
1 
 

Title 

UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve quantification 

accuracy 

 

Running Title 

Modelling UMI errors improves quantification accuracy 

 

Authors 

Tom Smith 1 

Andreas Heger1 

Ian Sudbery2* 

1. Computational Genomics Analysis and Training Programme, MRC WIMM Centre for 

Computational Biology, University of Oxford, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS 

2. Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western 

Bank, Sheffield, UK, S10 2TN 

* Corresponding author 

  

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


2 
 

Keywords 

UMI 

Unique Molecular Identifier 

Random Tag 

PCR-duplicates 

iCLIP 

Single Cell RNA-seq 

Sequencing  

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


3 
 

Abstract 1 

Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used 2 

in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct 3 

molecules can be distinguished from those arising through PCR-amplification of the same molecule. 4 

However, bioinformatic methods to leverage the information from UMIs have yet to be formalised. 5 

In particular, sequencing errors in the UMI sequence are often ignored, or else resolved in an ad-hoc 6 

manner. We show that errors in the UMI sequence are common and introduce network-based 7 

methods to account for these errors when identifying PCR duplicates. Using these methods, we 8 

demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and 9 

single cell RNA-seq datasets. Reproducibility between iCLIP replicates and single cell RNA-seq 10 

clustering are both improved using our proposed network-based method, demonstrating the value 11 

of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-12 

tools software package.  13 

  14 
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Background 15 

High throughput sequencing technologies yield vast numbers of short sequences (reads) from a pool 16 

of DNA fragments. Over the last ten years a wide variety of sequencing applications have been 17 

developed which estimate the abundance of a particular DNA fragment by the number of reads 18 

obtained in a sequencing experiment (read counting) and then compare these abundances across 19 

biological conditions. Perhaps the most widely used read counting approach is RNA-seq, which seeks 20 

to compare the number of copies of each transcript in different cell types or conditions. Prior to 21 

sequencing, a PCR amplification step is normally performed to ensure sufficient DNA for sequencing 22 

and/or enrichment for fragments with successful adapter ligation. Biases in the PCR amplification 23 

step lead to particular sequences becoming overrepresented in the final library (Aird et al. 2011). In 24 

order to prevent this bias propagating to the quantification estimates, it is common to remove reads 25 

or read pairs with the same alignment coordinates as they are assumed to arise through PCR 26 

amplification of the same molecule (Sims et al. 2014). This is appropriate where sequencing depth is 27 

low and thus the probability of two independent fragments having the same genomic coordinates 28 

are low, as with paired-end whole genome DNA-seq from a large genome. However, the probability 29 

of generating independent fragments mapping to the same genomic coordinates increases as the 30 

distribution of the alignment coordinates deviates from a random sampling across the genome 31 

and/or the sequencing depth increases. For example, in RNA-seq, highly expressed transcripts are 32 

more likely to generate multiple fragments with exactly the same genomic coordinates. The problem 33 

of PCR duplicates is more acute when greater numbers of PCR cycles are required to increase the 34 

library concentration, as in single cell RNA-seq, or when the alignment coordinates are limited to a 35 

few distinct loci, as in individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation 36 

(iCLIP). Random barcodes were initially proposed as a method to count the number of mRNA 37 

molecules in a sample (Hug and Schuler 2003), and have since been used to explicitly label PCR 38 

duplicates (McCloskey et al. 2007). More recently, random barcodes, referred to as unique 39 
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molecular identifiers (UMIs), have been employed to confidently identify PCR duplicates in high-40 

throughput sequencing experiments (König et al. 2010b; Kivioja et al. 2012; Islam et al. 2014). By 41 

incorporating a UMI into the same location in each fragment during library preparation, but prior to 42 

PCR amplification, it is possible to accurately identify true PCR duplicates as they have both identical 43 

alignment coordinates and identical UMI sequences (Figure 1a). In addition to their use in single cell 44 

RNA-seq and iCLIP (König et al. 2010b) , UMIs may be applied to almost any sequencing method 45 

where confident identification of PCR duplicates by alignment coordinates alone is not possible 46 

and/or an accurate quantification is required, including ChIP-exo (He et al. 2015), DNA-seq 47 

karyotyping (Karlsson et al. 2015), detection of rare mutations (Schmitt et al. 2012) and antibody 48 

repertoire sequencing (Vollmers et al. 2013).  49 

Accurate quantification with UMIs is predicated on a one-to-one relationship between the number 50 

of unique UMI barcodes at a given genomic locus and the number of unique fragments that have 51 

been sequenced. However, errors within the UMI sequence including nucleotide substitutions during 52 

