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A previous series of experiments conducted by the authors under a controlled laboratory setting detected
substantive evidence of an effect of time of day, and the influence of various temporal variables, on
reported glare sensation from artificial lighting. To substantiate and generalise the postulated temporal
effects on glare response, a semi-controlled study was set up in a test room with direct access to daylight
and to an external view. Forty participants gave glare sensation votes at three times of day, randomised
over different days, while engaging with visual tasks under two shading conditions. Self-assessments of
several temporal variables — fatigue, hunger, caffeine intake, mood, prior light exposure, sky condition —
were provided by test subjects with their glare assessments. A multilevel statistical analysis of the data —
considering factors that were experimentally manipulated (fixed effects) and variables that changed over
time (random effects) — confirmed a statistically significant and practically relevant effect of time of day
on subjective evaluations of glare sensation. The influences detected showed a tendency towards an
increasing tolerance to discomfort from daylight glare as the day progresses. In addition, the variances
associated with temporal variables were found to partially confound the effect of time of day on glare
response. The results from this study substantiate previous laboratory findings and support the
conclusion that the conventional physical and photometric parameters utilised in glare indices and
formulae might not be sufficient to consistently describe and predict the occurrence and magnitude of

discomfort glare from natural and artificial lighting.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

thermal sensation and visual discomfort has recently been
hypothesised [10].

The subjective sensation of discomfort generated from a glare
source is not yet fully understood, and its robust prediction is still
characterised by uncertainties, particularly in the presence of
daylight [1].

Various studies have investigated whether there may be vari-
ables, other than those conventionally included in glare formulae,
which might influence the occurrence and magnitude of discomfort
glare. Among these, an influence of view interest on glare response
was detected in laboratory tests and from a real window [2—4].
Research conducted by Kuhn et al. [5] showed that glare may be
more frequently reported by older observers, while Pulpitlova and
Detkova [6] found a higher tolerance to glare in Japanese than in
European subjects. Akashi et al. [7], Cai and Chung [8], and Row-
lands [9] also suggested that glare sensitivity may not be consistent
across cultures. Moreover, a potential link between perceived
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A previous series of laboratory experiments conducted by the
authors detected a tendency towards greater tolerance to lumi-
nance increases in artificial lighting as the day progresses [11]. A
follow-up study explored the relationships between visual task
difficulty, temporal variables, and glare response at different times
of day, revealing that an increased time gap between test sessions
resulted in lower glare sensitivity to a constant source luminance
along the day [12]. Coherent with the literature [13], when lumi-
nance levels for each vote of glare sensation provided by test sub-
jects were regressed, a large scatter was observed. This suggested
that there could be other factors varying with time of day, not
experimentally controlled, which could influence glare response.
Among these variables, statistically and practically significant evi-
dence was found of greater tolerance to source luminance for
earlier chronotypes and for subjects not having ingested caffeine.
Further trends were detected, postulating an influence of fatigue,
sky condition, and prior daylight exposure on glare sensation [14].

On the basis of these earlier laboratory results, and of a
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comprehensive review of the literature presented by the authors in
previous work [11,12,14], this study sought to explore the influence
of time of day on glare response in the presence of daylight from a
window, and analyse the effects of several temporal variables on
the subjective evaluation of glare sensation as the day progresses.

2. Methods
2.1. Experimental design and procedure

To investigate temporal effects on glare response from daylight,
an experiment was designed using a test room provided with a
window and a view to an external natural scene (Fig. 1).

Forty subjects participated to the experiment, which was carried
out between the months of March and April, a period of mixed
weather varying from overcast to clear skies. Subjects were
recruited by purposive sampling via an online advertisement. No
criteria were used for the exclusion of volunteers. Participants were
all postgraduate students, 12 male and 28 female, varying in na-
tionality and cultural background (20 white, 17 Asian, 1 mixed, and
2 other), the mean age was 25.00 (SD = 2.59), 3 left-handed, 37
right-handed, 15 wore corrective lenses, and all were self-certified
as having no other eye problems.

The test room was located at the University of Nottingham, UK
(latitude: 52°56'19”N; longitude: 1°1142”W), and had internal di-
mensions of 3.45 m x 2.55 m and a ceiling height of 2.35 m. It
featured a south-east facing window (azimuth = 165°) of 0.87 m
width and 1.47 m height. The room surfaces had reflectance
properties of: pwai = 0.6, pceiling = 0.8, prioor = 0.2. The window was
equipped with user-controlled venetian blinds mounted on the
internal wall. Each slat of the shading system was convex in shape,
with dimensions of 110 c¢cm x 2.5 cm, and a distance of 2.5 cm
between each slat. The slats were white in colour, with reflectance

Fig. 1. Internal view of the test room.

of: pupper = 0.90 and piower = 0.72. A workstation (desk, chair, and
desktop computer) was placed inside the room at a 45° position
from the window. The surface of the desk had reflectance of
p = 0.42, dimensions of 120 c¢cm x 60 cm, and a height of 72 cm
from the floor. A flat screen 19” iiyama ProLite B19065 liquid crystal
display (mean self-luminance = 201.64 cd/m?) was used as the
Visual Display Unit (VDU) to present a series of visual tasks to test
subjects (Fig. 2).

A diagonal arrangement of the workstation was selected instead
of a desk positioned parallel or perpendicular to the window, since
previous studies conducted under similar layouts found that, when
asked to provide a glare assessment, subjects would often deviate
their sight from the display and look at the window, while photo-
metric instruments would capture the luminous condition of the
VDU [5,15,16]. Conversely, a desk positioned 45° clockwise from the
window allowed to mitigate the risk of unwanted head movements
between the VDU and the window when glare assessments were
made.

The selection of the desk position was also confirmed by a pilot
study (N = 10), where a parallel and a diagonal arrangement of the
workstation were explored. Coherent with the literature [5,15,16], it
was observed that, under the parallel position, subjects would often
look directly at the window when asked to provide a glare
assessment, while this behaviour was less apparent with the desk
placed diagonally. Also, under the parallel set up, there was an
unwanted visual parallax effect associated with the location of the
workstation, such that the computer screen would partially
obstruct certain parts of the window view. These unwanted effects
could be minimised under the diagonal arrangement.

The experimental procedure requested subjects to participate to
three test sessions, whose order was randomised over three
consecutive days, distributed at 3-h intervals:

e Morning: 09:00 or 09:30
e Midday: 12:00 or 12:30
e Afternoon: 15:00 or 15:30

At each test session, subjects were asked to perform two series
of three visual tasks [17]. Each series was completed under a
different shading setting: a default shading, with blinds set at a cut-
off slat angle that ensured predominantly diffuse daylight condi-
tions, yet allowing a perception of the external view; and a user-set
shading, where blinds were adjusted to the subject's own prefer-
ences (Fig. 3).

The procedure was consistent with the laboratory tests
described in Kent et al. [11,14] and Altomonte et al. [12], although
the evening session (18:00 or 18:30) was excluded from this study
due to seasonal variation in day length and sunset occurring before
its starting time.

During the tests, subjects were asked to make glare assessments
using as benchmarks the adaptations of Glare Sensation Votes
(GSVs) used by Iwata et al. [18,19], Iwata and Tokura [20], and
Mochizuki et al. [21]. These glare criteria correspond to the
sensation of visual discomfort experienced: ‘Just (Im)Perceptible’,
‘Just Noticeable’, ‘Just Uncomfortable’, and ‘Just Intolerable’. To
reduce the risk of self-interpretation, and ensure that the GSVs
could be understood by subjects according to the intentions of the
experimenter [1], each criterion was linked to a time-span
descriptor [22,23].

In the selection of the GSV scale it was considered that, when
forcing a continuous dependent variable (e.g., a glare index) into
discrete categories associated with subjective levels of glare
sensation (i.e., the 4-point GSV scale), there is a risk of uninten-
tionally making respondents report a stimulus that does not
accurately reflect their perceived evaluation of that stimulus [1].
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Fig. 2. Layout of the test room and list of equipment.

Fig. 3. Default (left) and user-set (right) shading settings.

