, MBg0,={030wm (8,h) m (8, h)", 5 € Bs,h €
He}andM2,,, = {G,Qmm (B,h)m (B,h)",3 € Bs,h € ”He} have, respectively, Ny (5,M?)5,L1 (P)) <
00, N[](€ Ma%’,@” (P>) < 00, Nﬂ(gﬂM%h’Ll (P)) < 00, N[](57Mgﬁah7[/1 (P)> < oo and
Ny(e, M3y, L1 (P)) < o0.

Assumption 5 Either (a) || E[m,(Bo, h)] || = op (T7Y2); or (b) E[0m(za, 0,7) /07| r—n,h(2)] =
0Vh € H and 2oy C 2.



Assumption 6 (a) h(w) — ho(w) = T~ S O (20, w) © ¢ (2) + 77 (w), where “©7 is the
Hadamard product, @7 (22;,-) is some weighting function, sup,, |rr (w)|| = o, (T~/?) (possibly
uniformly in o € A);

(b) E [ (2¢) | Fizp,] = 0, where Fy ., is the minimum o-algebra generated by 2o, E [¢ (2) ¢ (2)'] <
00; and limy_, o sup, var(T~ /2 ST ®p (29, w) © ¢ (21)) < o0, for some § € (0,1/2).

Assumption 7 The estimator B 15 such that

TY%(B—Bo) = A (Bo, 90)~ Z £+ (Bo, 90)+0, (1) 5 N(0, A (Bo, 90) " Be(Bowgo) A (Bo, 90) ™).

(3.1)

where A (Bo, go) is an R¥®-valued nonsingular matriz, B (By, go) is-d positive definite matriz and

T1/2

go 1S an infinite dimensional parameter.

Assumptions 1-3 are mild regularity conditions on the“dependent structure of the observa-
tions, the kernel function used to smooth the observations and the existence of certain moments.
Note that 2(c) is satisfied by the Bartlett, Parzen and“the quadratic kernel. Assumption 4(a)
assumes uniform consistency (possibly also with respect to a) of the nonparametric estimator
used for hy. For kernel estimators Andrews (1995)sprovides sufficient conditions including the
case of estimated random variables. Sufficient. conditions for Assumption 4(b) are provided for
example in Andrews (1994b) and van démVaart and Wellner (1996); Assumptions 4(c)-(d) are
satisfied for example when dgm (8,h), O2ym (B, h), sm (B,h)m (B8,h), Bgﬁm (B,R)m (B, h),
opm (B, h)m (B, h)', 0s0um (B, hYam (B, k) and 92, m (8, h) m (B, h)" are smooth in 8 and h, B is
a compact set and h belongs to a class of sufficiently smooth functions, such as a Sobolev class.
Coupled with Assumption”3(a)iimplies that the classes of functions Mgg and Mgzp, satisfy a
uniform law of large numbers. Assumptions 3(b) and 4(d) are required for the calculation of the
optimal bandwidth 6%. /Assumption 5 implies the asymptotic orthogonality between the finite
dimensional andthe)infinite dimensional parameter. In such case, it is not necessary to account
for the presente of hin the asymptotic distribution of B, which greatly simplifies the calcula-
tion of the asymptotic variance. Condition 5(a) is directly assumed by Andrews (1994a) and is
also considered by Hjort, McKeague, and van Keilegom (2009); condition 5(b) is assumed by
Newey (1994). Note that for h = h (25;) sufficient conditions for condition 5(a) are Assumptions
5(b)and’(a). Note also that Assumption 5 is satisfied by many important semiparametric
models; including partially linear, single index and partially additive models. Assumption 6
provides a generic way to account for the potential estimation effect arising from the estimation
of the infinite dimensional parameter. Finally Assumption 7 is satisfied by many semiparamet-
ric estimators including those based on M, GMM (Generalized Method of Moments) and GEL



estimation. Let I denote the identity matrix and

K (B.h.g) = [I, M (8,h) A(8,9)"'V (8. h.g) [, M (8,h) A(8,9)']", (3:2)
V(B h,g)= jli_{r;ovar (7%/2 Z[mt(ﬁ»h)/:ft (579”/) )
K (B.h.g) = [I,M (8,h) A(8,9) V< (B h,g) [T, M (8,h) A(8,9)"] (3:3)