PCR, and nucleotide miss calling and insertions or deletions (Indels) during sequencing, create 53 

additional artefactual UMIs. Nucleotide miss-calling and substitution errors affect only the UMI 54 

sequence itself and do not affect the alignment coordinates. Hence, these errors will inflate the 55 

estimation of the number of unique molecules at a particular genomic coordinate. These errors can 56 

be identified by examining all UMIs at a single genomic coordinate. On the other hand, UMI Indels 57 

will affect the alignment position also, leading to the assignment of reads to incorrect genome 58 

coordinates. Identification of such events requires the examination of sets of UMIs at neighbouring 59 

coordinates. Recombination events, also called ‘PCR jumping’ create chimeric sequences that may 60 

change either the UMI sequence and/or alignment. Miss-calling during sequencing is by far the most 61 

prevalent error, occurring 1-2 orders of magnitude more frequently than Indels for Illumina 62 

sequencing (Marinier et al. 2015; Schirmer et al. 2015, 2016). Recombination is common when 63 

sequencing amplicons, but much rarer with the shotgun sequencing approaches where UMIs are 64 

utilised (Schloss et al. 2011; Waugh et al. 2015). We therefore focus here on improving 65 
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quantification via UMIs by considering nucleotide miss-calling and substitution errors within pools of 66 

UMIs from the same genomic coordinate. Herein, we will refer to these errors as UMI errors. 67 

UMI errors have been considered in previous analyses (Macosko et al. 2015; Bose et al. 2015; Yaari 68 

and Kleinstein 2015; Islam et al. 2014). However, their impact on quantification accuracy has not 69 

previously been demonstrated and there is no consistency in the approach taken to resolve these 70 

errors. For example, Islam et al (2014) removed all UMIs where the counts were below 1 % of the 71 

mean counts of all other non-zero UMIs at the genomic locus, whilst Bose et al (2015) merged 72 

together all UMIs within a hamming distance of two or less, with little explanation as to how this was 73 

achieved. We therefore set out to demonstrate the need to account for UMI errors, to compare 74 

different methods for resolving UMI errors and to formalise an approach for removing PCR 75 

duplicates with UMIs.  76 

Results 77 

We reasoned that UMI errors create groups of similar UMIs at a given genomic locus. To confirm 78 

this, we calculated the average number of bases different (edit distance) between UMIs at a given 79 

genomic locus and compared the distribution of average edit distances to a null distribution 80 

generated by randomly sampling (see methods). Using iCLIP data (Müller-McNicoll et al. 2016), we 81 

confirmed that the UMIs are more similar to one another than expected according to the null, 82 

strongly suggesting sequencing and/or PCR errors are generating artefactual UMIs (see methods; 83 

Figure 1b, see Figure S1 for other datasets). Furthermore, the enrichment of low edit distances is 84 

well correlated with the degree of PCR duplication (Figure 1c). Overall, we detected a 25-fold 85 

enrichment for positions with an average edit distance of 1, compared to our null expectation. In 86 

contrast, when we compared the UMI sequences at adjacent positions we detected an 1.1-fold (+/- 87 

standard deviation of 0.1, see materials and methods) enrichment for UMIs which may have 88 

originated from a single nucleotide deletion, suggesting UMI Indels are much less prevalent than 89 

UMI errors, as expected. We then constructed networks between UMIs at the same genomic locus 90 
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where nodes represent UMIs and edges connect UMI separated by a single nucleotide difference. 91 

Whilst most of the networks contained just a single node, we observed that 3-36% of networks 92 

contained two or more nodes, of which 4-20% did not contain a single central node, and thus could 93 

not be naively resolved (Figure 1d). This indicates that the majority of networks are likely to 94 

originate from a single unique molecule prior to PCR amplification, but a minority of networks may 95 

originate from a combination of errors during PCR and sequencing or may originate from multiple 96 

unique molecules, which by chance have similar UMIs.  97 

 98 

Methods to identify unique molecules 99 

Many previous studies assume each UMI at a given genomic locus represents a different unique 100 

molecule (Collins et al. 2015; Shiroguchi et al. 2012; Soumillon et al. 2014). We refer to this method 101 

as unique. Islam et al (2014) previously identified the issue of sequencing errors and proposed 102 

removing UMIs whose counts fall below a threshold of 1% of the mean of all non-zero UMIs at the 103 

locus, a method we refer to as percentile. 104 

We have developed three methods to identify the number of unique molecules at a given locus by 105 

resolving UMI networks formed by linking UMIs separated by a single edit distance (Figure 1e). In all 106 

cases, the aim is to reduce the network down to a representative UMI(s) that accounts for the 107 

network; identifying the exact sequence of the original UMI(s) is not important for the purposes of 108 

quantification. The simplest method we examined was to merge all UMIs within the network, 109 

retaining only the UMI with the highest counts. For this method, the number of networks formed at 110 

a given locus is equivalent to the estimated number of unique molecules. This is similar to the 111 

method employed by Bose et al (2015) where UMIs with an edit distance of 2 or less were 112 

considered to originate from an identical molecule. We refer to this method as cluster. This method 113 

is expected to underestimate the number of unique molecules, especially for complex networks. We 114 