However, according to the literature [24,25], a multiple criterion
technique of subjective appraisal should be preferred over a forced-
choice dichotomous scale (e.g., yes/no, comfortable/uncomfortable)
when evaluating individual differences from glare sensation. Also,
when the number of possible outcomes becomes too large, further
sources of bias might be potentially introduced through self-
interpretation or the abstraction caused by similarities in the se-
mantic meaning of categories anchored to the scale (i.e., it may not
be easy to discriminate distances between benchmark labels) [26].
For this reason, the 4-point GSV scale was preferred over the 9-
point multiple criterion technique scale used by other researchers
[2,3,18—20,22,23]. Similar adaptations have also been used in other
previous studies [15,27].

Before the subjects entered the test room, the venetian blinds
were adjusted at the default cut-off position in response to external

conditions in order to ensure that no direct sunlight was present in
the field of view of the observer during the first part of the test [16].

At the beginning of their first test, subjects were required to
position themselves at the desk facing the computer screen. A set of
instructions was then given, including a definition of discomfort
glare, the meaning of each GSV criterion and time-span descriptor,
and an illustration of how the experiment would run. At this point,
subjects filled in a short questionnaire featuring demographic in-
formation (age, gender, ethnicity, etc.) and self-assessment of per-
sonal factors (e.g., chronotype, photosensitivity). Participants were
then required to trial a series of simplified visual tasks to familiarise
themselves with the test procedure. The first consisted in a ‘landolt
ring’ pre-test, whereby subjects looked at a chart and counted the
number of rings that had a gap in a specified orientation [5,28]. In
the ‘letter searching’ pre-test, subjects looked at a short pseudo-
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text and counted the number of times a specific letter appeared
[16]. Finally, the ‘typing’ pre-test consisted of a short pseudo-text
that had to be manually typed into a space on the computer
screen [9,16,17]. All trial tasks were presented on the VDU.
Following the completion of each pre-test task, using a GSV scale
displayed on the screen, subjects were asked to indicate their
perceived magnitude of glare sensation given by the daylight
coming from the window. At this point, the experimenter collected
a series of seven Low Dynamic Range Images (LDRI) with varying
exposure values, and a single vertical illuminance measurement. All
data from the pre-test were recorded but were not included in the
main analysis. The pre-test was followed by a brief relaxation
period (1—2 min), whereby any further questions could be clarified.
At the end of the pre-test, the full experimental procedure started.

Extended versions of the same visual tasks were used during the
experimental stage, and were presented under a randomised
sequence. Since the procedure used a repeated-measure design,
these tasks have been selected to minimise the risk of unwanted
carry-over effects (e.g., learning), which could have occurred if
normal text (i.e., newspaper articles) had been used [29]. Moreover,
it was not considered feasible to provide letter searching and typing
tasks with content that was both independent from one another
and homogenous enough for a within-subject analysis. Instead,
pseudo-texts — featuring random letters with upper and lower case
and numbers — prevented repetition of identical stimuli, while
retaining the experimental integrity needed for statistical analysis
[30,31]. The likelihood of carry-over effects was further reduced by
randomising the content of the pseudo-texts used for each task. In
addition, since differences in perceived visual discomfort have been
associated to a variation in difficulty of the task due to a change in
size, contrast, or background of the text [12,32,33], the effect of
visual task difficulty was controlled by presenting characters al-
ways set at Arial, 12-point size, with black font colour on white
background, and at 2.0 line spacing.

The experimental procedure followed the same methodology of
the pre-test, with subjects performing the three visual tasks,
expressing their vote of glare sensation after each task, and
photometric measurements being taken after every glare assess-
ment. Once the first series of three tasks was concluded with the
shading device maintained at a default cut-off position, subjects
were asked to adjust the venetian blind slats to their preferred
configuration, and the procedure was repeated with three more
visual tasks presented in a randomised order (Fig. 4).

At the end of each test session, subjects were requested to fill-in
a final short questionnaire, providing self-reports of several tem-
poral variables: fatigue, hunger, caffeine intake, mood, prior light
exposure, and sky condition. The entire session lasted around
25—30 min.

2.2. Photometric measurements and glare indices

The experimental procedure adopted in this study involved
drawing a relationship between personal glare judgements and
objective photometric quantities [22,23]. This required the partic-
ipants to evaluate their visual conditions using subjective assess-
ment methods, and then combining votes of glare sensation with
simultaneous measurements of the luminous environment.

Three photometric instruments were used to ‘instantaneously’
capture the luminous environment of the observer: 1) a Charge-
Coupled Device (CCD) camera equipped with a fish-eye lens; 2)
an illuminance chromameter; and, 3) a series of horizontal illu-
minance sensors connected to a data-logger. The camera and illu-
minance chromameter were mounted on the desk and pointed
towards the VDU, which was assumed to be the visual fixation area.
They were fixed on adjustable arms to be as close as possible to the

observer's head without causing visual impairment or distraction
[5] (Fig. 5).

The CCD camera was a Canon EOS 70D equipped with a 4.5 mm
f/2.5 EX DC GSM 180° Sigma fish-eye-lens mounted on a Monfrotto
extendable arm. CCD devices utilise conventional photographic
techniques to obtain photometric measurements. In other words,
pictures taken by CCD cameras can be used for deriving luminance
values, which are contained within the scene pixels corresponding
to different points of measurement in the captured scene [34,35].
The quality of the images taken with the CCD camera depends on
both the aperture (f/N, whereby the f-number is the ratio between
the lens's focal length and the entrance diameter) and the time
during which the shutter is open (exposure time, (v)). At a constant
focal length, the aperture becomes proportional to the square of its
value (1/f?). The combination of both settings is often referred to as
image quality, or exposure value, and is proportional to v/f.
Therefore, if the sensitivity (ISO) and gain (whereby, the gain is the
ratio between the number of photoelectrons received by the CCD
and the number of pixels within the captured image) of the camera
sensor are constant, the quality of the image produced by the CCD is
solely proportional to v/f (i.e., the exposure time and aperture) and
can be fully expressed using (Eq. (1)) [36]:

f2
EV =3.32 10g10(7) (l)

In this study, for each photometric measurement, seven inde-
pendent Low Dynamic Range Images (LDRI) were taken with the
camera, using varying Exposure Values (EVs) to capture the full
range of luminance variation within the field of view [32]. Table 1
presents the properties of the LDRI images used for this investi-
gation, indicating the corresponding camera settings in terms of
aperture (f/N), exposure time (1/s), sensitivity (ISO), and exposure
value (EV).

The LDRI images were combined into a Radiance-formatted
High Dynamic Range Image (HDRI) using the ‘data fusion’ soft-
ware Photosphere [37], which merges several LDRIs into a single
HDRI [38]. The HDRI images could then be evaluated using the
Evalglare tool version 1.11 [17]. Once the images were combined,
the camera response function — a regression curve showing the
relationship between a luminance value and a pixel within the
image — was computationally derived through a self-calibration
process using a spot-point measurement taken with a Minolta LS-
100 luminance meter.

The second photometric instrument was a Minolta chroma-
meter CL-200a mounted vertically on the desk, adjacent to the
camera [16,17]. This was used to independently take vertical illu-
minance measurements to be compared with the illuminance
values calculated by Evalglare for each luminance image taken by
the CCD camera. Therefore, a comparison could be made between
the light reaching the sensor of the chromameter and that entering
the lens of the CCD camera.

The last photometric instruments were represented by three
horizontal illuminance sensors that were distributed evenly at a
distance of 20 cm from each other on the desk, and one horizontal
illuminance sensor placed centrally on the internal window sill.
These sensors were connected to a data-logger that recorded hor-
izontal illuminance every 10 s [16].

To check the integrity of photometric values obtained from the
instruments, a comparison was made between the vertical illumi-
nance measured by the chromameter and the illuminance calcu-
lated by Evalglare from the CCD camera images, under the default
and the user-set shading settings (Fig. 6).

Fig. 6 shows that the correlation between calculated and
measured values is high, while any minor deviation from the null
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Fig. 4. Experimental procedure.

Fig. 5. Photometric instruments.

Table 1
Properties of the LDRI images.

53

Image Aperture (f/N) Exposure time (1/s) Sensitivity (ISO) Exposure Value (EV)
1 2.8 1/10 400 6.33

2 2.8 1/100 400 9.67

3 2.8 1/500 400 12.00

4 2.8 1/1000 400 13.00

5 2.8 1/2000 400 14.00

6 2.8 1/4000 400 15.00

7 2.8 1/8000 400 16.00

hypothesis diagonal line can be accounted for by the slightly
different position of the camera lens and the chromameter [16].
Larger differences could be due to direct sunlight transmission
through gaps in the blind slats that, in some cases, might have hit
the camera lens but not the illuminance sensor. However, these
differences are not to be regarded as problematic [17].

