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We characterize a possible blowup for the 3D Navier-Stokes on the basis of dynam-
ical equations for vector potentials A. This is motivated by a known interpolation
‖A‖BMO ≤ ‖u‖L3 , together with recent mathematical results. First, by working out an
inversion formula for singular integrals that appear in the governing equations, we
derive a criterion using the nonlinear term of A as ∫

t∗
0 ‖

∂A
∂t − ν4A‖L∞dt =∞ for a

blowup at t∗. Second, for a particular form of a scale-invariant singularity of the non-
linear term we show that the vector potential becomes unbounded in its L∞ and BMO
norms. Using the stream function, we also consider the 2D Navier-Stokes equations to
seek an alternative proof of their known global regularity. It is not yet proven that the
BMO norm of vector potentials in 3D (or, the stream function in 2D) serve as a blow
up criterion in more general cases. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975406]

I. INTRODUCTION

We consider the fundamental problems of the incompressible Navier-Stokes equations

∂u
∂t
+ (u · ∇)u=−∇p + ν4u, (1)

∇ · u= 0 (2)

with smooth initial data of finite energy in R3. The study of the system (1) and (2) was pioneered in
Ref. 18. Lots of progress has been made since then, including2,3,5–12,15,19,21,23–26,28 and various kinds
of blowup or regularity criteria have been developed.

We define the vector potential A by u=∇×A in three dimensions, where∇ ·A= 0 and the stream
function in two dimensions by u= (∂2ψ,−∂1ψ). Both A and ψ have the same physical dimensions
as that of ν and they are critical. Our motivation is to characterize possible blowup in term of those
critical dependent variables, that is, the vector potential, or the stream function. This is inspired by a
number of recent mathematical results.

For example, a critical norm ‖u‖L3 is shown to be a blowup criterion in three-dimensions.9,27

Its proof is based an a sophisticated use of a contradiction argument based on backward uniqueness
of the heat equation. Also, a work by Koch and Tataru16 has shown global regularity provided that
‖u‖BMO−1 , which by definition ' ‖A‖BMO, is sufficiently small initially. (Hereafter f ' g means that
they are comparable in the sense c1g < f < c2g.) Let us clarify the relationship of that result to
the problems we consider in this paper. There are two kinds of partial regularity results; (a) global
existence existence for small initial data, and (b) blowup criterion for general (large) initial data. The
statement (a) is achieved by using a critical norm and often the same norm appears in the statement
of (b). Norms such as ‖u‖Ḣ1/2 and ‖u‖L3 are examples.29 As for ‖u‖BMO−1 (' ‖A‖BMO), (a) is true by
Ref. 16 as mentioned, but it is noteworthy that (b) is open.
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Furthermore, a recent work4 has investigated a possibility of a Besov norm ‖u‖B−1
∞,∞

serving as
a blowup criterion. Because

‖u‖B−1
∞,∞

< ‖u‖BMO−1 (' ‖A‖BMO),

their motivation is more ambitious than ours. They have obtained a dichotomy-type result: upon a
possible singularity at t = t∗, either (i) ‖u‖B−1

∞,∞
becomes unbounded, or (ii) it is bounded but there is a

gap in the norm near the critical time ���‖u(t∗)‖B−1
∞,∞
− limt→t∗ ‖u(t)‖B−1

∞,∞

���>Cν. It is not known whether
‖u‖B−1

∞,∞
becomes unbounded or not, but those results do show a growing interest in characterizing

possible singularities in term of weaker norms related with A. Hence it does make sense to seek a
possibility of ‖u‖BMO−1 (' ‖A‖BMO) serving as a blowup criterion.

Now, in view of embedding e.g.13

‖A‖BMO ≤C‖u‖L3 in 3D, (3)

and
‖ψ‖BMO ≤C‖u‖L2 in 2D, (4)

we are led to consider whether ‖A‖BMO serves as a blowup criterion in 3D and ‖ψ‖BMO in 2D. In
other words, we ask whether the following statements

blowup at t = t∗ in 3D ⇒ ‖A‖BMO→∞ as t→ t∗ (5)

and
blowup at t = t∗ in 2D ⇒ ‖ψ‖BMO→∞ as t→ t∗ (6)

hold true or not.
Indeed, by inserting the Leray bound

sup
x
|u(x, t)| ≥ c

ν1/2

√
t∗ − t

for a possible singularity into (12) below, because a principal-value integral has no regularizing
effects, we expect on a heuristic basis

∂A
∂t
'C

ν

t∗ − t
,

which suggests

A' ν log
1

t∗ − t
.