T—o00

T
Vi (8,hg) = Jim var (Ti/ S i (8.0’ f (ﬁ,g)']’) and

T , l
54 (5.h,g) = Jim vax (TL/ S| () + 19 1) N | ) ,

where M (5, h) = E [0smq (B, h)],

t—1

(8. ) = (B B) + s W (e B

s=1

W (25, 21, B, h) = Opmy (o, ho)/ D (225, 22t) © ¢ (28) O, (o, ho)/ Dr (221, 225) © @ (2), (3.4)
B (-5 Bo, ho) = E[W (- 21, Bo, ho)] = / W (-, us Bwho(u)) [, (u)du.
Note that V' (5o, ho, go) corresponds to theasymptotic orthogonality case implied by Assumption
5, while the two alternative formulations V& (5o, ho, go) and V¢, (Bo, ho, go) correspond to the esti-

mation effect of Assumption 6, wliich can be expressed as either a degenerate or a nondegenerate

U statistic (see equation (A-11).in the’ Appendix for more details). Let

A B trace[K* (8, h, g)~" B™ (B, h)]
CNB, h,g) = trace[Vi, (B.h) B (B.h)]

where B™ (B, h) & [23:1 mys (3, h)/wl][Zthl mus(B, h) Jwi]'.

Theorem 3.1 Asgume that K (o, ho, go) and K¢ (Bo, ho, go) are positive definite, and || I?(E,E,fq\)—
K (Bo, ho, g0) || =0, (1), || K¢(Bo, h,g) — K (Bo, ho, go) || = 0p (1). Then under Assumptions 1-7
and_the nullhypothesis that (2.1) holds

~

CX<B7ﬁJ/g\)DT; LMT i Xi

We now consider the local power and consistency of the proposed test statistics. To obtain

the local power we assume that
4]
E[my (Bo, ho)] = i (3.5)

for some fixed vector ¢ € R?.



Theorem 3.2 Under the Assumptions of Theorem 3.1 and the local hypothesis (3.5)

-~

(B.h.§)Dr, LMy 5 (<)
with the noncentrality parameter k" = &' K* (8o, ho, go) 0 and K* () is either (3.2) or (3.3).

To establish the consistency of the proposed test statistics we first note that under alternative
distributions the probability limits of the estimators E ) ﬁ, g are typically different from Sy, ho, go
defined under the null hypothesis of correct specification. Thus we assume that [[\g— || = op (1),
|h—h I3 = 0p (1) and [|[g — gllg = 0, (1) where 3, h and g are not necesSarily; 8o, ho, go under

a given alternative distribution.

Theorem 3.3 Under the Assumptions of Theorem 3.1 and the Assumption that HE [mt (E, E)} H >
0,

-~

(B,h,§) Dy, LMy % o8,

4 Example: An M Test for Omitted Variables in a Par-
tially Linear Model with a)Generated Regressor

We consider a test for the omission of a. set\ofirelevant covariates in the same partially linear

model

yt=$/1t(90+go (legt)—f—&t t = 1,...,T7 (41)

where 0, is an R*-valued Arector, of unknown parameters and go (-) in an unknown real valued
function. We assume that Ele;|z1,] # 0 and that xo, =: 29 (ap) is generated as a residual from

the following linear Tegression model
G = V0 + Ty,

where ag”1s anvector of unknown parameters and v; is a vector of auxiliary covariates such
that E (@2¢|v;) = 0. Thus (4.1) is a partially linear regression model where the xy; covariates are
endogenous and xy; is not directly observable but it can be consistently estimated as a regression
residual. Suppose that there exists a vector i; of so-called instruments such that E (g;|xoy, i) = 0,
assumed for simplicity to have the same dimension as that of xy;. Let Ty = ¢ — vj@, where @

is the least squares estimator for «g, and let

T -1 7
-~ .~/ . o~
0 = E LTy, E LYt
t=1 t=1



denote the semiparametric instrumental variable (SIV) estimator, where

?jt =Yt — E (yt|f2t) s Ty = T — E ($1t|552t) )
S esia (O, (w25 — w20) [br)
S st Koy (w20 — 1) [br)

and Ky, () :== K (-) /br is a kernel function with bandwidth by =: b(7") . Underthe regularity

conditions given in Proposition 4.1 below, some calculations show that the SIV_éstimator admits