To provide a more rigorous comparison, the Mean Absolute
Deviation (MAD) and the Root-Mean-Square-Error (RMSE) were
calculated for the illuminance values calculated from the CCD

images and those measured by the chromameter based on (Eq. (2))

and (Eq. (3)) [39,40]:

—1 n
MAD = < » |Eccp — Ecul
N H

(2)
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1 N
RMSE = | & ;wcm ~ Ecu)? (3)

where, Eccp is the illuminance calculated from the CCD images and
Ecwv is the illuminance measured by the chromameter.

The MAD and RMSE are estimates of the average error expressed
in the units of the variable of interest (i.e., lux) [39,40]. The MAD
measures how two data sets are likely to differ from their mean by
taking their average absolute value (Eccp — Ecm). This is to prevent
differences with opposing signs from cancelling each other out. The
RMSE is a measure of the deviation, on average, of a data point from
the null hypothesis line [41].

For the full set of data under both shading settings, Table 2
displays the mean and standard deviation (SD) for the illumi-
nance values calculated from the CCD images (Meanccp) and those
measured by the chromameter (Meancy), the MAD, and the RMSE.
The results indicate that the average errors, both MAD and RMSE,
are lower under the default shading setting. As per the graphical
observations, this suggests that the differences between calculated
and measured illuminance values were smaller when blinds were
set at their default position.

A range of photometric measures and glare indices were
collected and calculated to select an evaluation parameter that
would be appropriate to test the postulated temporal effects on
glare response from daylight. These included: illuminance at the
eye obtained from Evalglare (Eeye); illuminance at the window sill
(Esinn); luminance of the source (Lsource); average luminance (Layg)
(this being the average luminance within a given HDRI scene
evaluated by Evalglare); Daylight Glare Probability (DGP) [16];
Daylight Glare Index (DGI) [42,43]; Unified Glare Rating (UGR) [44];
and, CIE Glare Index (CGI) [45]. Rather than independently
reporting the statistical and practical significance of the effect of
experimental interest using each of the photometric values and
glare indices above, all outcomes corresponding to the different
times of day were plotted onto a product-moment correlation
matrix. The matrix uses the Pearson's correlation coefficient r as a
measure of the strength of the relationship that exists between
variables [41]. The Pearson's matrix showed that all correlations
between photometric values and glare indices were statistically

Table 2

Descriptive analysis of calculated (CCD) and measured (CM) illuminance values.
Shading setting Meanccp (SD) Meancy (SD) MAD RMSE
Default shading 634.41 (667.41) 654.54 (691.13) 26.70 95.89
User-set shading  1369.40 (1485.11)  1369.01 (1479.54) 78.94 220.46

significant and with substantive effect sizes, the only exception
being for the Egj;, which presented a weak association to other
variables. Therefore, it was inferred that, across the times of day,
there was a strong correlation between measured photometric
values (excluding the Egj), those calculated by Evalglare, and the
glare indexes considered; hence, a single metric could be sufficient
to evaluate the effect of experimental interest.

To identify the metric most suitable to this analysis, reference
was made to a study by Wienold [17], who detected statistical
significance when several photometric values (e.g., illuminance at
the eye, average image luminance, etc.) and glare indices (Daylight
Glare Probability (DGP), Daylight Glare Index (DGI), etc.) were used
to predict the possibility that an observer would be disturbed by
glare from a window. Out of these metrics, the DGP was charac-
terised by the strongest correlation with the probability of glare
occurrence. Also considering that other indices (e.g., Unified Glare
Rating and CIE Glare Index) have not been designed to deal with
non-uniform sources — as, for example, caused by venetian blinds,
luminance variations within a given view (e.g., due to the ground,
buildings, variation in cloud cover) [3,16], or small sources sub-
tending a solid angle below 0.01sr [46,47] — the DGP (Eq. (4)) was
selected as the evaluation parameter for this study:

|

B s 5 s S,i

DGP =5.87-10°-E, + 9.18-10 -log(l +ZE]37~P.2>
i v 1

+ 0.16
(4)

where, E, is the vertical illuminance at the eye (lux), Ls is the
luminance of the glare source detected by Evalglare (cd/m?), ws is
the subtended size of the source (sr), and P; is the position index
[16].

The DGP provides an indication of the percentage of people that
would be disturbed by the daylight glare present within the field of
view [17]. Unlike other glare indices, the DGP is mainly dependent
on the vertical illuminance at the eye, since the remaining factors
within the formula — Lg, ws, and P;,— have smaller weighted terms
[48].

2.3. Size and position of the glare source

The glare search algorithm adopted by Evalglare uses a task
definition criterion whereby a fixation area covering most of the
VDU is outlined within the image (the blue circle in Fig. 7).

If no clear fixation area is present in the scene (this was not the
case in this study), Evalglare reverts to a default detection method
by: calculating the average luminance of the entire image and
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Fig. 7. HDRI with Radiance formatting (left); Evalglare image with task definition (right).

treating as a glare source every pixel with a luminance value x-time
(sensitivity parameter) higher than the scene average; or, taking a
fixed value of luminance and treating every pixel that has higher
luminance than this as a glare source [17]. The sensitivity param-
eter for the search algorithm is recommended to be within 2—7
times the average task or scene luminance, although this is part of
ongoing research [48]. For this study, each pixel with a luminance
value exceeding by more than 5 times the average luminance of the
defined task-zone fixation area was treated by Evalglare as a glare
source. This implies that, in the assessments made by Evalglare, the
glare source might not necessarily correspond to the window area
(Figs. 8 and 9; the colours of the glare sources are arbitrarily set by
the tool, without being linked to glare magnitude).

When evaluating the HDRI images at each test session and time
of day, it was noted that the size and position of the glare sources
detected by Evalglare varied under all shading settings. This pre-
sented a problem since the literature suggests that the magnitude
of glare sensation can be influenced by both the size [13] and the
position of the source relative to the line of sight [49].

Consistent with the literature [3,50], to address this issue, rather
than measuring and controlling for the size and the position indices
of the individual glare sources independently — which, in the DGP
formula, are computed as distinct factors — the solid angle (w)
subtended by the glare source modified by the position index (P)
was used as a covariate, since it is a combination of both parame-
ters. Hence, by only controlling for the effect of one variable — i.e.,
the solid angle subtended by the glare sources modified by the
position index (denoted by Q) — high statistical power could be
retained in the analysis. Also, the distortion associated with the
‘nuisance’ variable could be removed [41]. This enabled to reduce

the total amount of error and allowed to isolate the effect of
experimental interest with greater accuracy [51]. Conversely, failing
to account for confounding variables would have inflated uncer-
tainty within the estimates associated with point values (i.e., mean,
variance, and confidence intervals) — increasing the risk of occur-
rence of Type I errors — and, as a consequence, might have led to
inaccurate conclusions [52,53].

2.4. Statistical analysis

2.4.1. Multilevel modelling

A multilevel model (MLM) with fixed effects (i.e., changes in
independent variables associated with variations in the evaluation
parameter or dependent variable) was initially fitted to compare
the DGP values for all variables that were experimentally manip-
ulated against each other, while controlling for the effect of glare
source size and position. The specified fixed effects were:

e Time of day;

e Shading setting;

e Task type;

e Glare Sensation Vote (GSV).

The MLM was selected for this study since it is a statistical
method suitable to analyse data with complex structures [54]. The
main difference between multilevel and unilevel models (e.g., t-
tests, ANOVA, etc.) — which test the variation caused by a single
(unilevel) effect by making comparisons between two or more in-
dependent variables — is that, in MLM analysis, the independent
variables are nested in a model with multiple levels (or effects) [55].

Fig. 8. Examples of task zone (blue circle) and glare sources detected by Evalglare at the Morning (left), Midday (middle), and Afternoon (right) test sessions under the default
shading setting. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Examples of task zone (blue circle) and glare sources detected by Evalglare at the Morning (left), Midday (middle), and Afternoon (right) test sessions under the user-set
shading setting. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Distribution of glare assessments across independent variables (fixed effects MLM).