This paper discusses what we can tell about such a possibility on a more solid ground.
There are at least two reasons for studying 2D Navier-Stokes equations, for which global regu-

larity is already known. One is to introduce ideas in preparation for handling the 3D cases. The other
one is to try giving an alternative proof of the regularity. Note that if (6) holds, then by (4) we get a
contradiction immediately if a 2D Navier-Stokes solution develops a singularity, as the total kinetic
energy decreases in time.

The significance of the criterion with T [∇A] that we will derive is as follows. It will fix the
blowup rate under the assumption of a power-law singularity so that we can study as a first step
what will happen to A itself, by choosing a typical form of possible singularities which realises that
rate.

The rest of the paper is organised as follows. We derive the conditions for blowup for the 2D
and 3D Navier-Stokes equations in Sections II and III, respectively. In Section IV, we compute L∞

and BMO norms for simple scale-invariant singularities in both dimensions. Section V is devoted to
summary.

II. 2D NAVIER-STOKES EQUATIONS

While global regularity is well-established in two dimensions, we describe the 2D Navier-Stokes
equations here to show that the argument runs equally well, independent of spatial dimensions when
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we use the critical dependent variables. Using the stream function ψ, the Navier-Stokes equation can
be written20

∂ψ

∂t
− ν4ψ =

1
π

P.V.
∫
R2

[
(x − x′) × ∇ψ(x′)

]
(x − x′) · ∇ψ(x′)

|x − x′ |4
dx′, (7)

or, equivalently
∂ψ

∂t
− ν4ψ = ε jkRiRj∂kψ∂iψ, (8)

where Ri denotes the Riesz transforms defined by Rj =−(−4)−1/2∂j, j = 1, 2 and ε ij the 2D Edding-
ton tensor (i.e. ε12 =−ε21 = 1, ε11 = ε22 = 0). The right-hand side of (7) will be denoted by T [∇ψ]
hereafter.

We start considering the viscous term which is straightforward. The Beale-Kato-Majda blowup
criterion1 for the Euler equations is also valid for the Navier-Stokes equations, in fact even with a
weaker BMO norm.17 Combining this fact with the definition −4ψ =ω, the viscous term becomes
singular in the sense that ∫ t∗

0
‖ω‖BMOdt =

∫ t∗

0
‖4ψ‖BMOdt =∞.

To handle the nonlinear term, we need the following inversion formula for singular integrals.
Proposition 1. The singular integrals on the right-hand side of (8) can be inverted as

∂iψ∂kψ −
1
2
|∇ψ |2δik =−εklRiRl(ψt − ν4ψ) +

1
2

(ψt − ν4ψ)ε ik for i, k = 1, 2. (9)

Proof. i) We begin with a trial ansatz

∂iψ∂kψ =−εklRiRl(ψt − ν4ψ). (10)

By inserting (10) into the right-hand side of (8), we find

−ε jkRiRjεklRiRl(ψt − ν4ψ)= ε jkεklRjRl(ψt − ν4ψ)

=−RjRj(ψt − ν4ψ)=ψt − ν4ψ,

which reproduces the right-hand side of (8). However, the trial ansatz (10) is incomplete as its left-hand
side vanishes when i = k.

ii) To compensate for the inconsistency, we add a diagonal element

∂iψ∂kψ =−εklRiRl(ψt − ν4ψ) + Aδik .

Taking i = k, A can be fixed as |∇ψ |2 = 2A or A= 1
2 |∇ψ |

2. Now, the two of the resultant expressions
read

∂1ψ∂2ψ =R1R1(ψt − ν4ψ),

∂2ψ∂1ψ =−R2R2(ψt − ν4ψ),

from which we find
−RjRj(ψt − ν4ψ)=ψt − ν4ψ = 0,

which is still inconsistent.
iii) To complete the inversion formula, we need to add a skew-symmetric part as well

∂iψ∂kψ =−εklRiRl(ψt − ν4ψ) + Aδik + Bε ik .

