UNIVERSITY OF LEEDS

This is a repository copy of Species-occupancy distribution removes an excessive
parameter from species-area relationship.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/110983/

Version: Accepted Version

Article:

Gavish, Y orcid.org/0000-0002-6025-5668 and Ziv, Y (2017) Species-occupancy
distribution removes an excessive parameter from species-area relationship. Journal of
Biogeography, 44 (4). pp. 937-949. ISSN 0305-0270

https://doi.org/10.1111/jbi.12869

© 2016, Wiley. This is the peer reviewed version of the following article: "Gavish, Y. and
Ziv, Y. (2016), Species-occupancy distribution removes an excessive parameter from
species-area relationship. J. Biogeogr." which has been published in final form at
http://dx.doi.org/10.1111/jbi.12869. This article may be used for non-commercial purposes
in accordance with Wiley Terms and Conditions for Self-Archiving.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Page 1 of 54

10
11
12
13
14
15
16
17
18
19
20

21

22

untypeset proof

Article type:
Original article
Title:
Species-Occupancy Distribution Removes Excessive Parameter from Species-Area Relationship
Short Title:
SOD removes excessive SAR Parameter
Authors:
Yoni Gavish" “* Yaron Ziv'
Affiliations:
! Spatial Ecology Lab, Department of Life Sciences, Ben-Gurion University of the Negev,
P.O.B. 653, Beer-Sheva, 84105, Israel.
# Current Address: School of biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
" Corresponding author: Yoni Gavish, E-mail: gavishyoni@gmail.com

Word count:

Abstract + main text + references: 7027 words
Tables: 2

Figures: 4
Appendices: 3
Estimated number of pages: 12

Journal of Biogeography



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

untypeset proof Page 2 of 54

ABSTRACT

Aim  Although species-occupancy distributions (SODs) and species-area relationships (SARs)
arise from the two marginal sums of the same presence/absence matrices, the two biodiversity
patterns are usually explored independently. Here, we aim to unify the two patterns for isolate-
based data by constraining the SAR to conserve information from the SOD.

Location Widespread

Methods Focusing on the power-model SAR, we first developed a constrained form that
conserved the total number of occupancies from the SOD. Next, we developed an additive-
constrained SAR that conserve the entire shape of the SOD within the power-model SAR
function, using a single parameter (the slope of the endemics-area relationship). We then relate
this additive-constrained SAR to multiple-sites similarity measures, based on a probabilistic view
of Serensen similarity. We extend the constrained and additive-constrained SAR framework to
23 published SAR functions. We compare the fit of the original and constrained forms of 12
SAR functions using 154 published datasets, covering various spatial scales, taxa and systems.
Main conclusions In all 23 SAR functions, the constrained form had one parameter
less than the original form. In all 154 datasets the model with the highest weight based on the
corrected Akaike Information Criteria (WAICc) had a constrained form. The constrained form
received higher wAICc than the original form in 98.79% of valid pairwise cases, approaching the
wAICc expected under identical log-likelihood. Our work suggests, both theoretically and
empirically, that all SAR functions may have one unnecessary parameter, which can be excluded
from the function without reduction in goodness-of-fit. The more parsimonious constrained

forms are also easier to interpret as they reflect the probability of a randomly chosen occupancy
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to be found in an isolate. The additive-constrained SARs accounts for two complimentary turn-

over components of occupancies: turnover between species and turnover between sites.

Keywords Biodiversity patterns; islands; Jaccard; landscape; macroecology; multiple-sites

similarity; Serensen; spatial ecology; occupancy-frequency distribution; patches.

INTRODUCTION
Studying biodiversity distribution patterns characterizes a major exploration line in
contemporary ecology due to both basic and applied needs. This exploration requires
biodiversity data collection of diverse species located at different spatial extents. Consequently,
most biodiversity studies end up with a species-by-site table filled with presence/absence data
(hereafter we refer to a presence of a species in a site as occupancy). Summing this community
matrix for each site over all species yields the total number of species sampled within each site
(Fig. 1A). Similarly, when summed for each species over all sites, the marginal sums yield the
number of sites in which a species occurred (i.e., the species occupancy level). These two sets of
marginal sums give rise to two important biodiversity patterns -- the species occupancy
distribution (SOD, the number of species that occurred in each occupancy level, e.g. McGeoch &
Gaston, 2002; Jenkins, 2011) and the species-area relationship (SAR, the change in species
richness with a change in area).

SARs and SODs can be constructed from data collected in various ways, including nested
quadrats, quadrats in a contiguous grid, quadrats in a non-contiguous grid, and non-overlapping
areas of various sizes (types I-IV sensu Scheiner, 2003, respectively). Here we focus on type IV

SARs, and following Tjerve & Turner (2009), we refer to the sites as isolates (non-overlapping
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sites with biologically or environmentally defined borders that differ from one another in various
attributes such as area, shape, heterogeneity and spatial context). Most SOD studies focused on
contiguous or non-contiguous equal-sized quadrat (type II or III), in which SOD shape is highly
dependent upon the choice of grain size, while type IV SOD, on which we focus here, has the
advantage of working on naturally occurring grains: the isolates. Despite numerous studies of
SARs in island-like systems, we are not aware of any manuscript that focused on type IV SODs.