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


8 
 

therefore developed the adjacency method which attempts to correctly resolve the complex 115 

networks by using the node counts. The most abundant node and all nodes connected to it are 116 

removed from the network. If this does not account for all the nodes in the network, the next most 117 

abundant node and its neighbours are also removed. This is repeated until all nodes in the network 118 

are accounted for. In the method, the total number of steps to resolve the network(s) formed at a 119 

given locus is equivalent to the number of estimated unique molecules. This method allows a 120 

complex network to originate from more than one UMI, although UMIs with an edit distance of two 121 

will always be removed in separate steps. The excess of UMIs pairs with an edit distance of two 122 

observed in the iCLIP datasets indicate that some of these UMIs are artefactual. Reasoning that 123 

counts for UMIs generated by a single sequencing error should be higher than those generated by 124 

two errors and UMIs resulting from errors during the PCR amplification stage should have higher 125 

counts than UMIs resulting from sequencing errors, we developed a final method, directional. We 126 

generated networks from the UMIs at a single locus, in which directional edges connect nodes a 127 

single edit distance apart when na ≥ 2nb - 1, where na and nb are the counts of node a and node b. 128 

The entire directional network is then considered to have originated from the node with the highest 129 

counts. The ratio between the final counts for the true UMI and the erroneous UMI generated from 130 

a PCR error is dependent upon which PCR cycle the error occurrs and the relative amplification 131 

biases for the two UMIs, but should rarely be less than 2-fold. The -1 component was included to 132 

account for strings of UMIs with low counts, each separated by a single edit distance for which the 133 

2n threshold alone is too conservative. This method allows UMIs separated by edit distances greater 134 

than one to be merged so long as the intermediate UMI is also observed, and with each sequential 135 

base change from the most abundant UMI, the count decreases. For this method, the number of 136 

directional networks formed is equivalent to the estimated number of unique molecules. 137 

 138 

 139 
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Comparing methods with simulated data 140 

 To compare the accuracy of the proposed methods we simulated the process of UMI amplification 141 

and sequencing for UMIs at a single locus and varied the simulation parameters (see methods). To 142 

examine the accuracy of the 5 methods, we computed two metrics: The log2-fold difference 143 

between the estimate and ground truth Log2((estimate - truth) / truth) and the coefficient of 144 

variance (standard deviation / mean) across 10,000 iterations. Increasing UMI length or sequencing 145 

depth results in a linear increase in the degree of overestimation for unique and percentile (Figure 146 

2a, b), since increasing either parameter leads linearly increases the total amount of UMI sequence 147 

that may harbour errors. In contrast, the estimates from the network-based methods remain 148 

relatively stable, with directional showing the highest accuracy and lowest variance. We also 149 

simulated the effect of including a very long UMI (up to 50 bp) as there may be occasions where it is 150 

preferable to concatenate a UMI with another barcode, such as a sample barcode or cell barcode in 151 

single cell RNA-seq, leading to longer barcodes. We noted that the network-based methods showed 152 

reduced accuracy for very long barcodes (Figure S2a). Investigating further, we found this was 153 

correlated with an increase in UMIs with two errors where the single error intermediate was not 154 

observed, as detected by counting the number of networks which did not contain any of the initial 155 

UMIs prior to PCR and sequencing (Figure S2b). In order to resolve this inherent problem with very 156 

long UMIs, we modified the network-based methods so that edges joined nodes with an edit 157 

distance less than or equal to 2. This considerably decreased the number of networks without any 158 

initial UMIs and improved the accuracy of the network-based methods for very long UMI sequences 159 

(Figure S2a-b). 160 

Increased sequencing error rate leads to an exponential overestimation for unique and percentile 161 

(Figure 2c), with a 1.3-fold overestimation observed with an error rate of 0.01, compared to less 162 

than 1.05-fold for the network based methods. Increasing the rate of errors during the PCR step had 163 

a similar impact (Figure S2c). However, this was only observed when the rate of DNA polymerase 164 
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errors was simulated as greater than 0.001, considerably higher than reported error rates for even 165 

non-recombinant Taq DNA polymerase (Rittié and Perbal 2008; Whalen et al. 2016), confirming 166 

sequencing errors are likely to be the primary source of UMI errors. Increasing the number of PCR 167 

cycles or modifying the amplification bias had little impact on the relative accuracy of the methods 168 

(Figure S2d, e). Increasing the number of initial UMIs reduced the accuracy of the network-based 169 

methods, however even with 100 initial 8bp UMIs at a single locus, the network methods remained 170 

the most accurate (Figure S2f). 171 

Although the network methods performed very similarly, directional consistently yielded more 172 

accurate and less variable estimates. For example, when the sequencing depth was increased to 400 173 

reads, the average estimates were 19.92, 19.94 and 19.99  (truth=20) respectively for cluster, 174 

adjacency and directional methods, and the CVs were 0.0167, 0.0144 and 0.0099. We observed no 175 

difference between percentile and unique under most conditions tested. Increasing the number of 176 

reads sequenced per initial UMI, we were able to see an improvement in accuracy for percentile 177 

relative to unique when sequencing error rates are between 1 x 10-3 – 1 x 10-5, however, even under 178 

this specific parameterisation, the network-based methods are more accuracy (Figure S2g). 179 