The coefficient B can be readily fixed as B= 1
2 (ψt − ν4ψ) by taking e.g. i = 1, k = 2 and (9)

follows. �
As mentioned above, global regularity of the 2D Navier-Stokes equation has been well-known,

but here we seek characterizations of blowup pretending that a singularity exists as a preparation for
the similar analysis for the 3D case. We first note the following.
Proposition 2. IF a solution of 2D Navier-Stokes equations breaks down, the nonlinear term becomes
singular in the sense that ∫ t∗

0
‖T [∇ψ]‖L∞dt =∞. (11)
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Proof. Taking the BMO norm of (9), (actually c= 1/
√

2 suffices30) we have

c‖∇ψ‖2BMO ≤ ‖RR(ψt − ν4ψ)‖BMO +
1
2
‖ψt − ν4ψ‖BMO

≤ ‖ψt − ν4ψ‖L∞ +
1
2
‖ψt − ν4ψ‖BMO ≤

3
2
‖ψt − ν4ψ‖L∞ ,

where indices are suppressed for simplicity. Thus we find

c‖u‖2BMO ≤ ‖T [∇ψ]‖L∞ ,

with an updated constant c. Applying the Serrin’s criterion generalized by Ref. 17∫ t∗

0
‖u‖2BMOdt =∞,

we obtain (11). �
We note that if a power-law behaviour is assumed ‖T [∇ψ]‖L∞ =O

(
1

(t∗−t)α
)

, then α should satisfy
α ≥ 1.

The minimum blowup rates of both the viscous and the nonlinear terms are the same and the
time derivative term might not become unbounded because of cancellations between them. To shed
some light on this issue, in Section IV we will see how the stream function behaves for a particular
form of singularities.

III. 3D NAVIER-STOKES EQUATIONS

With the vector potentials A, the Navier-Stokes equations can be written22

∂A
∂t
− ν4A=

3
4π

P.V.
∫
R3

r × (∇ × A(x′)) r · (∇ × A(x′))
|r|5

dx′, (12)

where r= x− x′. The nonlinear term on right-hand side (12) is denoted by T[∇A]. Or, in components
we have

∂Ai

∂t
− ν4Ai = εkpqRjRk∂pAq(∂jAi − ∂iAj), (13)

where Rj here denotes the 3D Riesz transforms. As in two dimensions, if there is blowup at t = t∗, the
viscous term must obey ∫ t∗

0
‖4A‖BMOdt =

∫ t∗

0
‖ω‖BMOdt =∞,

because of −4A=ω and Refs. 1 and 17. For the singular integrals on the right-hand side of (13), a
similar inversion formula is available.
Proposition 3. The singular integral on the right-hand side of (13) can be inverted as

(∂pAq − ∂qAp)(∂jAi − ∂iAj)

−
δjp

2
(∂p′Aq − ∂qAp′)(∂p′Ai − ∂iAp′) −

δjq

2
(∂pAq′ − ∂q′Ap)(∂q′Ai − ∂iAq′)

= ε lpqRlRj

(
∂Ai

∂t
− ν4Ai

)
+

1
3
εpqj

(
∂Ai

∂t
− ν4Ai

)
, for i, j, p, q= 1, 2, 3. (14)

Proof. We first symmetrise (13) as

∂Ai

∂t
− ν4Ai =

1
2
εkpqRjRk(∂pAq − ∂qAp)(∂jAi − ∂iAj).

i) We try an ansatz of the form

(∂pAq − ∂qAp)(∂jAi − ∂iAj)= ε lpqRlRj(∂tAi − ν4Ai),
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to find that the right-hand side equals

1
2
εkpqRjRkε lpqRlRj(∂tAi − ν4Ai)= δklRjRjRkRl(∂tAi − ν4Ai)= ∂tAi − ν4Ai.

ii) The left-hand side have residuals

(∂p′Aq − ∂qAp′)(∂p′Ai − ∂iAp′) when j = p(= p′, say)

and
(∂pAq′ − ∂q′Ap)(∂q′Ai − ∂iAq′) when j = q(= q′, say),

whereas the right-hand side vanishes for these cases. To compensate for the discrepancies, we put

(∂pAq − ∂qAp)(∂jAi − ∂iAj) − aδjp(∂p′Aq − ∂qAp′)(∂p′Ai − ∂iAp′) − aδjq(∂pAq′ − ∂q′Ap)(∂q′Ai − ∂iAq′)

= ε lpqRlRj(∂tAi − ν4Ai).