Independent variables (fixed-effects) Level No. of conditions for the Independent Variables No. of glare assessments
Time of day 5 3 240

Shading setting 4 2 120

Task type 3 3 40

Glare sensation vote (GSV) 2 3 <40

Subject ID 1 - -

Table 3 displays the independent variables under examination
(specified as fixed effects), the level in the MLM model where each
variable is located, the number of conditions (independent groups)
for each independent variable, and the number of glare assess-
ments collected for each condition group.

For example, for the fixed effect ‘Time of Day’ (level 5), the
number of glare assessments collected for each condition (i.e., test
sessions) is the highest, since the total number of glare assessments
(N = 720; that is, 40 subjects providing glare assessments at 3 times
of day after performing 3 visual tasks under 2 shading settings) is
divided by three independent conditions (Morning, Midday, and
Afternoon). For level 2, ‘Glare Sensation Vote (GSV)’, the number of
glare assessments collected for each outcome variable is the lowest,
since the number of glare assessments is divided by the number of
condition groups at that level, in addition to all the condition
groups that exist within the independent variables located at
higher levels within the model. ‘Subject ID’ is featured at the bot-
tom of the model (level 1), representing personal regression slopes
associated with each subject, which allows the MLM to distinguish
within-subject variance from between-subject variance [41,56].

In this analysis, the GSV was specified as a fixed effect, although
this could have been also classified as a random effect [51]. In the
latter case, any variation on the reported GSV would have not been
considered as occurring due to experimental manipulation, but
rather to dynamic changes in the environmental conditions or to
variables that are personal to the test subject. However, the liter-
ature suggests that, in multilevel modelling, a variable should be
specified as a fixed effect (rather than a random effect) if it is of
primary experimental interest [57]. In previous studies
[2,3,5,16,17,22,23], reported levels of glare sensation have effec-
tively always been treated as fixed effects.

The MLM analysis postulates that the glare assessments recor-
ded in each of the upper level measurements (levels 2, 3, 4, and 5)
should be correlated both within each level (e.g., time of day) and
across each of the multiple levels (for example, time of day and
shading setting). In other words, since test subjects were requested
to provide votes of glare sensation on multiple occasions, at each
level within the model and for each condition group, there is a
relationship between reported levels of GSV. This relationship,

however, causes a lack of independence between observations that
are clustered on multiple levels, which has to be properly addressed
as explained below [58,59].

2.4.2. Independence of observations

In the analysis of the data, it was considered that glare assess-
ments might not have been independent from each other [60]. To
examine whether the assumption of independence had been
satisfied, the intra-class correlation (ICC) was calculated according
to the following formula (Eq. (5)):

Too
ICC—= - '00
cc (o0 % (5)

where, Tgg is the estimated variance (i.e., the variation in DGP
values at levels 2, 3, 4, and 5 (within-group variance)) and o2 is the
residual variance (i.e., the variation in DGP values at level 1 (be-
tween-group variance)) [55,61].

Utilising Eq. (5), the ICC calculated for the full set of data was:
0.002577/(0.002577 + 0.000340) = 0.883442. This outcome was
measured by the benchmarks provided by Julian [58] for low,
moderate, and large ICCs (ICC> 0.05, 0.15, and 0.45, respectively),
indicating a large intra-class correlation (ICC> 0.45). This suggested
that the assumption of independence had not been satisfied.

In interpreting this result, it was considered that MLM are tests
that account for dependencies among observations that occur at
multiple levels [60] by estimating a single variance structure that
represents how spread-out the random intercepts are around the
common intercept of each group [56]. In other words, the covari-
ance structure estimates how the variance parameters for each
subject are related across the fixed effects within the MLM [62], and
compares this to a specified covariance structure using a goodness-
of-fit index [41]. This effectively relaxes the assumption of inde-
pendence within the inferential test [62]. Therefore, it can be
concluded that multilevel modelling is an appropriate statistical
method of analysis when the assumption of independence has not
been satisfied [41,59,61,63,64], reinforcing the reasons behind its
selection for this study.
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2.4.3. Covariance structure and goodness-of-fit

Multilevel modelling offers a flexible approach to estimate
variance parameters, since direct assumptions regarding covari-
ance structure (i.e., how the variances associated with each inde-
pendent group are related to each other) can be specified [54]. This
assumption depends on experimental design; for example, in time-
based studies, the variance associated with independent groups
may change due to experience and practice effects [42]. In this
study, an autoregressive (AR(1)) covariance structure was adopted
within the variances associated with each independent group. In
fact, measurements taken at closer time steps were postulated to be
more highly correlated than for longer intervals [56]. Hence, it was
assumed that variances systematically changed over time [41].

To assess the suitability of the covariance structure applied to
the MLM, a goodness-of-fit index can be calculated. This index as-
sesses the overall fit — using a % likelihood ratio test — between the
estimated variance parameters and the selected covariance struc-
ture. The literature recommends that the Bayesian Information
Criterion (BIC) is used, which adjusts the statistical outcome based
on the number of fixed effects and the sample size used within the
MLM [41,56]. In interpreting the outcome of the BIC, the smaller the
value (Xz), the better the model fit. However, no absolute inter-
pretation can be made of the statistical outcome; that is, no
conclusive information can be inferred from this single statistical
value [41]. Instead, the BIC can be compared to equivalent values
from other models that contain either additional random effects
(retaining the original MLM with fixed effects) or use a different
covariance structure [56]. Therefore, by increasing the complexity
of the model (e.g., by including additional random effects), the BIC
provides statistical information that can be used to estimate the
presence of unknown parameters within the MLM.

2.4.4. Significance testing and estimates of covariance parameters

For each fixed effect, the main interaction was tested by ana-
lysing the significance of the difference between two or more
means at a single level — e.g., for level 5 ‘Time of day’: Morning vs.
Midday — without grouping the dependent variable (DGP) by other
fixed effects. In addition, interactive effects between the fixed ef-
fects and the covariate (i.e., the solid angle subtended by the glare
source modified by the position index (Q2)) were specified for in-
clusion in the inferential analysis. This required testing the signif-
icance of the differences between two or more means across
independent variables (e.g., level 5 ‘Time of day’ and level 4
‘Shading setting’).

In the MLM, all possible outcomes on the dependent variable
(DGP) were specified using the variables known to vary within the
experiment (i.e., time of day, shading setting, task type, and GSV).
This was assumed to ‘consume’ as much as possible of the scatter
commonly associated with subjective evaluations of glare sensation
[13]. In essence, the MLM was used to analyse whether there was
sufficient evidence in the data from the test room experiment to
infer that, at different times of day (Morning, Midday, and After-
noon), mean DGP values corresponding to equal reported levels of
glare sensation were statistically (significance testing) and practi-
cally (effect size) different from each other. This would allow sub-
stantiation of earlier findings [11,12,14] and provide statistical
evidence of the postulated temporal effects on glare response from
daylight.

All outcomes on the DGP were specified in the MLM using the
fixed effects available (main interactions and interactive effects).
The MLM analysis provides estimates of mean parameters and their
associated statistical difference. When a statistically significant
difference is detected, there is a reduction in the total amount of
variance present within the model [56]. Once all mean parameters
have been estimated, the MLM calculates whether the remaining

unexplained variance is significantly different from a model that
has variance equal to zero; this test is called the Wald Z statistic
[61].

The statistical power of the Wald Z statistic depends on the size
and evenness of the sample and, more importantly, on the number
of interactive effects within the model [64]. The more interactive
effects are specified, the smaller the estimated variance parameter
becomes. The null hypothesis is that the unexplained variance
within the model is equal to zero [56]. As an alternative hypothesis,
the Wald Z test seeks to demonstrate that there is sufficient evi-
dence from the data to infer that the unexplained variance is not
equal to zero and that, therefore, there are other unmeasured
variables that are unaccounted for within the MLM.

2.4.5. Parameter estimation

Two methods can be used for parameter estimation in multi-
level modelling: Maximum Likelihood (ML) and Restricted
Maximum Likelihood (REML). The ML provides more robust esti-
mates of fixed regression parameters [41], although this method is
dependent upon large sample sizes [61,64]. This limitation is not
problematic for main interactions or interactive effects (i.e., the
influence of multiple fixed effects on the dependent variable).
However, when the sample size becomes low due to the number of
levels within the MLM, parameter estimates may not be robust [65].
This is one of the disadvantages behind the use of MLM analysis,
since the sample distribution will always be lowest at the group
level [63]. In addition, the major caveat of multilevel modelling is
that different models can only be comparable if ML estimation has
been used [41]. For this reason, the Maximum Likelihood method
was adopted for this analysis.