In summary, under simulation conditions, the directional method outperforms all other methods, 180 

however adjacency and cluster performs equally well under simulation conditions that are expected 181 

to reflect a well-designed experiment and well-executed experiment. 182 

Implementation 183 

To implement our methods within the framework of removing PCR duplicates from BAM alignment 184 

files, we developed a command line toolset, UMI-tools, with two commands, extract and dedup. 185 

extract takes the UMI from the read sequence contained in a FASTQ read sequence and appends it 186 

to the read identifier so it is retained in the downstream alignment. extract expects the UMIs to be 187 

contained at the same location in each read. Where this is not the case, e.g with sequencing 188 
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techniques such as inDrop-seq (Klein et al. 2015), the user will need to extract the UMI sequence 189 

from the read sequence and append it to the read identifier. dedup takes an alignment BAM file, 190 

identifies reads with the same genomic coordinates as potential PCR duplicates, and removes PCR 191 

duplicates using the UMI sequence according to the method chosen. Time requirements for running 192 

dedup depend on number of input reads, length of UMI and level of duplication. Memory 193 

requirements depend on the number of output reads. On a desktop with a Xeon E3-1246 CPU, it 194 

takes ~220 seconds and ~100MB RAM to process a 32 million read single-end input file with 5bp 195 

UMIs to ~700,000 unique alignments. Inputs with longer UMIs may take significantly longer.  196 

 197 

Comparing methods with iCLIP data 198 

We next sought to examine the effect of these methods on real data, starting with the previously 199 

mentioned iCLIP data, which includes 3-6 replicates for 9 proteins (Müller-McNicoll et al. 2016). For 200 

replicate 1, the distribution of the average edit distance between UMIs present at each genomic 201 

locus showed enrichment for single edit distance relative to a null distribution from random 202 

sampling, taking into account the genome-wide distribution of UMIs (Figure 3a). For all samples, 203 

application of the directional method resulted in an edit-distance distribution resembling the null, 204 

whereas using the percentile method made little or no difference. The same was also true of other 205 

replicates of this dataset or other datasets (Figure S2). In some cases a residual enrichment of 206 

positions with an average edit distance of 2 was observed, but this was also reduced in most cases. 207 

We reasoned that if the directional method removed PCR duplicates more accurately, the 208 

reproducibility between replicates should be improved. To test this we turned to a previously 209 

defined measure of iCLIP reproducibility (König et al. 2010b) . Briefly, we identified in each sample 210 

the bases with two or more tags mapping at that positions and asked what percentage had a tag 211 

present in one or more other replicates for that pull-down. We limited the analysis to the first three 212 
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replicates for each protein. In each case, after de-duplication with the directional method, bases 213 

with two or more tags were more reproducible (Figure 3b), with the difference being very large in 214 

some cases (e.g. 21% vs 59% of bases reproducible for SRSF7 replicate 1). In contrast, the percentile 215 

method was little different from unique (Figure S3). 216 

In order to measure reproducibility of their data, Müller-McNicoll et al measured the spearman’s 217 

rank correlation between the numbers of significant tags in each exon across the genome. We 218 

repeated this calculation with data processed using either the unique or directional method, and 219 

compared the average spearman’s correlation between each sample and other replicates of the 220 

same pull down. In all cases we see an improvement in the correlation between replicates of the 221 

same pull down when data are processed using the directional method (Figure 3c). As expected, the 222 

degree of improvement for a particular sample was correlated with the enrichment of positions with 223 

an average edit distance of 1 (Figure S3; R2=0.4 ). Thus our method substantially improves the 224 

reproducibility of replicates in this iCLIP experiment.  225 

 226 

Comparing methods with Single Cell RNA Seq data 227 

To further demonstrate the utility of our network-based method, we applied it to two differentiation 228 

single cell RNA-seq data sets: the first reported use of UMIs in a single cell RNA-seq experiment 229 

seeking to describe a developmental pathway (Soumillon et al. 2014), referred to here as SCRB-seq, 230 

and a recently reported single cell RNA-seq utilising droplet-barcoding (Klein et al. 2015), referred to 231 

here as inDrop-seq . As before, network-based methods show a marked improvement in the 232 

distribution of edit distances over the percentile method and the unique method (Figure 4a). 233 

Improvements are generally less pronounced than observed with the iCLIP data, likely due to a lower 234 

maximum read depth in single cell RNA-seq. To demonstrate that this improvement in the edit 235 

distance lead to an improved accuracy in transcript abundance estimates we used the ERCC spike-236 
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ins. The naïve use of UMIs to identify PCR duplicates with the unique method improved the per-cell 237 

correlation between ERCC concentration and counts, compared to quantification without 238 

considering PCR duplicates (median coefficients were 0.86 and 0.89, respectively). As expected, the 239 

correlation was further improved using the directional method (median coefficient = 0.91; Figure 240 