When j = p, the left-hand side equals

(∂pAq − ∂qAp)(∂jAi − ∂iAj) − 3a(∂p′Aq − ∂qAp′)(∂p′Ai − ∂iAp′) − a(∂qAq′ − ∂q′Aq)(∂q′Ai − ∂iAq′)

= (1 − 2a)(∂pAq − ∂qAp)(∂jAi − ∂iAj),

hence we find that a = 1/2.
iii) Finally, we add the anti-symmetric part

ε lpqRlRj(∂tAi − ν4Ai)=(∂pAq − ∂qAp)(∂jAi − ∂iAj) −
δjp

2
(∂p′Aq − ∂qAp′)(∂p′Ai − ∂iAp′)

−
δjq

2
(∂pAq′ − ∂q′Ap)(∂q′Ai − ∂iAq′) + εpqjBi.

Choosing j = 3,1,2 respectively for (p, q) = (1, 2), (2, 3), (3, 1), its left-hand side equals

(R3R3 + R1R1 + R2R2)(∂t − ν4)Ai =−(∂t − ν4)Ai.

The right-hand side is given by

(∂1A2 − ∂2A1)(∂3Ai − ∂iA3) + (∂2A3 − ∂3A2)(∂1Ai − ∂iA1) + (∂3A1 − ∂1A3)(∂2Ai − ∂iA2) + 3Bi.

Taking e.g. i = 1 we find
−(∂t − ν4)A1 = 3B1,

which fixes B. �
On this basis, we show the main result.

Proposition 4. If a solution of 3D Navier-Stokes equations breaks down, the nonlinear term must
become singular in the sense that ∫ t∗

0
‖T[∇A]‖L∞dt =∞. (15)

Proof. By evaluating the both sides of (14) in BMO norm, we find

c‖u‖2BMO ≤ ‖(∂t − ν4)A‖L∞ ,

where c = 2 will be fine.31 Hence, if there is a singularity the nonlinear term becomes unbounded as

c
∫ t∗

0
‖u‖2BMOdt ≤

∫ t∗

0
‖T[∇A]‖L∞dt =∞,

by applying Refs. 1 and 17. �
Remark. An application of a simple maximum principle to (12) only implies that

‖A(t)‖L∞ ≤ ‖A(0)‖L∞ +
∫ t

0
‖T[∇A]‖L∞dt.

Therefore it follows from the condition ∫
t∗

0 ‖T[∇A]‖L∞dt < ∞ that ‖A(t)‖L∞ < ∞ only. This is
far from sufficient to claim regularity up to t∗, showing the above analysis contains more sub-
stance. Again, if a power-law behaviour ‖T [∇A]‖L∞ =O

(
1

(t∗−t)α
)

is assumed then α should satisfy
α ≥ 1.



015211-6 Koji Ohkitani AIP Advances 7, 015211 (2017)

If a solution to the Navier-Stokes equations breaks down, both the viscous term and the nonlinear
term must become unbounded. Under the power-law assumption, the minimum rates are basically
the same, apart from the slight difference in the norms. Therefore, substantial cancellations can take
place to drop the time derivative term to the sub-leading order so that the vector potential might
stay bounded. Hence it makes sense to see how the vector potential behaves for a particular form of
singularity. This will be studied in the next section.

IV. POSSIBLE SCALE-INVARIANT SINGULARITIES

In this section we study how ψ or A would behave if a solution to the Navier-Stokes equations
breaks down in finite time by considering specific forms of singularities.

