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Abstract: We report bulk heterojunction organic solar cells utilising the electron-donating 

polymer PffBT4T-2OD blended with the fullerene acceptor PC71BM, with cells explored based on 

both conventional and inverted architectures. As charge-transporting layers, we utilise the 

hole-transporting polymer poly (2, 3-dihydrothieno-1, 4-dioxin)-poly (styrenesulfonate) 

(PEDOT:PSS) in conventional device architectures, and zinc oxide (ZnO) electron-transport in 

inverted devices. Critically, all charge-transporting layers and the 

poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt- (3,3000-di(2-octyldodecyl) 2,2’; 50,2’’; 

500,2000 -quaterthiophen-5,5000-diyl)] (PffBT4T-2OD): [6,6]-phenyl C71 butyric acid methyl 

ester (PC71BM) active layer blend were spray coated in air. We demonstrate champion devices 

having a power conversion efficiency of 8.13% and 8.43% for conventional and inverted 

architectures respectively. 
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Highlights: 

ЬPEDOT:PSS, ZnO precursor and PffBT4T-2OD:PC71BM films were fabricated into organic 

photovoltaic (OPV) devices, with all layers spray coated in air. 

ЬThe Power Conversion Efficiency (PCE) of OPV devices utilising a PEDOT:PSS hole transport 

layer and PffBT4T-2OD:PC71BM active-layer was 8.13%. 

ЬThe PCE of OPV devices utilising the ZnO electron transport layer and PffBT4T-2OD:PC71BM 

active-layer was 8.43%. 



Organic photovoltaic devices (OPVs) represent a promising technology to convert solar energy to 

electricity, and can in principle be fabricated at low-cost on large area and flexible substrates. [1-5] 

In the past decade, the performance of OPVs has improved dramatically as a result of the 

development of new organic semiconductors and innovative processes for manufacture. Best 

devices now have a power conversion efficiency (PCE) exceeding 10%; [6, 7] a value that has 

been considered as a milestone in the commercialisation of OPVs.[8] In order to advance the 

development of OPVs, it is still necessary to explore new, efficient semiconducting materials, 

together with innovative ways to fabricate devices. 

Recently, a polymer namely poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt- 

(3,3’’’-di(2-octyldodecyl) 2,2’;5’,2’’;5’’,2’’’-quaterthiophen-5,5’’’-diyl)] (PffBT4T-2OD) has been 

synthesised and has attracted much interest.[9, 10] When processed appropriately, 

PffBT4T-2OD:PC71BM blend films exhibit high crystallinity, high hole mobility and can form 

polymer domains having high purity; a combination of factors that allow this material to work in 

an efficient manner in an OPV device even when it is presented as a relatively thick layer (up to 

300 nm). Using this material, OPVs have now been reported having a PCE up to 10.8%.[10] 

Although the efficiency is one of the highest yet reported for a polymer-based device, the 

conditions used in thin-film deposition and device fabrication can influence the degree of polymer 

aggregation and crystallisation and thus can significantly affect device performance.[9] We note 

that the polymer PffBT4T-2OD has a tendency to aggregate in solution; a property that presents a 

significant obstacle during device fabrication. 

Most reports of OPV fabrication using PffBT4T-2OD:PC71BM rely on the use of spin coating 

under a nitrogen atmosphere. Spin coating however cannot be used in a high volume fabrication 



process, and critically it is a wasteful process that requires the use of relatively high concentration 

solutions resulting in problems due to aggregation and loss of expensive material. In contrast, 

spray coating has been used in the fabrication of OPVs and is compatible with large area 

processing over flexible substrates.[11-15] Notably, most work on the development of spray cast 

OPVs have explored blend of the polymer poly (3-hexylthiophene) (P3HT) and (6, 6)-phenyl-C61 

butyric acid methyl ester (PCBM). These materials are seen as being a prototypical OPV system, 

but are limited by relatively low PCE.[16] More recent work has however explored spray-cast 

blends of amorphous donor-acceptor co-polymers with fullerene-derivative electron acceptors, 

with improved device performance demonstrated. [11, 13, 17, 18] 