E('t\@t) =

)

the following asymptotic representation

T2 = 0,) = E [(x1; — E (wy|20)) 8] " T} > (itet + [ﬁaa[f(m)go(m, 00)]—

W&aﬂxzt))) T(”t)@t) ;

where f(x3,) is the marginal density of zo, 7(v;) = E (vh) " vpand go(z,0) = E (y, — #,,0|x0 = ).
As in Section 2, an M test for the omission of an Révaluéd vector of relevant covariates xs;

can be constructed using the sample version of the same function given in (2.5), that is
mt(97 h) = At[xst ~F <l’3t|§2t)L (4'2)

where &, = 1; — 55/”5 denote the SIV residuals\In this case the three statistics My, Dy and LMy

are computed as

= (B (B, B, §) a5, ). (4.3)

|
+
~
2
@)
) @)
)
o
—
—~ |

trace[Viy (8, h)~*B™ (6, )]
T - e~ ~a~ o~~~
LMy = _2¢/V11(ﬁ7 h)K(8,h.7) 1‘/11(5’ h)i and

10



where M (6,h) and XA/C(@E,@ are consistent estimators of

(907 ho) 953t 3t’x2t ) (1‘1t —F ($1t|»’62t)),} , A (90, go) =F [(951t —-F (xlt‘-er)) ZQ] )

Vii (90,}10 = l1m var ( mt 907}10)) ) Vzez (90,90) = A(QU;QO)_l Q° (90,90) (A (907 ho)_l)/7

t=1

T

22: ztat+[ )

[gjf(i;—Qiﬁ)ﬁaf(xzt») (Ut)@t) ) )

th (60, ho) , [A (00, 90)~ (Z UE T+ [ x%)a ol f (72¢) go (w2, 00) ] —

W@ﬂmﬁ)) f'”(vt)xzt)/} and

Vi1 (00, ho) V15 (6o, o, 90)
sz (90, ho, 90)/ Vzez (90, ho,go)

The following proposition provides sufficient conditions for the results of Theorems 3.1-3.3 to

Qe (90,90 = hm var( Oar [f(l"zt)go(xzt,@o)]—

!

. 1
‘/162 (907 hOa gO) = TI.I_I;I;O TE

Ve (907 hOa gO) =

hold for the M test based on (4.2); note that because’the unknown parameters enters linearly

in the model, some of the conditions are wéaker than those assumed in Assumptions 1-7.

Proposition 4.1 Assume that: (a) {z = Ty, va, 7y, i;]'}thl is a sequence of c-mizing ran-
dom vectors with o (t) = o (t72C29m(b) Assumption 2 holds; (c) the joint density f (z) of 2
and the marginal density f (xo) of e are twice continuously differentiable with bounded deriva-
tives, the support Xy of xods a~compact set, inf,, . cx, f (ra) > 0 and f (xo) is continuously
differentiable with respect,to o with bounded derivative uniformly in A; (d) ho (xe) is twice
continuously differentiable, sup;,, c - || h(()j) (x9r) || < 00 (j =0,1,2) uniformly in A where h(()j) (+)
is the jth derivative of‘ho (-) and ho (x9) is continuously differentiable with respect to o with
bounded derwative aniformly in A; (e) E || iy, — E (y|zar) — (1, — E (xy]x2)) 0p) |77 < 00;
(f) vank(E [f; (z1; —E (z14|z2:))']) = k, rank(M (6o, ho)) = s, the matriz V° (6o, ho, go) in (4.3)
is positive“definite; (g) the function K (-) is a nonnegative second-order kernel with second or-
der continuous bounded derivatives, and by satisfies TV/?b% — oo, T'V?b — 0. Moreover
|K () = K (u) — KW (-)u| < K (-) u® where KU (-) is the first derivative of the kernel func-
tion and K () is a bounded function. Then the conclusions of Theorems 3.1-3.3 hold for the test
statistics defined in (4.3), where h(x,0) := Ely; — x7,0|xo; = x] and xey = ¢ — vjavp.