Indeed, among the two biodiversity patterns, SARs have received the most attention, with at
least 23 mathematical functions suggested to describe the pattern (Tjerve, 2003, 2009; Williams
et al., 2009). In fact, SARs are one of the most fundamental patterns of ecology. Empirically,
SARs have been explored in numerous study systems, covering a wide range of scales, focusing
on diverse taxa, and using various methods (Rosenzweig, 1995; Scheiner, 2003; Drakare ef al.,
2006; Triantis et al., 2012). SARs exhibit a consistent pattern: the number of species increases
with area, thus considered as a general law of ecology (Rosenzweig, 1995). SARs have also been
the subject of extensive theoretical research, either aiming to explain their properties or as a
starting rule from which other patterns emerge (e.g., Rosenzweig & Ziv, 1999). The generality
and centrality of SARs triggered their usage in applied ecology. Among others, SARs are used to
estimate extinction debts (Brooks et al., 2002; Kuussaari et al., 2009), identify biodiversity
hotspots (Myers et al., 2000; Gavish, 2011), and optimize reserve design (Bascompte et al.,
2007; Tjerve, 2010; Gavish et al., 2012).

In contrast, SODs remained relatively unexplored, perhaps due to the complexity of shapes
they can take. Unlike SARs, which are usually described by convex functions with no asymptote
(Triantis et al., 2012), SODs may be unimodal, bimodal, random, or uniform, and their modes

may occur for satellite (rare), central, or core (common) species (McGeoch & Gaston, 2002;
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Jenkins, 2011; Hui, 2012). Furthermore, bimodal SODs may be symmetrical or asymmetrical,
and if asymmetric they may have a stronger or weaker mode for rare or common species. Until
recently, only one method (Tokeshi, 1992), based on comparison of the size of the satellite and
core modes to an expected null model, was used to describe SOD’s shape. Recently, Jenkins
(2011) introduced the ranked species-occupancy curves (rSOC) as an alternative method and Hui
(2012) clarified the direct link between the two patterns. Similar to species-abundance
distribution and ranked abundance curves, SOD and rSOC are two alternative ways to present
the same information.

Although SODs and SARs arise from the two marginal sums of the same presence/absence
table, the two patterns were rarely explored simultaneously (but see: Hui & McGeoch, 2014;
Pan, 2015). In fact, in most cases they were explored simultaneously only when both were
derived from species abundance data, either through null models (Coleman, 1981), neutral
models (Hubbell, 2001), or metapopulation-based models (Ovaskainen & Hanski, 2003). The
aim of this paper is to develop the direct link between SODs and SARs for island-like systems
within a single framework. Within this framework, the shape of the SOD itself can be explored
in relation to species traits, thereby providing a more mechanistic understating of the SAR.
Furthermore, mechanistic SAR hypotheses such as the transient hypothesis (MacArthur &
Wilson, 1967), rescue effects (Brown & Kodric-Brown, 1977), target area effects (Gilpin &
Diamond, 1976) and small island effects (Lomolino, 2000), are mediated through changes in

species occupancy levels.

MATERIAL AND METHODS

Mathematical developments
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We develop the direct link between SOD and SAR by constraining the SAR to conserve the data
encompassed by the SOD. Starting with the power-model (Arrhenius, 1921), we first developed
the constrained-SAR model, by forcing the SAR to conserve the observed total number of
occupancies (thereby canceling-out one of the power-model parameters). Then, in the additive-
constrained SAR model, we fit a separate constrained-SAR model to the species of each
occupancy level, and then sum the results over all occupancy levels. By describing the change in
SAR parameters with occupancy level we provide a novel one-parameter SAR function that
predicts not only the shape of the global SAR, but also the SAR of each occupancy level, while
conserving the entire shape of the SOD. The parameter of this additive model is the slope of the
endemics area relationship. Subsequently, we relate the SOD to multiple-sites similarity indices
and generalize to 23 known SAR functions.

The power-model SAR

We start with a presence/absence matrix of M species in N isolates (Fig. 1A, see notations in Fig.
1F). Each species is notated with m (in the range {1,2,...,M}), each isolate with i {1,2,...N} and
each entry as O, (that can take the value of 1 or 0). The observed number of species in isolate i
(hereafter, S;) is the sum of O;,, over all M species, and if 4; is the area of isolate i, the global
SAR can be constructed (Fig. 1D). The occupancy level of species m (hereafter, j,;) is the sum of
O; . over all N isolate (thus j,, is in the range {1,2,...,N}). The SOD explores how the number of
species in occupancy level j (hereafter R;) changes with j (Fig. 1C). Thus, summing R; over all
occupancy levels (all j in the range {1,2,...,N}) yields M. The presence/absence matrix cab be
restructured as a square Nx/N matrix, with the number of presences from each occupancy-level

that were found in each isolate (hereafter S;;, Fig. 1B). The total number of occupancies can be
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136  estimated in three ways: by summing O, ,, over all M species, by summing S; over all N isolates,
137  and by summing j-R; over all occupancy levels.