3. Results
3.1. Fixed-effects multilevel model

Table 4 provides descriptive and inferential statistical values for
the photometric and physical parameters measured throughout the
experiment. The table presents the vertical illuminance, the source
luminance, and the glare source size and position — calculated from
the HDRI images and analysed using Evalglare — for the three times
of day and the two shading settings featured in this study. Since the
horizontal (desk) illuminance and the vertical illuminance received
at the CCD camera's lens were strongly correlated — N = 720,
p < 0.001, r = 0.71 — only the vertical illuminance has been re-
ported in the table. For each variable and under each shading
setting, the table displays the marginal mean of the corresponding
measurement parameter, the standard error, the degrees of
freedom (df), and the lower (CUr) and upper (Cly) confidence in-
tervals for the marginal mean values as calculated by the multilevel
model with ML estimation. The table shows that the mean average
values and the lower and upper confidence intervals of the source
luminance — corresponding to the detected glare pixels with
luminance exceeding by more than 5 times the average luminance
of the defined task-zone fixation area [17] — are relatively consis-
tent across times of day and shading conditions. Conversely, for the
same glare pixels, the mean values of the vertical illuminance and
of the glare source size and position vary significantly (p < 0.001),
as indicated by the MLM analysis.

On the basis of these data, Fig. 10 plots the marginal means (with
95% confidence intervals) of the adjusted Daylight Glare Probability
(DGP) index, controlled for the effect of glare source size and po-
sition, as calculated by Evalglare. On the x-axis, the figure presents
the glare sensation votes (GSV) given by test subjects, organised in
terms of time of day when assessments were provided and shading
settings. Since relatively few votes of ‘Just Uncomfortable’ and ‘Just
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Table 4
Descriptive and inferential statistical values for the photometric and physical parameters.
Variable Time Shading Mean Std. error df CI. Cly
Vertical illuminance [lux] Morning Default shading 603.66 134.77 236.18 338.15 869.17
User-set shading 1412.31 182.00 503.57 1054.74 1769.88
Midday Default shading 1077.36 136.99 250.77 807.57 1347.15
User-set shading 2039.60 150.28 335.14 1743.99 2335.21
Afternoon Default shading 446.17 132.79 226.14 115.50 707.84
User-set shading 862.41 160.05 334.20 547.61 1177.22
Source luminance [cd/m?] Morning Default shading 1789.06 336.23 224.81 1126.49 2451.62
User-set shading 5068.47 445.13 477.90 4193.82 5943.13
Midday Default shading 2183.56 341.22 237.69 1511.36 2855.76
User-set shading 5064.34 371.55 313.66 4333.31 5795.38
Afternoon Default shading 1755.50 331.68 215.68 1101.76 2409.24
User-set shading 4328.80 395.36 326.70 3551.03 5106.57
Glare source size and position [Q] Morning Default shading 0.24 0.03 179.03 0.18 0.31
User-set shading 0.44 0.04 352.70 0.36 0.52
Midday Default shading 0.33 0.03 186.10 0.26 0.39
User-set shading 0.38 0.03 230.69 0.31 0.45
Afternoon Default shading 0.05 0.03 173.35 0.01 0.10
User-set shading 0.18 0.04 251.76 0.11 0.26
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Fig. 10. Mean plots with 95% confidence intervals of adjusted DGP values (y-axis) for each GSV criterion, test session, and shading setting (x-axis) (fixed-effects MLM).

Intolerable’ were reported, these criteria were merged to perform
meaningful statistical analysis [5].

Under the default shading setting, the displays suggest a
consistent trend for central tendencies to correspond to increasing
levels of DGP for each GSV criterion as the day progresses. It is
worth reminding that a larger DGP signals a higher probability that
an observer may be disturbed by the glare source. Since each re-
ported vote of glare sensation (e.g., Just (Im)Perceptible) corre-
sponds to increasing mean values of DGP along the day (from
Morning to Midday to Afternoon), the plots suggest that — when
the blinds were set at their default position — subjects showed
higher tolerance to the combination of photometric and physical
parameters associated with the glare source once providing their
assessment at later test sessions (i.e., the same GSV was given un-
der conditions characterised by higher probability of glare occur-
rence). If substantiated by inferential testing, this would support an
effect of time of day on glare response, as detected in previous
laboratory experiments [11,12,14].

Under the user-set shading setting, this tendency is not

apparent. In fact, in this case, visual inspection of statistical pa-
rameters shows no prevailing tendency for any of the GSV criteria
as the day progresses. Therefore, there is no graphical evidence to
suggest that an effect of time of day was present on glare response
when subjects were allowed to control the setting of the venetian
blinds.

Initial inferential analysis of the data detected no statistically
significant difference for the (main and interactive) effect of task
type on glare response: F(2, 670.76) = 0.19, p = 0.83. Therefore, task
type was excluded from any post-hoc analysis in order to reduce
the number of levels within the model and prevent the occurrence
of Type II errors [56].

For every test, the DGP was calculated at a constant value of the
solid angle subtended by the glare source modified by the position
index to control for its temporal influence on the dependent vari-
able (Q = 0.27). This value (2) was defined by the statistical package
(SPSS) and was an adjustment derived from the MLM through
multiple regression, utilising the alpha-level (statistical signifi-
cance), the coefficient of the outcome (i.e., the mean difference in
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DGP calculated from the HDRI images evaluated by Evalglare)
weighted for the effect of the covariate (i.e., the solid angle sub-
tended by the glare sources modified by the position index calcu-
lated from the images evaluated by Evalglare) regressed onto the
fixed effects (i.e., time of the day), and the unexplained residual
variance remaining within the model [41,51].

Univariate tests were then performed, grouping the effect of
time of day by the reported GSV and by shading setting. These tests
compared the DGP at all times of day, similar to an Analysis of
Variance (ANOVA). Table 5 shows the inferential data from the
univariate tests (fixed-effects MLM), providing the shading setting,
the GSV criteria, the degrees of freedom (df), the test statistic (F),
and the statistical significance (p-value).

The univariate tests showed that, under the default shading
setting, the variations of DGP values at different times of day were
all statistically significant. However, when the blinds were adjusted
by subjects, no significant evidence was detected of an effect of
time of day for any of the GSV criteria.

To isolate the main effects between variables, contrasts were
made using pairwise comparisons [66], whereby all permutations
between times of day were compared against each other. The
directionality of the hypothesis was informed by examination of
descriptive statistics and visual inspection of central tendencies
from graphical displays [67]. Since no consistent directionality
between observed differences could be detected when considering
both shading settings, two-tailed hypothesis testing was adopted
[68]. In consideration of the experiment-wise error rate caused by
the significance level inflating across multiple tests carried out on
the same hypothesis — calculated as 1-(0.95)" = 0.14 (thus, risking a
14% probability of making at least one Type I error), where n = 3, i.e.
the number of pairwise comparisons performed — Bonferroni cor-
rections were applied [69]. As null hypothesis significance testing
(NHST) depends both on the size of the sample and on the
magnitude of the effect under examination [70], emphasis of the
inferential tests was placed on the effect size (i.e., a standardised
measure of the observed difference between groups) and not solely
on their statistical significance (which, particularly for small or
uneven samples, could confound effect size and sample size)
[71,72]. The effect size was calculated by the Cohen's d coefficient,
according to the formula (Eq. (6)) [73]:

AM

Opooled

Cohen’s d =

(6)

where, AM is the difference between the estimated marginal
means and Gpgoled is the pooled standard deviation adjusted for the
effect of glare source size and position by the MLM analysis.

The interpretation of the outcomes derived from the conserva-
tive benchmarks provided by Ferguson [74] for small, moderate,
and large effect sizes (d > 0.41, 1.15 and 2.70, respectively). Values
below 0.41 were not considered to be substantive (i.e., they were
deemed non-practically relevant effects).