In the next section we operationalize these test statistics in various Monte Carlo experiments
and an empirical application using bandwidths calculated by Silverman’s (1986) rule of thumb.
Although these are only optimal for estimation and not for testing (see, e.g., Gao and Gijbels,

2008), as shown below they seem to work quite well in practice.
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5 Numerical Results

5.1 Monte Carlo Results

In this section we present Monte Carlo results for the size and power of the three statistics
Mr, (B, h,g)Dr and LMy used to test for omitted variables in the partially linear model with
endogenous regressor and a generated regressor described in the previous section. Fhe following

design is a modified version of that used in Bravo, Chu, and Jacho-Chavez (forthceming):

Y = T11:010 + 126620 + mo(xar) + €,

T11¢ = T1oV1 + TooU2¢ + U,

where v, = p1v1—1 + €11, Vo = PaVai—1 + €21, €4 = PeEi—1 + €ty Uel= Py + €, and

(L) L L D)

Let (i ~ N(0,1) (I=2,3,4,5) independent of yy.and vy, and set 19y = voy + (op, Ty =
V1t + Vo + wsy such that ¢ = (g + 294 For pp = por=0.4, p. = p, = 0.95, and mq (v) = @ (v)
(@ () is the CDF of a standard normal), we generate1000 samples, {y:, T11¢, T12t, Tot, Vit, Vot iy
with 7" € {100,400} , three different scenarios pg, € {0.1,0.5,0.9} representing an increasing
degree of endogeneity and 6y = [1, 1]’, 7o-="1; =1)’. Finally x3; = 0.5x3,_1 + 0.223;_2 + (5 is the
the additional covariate suspected efsbeing €rroneously omitted.

The SIV estimator @ is computed using as instruments i; := |19, v1¢)’ whereas h= [E (ye|Tar) ,
E (19¢]|T2¢) E (x3]T2)]" is computed” using the Nadaraya-Watson estimator with a Gaussian
kernel and bandwidth bpdchosen by the Silverman’s rule-of-thumb and @ is the least squared
estimator of ag obtained from regressing ¢; on (4.

We calculate thée ¢(8, h,§)Dr = D7 and LM statistics using as w (-) the Bartlett ker-
nel with bandwidth/ parameter s selected using (2.7) with & (¢) chosen by Andrews’s (1991)
parametric specification and for three specifications of the GEL objective function p (-) given in
(2.8), thatrisip(v)/= log (1 — v) corresponding to Empirical Likelihood (EL), p(v) = —exp (v)
corresponding/to the Exponential Tilting (ET) and p (v) = — (14 v)* /2 corresponding to Eu-
clidean Likelihood (EU). To assess the sensitivity of the statistics to the chosen bandwidth by,
we also consider two other bandwidths: by = 0.5b7 and by = 1.5b7. Tables 1 and 2 report the

finite sample sizes of the nine statistics for all the different scenarios, bandwidth b choices and
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the two chosen sample sizes using 5000 replications.

Table 1. Finite sample sizes for T"= 100

bir br bor
Per, = 0.1 0.010 0.050 0.010 0.050 0.010 0.050
My 0.018 0.061 0.017 0.059 0.018 0.060

LMEE 0.019 0.060 0.020 0.058 0.019 0.057
LMET 0.020 0.057 0.019 0.057 0.018 0.056
LMEY 0.019 0.056 0.018 0.056 0.020 0.055
DEL 0.020 0.056 0.017 0.057 0.018 ~0.056
DET 0.018 0.055 0.018 0.056 0.019 ,0.057
DEU 0.021 0.054 0.019 0.055 0.019 0:056
P = 0.5 0.010 0.050 0.010 0.050 0.010~ 0.050
My 0.021 0.064 0.023 0.063 0.025 0.065
LMEL 0.020 0.061 0.019 .0.060 0.018 0.059
LMET 0.021 0.058 0.022_ 0:058 0.020 0.057
LMEY 0.020 0.058 0.021,0.059 0.022 0.058
DEL 0.018 0.056 0.017%-0.055 0.016 0.054
DET 0.017 0.057 0.018 0.056 0.016 0.055
DEU 0.020 0:035 0.019 0.057 0.018 0.056
Peuw = 0.9 0.010..0.050 0.010 0.050 0.010 0.050
Mrp 0.026 0.073 0.027 0.076 0.029 0.078
LMEL 0.021, 0.061 0.023 0.059 0.022 0.061
LMET 01021 0.059 0.023 0.061 0.024 0.063
LMEY 0.022  0.060 0.021 0.062 0.022 0.062
DEL 0.018 0.057 0.020 0.058 0.022  0.059
DET 0.018 0.058 0.019 0.059 0.021 0.057
N2y 0.022 0.058 0.021 0.059 0.020 0.061