Spray-coating has also been used to deposit the various charge transporting layers used in OPV 

devices. [19] In single junction OPV device based on a conventional architecture, the active layer 

is deposited onto a hole-transporting layer. Here, a widely used material is the polymer 

PEDOT:PSS which can be spray-cast from an aqueous solution in air[12]. In so-called inverted 

devices, the active-layer blend is instead deposited on an electron-transporting layer such as zinc 

oxide (ZnO). Here, ZnO can be easily processed from solution using a sol-gel method, [20, 21] 

with such materials also being compatible with deposition by spray coating.[14, 22] We note that 

inverted devices can have significant advantages resulting from higher efficiencies and improved 

operational stability.[23, 24] 

In this study, we fabricate PffBT4T:2OD:PC71BM based bulk heterojunction OPVs based on both 

conventional and inverted architectures. Here, the PffBT4T:2OD:PC71BM active layer, the 

PEDOT:PSS hole transport layer (HTL) and the ZnO electron transport layer (ETL) are all spray 

coated in air. By optimising the composition of the PffBT4T:2OD:PC71BM ink, conventional and 



inverted architecture OPVs were fabricated having champion efficiencies of 8.13% and 8.43% 

respectively.  

The device architectures investigated in this work, together with the chemical structure of 

PffBT4T-2OD and PC71BM materials is shown in Figure 1. Spray coating was conducted using a 

Prism 300 ultra-sonic spray coater (Ultrasonic Systems Inc.) that was operated in air under regular 

clean-room conditions. This spray coater is a nozzle-less system, with the ultrasonic vibrating 

spray tip enabling the generation of a fine droplet mist; a crucial element in the creation of 

high-quality, uniform films.[25] To fabricate devices, our processes started with (20mm x 15mm) 

glass substrates coated with pre-patterned ITO electrodes (purchased from Ossila Ltd). Before use, 

the substrates were sequentially cleaned using an ultra-sonic bath containing Hellmanex solution, 

2-propanol (IPA) and deionised water. 

To prepare PEDOT:PSS ink for spray coating, PEDOT:PSS (Heraeus Clevios P VP AI 4083) was 

filtered through a 0.45ȝm filter and then mixed with IPA and ethylene glycol (EG) according to a 

volume ratio of 1:8:1. Here, IPA and EG were used to tune the wetting property and viscosity of 

the ink to form a uniform film on the surface of the ITO.[12] During spray coating, the substrates 

were heated to 30C to facilitate the formation of a uniform film. During coating, a tip-substrate 

distance of 70 mm was maintained, with a lateral tip velocity of 80 mm/s used to create a film 

having a thickness of approximately 30 nm. The films deposited were then immediately annealed 

at 120C for 5 minutes before being ready for use.  

The precursor gel used to fabricate the ZnO ETL was prepared by dissolving 110 mg zinc acetate 

dihydrate in 1ml 2-methoxyethanol with 30ȝl ethanolamine as stabiliser. The solution was then 

stirred for 12 hours in air to form a transparent gel. Before spray coating, the resultant gel was 



diluted using methanol at a volume ratio of 1:8 to reduce its viscosity. For spray-coating, a 

tip-substrate distance was maintained at 45 mm, with a lateral tip velocity of 25 mm/s used to 

prepare films having a thickness of 25 nm. Here, films were sprayed onto substrates held at room 

temperature. The films were then annealed at 275ºC for 5 minutes to convert the precursor film to 

zinc oxide.  

 

Figure 1: (a) Molecular structure of PffBT4T-2OD and PC71BM. Part (b) shows a conventional 

device, while part (c) shows an inverted OPV architecture. 