4b).  241 

We applied hierarchical clustering to the SCRB-seq gene expression data using the unique method 242 

and observed the Day 0 and Day 14 cells separately relatively well (Figure 4c). However, 7 cells 243 

clustered with cells of the wrong time point, reflecting either a failure to commit to differentiation or 244 

miss-classification event due to noise in the expression estimates. With the directional method this 245 

was reduced to 5 cells, suggesting that failure to account for UMI errors can lead to miss-246 

classification in single cell RNA-seq. Applying hierarchical clustering to the the inDrop-seq gene 247 

expression estimates, we observed that 44/2717 (1.6%) of cells clustered with cells from another 248 

timepoint when using the unique method. Biological variation in the progression of differentiation 249 

may explain Day 2, Day4 and Day 7 miss-classification events. However, 19/44 events involved 250 

undifferentiated mES cells, suggesting these miss-classification events were the result of low-251 

accuracy quantification estimates (Figure 4d). With the application of the directional method, the 252 

rate of miss-classification was reduced to 0.9% and, strikingly, all the mES cells were correctly 253 

classified. These results indicate that application of the directional method improves the 254 

quantification estimates and can improve classification by hierarchical clustering.  255 

Discussion 256 

UMIs can be utilised across a broad range of sequencing techniques, however bioinformatic 257 

methods to leverage the information from UMIs have yet to be standardised. In particular, others 258 

have noted the problem of UMI errors, but the solutions applied are varied (Bose et al. 2015; Islam 259 

et al. 2014) . The adjacency and directional methods we set out here are, to our knowledge, novel 260 

approaches to remove PCR duplicates when using UMIs. Comparing these methods to previous 261 
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methods with simulated data, we observed that our methods are superior at estimating the true 262 

number of unique molecules. Of the three network-based methods, directional was the most robust 263 

over the simulation conditions and should be preferred. We note that the performance of all 264 

network-based methods will decrease as the number of aligned reads at a genomic locus approaches 265 

the number of possible UMIs, however this is an intrinsic issue with UMIs and not one that can be 266 

solved computationally post-sequencing. For this reason, we recommend all experiments to use 267 

UMIs of at least 8 bp in length and to use longer UMIs for higher sequencing depth experiments. The 268 

simulations also indicated that very long UMIs actually decrease the accuracy of quantification when 269 

not accounting for UMI errors, since the UMIs are more likely to accumulate errors. For experiments 270 

utilising long UMIs, network-based methods therefore show an even greater performance relative to 271 

the unique method. The simulations provide an insight into the impact on quantification accuracy 272 

and indicate that application of an error-aware method is even more important with higher 273 

sequencing depth. This is perhaps most pertinent for single cell RNA-seq, as cost decreases continue 274 

to drive higher sequencing depths.  275 

The analysis of iCLIP and single cell RNA-seq and data sets established that UMI errors present in all 276 

of the data sets tested and that quantification accuracy could therefore be improved by modelling 277 

these errors during the deduplication step. The frequency of UMI Indels was far less than UMI errors 278 

suggesting only minimal gains would be achieved by considering UMI Indels also. We observed an 279 

improved distribution of edit distances for all samples when using network-based methods to detect 280 

PCR duplicates, although theoretical reasoning and empirical evidence suggests that the extent of 281 

the errors depends on the quality of the sequencing base calls and the sequencing depth, as 282 

confirmed by the simulations.  283 

Modelling UMI errors yielded improvements in single cell RNA-seq sample clustering, demonstrating 284 

the value of considering UMI errors. Since iCLIP aims to identify specific bases bound by RNA binding 285 

proteins, datasets have a high level of PCR duplication. The effects of UMI errors are therefore 286 
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particularly strong, creating the impression of reproducible cross-linking sites within a replicate but 287 

not between replicates, for example only 21% of positions with two or more tags in SRSF7 replicate 1 288 

had any tags in replicates 2 or 3 when naive de-duplication was used, but this increased to 59% 289 

when the directional method was used (Figure 3b). Application of the network based methods 290 

increases the correlation between replicates in all cases, with larger differences in samples where 291 

PCR duplication was higher. From the results of the simulation and real data analyses, we 292 

recommend the use of an error-aware method to identify PCR duplicates whenever UMIs are used. 293 

We provide our methods within the open-source UMI-tools software 294 

(https://GitHub.com/CGATOxford/UMI-tools, included here as Supplementary File 1), which can 295 

easily be integrated into existing pipelines for analysis of sequencing techniques utilising UMIs.  296 

 297 

  298 
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Methods 299 

Simulation  300 

To simulate the effects of errors on UMI counts, an initial number of UMIs were generated at 301 

random, with a uniform random probability of amplification [0.8-1.0] assigned to each initial UMI. To 302 

simulate a PCR cycle, each UMI was selected in turn and duplicated according to its probability of 303 

amplification. Polymerase errors were also added randomly at this stage and any resulting new UMI 304 

sequences assigned new probabilities of amplification. Following multiple PCR cycles, a defined 305 

number of UMIs were randomly sampled to model the sampling of reads during sequencing 306 

(“sequencing depth”) and sequencing errors were introduced with at a given probability, with all 307 

errors (e.g A -> T, C -> G) being equally likely. The number of true UMIs within the sampled UMIs was 308 

then estimated from the final pool of UMIs using each method. To test the performance of the 309 

methods under a variety of simulation parameters, each parameter was varied in turn. The following 310 

values are the range of the parameter values tested with the value used for all other simulations in 311 

parentheses. Sequencing depth 10-400 (100), number of initial UMIs 10-100 (20), UMI length 6-16 312 