Note: Resultsaré based on 1000 Monte Carlo replications. EL, ET, EU stands for Empirical
Likelihood, Exponential Tilting and Euclidean Likelihood respectively. Bandwidths by corre-

spond fosSilverman’s rule of thumb, by = 0.5b7 and by = 1.5b7.
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Table 2. Finite sample sizes for T' = 400

bir br bar

Pew = 0.1 0.010 0.050 0.010 0.050 0.010 0.050
My 0.017 0.057 0.016 0.058 0.016 0.057
LMEE 0.018 0.060 0.018 0.056 0.019 0.057
LMET 0.019 0.055 0.018 0.055 0.016 0.056
LMEY 0.019 0.054 0.017 0.055 0.019 04055
DEL 0.019 0.055 0.016 0.057 0.017,40.054
DET 0.017 0.054 0.017 0.055 0.017%0.056
DEU 0.020 0.054 0.018 0.054 0.018 ,0.055
Peu = 0.5 0.010 0.050 0.010 0.050 0.020” 0.050
Mr 0.020 0.062 0.022 0.063 0,024 0.062
LMEL 0.019 0.060 0.019 ,0:060 0.016 0.059
LMET 0.020 0.057 0.022 0058 0.020 0.057
LMEY 0.020 0.058 0.019+_0.059 0.020 0.057
DEL 0.017 0.054 0.015 0.054 0.016 0.054
DET 0.017 0.056 0.018 0.056 0.014 0.055
DEU 0.019 0.056 0.017 0.057 0.017 0.056
Pew = 0.9 0.010.0.050 0.010 0.050 0.010 0.050
Mrp 0.022. 0.072 0.024 0.075 0.028 0.075
LMEL 0.020 , 07056 0.021 0.057 0.022 0.061
LMET 0.019” 0.059 0.020 0.058 0.021 0.063
LMZ‘?U 0.020 0.056 0.018 0.057 0.020 0.060
DEL 0.017 0.057 0.016 0.055 0.018 0.058
DET 0.015 0.056 0.018 0.057 0.019 0.056
DEY 0.018 0.056 0.020 0.058 0.021 0.056

Note: Resultsaré based on 1000 Monte Carlo replications. EL, ET, EU stands for Empirical
Likelihood, Exponential Tilting and Euclidean Likelihood respectively. Bandwidths by corre-
spond fosSilverman’s rule of thumb, by = 0.5b7 and by = 1.5b7.

The results of Tables 1 and 2 can be summarized as follows: first, all of the test statistics
are characterized by good finite sample sizes close to the nominal level. As expected the size
distortion is more evident when the degree of endogeneity is higher (that is for p., = 0.9) and
decreases when the sample sizes increases. Between the nine statistics, My (that is the one
based on the standard M formulation) is the one with the largest size distortion, whereas the

GEL objective function statistics have typically the smallest one. Between EL, ET and EU
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Figure 1: Finite sample size adjusted.power for My, DEE DET and DEU statistics. Left panel

corresponds to p., = 0.1, right ‘panel corresponds to p., = 0.9

likelihood, the former, two seems to have a slight edge over the latter one in terms of (smaller)
size distortion. Finally, the results seem to be robust to the choice of bandwidth bp.

Figure 1 peports,the finite sample (size adjusted) power of the My and the three GEL ob-
jective functions sthtistics DL, DET and DEY for a sequence of alternative hypotheses indexed
by ¢ = [0.05,0.1,0.2,0.25,0.30,0.35,0.40, 0.45] for both cases of low and high endogeneity with
bandwidthsset at Silverman’s rule-of-thumb and sample size T = 100.

Fligure1 shows that all test have good finite sample power against the alternative hypothesis
with that of DEL and DET having an edge on that of DEY and M.

Taken together the results of the simulation study suggest that all of the proposed tests are
characterized by good finite sample properties that are robust to the choice of bandwidth by.
Among the statistics considered, those based on either the empirical likelihood or exponential

tilting objective functions seem to have an advantage in terms of smaller finite sample size
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distortion and larger finite sample power.