We have used an atomic force microscope (AFM) to evaluate the surface roughness of spray 

coated PEDOT:PSS and ZnO films as shown in Figure 2. Here, parts (a) and (b) show spin- and 

spray-cast PEDOT:PSS, parts (c) and (d) shown spin- and spray-cast ZnO, whilst parts (e) and (f) 

show a spin- and spray cast PffBT4T-2OD:PC71BM blend. In these experiments, the films were 

spin / spray-cast onto a blank glass substrate. 

We have used these images to assess the relative roughness of the films, and to compare films that 

have been spin- and spray cast. Comparing images (a) and (b) we determine a quadratic mean 

roughness (RMS) of spin-coated and spray-cast PEDOT:PSS to be 1.41 and 1.96 nm respectively. 



From images (c) and (d), we similarly find spin- and spray-cast ZnO have an RMS roughness of 

1.16 and 1.35 nm respectively. We find therefore that the spray-cast charge extraction layers are in 

both cases slightly rougher than their spin-cast analogues, however we have previously found that 

such values are not detrimental OPV performance. [13] 

 

Figure 2: AFM surface morphology of (a) spin coated PEDOT:PSS and (b) spray coated 

PEDOT:PSS. Parts (c) and (d) show surface morphology of spin coated and spray coated ZnO 

respectively. In parts (e) and (f) we similarly show images of spin-coated and spray-cast 

PffBT4T-2OD:PC71BM blend films. 



To coat the active layer, we prepared an ink consisting of 1:1.2 weight ratio of 

PffBT4T-2OD:PC71BM dissolved at 5 mg/ml into a mixture of the solvents chlorobenzene (CB) 

and 1,2-dichlorobenzene (DCB) (volume ratio 1:1). The solvent mixture also contained a small 

(3%) volume concentration of 1,8-diiodooctane (DIO) in order to optimise the micro 

nanostructure of the BHJ film.[26, 27] Before use, the ink was stirred at 110ºC for 5 hours to 

ensure the solids in the blend were fully solubilised. Notably, the relatively low concentration of 

solids used in this ink (formulated for spray-coating) effectively suppresses aggregation problems 

of PffBT4T-2OD that often occur in higher concentration solutions that have been optimized for 

spin-coating. The active PffBT4T-2OD:PC71BM layer was then spray-cast onto the substrates held 

at 85C. It was found that this substrate temperature encouraged the formation of a uniform film. 

Through extensive optimization spray trials, we determined that a spray tip velocity of 25mm/s at 

a tip-substrate separation of 45 mm created films having a thickness 250 nm.  

A typical AFM image of spin-cast and spray-cast PffBT4T-2OD:PC71BM blend films is shown in 

Figures 2 (e) and (f) respectively. It can be seen that the spray-cast films is slightly rougher than 

the spin coated one (RMS of 4.65 nm compared to 7.32 nm respectively), however, in such thick 

films, the bulk morphology may well determine device performance, with the morphology of the 

surface playing a secondary role.  

OPV devices were then fabricated by transferring the spray-coated films to a nitrogen filled glove 

box. They were then left for 3 hours under nitrogen to dry, after which were placed in a vacuum 

vessel at 5x10-6 mbar for a further hour to remove all casting solvent (especially the DIO). Films 

were then transferred onto a hot-plate in the glove box and annealed at 100C for 5 minutes to 

complete the drying process. It was found that this final anneal process was important in 



optimising device performance. Then top electrode was then thermal evaporated onto the active 

layer through a shadow mask under a vacuum of 2x10-6 mbar. Here, conventional architecture 

devices employed a top (electron extracting) cathode consisting of 5 nm calcium (Ca) and 100 nm 

aluminium (Al). For inverted architecture devices, the top anode instead consisted of a 10 nm 

molybdenum oxide (MoOx) film capped by 100 nm of Al (with all films deposited by thermal 

evaporation). Finally, devices were encapsulated using UV cured epoxy glue and a glass cover 

slip.  