(8), DNA polymerase error rate 1 x 10-3 – 1 x 10-7 (1 x 10-5), sequencing error rate 1 x 10-1 -1 x 10-5 (1 x 313 

10-3), number of PCR cycles 4-12 (6), minimum amplification probability 0.1-1 (0.8). The maximum 314 

amplification probability was set at 1 with the probability of amplification for an each UMI drawn 315 

from a uniform distribution.  316 

 317 

Real data 318 

Re-analysis of the iCLIP and Single Cell RNA-seq data was performed with in-house pipelines 319 

following the methods described in the original publication with exceptions as highlighted below. 320 

Pipelines are available at https://GitHub.com/CGATOxford/UMI-tools_pipelines and as 321 

Supplementary File 2. 322 

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


17 
 

 323 

iCLIP 324 

Raw sequence was obtained from the European Nucleotide Archive (accessions SRP059277 and 325 

ERR039854) (Müller-McNicoll et al. 2016; Tollervey et al. 2011). Raw sequences were processed to 326 

move the UMI sequences to the read name using 'umi_tools extract'. Sample barcodes were verified 327 

and removed, and adaptor sequence removed from the 3' end of reads using the reaper tool from 328 

the Kraken package (version 15-065)  (Davis et al. 2013) with parameters: `-3p-head-to-tail 2 -3p-329 

prefix 6/2/1`. Reads were mapped to the same genome as the original publication (mm9 for SRSF 330 

dataset, hg19 for the TDP43 dataset) using Bowtie version v1.1.2 (Langmead et al. 2009a) with the 331 

same parameters as the original publications (-v 2 -m 10 -a).  332 

We measured the rate at which UMIs might represent Indel mutations by noting that an Indel in the 333 

UMI sequence would cause the final base of the presumed UMI to match the genomic base at 334 

position -1 relative to the mapping location of the read. Thus we examined each UMI at a particular 335 

position, and tested for the presence of a UMI that would correspond to a 1 bp deletion existed at 336 

the following base. We compared this to the situation when the UMIs at the following base were 337 

randomised, respecting the number of UMIs at the position and the genome-wide usage of each 338 

UMI. Enrichment was defined as the count at the unrandomised positions compared to the count at 339 

the randomised positions. We calculated this metric for one replicate of each pull down from 340 

SRP059277. See the Examining_indels notebook in the UMI-tools_pipelines repository (included as 341 

Supplementary File 2). 342 

Mapped reads were deduplicated using 'umi_tools dedup' using each of the possible methods and 343 

edit_distance distribution produced using the '--output-stats' option. For the cluster method only the 344 

'--further-stats' option was used to output statistics on the distribution of network topology types.  345 
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Significant bases were produced by comparing tag count height at each position compared to 346 

randomised profiles (König et al. 2010a), and bases with FDR<0.05 retained.  347 

Coverage over exons was calculated by collapsing Ensembl 67 transcripts. Where exons overlapped, 348 

they were restricted to their intersection and the number of reads mapped to significant bases 349 

counted for each exon. Exons that contained no tags in any sample were removed (König et al. 350 

2010a). Spearman's rho between all pairwise combinations of replicates of pulldowns for the same 351 

protein were calculated and averaged for each replicate. 352 

Reproducibility between replicates was calculated as per König et al (2010).  Bases with a depth 353 

greater than 2 were identified in the sample in question, and then the fraction of these bases that 354 

had one or more tags in other replicates was calculated. 355 

 356 

Single Cell RNA-seq  357 

For both datasets, raw data was downloaded from Gene Expression Omnibus 358 

(http://www.ncbi.nlm.nih.gov/geo). For The SCRB-seq data (GSE53638) (Soumillon et al. 2014), a 359 

single Day 0 (SRR1058003) and Day 14 (SRR1058023) sample were obtained. For the inDrop data 360 

(GSE65525) (Klein et al. 2015), the mouse ES cells sample 1 (SRR1784310), mouse ES cells LIF-, 2 days 361 

(SRR1784313), mouse ES cells LIF-, 4 days (SRR1784314) and mouse ES cells LIF-, 7 days 362 

(SRR1784315) samples were obtained. FASTQ files were extracted using SRA toolkit. The sequence 363 

read filtering, preparation and alignment differed for the two data sets. In both cases, one of the 364 

paired end reads contained adapter barcodes and UMI and the other read pair contained sequence 365 

for alignment. In addition, with the inDrop data, the position of the UMI within the read varied 366 

depending on the length of the cell barcode. For this reason, for both data sets, the UMIs had to be 367 

extracted from the reads with bespoke code rather than using UMI-tools extract. 368 
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For SCRB-seq samples, the UMI was extracted from read 2 and appended onto the read identifier of 369 

read 1 to generate a single-end FASTQ. Reads were filtered out if any of the following conditions was 370 

not met. Phred sequence quality of all cell barcode bases >=10 and all UMI bases >=30 and cell 371 

barcode matched expected cell barcodes. A reference transcriptome was built comprising all human 372 

protein-coding genes (Ensembl v75, hg19) and the ERCC spike-ins. Since expression quantification 373 

was being performed at the gene level, overlapping transcripts from the same gene were merged so 374 

that each gene contained a single transcript covering all exons from all transcripts. Reads were 375 

aligned to the reference transcriptome using BWA Aln (Li and Durbin 2009) with the following 376 

parameters: “-l 24 –k 2” to set seed length to 24 bp, and mismatches allowed in the seed to 2.  377 