5.2 Empirical Application

In this section we proceed to implement the proposed test statistics to test whether lagged
dependent variables, what is often called in the economic literature state dependency, have
been omitted in the partially linear specification of the electricity demand function in Yatchew
(2003). The data is publicly available and it comes from the Ontario Hydro Corporation. It has
been previously used by Chu, Huynh, and Jacho-Chévez (2013), and it consists/of 288 quarterly
observations from the Canadian province of Ontario between 1971 and 1994. Yatchew’s (2003,
eq. 4.6.9, pp. 81) model is

elec, — gdp, = fprelprice, + go(temp,) + &4, for t'=2,.,., 288, (5.1)

where elec; is the log of electricity sales in millions of Canadian dollars, gdp;, is the log of Ontario
gross domestic product in millions of Canadian dollars;iwrelprice; is defined as the log of ratio
of price electricity to the price of natural gas, and_tempy is the difference between the number
of days the temperature is above 68°F and the number of days is below it. We proceed to
calculate My, Dy and LMy test statistics to cheek-for the presence of state dependency or
seasonal state dependency in (5.1), using, respectively, elec, ;—gdp,; 1 and elec, 4—gdp; 4 as
x3 in (2.5). As in Section 5.1, the test statistics are calculated using a Gaussian kernel function
with Silverman’s rule-of-thumb bandwidths for all the conditional expectations and a Barlett
kernel for w (-) with bandwidth 4% = 7. The estimator in Robinson (1988) is used to calculate
0 = —0.0722, which is statistically significant at all levels. EL is used to calculate the sample
values of the test statistics” M, Dp/and LMp, which are, respectively, 0.0007, 0.0019 and 0.0121
(p=1) and 0.0112, 0.0243 and 0.118 (p = 4). These test statistics are statistically insignificant
(at 10%) when comparing them to the 2.71 critical value from a x? distribution under the null
hypothesis. As a robustness check we also calculated all the test statistics using half and one
and a half times theyoriginal rule-of-thumb bandwidths yielding the same results. For example,
when using half the original rule-of-thumb bandwidths, the test statistics My,Dy and LMy are
respectively, 0;0000, 0.0002 and 0.0015 (p = 1) and 0.0061, 0.0152 and 0.0841 (p = 4). Similarly,
when _using=one and a half the original rule-of-thumb bandwidths, the calculated test statistics
are 040018, 0.0048 and 0.0276 (p = 1) and 0.0157, 0.0334 and 0.1576 (p = 4). This confirms that
there 1s neither state nor seasonal state dependency in the demand for electricity as estimated
in Yatchew (2003), and this finding seems to be robust to bandwidth choice.
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6 Conclusions

In this paper we have considered the problem of M testing in the context of smooth semipara-
metric models with time series observations. The statistical models we have considered are fairly
general and can allow for endogeneity and generated regressors. We have derived the asymptotic
properties of a number of test statistics based on a smoothed version of GEL method and illus-
trated them by considering a test for omitted variables in a semiparametric time seties regression
model with endogenous covariates and a nonparametric generated regressor.«1he results of a
Monte Carlo study suggest that the proposed test statistics have competitive finite sample prop-
erties, and its application to test for state dependency in an estimated semiparametric electricity

demand model shows its practical usefulness.
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Appendix A Proofs

Proof of Theorem 3.1: Without loss of generality we normalize the first two derivatives
p; (0) = =1 (j = 1,2) of p (), where p; (0) = Dp (q) /0g 0. Let Wy = {: ] < Rr} where
Ry = O, (sp/T)¢ for € < 1/2; we first show that

|7 (B.7) = w1 [ (B ho))| = 0, (1), (A1)
max sup ¢mts(5 ﬁ)‘ =0, (1) and (A-2)
1<t<Twe\I,r

T-1 9
(i Z w (é) ) ST ths mts 67 ) ‘/11 (/807h0) = op(l)' (A_g)
s=1-T
o
—wl =
ST \OT

By the triangle inequality

|8 ) = w1 [ (86, ho)| < sp, i (8, 1) = B [me (5, )] +

j ﬁeBg,hE’Hg
(A-4)
T—1
1 S
—w <—> — W1 FE sup Hmt (ﬁ? h’)” +
1T ST ST BEBs,heHs
+ o Bl (Beh)) — B e (8, ho)l| = 0, (1).