We recall the Duhamel principle for this purpose. The governing equations(
∂

∂t
− ν4

)
A=T[∇A]

can be recast as

eνt4 ∂

∂t

(
e−νt4A

)
=T[∇A],

or

A(t)= eνt4A(0) +
∫ t

0
eν(t−s)4T[∇A](s)ds.

More explicitly, we have

A=
1

(4πνt)n/2

∫
Rn

exp

(
−
|x − y|2

4νt

)
A0(y)dy

+

∫ t

0
ds

∫
Rn

1

(4πν(t − s))n/2
exp

(
−
|x − y|2

4ν(t − s)

)
T[∇A](y, s)dy,

where n = 2 and 3. For n = 2, A should be replaced by the stream function ψ.

A. Two-dimensional case

Let us denote the spatial integral above by

I2D(x, τ)≡
1

4πντ

∫
R2

T [∇ψ](y, s) exp

(
−
|x − y|2

4ντ

)
dy, (16)

where τ = t − s with t the time of a fictitious blowup. As a first step, we consider a scale-invariant
singularity which was motivated by Refs. 2 and 14 and assume the following form

T[∇ψ](y, s)'
ν2

|y|2 + ν(t − s)
.

(See Subsection B. for details.) We have

I2D(x, τ) &
ν

4πτ

∫
R2

exp
(
−
|x−y |2

4ντ

)
|y|2 + ντ

dy.

Then the maximum value of the lowerbound (assumed to take place at x= 0) becomes

M2D(τ)=
ν

2τ

∫ ∞
0

exp

(
−

r2

4ντ

)
rdr

r2 + ντ
=
ν

4τ
e1/4E1

(
1
4

)
' 0.34

ν

τ
, (17)
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where use has been made of a formula∫ ∞
0

exp (−ax)
x + b

dx = exp (ab) E1(ab), (a, b> 0)

and E1(x)≡ ∫
∞

x
e−u

u du (x > 0) is a kind of exponential integrals. Therefore we confirm that ‖ψ‖L∞
→∞ as t→ t∗, so long as this special example is concerned. More generally, by carrying out angular
integration in (16) we find

I2D(x, τ) ≥
ν exp

(
−
|x |2

4τ

)
2τ

∫ ∞
0

exp
(
− r2

4ντ

)
r2 + ντ

I0

(
|x|r
2ντ

)
rdr,

=

ν exp
(
−
|ξ |2

2

)
2τ

∫ ∞
0

ue−u2/2

u2 + 1/2
I0(|ξ |u)du,

where ξ = x√
2ντ

, u= r√
2ντ

and

I0(x)=
1
π

∫ π

0
ex cos θdθ

is the modified Bessel function of the 0-th order. Because I0(x)→ 1 as x→ 0, the u-integral is

convergent for small ξ , we find that I2D ∝
ν
τ exp

(
−
|ξ |2

2

)
. It follows that

‖ψ‖BMO =∞ as t→ t∗

for the scale-invariant singularity.

B. Three-dimensional case

In three dimensions, the corresponding spatial integral is bounded by

I3D(x, t)=
1

(4πντ)3/2

∫
R3

T[∇A](y, s) exp

(
−
|x − y|2

4ντ

)
dy.

We consider a special case of a scale-invariant singularity.2,14 This ansatz of a scale-invariant singu-
larity on a parabolic cylinder is a rather strong assumption, but not entirely unnatural. Actually, this
is the motivation used in partial regularity theory for the Navier-Stokes equation, e.g. on p.776 of
Ref. 2. There the classical Leray bound

‖u‖∞ '
cν1/2

√
t∗ − t

has been generalised to

|u(x, t)| '
Cν√

|x|2 + ν(t∗ − t)
,

as |x|2 + ν(t∗ − t)→ 0. A straightforward extension of the scale-invariant form to the nonlinear term
of the A equation gives

T[∇A](y, s)'
ν2

|y|2 + ν(t − s)
, (18)

if a singularity dominates the whole flow field. Note that the physical dimension of T[∇A] is the same
as that of |u|2. This leads to a logarithmic singularity if we discard the viscous term in (12). When
the viscous term is taken into account, we need to consider the above spatial integral