For inDrop samples, the cell barcode and UMI were extracted from read 1 and read 2 was written 378 

out to a single end FASTQ file with the cell barcode incorporated into the file name and the UMI 379 

appended to the read identifier. Only reads containing the adapter sequence (allowing 2 380 

mismatches) were retained. For each sample, only reads containing one of the n most abundant cell 381 

barcodes were retained, where n was the number of cells in a given sample. The resulting single end 382 

reads were filtered using trimmomatic v0.32 (Bolger et al. 2014) with the following options: 383 

“LEADING:28 SLIDINGWINDOW:4:20 MINLEN:19” to remove bases with Phred quality scores below 384 

28 from the 5’ end, scan the reads in 4 bp sliding windows and trim when average quality score falls 385 

below 20, and retain all reads at least 19bp in length following trimming. Our alignment procedure is 386 

a deviation to the method used by Klein et al (2015) which involved alignment of reads to a 387 

reference transcriptome containing all transcripts (e.g not collapsed into one gene model), reporting 388 

up to 200 alignments per read, and dealing with multi-mapping alignments in a downstream step. As 389 

this method was not compatible with our de-duplication method we took a simpler approach. A 390 

reference transcriptome was built comprising all mouse protein-coding genes (Ensembl v78, mm10) 391 

plus ERCC spike-ins. Since expression quantification was being performed at the gene level, 392 

overlapping transcripts from the same gene were merged so that each gene contained a single 393 

transcript covering all exons from all transcripts. Reads were aligned to the reference transcriptome 394 
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with Bowtie v1.1.2(Langmead et al. 2009b) with the following options: “-n1 -l 15 -M 1 --best --strata” 395 

to allow one mismatch, set seed length to 15 bp and report only one alignment where multiple 396 

“best” alignments were found. The seed length and mismatch parameters were the same as the 397 

Klein et al (2015) alignment method. 398 

Following alignment, de-duplication was performed with UMI-tools dedup with unique, percentile 399 

and directional used in turn. Both data sets were generated with sequencing methods which 400 

generate reads with different alignment coordinates from the same initial DNA fragment (SCRB-seq, 401 

CEL-Seq). De-duplication was therefore performed with the “--per-contig” option so that the UMI 402 

and the contig (in this case, gene) rather than the exact alignment coordinates were used to identify 403 

duplicate reads. The “--stats-output” and “--further-stats” options were used to generate summary 404 

statistics for the alignment files pre and post de-duplication. Gene expression was quantified by 405 

counting the number of remaining reads per gene following de-duplication 406 

 407 

Exploratory gene expression analysis 408 

PCA was performed in R (R Core Team 2015) using the prcomp function. Hierarchical clustering was 409 

performed in R using the hclust function and heatmaps generated using the heatmap.2 function 410 

from the gplots package. Clustering was performed using 1 - spearman’s correlation coefficient as 411 

the distance measure and “ward.D2” as the clustering method. Since many genes show very low 412 

expression in the SCRB-seq data, the top 100 most highly expressed genes were selected for 413 

clustering. 414 

  415 
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Data access 416 

UMI-tools is available from pypi (package: umi_tools) and conda (channel: 417 

https://conda.anaconda.org/toms, package:  umi_tools) or GitHub 418 

(https://GitHub.com/CGATOxford/UMI-tools). Analyses conducted in this manuscript used version 419 

0.2.6 - archived on Zenodo as https://doi.org/10.5281/Zenodo.165403, and in Supplementary File 1.  420 

Analyses were performed using automated python pipelines. iCLIP specific analyses were completed 421 

using the iCLIPlib python library (manuscript in preparation). Figures were created by python 422 

pipelines or in Jupyter notebooks using the ggplot2 package (Wickham 2009) unless otherwise 423 

noted. All pipelines, notebooks and other code, along with configuration files used are available 424 

from the GitHub repository (https://GitHub.com/CGATOxford/UMI-tools_pipelines), archived on 425 

Zenodo as https://doi.org/10.5281/zenodo.215974 and in Supplementary File 2. 426 

 427 

  428 
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Figure Legends 

Figure 1. Modelling errors in UMIs 445 

A. Schematic representation of how UMIs are used to count unique molecules. Fragmented DNA is 446 

labelled with a random UMI sequence (short oligonucleotide; represented as coloured blocks). 447 

Following PCR amplification, sequencing and bioinformatics steps, the sequence read alignment 448 

coordinates and UMI sequences are used to identify sequence reads originating from the same initial 449 

DNA fragment (PCR duplicates) and so count the unique molecules. B. Average edit distances 450 