The first term on the right hand sideyof (A~4) converges in probability to zero by the uniform
law of large number (implied by Assumptions 3(a) and 4(b)), see e.g. Newey, 1991), while the
= 0(1); finally the third term on the right
hand side of (A-4) is o (1).by dominated convergence hence

second term is o (1) since ‘Zs Lrw(G/sT) /s —wi

SUDge s her, 1M (B, h)=E [my(3, h)]|| = 0, (1). To show (A-2), note that by triangle inequality

and the (functional) mean value theorem one has

> ()

W mtS(ﬁ: )‘ <Rr

] o fE&XT[Hmt (Bo, ho)|| +
s=1-T
sup  [|Owm (B HHh hOH
BEBs,heHs
+ sup  |[Osme (B, h) HHﬂ b’o”]—op
BEBs,heHs

since the Borel-Cantelli lemma and the moment conditions in Assumptions 3 imply that

max e (o, ko)l max  sup  [[dhme (8, W)l

sup  |[9gmy (B, h)

BEBs,heHs
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are all o, (Tl/ 2). Finally from the triangle inequality

T
S Z mts mts 57 ) —waViy (507 ho) STT Z Mis (50, ho) Mys (50, ho)l —waVii (50, ho)

TTZ s (Bo, ho) ths (B, h) = mus (Bo, ho))

a similar calculation to that used by Smith (2011) shows that

T
S?T Z Mis (50, ho) Mis (50, ho)/ —wa V1 (50, ho) = Op (1) )

t=1

T
<sup|| b —ho |2 = Zeeguggﬂ Onma (6, B> = o, (1)
t=1 5SS
(A-5)

by the uniform convergence of kernel estimators, séeforsexample Masry (1996) and the uniform

ZHmts é\/ﬁ — Mys 007h0 H

law of large numbers (implied by Assumptions,3(a) and 4(b)); finally by the Cauchy-Schwarz
inequality and (A-5)

T
S?T Z ﬁ()a hO Z mts ﬁ» h) My (507 h())]

1/
( ZHmts Bo, hd) | ) <STZHmts (0, h) — s (0o, ho)
=1

The continuous mapping theerem implies that for j = 1,2

N\ 2
) =o0,(1).

Sup max
”LﬁG\I’T 1<t<T

pi(W'me(B. 1) = 15 (0)] = 0, (1),
thus by a second-order Taylor expansion about 1) = 0, we have that
Dy = =5, (B, 1) Vaa (B, 1)~ (B,h) + 0, (1), (A-6)

where,we have used the fact that

n LTV
72— Vi (o o) T n(BLR) + 0, (1)
ST w1
(see e.g. Newey and Smith, 2004). A mean value expansion, Assumption 7, similar arguments

to those used in (A-4) and the uniform law of large numbers (implied by Assumptions 3 and
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4(c)) show that

T1/2 o~ T1/2 R R a’\s _7
ms(ﬁa h) = ms(ﬁOah) + = (B )

w1 W1 wlﬁﬁT

(BO)gO T1/2 th 60790 +0P (1>

= T80, ) + M (B0, ho) A (Bo, go) ™ th fo: 90) + 0 (1)

T1/2
Simple algebra shows that
T2 Bo, h) = [or(h) — T (ho)] + T*@(Bo, ho) + TV> E[mi(Boh)].

where Oy (h) = T-Y2 32T {my (Bo, h) — E [my (8o, h)]}, so that by ASsumptions 4(b), 5(a) and

a standard central limit theorem for a-mixing random vectors (Doukhany1994), we have

Tl/zm(ﬁg,}\o i (0, K (607 h07 90)) )

hence the conclusion follows by the continuous mapping theorem and standard results on
quadratic forms of normal random vectors (see e.g.. White, 1994). Under Assumption 6, a

further Taylor expansion shows that

mu(B,R) = mu(Bo, ho) + sup Dsmid, 1Y (B = Bo ) + By (Bo, ho) (b — ho)+

BEBs

1 [t >
3 | Sl bt € o

where 07, m} (-) = Z?L: (h— ho)i Ty (+) (h — hg). Using the linear representation of h — hg

given in Assumption 6(a) swe have/that

T1/2 T t—1

o AT o) + Y Y (D)o (o) x (AT

w1 T3/2w1
t=1 s=1-T

T T
1
5 rlea ) 0G0 g S 1;”( ) o e +

T=1,7%#% 5=
T

1 1 =1 S ~
—_—— ) — — 02, my—s(Bo, ho + E(h — hg))dE.
T3/20, ; s IZTW (ST) /0 hun s (Bo, ho + &( 0))dg

s=1—

Assumption 6(a) implies that

1 1 — s
Y 3w (_) rr (22s)

T-1

(2l
(A

22



whereas by the uniform law of large numbers ||supy, ¢y, 92, (B0, h) — E[supy,eq,, 0f,my (6o, h)]|| =
0p (1), which implies that

IN

1 1 s v, ~
T3/2, Z o 4 w (_) /0 Oynmu—s(Bo, ho + E(h — hg))dE (A-9)