To test the photovoltaic properties, JV curves were recorded while the devices were illuminated 

using a Newport 92251A-1000 AM 1.5 solar simulator calibrated against an NREL standard 

silicon solar cell. In all cases, an aperture mask was placed on top of the device to ensure the 

light-exposed area of the device was limited to 2.6mm2. 

We plot champion device data in Figure 3 and summarise key metrics in Table 1. Specifically, 

‘champion’ conventional devices reached an efficiency of 8.13%. For inverted devices, a 

champion efficiency of 8.43% was obtained. For completeness, Figure 3 and Table 1 also includes 

device metrics and JV curves for nominally identical devices in which both charge transport layers 

were spin coated in air, with the photo-active layers instead spin coated in a nitrogen filled glove 

box. It can be seen the efficiency of the spin-coated devices are higher than equivalent devices 

fabricated by spray coating, with PCEs of 9.02% and 9.36% determined for conventional and 

inverted devices respectively. This loss in efficiency primarily results from a reduction in Jsc, 

which suggest that the slight loss of performance on spray-coating most probably results from 

photo-oxidation of the active layer as it was exposed to the atmosphere. [28, 29] We note that 

some high-performing OPV polymers can be very sensitive to exposure to light in the presence of 



oxygen,[11] whilst others are apparently significantly more stable. [30] We believe that such 

oxidation could be reduced by performing air-based spray-coating of the active layer under 

appropriate safe-lights. 

To illustrate the repeatability of these measurements, we summarise the distribution of PCE 

recorded from 32 pixels distributed over 8 different substrates for both conventional and inverted 

devices in Figures 3(c) and (d). In these measurements, we excluded data recorded from the two 

edge pixels in our analysis, as the film quality at the edge of the substrate often suffers from poor 

uniformity resulting in poor device performance. It can be seen the repeatability of the spray 

coated devices (both conventional and inverted structure) is promising. Although the area of the 

substrates used in this work is limited, our work highlights the possibility to fabricate high 

performance OPV devices based on highly crystalline polymers via spray coating. 

 

Table 1: Key metrics for conventional and inverted devices fabricated by spin- and spray-coating. 

Device PCE(%) Voc(V) Jsc(mA/cm2) FF(%) 

Spin-coated 

conventional 

9.02 

(8.70±0.15) 

0.76 

(0.75±0.01) 

-17.55 

(-16.88±0.40) 

67.96 

(68.37±0.83) 

Spray-coated 

conventional 

8.13 

(7.13±0.44) 

0.75 

(0.74±0.01) 

-16.47 

(-14.28±0.91) 

65.88 

(67.19±2.49) 

Spin-coated 

inverted 

9.36 

(9.11±0.26) 

0.75 

(0.75±0.01) 

-17.68 

(-17.24±0.84) 

70.33 

(70.19±1.71) 

Spray-coated 

inverted 

8.43 

(7.75±0.46) 

0.75 

(0.74±0.01) 

-16.08 

(-15.64±0.63) 

70.19 

(66.73±1.92) 
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Figure 3: Part (a) and (b) shows J-V curves of champion conventional and inverted devices 

fabricated by spin- and spray- coating. Pats (c) and (d) show a distribution of device PCE recorded 

from spray-coated conventional and inverted devices respectively. 

 

In summary we have investigated the performance of conventional OPVs incorporating spray 

coated PEDOT:PSS hole transport layer and PffBT4T-2OD:PC71BM photoactive layers. This has 

been compared with inverted OPVs based on a spray coated ZnO electron transport layer and a 

PffBT4T-2OD:PC71BM photoactive layer. Critically the photoactive ink is based on the highly 

crystalline polymer PffBT4T-2OD that can be spray coated from cold solution without obvious 

problems resulting from aggregation. We determine a PCE of 8.13% for conventional devices and 

8.43% for inverted devices using a gentle post deposition thermal annealing process which most 

likely removes any trapped casting solvent. Our work further demonstrates the feasibility of 



fabricating high performance OPVs via spray coating. 
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