For each GSV criterion, Table 6 provides the shading setting, the

times of day, the number of glare assessments (N) reported by test
subjects (xg and x1 corresponding to the test sessions considered in
the pairwise comparisons), the difference between the estimated
DGP marginal means (AM) and its associated two-tailed statistical
significance (NHST, p-value with Bonferroni correction), the stan-
dard error, the degrees of freedom (df), the lower (ClI;) and upper
(Cly) 95% confidence intervals for the difference between marginal
means, and the effect size (d).

Under the default shading setting, analysis of descriptive and
inferential statistics showed that mean differences (AMs) and effect
sizes (d) were consistently negative, hence signalling higher values
of DGP at later test sessions for each GSV. The AMs were highly
significant in 4 cases, significant in 2 cases, weakly significant in 1
case, and not significant in 2 cases. All differences detected had a
substantive effect size (Cohen's d absolute value: 0.41 < d < 1.15).
Inferential results from the fixed-effects MLM under the default
shading setting, therefore, confirmed the hypothesis of a tendency
for the DGP to increase as the day progresses for all the criteria of
glare sensation.

Under the user-set shading setting, no consistent directionality
of the sign could be observed for descriptive statistics (AMs), con-
fidence intervals, and effect sizes. The pairwise comparisons
detected no statistically significant differences, with effect sizes
that were practically relevant (d > 0.41) only in 3 cases. Therefore,
for the user-set shading, the fixed-effects MLM did not support the
postulation of an effect of time of day on reported glare sensation
from daylight.

Based on these inferential results, further analysis was con-
ducted to investigate whether, in the multilevel model, there was
evidence to suggest that the fixed effects alone were not sufficient
to explain the variance present within the data. The estimates of
covariance parameters showed a highly significant difference
(Wald Z = 12.28, p < 0.001), hence confirming that the unexplained
variances within the model were not equal to zero. This led to the
hypothesis that there might be other variables influencing the
spread in glare response that were beyond the specified fixed ef-
fects, suggesting that random effects — in this case, the self-reports
of temporal variables provided by test subjects at each test session
— needed to be included in the MLM [51,55].

3.2. Mixed-effects multilevel model

To include consideration of temporal variables in the analysis, a
mixed-effects MLM with fixed and random effects was fitted in
order to compare the DGP values for the times of day, shading
setting, and GSV against each other, while controlling for the effect
of glare source size and position.

In a mixed-effects MLM, fixed effects are generally factors that
do not change across individuals or that can be manipulated from
the experimenter, while a random effect is likely to fluctuate be-
tween test subjects [41]. A variable is specified as a fixed effect to
take into consideration the variability caused by the same partici-
pant across various conditions (i.e., within-subject variance).

Table 5
Univariate tests (fixed-effects MLM).
Shading GSV Numerator df Denominator df F p-value
Default shading Just (Im)Perceptible 2 685.86 6.87 0.00***
Just Noticeable 2 712.68 16.17 0.00"**
Just Uncomfortable/Intolerable 2 694.87 8.72 0.00***
User-set shading Just (Im)Perceptible 2 622.08 2.97 0.06 n.s.
Just Noticeable 2 692.99 245 0.09 n.s.
Just Uncomfortable/Intolerable 2 701.14 2.54 0.08 n.s.

* Weakly significant; ** significant; *** highly significant; n.s. not significant.
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Table 6
Pairwise comparisons between test sessions (fixed-effects MLM).

GSV Shading setting Times of day N(Xo, X1)  AMNHST Std. Error  df Cl, Cly Effect size (d)
Just (Im)Perceptible Default shading Morning vs. Midday 49, 37 —0.04* 0.01 678.78 —0.06 —0.01 -0.72
Morning vs. Afternoon 49,45 -0.13* 0.03 669.21 -0.19 -0.04 -0.74
Midday vs. Afternoon 37,45 —0.08 n.s. 0.03 640.49 -0.16 0.00 -0.50
User-set shading ~ Morning vs. Midday 72,72 -0.03ns.  0.01 675.85 —0.05 0.00 —0.40
Morning vs. Afternoon 72,84 —0.02 n.s. 0.01 514.32 -0.05 0.01 -0.18
Midday vs. Afternoon 72,84 0.01 n.s. 0.01 679.91 -0.02 0.03 0.09
Just Noticeable Default shading Morning vs. Midday 47, 61 —0.04** 0.01 692.97 —0.06 -0.02 -0.61
Morning vs. Afternoon 47,44 —0.13*** 0.02 706.00 -0.19 -0.07 —1.08
Midday vs. Afternoon 62, 44 —0.10"** 0.02 675.00 -0.15 -0.04 -0.73
User-set shading Morning vs. Midday 43,38 —0.03 n.s. 0.01 719.56 -0.06 0.00 -0.46
Morning vs. Afternoon 43,26 —0.02 n.s. 0.02 654.47 -0.07 0.02 -0.27
Midday vs. Afternoon 38,26 0.01 n.s. 0.02 693.69 -0.04 0.05 0.14
Just Uncomfortable/Intolerable Default shading Morning vs. Midday 24,22 -0.04 ns.  0.02 714.30 -0.06  0.00 -0.80
Morning vs. Afternoon 24,31 —0.14*** 0.03 679.73 -0.21 -0.06 —-1.12
Midday vs. Afternoon 22,31 —0.11%* 0.03 66140 -019 004 -0.80
User-set shading Morning vs. Midday 5,10 —0.02 n.s. 0.03 683.06 —0.08 0.05 -0.44
Morning vs. Afternoon 5,10 0.00 n.s. 0.03 711.68 —0.03 0.03 0.00
Midday vs. Afternoon 10, 10 0.02 n.s. 0.02 70470  -0.01 0.04 0.44

*Weakly significant; ** significant; *** highly significant; n.s. not significant.

d < 0.41 = negligible; 0.41 < d < 1.15 = small; 1.15 < d < 2.70 = moderate; d > 2.70 = large.

Conversely, a random effect assesses the variability caused by
different participants within each condition group related to the
independent variables (i.e., between-subject variance) [75]. One of
the main differences between specifying a variable as fixed or
random effect consists in the calculation of the variance parameters
[76]. In fact, the standard errors in fixed-effects models tend to be
underestimated since additional causes of variance (due to random
effects) contributing to the reliability estimates are not included.
Fixed-effects models tend to have higher ‘perceived’ statistical
power, although they might cause an inflation of the test statistics
and an elevation of the Type I error rate [77].

Within the fixed-effects MLM analysis, the Maximum Likelihood
(ML) method was adopted to estimate the variance parameters. In
order to compare the mixed-effects MLM with the fixed-effects
model by a likelihood ratio test (testing whether the explained
variances in both models are statistically different from each other),
it is important that the sample sizes do not differ, that the same
fixed effects are used, and that the ML method is specified in both
models [41,61]. The likelihood ratio test can be used to evaluate the
inclusion of random effects within the MLM in comparison to the
fixed-effects model. This was calculated by the difference (devi-
ance) in the Schwarz's Bayesian Information Criterion (BIC)
extrapolated from the fixed-effects (‘fixed’) and mixed-effects
(‘mixed’) MLM models (Eq. (7)) and their respective degrees of
freedom (df) (Eq. (8)) [78]:

X%hange = (Blc(ﬁxed)> - (Blc(mixed)> (7)

dfchange = kﬂxed - kmixed (8)
where, k is the number of parameters in each model.

The difference between the deviance (ABIC) is approximated to
the chi-squared (%?) distribution with degrees of freedom equal to
the number of random effects included in the mixed-effects MLM.
Since the likelihood ratio is effectively a null hypothesis signifi-
cance test, to more robustly support inferences, the pseudo squared
partial correlation (r?) was utilised as an estimator of effect size.
This was obtained by calculating the quantified proportion of
variance remaining in the model (residual variance (¢?)), after ac-
counting for the variability caused by the random effects (mixed-
effects MLM (0%mixed)) and the variability explained by the fixed
effects (fixed-effects MLM (6%fixed)), according to the following

formula (Eq. (9)) [55,61]:

2
Tinixed

Gﬁxed

Pseudor® =1 —

9)

where, the pseudo r? benchmarks the variance explained relative to
the total variance.

Also for this analysis, the tables by Ferguson [74] provided
values for small, moderate, and large effect sizes (r*> > 0.04, 0.25,
and 0.64, respectively).