=1 °T 17 \°T
1« s\ 1] [ ) B oy
TV 251w, A= v (;) ‘ T ; /0 (1= &)dpmu (Bo, & (h — ho)) d€| = O, (T71/?) .
Note that
1 = . T
T3/20, Z sp Z w (;) Onmi—s (Bo, ho) Z D (221, 22f %) 0 (z1) =

T=1,7#t

min(T,T—s)
1 S 1
-y w (—) T3/ E E Iy (Bo, ho) @ (221, 20t—+) © & (21) =
TW1

t=max(1,1—s) T=1,7#t

and that the difference between Urs and Ur ‘= Et 127 Lt Oni (Bo, ho) @7 (291, 291—1r) ©
¢ (2) /T?? consists of s terms. The Markov inequality and Assumption 6(b) yield

o )-

T3/2 Z Z ENGmyt s (0o, ho) Pr (220, 201-7) © ¢ (21)] <
= T1=5 |

Z Z Onmag=s(6o, ho) Pr (22, 220—7) © O ()| >

t=1 7=1,7#t

t=1 7=17#t

T3/2 Z @xm, (6o, ho) ||, sup

22t

ZCDT Zoty Zot—r) © @ (2¢)

2

so that again by Markov inequality and Assumption 2(a)

1 — s 11 «— s
P |— Zw(—){UTS—UT} >e| <-— w( )E|UTS—UT| (A-10)
ST s=1-T ST €sr s=1-T ST

Combining (A-8), (A-9) and (A-10) we have that (A-7) can be written as

T1/2

w1

s(Bo, ) = T*@(Bo, ho) + TV2Us (Bo, ho) + 0, (1)
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where U7 (Bo, ho) can be represented as a second order U-statistic with a varying symmetric
kernel, that is

Uzt (Bos ho) = ﬁ Z Z <‘5T (225, 22¢) + E)T (2ot Zzs>> (A-11)

t=1 s=1,s#t

where O (225, 201) = Opmy (Bo, ho) 1 (225, 22,) O (25). The asymptotic normality of T2, (Bo, h) Jwr
follows by the continuous mapping theorem, combining the asymptotic normality of B/ *m(Bo, ho)
with the asymptotic normality of T'/2U% (By, ho), which follows by a central limit theorem for
second order degenerate or nondegenerate U-statistics of o mixing randem vectors (see e.g.

Bravo, Chu, and Jacho-Chéavez, forthcoming), hence
TY20,(B,h) Jor 5 N (0, K° (5o, ho, 9b) -

The conclusion follows by the continuous mapping theorem and standard results on the distri-
bution of quadratic forms of normal random vectors (see.e.g. White, 1994). m

Proof of Theorem 3.2: The same arguments used in the proof of Theorem 3.1 imply that
under the local hypothesis (3.5)

Tl/QmS(B\,/h\J)/Wl ‘g N (57K>< <BO: ho;go)) )

and first conclusion follows by the quadratiesapproximation A-6, the continuous mapping theo-
rem and standard result on quadratie forms of nonzero mean normal random vectors (see e.g.
White, 1994). =

Proof of Theorem 3.3: By the.same arguments as those used to show A-1

~

7.8, 7) = w12 [mq (B.F)]|| = o (1),

and the conclusion follows by continuous mapping theorem as p* (3 ,ﬁ, 9)Dr/T and LMp/T =
O,(1). m

Proof of Proposition 4.1: We verify Assumptions 1- 4 and 6-7. Assumptions 1 and 2 are
assumed in (a)and (b); the linearity in both # and A imply that Assumption 3 is stronger than
necessarypand’ can be replaced by the moment Assumption (d). Assumption (c) is sufficient for
using theyuniform consistency results of kernel estimators of Andrews (1995) to imply Assump-
tions 4(a) and 4(c) for an appropriate choice of the bandwidth. The stochastic equicontinuity
Assumption 4(b) follows directly by the results of Andrews (1994b). Assumptions 6 (a) and (b)
hold with @7 (2, w) = Pr(zar, ) = fu, (¥) Kpp (22 — ), ¢ (2) = yr — 2,00 using a standard
kernel calculation, whereas Assumption 6(c) is not necessary. Finally Assumption 7 follows by
(c), (e), (f), standard algebra of least square estimation and the uniform consistency of kernel

estimators. m
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