I3D(x, τ) &
ν1/2

(4πτ)3/2

∫
R3

exp
(
−
|x−y |2

4ντ

)
|y|2 + ντ

dy. (19)
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We first compute the time evolution of the maximum value, assumed at x= 0 for simplicity, M3D(τ)
of the lowerbound

M3D(τ)=
ν1/2

(4π)1/2τ3/2

∫ ∞
0

r2 exp
(
− r2

4ντ

)
r2 + ντ

dr (20)

=
ν

2τ

(
1 − e1/4

√
π

2
Erfc

(
1
2

))
' 0.23

ν

τ
, (21)

where we have made use of a formula

∫ ∞
0

exp
(
−a2r2

)
r2 + b2

dr =
π

2b
exp

(
a2b2

)
Erfc(ab) (a, b> 0)

and the definition Erfc(z)= 2√
π ∫
∞

z e−u2
du. For this special case, just like in 2D we confirm that

‖A‖L∞→∞ as t→ t∗. Note that the prefactor 0.23 in (21) is smaller than the two-dimensional coun-
terpart 0.34 in (17). This means that diffusion has more significant regularization effects in 3D than
in 2D, which is consistent with intuition.

To take into account the spatial structure of the singularity, we carry out the angle integration in
(19) to find

I3D(x, t) &
ν1/2 exp

(
−
|x |2

4ντ

)
(4π)1/2τ3/2

∫ ∞
0

r exp
(
− r2

4ντ

)
r2 + ντ

sinh |x |r2ντ
|x |

2ντ

dr

=

ν1/2 exp
(
−
|ξ |2

2

)
(4π)1/2τ3/2

∫ ∞
0

ue−u2/2

u2 + 1/2

sinh(|ξ |u)
|ξ |

du,

where ξ = x√
2ντ

, u= r√
2ντ

. It is easily checked that the it reduces to the above result (20) in the limit

ξ→ 0. For fixed ξ , the u-integral is convergent because of sinh(|ξ |u) < 1
2 exp(|ξ |u), which means

that I3D ∝
ν
τ |ξ | exp

(
−
|ξ |2

2

)
for finite but small ξ . Hence we find that

‖A‖BMO =∞ as t→ t∗.

It is in order to study what happens to singularities with a different structure. A kink case

T[∇A](y, s)'
ν3/2 |y|

√
t − s

(
|y|2 + ν(t − s)

)
is of interest.32 In this case, we compute that

Ikink
3D (x, τ)=

ν exp
(
−
|ξ |2

2

)
π1/2τ

∫ ∞
0

u2e−u2/2

u2 + 1/2

sinh(|ξ |u)
|ξ |

du,

from which it follows that Ikink
3D ∝

ν
τ |ξ | exp

(
−
|ξ |2

2

)
for small ξ . This again shows that ‖A‖BMO→∞

and the maximum value is given by

Mkink
3D (t)=

1

(4π)1/2τ2

∫ ∞
0

r3 exp
(
− r2

4ντ

)
r2 + ντ

dr

=
ν
√
πτ

(
1 −

1
4

e1/4Erfc

(
1
4

))
' 0.375

ν

τ
,

showing a stronger blowup than (21).
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V. SUMMARY

In this paper, we have explored characterizations of putative blowup for the Navier-Stokes equa-
tions using the stream function in 2D and vector potentials in 3D, centering on their possible role as
blowup criteria.

We have discussed how we may justify such an expectation in two different ways. First, we
derive the conditions that nonlinear terms must satisfy if a singularity takes place. Second, for the
simple case of scale-invariant singularities in space-time, we compute how the stream function in
2D and vector potential in 3D actually behave in time. These show that not only the L∞-norm, but
also the BMO become divergent at the time of breakdown. It should be mentioned that even though
the 1/τ behaviour can be expected on dimensional grounds, it is necessary to carry out integration to
determine the prefactors to estimate their strength.

These results show the advantages of working with the critical dependent variables and further
studies are under way in that direction. As noted above, it has been shown that global regularity
follows if u is sufficiently small in BMO�1 norm initially.16 This means that no blowup can take
place if ‖A‖BMO is sufficiently small initially. It is of interest to try giving an alternative proof based
on (12).
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