The likelihood ratio test returned high significance,
v2(8) = 180.19, p < 0.001, r* = 0.51 (moderate), indicating that the
variances associated with the random effects were significantly
different from zero. This provided statistically and practically
relevant evidence that inclusion of the random effects — fatigue,
hunger, caffeine intake, mood, prior light exposure (direct, diffuse,
and artificial), and sky condition — in the mixed-effects model
offered a better fit to the data than the fixed-effects MLM,
explaining 51% (r? = 0.51) of the variance that was not accounted
for in the fixed-effects analysis.

The DGP was again used as the evaluation parameter to assess
the variances associated with each temporal variable (random ef-
fects). Estimates of the covariance parameters were calculated by
the standard deviation (i.e., the square root of the estimated vari-
ance), giving an indication of the spread that the random effects can
explain within the model. Table 7 presents the standard deviation
for each temporal variable included in the mixed-effects model, the
standard error, the Wald Z test statistic, and the lower (CIy) and

Table 7
Estimates of covariance parameters for each random effect (temporal variables).

Temporal variable  Standard deviation  Std. Error WaldZ CIp Cly
Fatigue 0.01 0.01 1.58 0.00 0.02
Hunger 0.01 0.01 1.61 0.00 0.02
Caffeine intake 0.03 0.02 1.85 0.02 0.06
Mood* 0.00 0.00 — — —
Direct exposure® 0.00 0.00 - -
Diffuse exposure 0.01 0.01 1.62 0.00 0.02
Artificial exposure  0.00 0.00 0.39 0.00 0.03
Sky condition 0.01 0.01 3.15 0.01 0.02

2 The covariance parameter is redundant; test statistic and confidence intervals
cannot be computed.
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upper (Cly) 95% confidence intervals for the standard deviation
associated with each random effect calculated from the multivar-
iate Wald test.

The standard deviation (descriptive) and the Wald Z (inferen-
tial) statistics both provide a measure of the variance that each
temporal variable causes on the DGP. With reference to the stan-
dard deviation, the results indicate that caffeine intake caused the
highest amount of variance in DGP values (SD = 0.03). Conversely,
the Wald Z test statistic associated the sky condition with the
highest amount of variance in the DGP (Wald Z = 3.15). These
conflicting results are likely due to differences in the scaling of the
self-reported temporal variables, whereby caffeine intake was
measured on a discrete dichotomous scale, while all other variables
were measured on a 7-point Likert scale. However, since the Wald Z
is a standardised value (comparable across temporal variables), the
data suggest that sky condition can explain the highest amount of
residual variance in the MLM, which cannot be explained by the
fixed effects alone. That is, the variance in DGP at a between-subject
level (expressed by the personal regression slopes for each test
subject) is largest when participants were exposed to different sky
conditions while reporting their glare sensation for each fixed ef-
fect specified in the MLM.

Fig. 11 plots the adjusted DGP marginal means (with 95% con-
fidence intervals) controlled for glare source size and position and
for the variances associated with the temporal variables included as
random effects in the MLM. On the x-axis, the figure presents the
votes of glare sensation organised according to times of day and
shading setting. As with the fixed-effects MLM, the GSV criteria of
‘Just Uncomfortable’ and ‘Just Intolerable’ were merged together.
The DGP was again calculated at a constant solid angle subtended
by the glare source modified by the position index (Q2 = 0.27).

Under the default shading setting, consistent with Fig. 10, the
displays show a consistent trend for central tendencies to corre-
spond to increasing levels of DGP for each GSV as the day pro-
gresses, hence confirming the outcomes of the fixed-effects MLM
and supporting the hypothesis of a temporal effect on glare
response from daylight when venetian blinds were set at their cut-
off position.

Under the user-set shading, contrary to the fixed-effects anal-
ysis, in the mixed-effects MLM an equivalent trend can also be

0.50

observed for the GSV criteria of Just (Im)Perceptible and Just
Noticeable, with central tendencies corresponding to higher levels
of DGP at later test sessions. This trend, however, does not appear to
be as strong as under the default shading setting, and it is not
evident for the combined GSV criterion of Just Uncomfortable/
Intolerable.

Table 8 shows the inferential data from the univariate tests
(mixed-effects MLM), providing the shading setting, the GSV
criteria, the degrees of freedom (df), the test statistic (F), and the
statistical significance (p-value).

Under both shading settings, the results returned statistically
significant differences in DGP values.

For each GSV criterion, Table 9 presents the results of the con-
trasts made to isolate the main effects between variables, providing
the shading setting, the number of glare assessments (N) reported
by test subjects (Xo and x; corresponding to the test sessions
considered in the pairwise comparisons), the difference between
the estimated DGP marginal means (AM) and its associated two-
tailed statistical significance (NHST, p-value with Bonferroni
correction), the standard error, the degrees of freedom (df), the
lower (CI.) and upper (Cly) 95% confidence intervals for the dif-
ference between marginal means, and the effect size (d).

Under the default shading setting, as for the fixed-effects MLM,
the mean differences (AM) and effect sizes (d) were consistently
negative. The pairwise comparisons detected statistically signifi-
cant and practically relevant differences in all but one case. The
mixed-effects inferential tests, thus, confirmed evidence of a tem-
poral effect on glare response when blinds were set at their cut-off
position.

Under the user-set shading, descriptive statistics (AM) and ef-
fect sizes showed consistent negative signs for the ‘Just (Im)
Perceptible’ and ‘Just Noticeable’ GSV criteria. Statistically signifi-
cant and practically relevant differences were detected in 5 cases.
Therefore, when blinds were adjusted by test subjects, after con-
trolling for the influence of temporal variables across the fixed-
effects (i.e., time of day, shading setting, and GSV), the mixed-
effects MLM also provided some evidence of an effect of time of
day on glare sensation from daylight, with the exception of the ‘Just
Uncomfortable/Intolerable’ criterion for which results did not allow
the definition of a prevailing tendency.
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Fig. 11. Mean plots with 95% confidence intervals of adjusted DGP values (y-axis) for each GSV criterion, test session, and shading setting (x-axis) (mixed-effects MLM).
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Table 8
Univariate tests (mixed-effects MLM).
Shading GSV Numerator df Denominator df F p-value
Default shading Just (Im)Perceptible 2 483.19 6.90 0.00***
Just Noticeable 2 505.79 21.21 0.00***
Just Uncomfortable/Intolerable 2 575.36 10.90 0.00***
User-set shading Just (Im)Perceptible 2 358.37 9.61 0.00***
Just Noticeable 2 581.18 443 0.01**
Just Uncomfortable/Intolerable 2 551.30 7.89 0.00***
*Weakly significant; ** significant; *** highly significant; n.s. not significant.
Table 9
Pairwise comparisons between test sessions (mixed-effects MLM).
GSV Shading setting Times of day N(Xo, X1)  AMNHST Std. Error  df Cly Cly Effect size (d)
Just (Im)Perceptible Default shading Morning vs. Midday 49, 37 —0.05** 0.01 448.67 -0.07 —0.02 -0.77
Morning vs. Afternoon 37,45 —0.06 n.s. 0.04 517.88 -0.14 0.03 -0.31
Midday vs. Afternoon 49, 45 -0.11* 0.04 511.83 -0.17 -0.01 -0.56
User-set shading ~ Morning vs. Midday 72,72 —0.03*** 0.01 393.96 —0.05 —0.01 —0.38
Morning vs. Afternoon 72,84 —0.01 n.s. 0.01 331.90 -0.03 0.02 -0.12
Midday vs. Afternoon 72,84 —0.04** 0.01 423.84 —0.06 -0.01 -0.47
Just Noticeable Default shading Morning vs. Midday 47, 61 —0.04** 0.01 439.42 —0.06 -0.02 -0.53
Morning vs. Afternoon 62, 44 —0.09*** 0.03 582.54 -0.16 -0.04 -0.59
Midday vs. Afternoon 47,44 —0.13*** 0.03 559.85 -0.20 —0.08 —-0.87
User-set shading ~ Morning vs. Midday 43,38 —0.03* 0.01 491.42 -0.06 —0.01 —0.46
Morning vs. Afternoon 38, 26 —0.01 ns 0.02 626.91 —0.04 0.03 —-0.12
Midday vs. Afternoon 43,26 —0.04 n.s. 0.02 613.83 -0.07 0.00 -0.47
Just Uncomfortable/Intolerable Default shading Morning vs. Midday 24,22 -0.03* 0.02 584.25 -0.07 -0.01 -0.41
Morning vs. Afternoon 22, 31 -0.12** 0.04 576.32 -0.20 -0.03 -0.71
Midday vs. Afternoon 24, 31 -0.15*** 0.04 558.94 —0.24 —0.07 —-0.94
User-set shading Morning vs. Midday 5,10 —0.08* 0.02 557.35 -0.13 -0.02 -1.57
Morning vs. Afternoon 10, 10 0.08*** 0.02 570.44 -0.03 0.13 1.33
Midday vs. Afternoon 5,10 0.00 n.s. 0.02 573.90 -0.06 0.06 0.00

*Weakly significant; ** significant; *** highly significant; n.s. not significant.

d < 0.41 = negligible; 0.41 < d < 1.15 = small; 1.15 < d < 2.70 = moderate; d > 2.70 = large.