(rounder to integers) between UMIs with the same alignment coordinates. Genomic positions with a 451 

single UMI are not shown. Null = Null expectation from random sampling of UMIs, taking into 452 

account the genome-wide distribution of UMIs. C. Correlation between duplication rate and 453 

enrichment of positions with an average edit distance of 1 for iCLIP data. D. Topologies of networks 454 

formed by joining reads with the same genomic coordinates and UMIs a single edit distance apart. 455 

Single hub = One node connected to all other nodes. Complex = No node connected to all other 456 

nodes. E. Methods for estimating unique molecules from UMI sequences and counts at a single 457 

locus. Where the method uses the UMI counts, these are shown. Red bases are inferred to be 458 

sequencing errors, blue bases inferred to be PCR errors. The inferred number of unique molecules 459 

for each method is shown in parentheses.  460 

Figure 2. Comparison of methods with simulated data 461 

In each panel, all but one of the simulation parameters are held constant, with the remaining 462 

parameter varied as shown on the x-axis. A. UMI length. B. Sequencing depth. C. Sequencing error 463 

rate. Left plot shows the accuracy of quantification, presented as the log2-transformed normalised 464 

difference between the estimate and ground truth. Right plot shows the coefficient of variation 465 

(standard deviation / mean). The dashed red line represents the value used for this parameter in all 466 
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other simulations. The dashed grey line represents perfect accuracy. The unique and percentile 467 

methods give identical results with the parameters shown here and are hence overplotted. 468 

Figure 3. UMI-Tools improves reproducibility between iCLIP replicates  469 

A.  Average edit distances between UMIs with the same alignment coordinates. Genomic positions 470 

with a single UMI are not shown. Null = Null expectation from random sampling of UMIs, taking into 471 

account the genome-wide distribution of UMIs. Only the first replicate of the dataset is shown for 472 

each pull down B.  iCLIP reproducibility as represented by the percentage of positions with >2 tags 473 

also cross-linked in at least one of 2 other replicates. C. Spearman’s rank correlation between the 474 

numbers of significant tags in each exon  475 

Figure 4. UMI tools improves accuracy and clustering in Single Cell RNA-seq 476 

A. Average edit distances between UMIs with the same alignment coordinates following removal of 477 

PCR duplicates using the methods indicated on the x-axis. Genomic positions with a single UMI are 478 

not shown. Null: Null expectation from random sampling of UMIs, taking into account the genome-479 

wide distribution of UMIs. Top = SCRB-seq. Bottom = inDrop-seq. B. Distribution of pearson 480 

correlation coefficients between log ERCC concentration and log counts for raw reads (UMIs 481 

ignored) and unique and directional methods. C & D. Hierarchical clustering based on the gene 482 

expression estimates obtained using unique and directional Colour bars represent differentiation 483 

stage. C. SCRB-seq. D. inDrop-DSeq. Red arrow indicates mES Cells clustering with Day 4 cells. 484 

 

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Control Nxf1 SRSF1 SRSF2 SRSF3 SRSF4 SRSF5 SRSF6 SRSF7

0.00
0.25
0.50
0.75
1.00

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

O
bs

er
ve

d
N

ul
l

Fr
ac

tio
n

Edit distance

R2 = 0.86

1

2

3

4

5

6

50% 60% 70% 80% 90% 100%
Duplication Rate

Lo
g 2

 e
nr

ic
hm

en
t o

f 1
−e

di
t p

os
iti

on
s

0.00

0.25

0.50

0.75

1.00

C
on

tro
l

N
xf

1
SR

SF
1

SR
SF

2
SR

SF
3

SR
SF

4
SR

SF
5

SR
SF

6
SR

SF
7

Fr
ac

tio
n 

of
 p

os
iti

on
s

Complex Single hub

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


A C

B

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


A

BBB

C

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Unique Directional

A

Unique Directional D

C

B

D
en

si
ty

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.209601.116Access the most recent version at doi:
 published online January 18, 2017Genome Res. 

  
Tom Sean Smith, Andreas Heger and Ian Sudbery
  
Identifiers to improve quantification accuracy
UMI-tools: Modelling sequencing errors in Unique Molecular

  
P<P

  
Published online January 18, 2017 in advance of the print journal.

  
Manuscript

Accepted

  
manuscript is likely to differ from the final, published version. 
Peer-reviewed and accepted for publication but not copyedited or typeset; accepted

  
Open Access

  
 Open Access option.Genome ResearchFreely available online through the 

  
License

Commons 
Creative

  
.http://creativecommons.org/licenses/by/4.0/as described at 

available under a Creative Commons License (Attribution 4.0 International license), 
, isGenome ResearchThis manuscript is Open Access.This article, published in 

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

object identifier (DOIs) and date of initial publication. 
by PubMed from initial publication. Citations to Advance online articles must include the digital 
publication). Advance online articles are citable and establish publication priority; they are indexed
appeared in the paper journal (edited, typeset versions may be posted when available prior to final 
Advance online articles have been peer reviewed and accepted for publication but have not yet

 http://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on January 23, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.209601.116
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.209601.116&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.209601.116.full.pdf
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