3.3. Magnitude of temporal influences

With respect to the findings from the initial fixed-effects MLM
and from previous laboratory studies [11,12,14], the results of the
mixed model analysis demonstrated that, when controlling for the
temporal variables (random effects), indications of a direct influ-
ence of time of day on glare response from daylight could be
detected under both shading settings. In addition, the outcomes of
the inferential tests signalled that the temporal influence amplifies
as the day progresses, thereby suggesting that test subjects became
increasingly tolerant to the glare source at later times of day.

It is worth considering that the fixed-effects MLM provided no
evidence of an effect of time of day on subjective glare response
when participants were given the possibility to control the vene-
tian blinds (Table 6). Conversely, the influences of the random ef-
fects within the mixed model suggested that the variances
associated with the temporal variables partially confound the effect
of time of day on reported glare sensation. That is, once the vari-
ances of temporal variables were controlled — hence, increasing the
sensitivity of the inferential tests [41] — an effect of time of day on
glare response could be detected also under the user-set shading
setting. However, since the magnitude of the temporal influences
(effect size) was generally smaller under the user-set shading
(Table 9), it is plausible that — when blinds were adjusted by test
subjects — the presence of other uncontrolled variables or condi-
tions might have further masked or confounded the influences of
the temporal effects on glare perception.

Interestingly, when considering the default shading setting, the
effect sizes calculated from the pairwise comparisons in the fixed-
effects (Table 6) and mixed-effects (Table 9) MLM models do not
differ substantially. This leads to the hypothesis that the temporal

variables may have more influence on glare sensation once the
participants regulated the venetian blinds to their own visual
preference.

4. Discussion

The results of an experiment conducted in a test room with
direct access to daylight and to an external view have provided
evidence of a statistically significant and practically relevant effect
of time of day on glare response. Supporting the conclusions of an
earlier artificial lighting laboratory study [11], the influences
detected showed that the time interval between test sessions had a
direct relationship with increases in tolerance to discomfort from
daylight glare. In fact, when providing their judgement at later
times of day (under a randomised sequence of test sessions), sub-
jects gave the same assessment of glare sensation (i.e., GSV) to
conditions characterised by higher probability of glare occurrence.

The effect of time of day on glare response was particularly
evident when venetian blinds were set at a cut-off position
ensuring predominantly diffuse daylight conditions. Conversely,
when blinds were adjusted by the participants, evidence of tem-
poral influences on glare sensation was not detected by an initial
fixed-effects multilevel model (MLM) analysis.

Since previous laboratory studies had revealed a substantive
influence of temporal variables (e.g., fatigue, food ingestion,
caffeine intake, prior light exposure, sky condition) on glare
response [12], a mixed-effects MLM — considering factors that were
experimentally manipulated (fixed effects) and variables that
changed over time (random effects) — was fitted to analyse the
data. The mixed-effects MLM supported the findings of the fixed-
effects analysis under the default shading setting, and also



M.G. Kent et al. / Building and Environment 113 (2017) 49—64 63

detected indications of an effect of time of day on subjective glare
sensation under the user-set shading, demonstrating that the var-
iances associated with the temporal variables (random effects)
partially confounded the effect of time of day on glare response.

These results suggest that there is a need to break new grounds
in statistical analysis methods in order to systematically estimate
the spread associated with personal evaluations of glare sensation.
The methods adopted by most studies in the literature
[2,3,5,16,17,22,23], in fact, primarily considered fixed-effects ap-
proaches, without addressing random population influences (i.e.,
between-subject variance). This hinders determining whether (or
to what extent) fixed parameter estimates (e.g., mean and variance)
vary when considering the randomness of a sample population,
resulting in a between-subject variance often considerably larger
than the within-subject variance. A number of subjective factors
can characterise the variability between test subjects (i.e., inter-
individual differences) [56]. Nevertheless, while there are many
studies modelling the variability associated with intra-individual
differences in fixed-effects approaches, heterogeneous variance
models — accommodating time-invariant and time-varying pre-
dictors at various levels of the analysis, and for both fixed and
random effects (i.e., variance components) — are less common [79].

In this investigation, multilevel modelling (MLM) with consid-
eration of fixed and random effects has enabled the variances
associated with the effects of time of day (i.e., intra-individual
variability related to test session-to-test session, or within-subject
variance) and of temporal variables (i.e., inter-individual variability
related to participant-to-participant, or between-subject variance)
to be partitioned from each other [80]. This has allowed both
sources of variability to be estimated, enabling formal inferences
related to the effects of experimental interest and the sampled
population.

In interpreting the findings from this study, it was noted that the
magnitude of the temporal influences was smaller under the user-
set shading, hence suggesting the presence of other uncontrolled
variables or conditions that might have masked the effect of time of
day on glare perception once subjects adjusted the blinds to their
own visual preference.

In this context, the literature has postulated an effect of view
interest on glare sensation [2,3]. Further research would be
required to test the hypothesis that, under the user-set shading, the
presence of a view to a natural scene could have had an influence
on the effect of time of day on glare response.

An earlier laboratory study also postulated a greater tolerance to
artificial lighting for test subjects that were self-assessed as earlier
chronotypes [14]. Additional investigation would be needed to
isolate the main effect of chronotype on glare response and further
potential interactive effects between variables (i.e., the variation of
temporal influences associated to the circadian rhythm of physio-
logical markers).

In contextualising the influences detected, some methodolog-
ical limitations should be acknowledged.

Among these, in order to isolate the effects of experimental
interest, participants were requested to provide votes of glare
sensation using subjective rating scales. This might have increased
the response variance through uncertainty over the criteria
anchored to these scales [1].

Also, to retain high statistical power, the criteria of ‘Just Un-
comfortable’ and ‘Just Intolerable’ were merged into a single cate-
gory. However, one of the major limitations of a MLM analysis is
that most statistical calculations are asymptotic [64,65], i.e. they are
based on the assumption of large sample sizes. At higher levels of
glare sensation under the user-set shading, high statistical power
was not achieved and, consequently, this could have affected the
estimation parameters.

Finally, the findings from this study were derived from semi-
controlled test room conditions, whereby several variables poten-
tially influencing glare response were controlled or masked. As the
following step of this research, field-based studies will seek to
isolate temporal influences on glare response in a side-lit occupied
space with little or no control over the environmental settings.

5. Conclusions
This study has provided supportive statistical evidence that:

e As postulated by the literature [e.g., 13, 28, 42], glare response
from daylight is characterised by large individual differences;

e One of the causes of the scatter commonly associated with
daylight glare might be sought in the statistically significant and
practically relevant effect of time of day, and the variances
associated with related temporal variables, on subjective eval-
uations of glare sensation;

e The influences detected showed a tendency towards an
increasing tolerance to discomfort from daylight glare as the day
progresses;

e More complex statistical approaches, such as multilevel (MLM)
and mixed-effects models, are necessary to fully characterise
subjective glare response, due to the substantive influence
associated with the inclusion of random effects (temporal var-
iables) into a fixed-effects (i.e., factors that are experimentally
manipulated) analysis.

The results from this study support the conclusion that, for a
robust prediction of discomfort glare, there is a need to move
beyond sole consideration of the physical and photometric pa-
rameters commonly found in glare indices. This paves the way to
the development of new methodologies of experimental design
and rigorous statistical testing towards advances in daylighting and
visual comfort research.
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