138  Given the observed S; and 4;, the original power-model SAR (Arrhenius, 1921) takes the form:
139 E(Sorig = ¢ Af (E1)

140  With E(S)).ig. as the number of species predicted for isolate i by the power-model AND ¢ and z
141  as scaling parameters. The total number of occupancies predicted by the power-model is the sum
142 of equation 1 over all n isolates. To constrain the power-model SAR such that it will conserve
143 the observed total number of occupancies, we set 2i(j-R;)=2;c'Ai" and multiply equation 1 by

144 X(jR)/ZicAi:

1 UR)) . A7
145 E(S))cons. = € " A7 X m = ?]:1(1 ) RJ') ’ ST A7 (E2)
146 with E(S;j).ons. being the expected number of species in isolate i according to the constrained

147  power-model. Adding the total number of occurrences constraint to the power-model SAR

148  eliminates parameter ¢, which allows the predicted sum of occupancies to differ from the

149  observed one, leaving only parameter z. Furthermore, Ai"/2;4i" is the probability of a single

150  occupancy to be found in isolate i. Although this constrain can be employed with no knowledge
151  of'the SOD, we base it on the SOD’s arguments to exemplify the effect of focusing only on

152 species from a single occupancy level. In fact, when equation 2 is fitted only to the subset of
153  species from occupancy level j (Fig. 1E), we get:

7.
]
AL.
=

n ]
Yic1 4

154 E(Si,j)cons. = (] ' Rj) ' (E3)

155  with E(S; )cons. being the expected number of species from occupancy level j in isolate 7, and z;

156  the slope of the SAR of occupancy level j. If we assume that the SAR of all occupancy levels can
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be described by a power-model (see below) then equation 3 can be summed to produce a second
approximation of the global SAR:
N o ad
E (S add.cons. = j=1[(] ) Rj) ) ﬁ] (E4)
A

i=14

with E(S))aa4.cons, being the expected number of species in isolate i according to the additive-
constrained power-model. We are not aware of any publication that explores the change of z;
with j, which we term ‘z-occupancy curves’. However, endemics-area relationships (the SAR
when including only species that are endemic to a single isolate, i.e., j=1) usually have relatively
high z; values (Rosenzweig, 1995; Triantis et al., 2008). Eventually, z; values for j=N are, by
definition, zero (the species occur on all isolates, Fig. 1E)). In addition, equation 2 and 3 can
estimate the maximal value of z that will ensure that none of the isolates contains more species
than the actual size of the species pool (Z;R;), or the number of species in occupancy level j (R)),
denoted as zqx and z; ,qx, respectively. When setting the monotonically increasing (for z>0)

equation 2 and 3 to equal 2jR; or R; (respectively) and solving for the largest isolate (here, isolate

i=N) we get:
e D,
Z = - E5
ZIiV=1Aimax Zj’V=1(]'Rj) ( )
Zjmax )
= Lo =1 (E6)

SN A R
This means that z,,, is the value of z for which the probability of randomly drawn occupancy to
be in the largest isolate equals the inverse of the mean occupancy level. Although z; s
unbounded for j=1, z; of all other occupancy levels have a maximal value (z; 4y that is
independent of the number of species and depends mainly on the area distribution (4; values,

equation 6). The maximal values result in a decreasing function when plotting z; ... against j.

Journal of Biogeography

Page 8 of 54



Page 9 of 54

178

179

180

181

182

183

184

185
186
187
188
189
190
191
192
193
194

195

196

197

198

untypeset proof

Therefore, we expect z; to decrease with j in a predictable manner, according to a function F(z;|j)

that intersects the abscissa at j=n. Consequently, we get:
LF@D
E(S)add.cons. = Li=1[G * R}) vy eyl (E7)
Liz1 4
Although various functions may describe the shape of the z-occupancy curve, we focused here
on the form given in equation 8, and when plugging it into equation 7 we get:

F(Z]-U): zj=a-(1-logyj) (E8)

Afl'(l—logNJ')
N

E(Si)add.cons. = Xj=1|( - R}) w (E9)

i=14%
We chose equation 8 for three main reasons. First, it is an exponential decay function z=a-b"In(j)
that intersects the point (V,0) (such that b=a/In(N)), and thus always predict z; values of 0 when
Jj=N. Second, preliminary analysis of several datasets revealed it to be a good candidate model.
Third, its only parameter (a) is biologically meaningful- it is the z value of the endemic-area
relationship. In fact, equation 9 is a SAR function that incorporates the entire observed shape of
the SOD into the SAR, provides predictions for the overall SAR, as well as for the SAR of each
occupancy level and has a single, ecologically-meaningful parameter (a). Other F(z;|j) functions
with more complex shapes or with better theoretical grounds can be developed, perhaps after
more detailed exploration of the shape of z-occupancy curves is carried.

Finally, if the constrained and additive-constrained model provide comparable predictions,

and equation 2 and 9 are divided by the total number of occupancies, we get:

S; _ AiZ ~ VN < ]Rj ) . A?-(l—long) (Elo)
DGR T A7 - IR \SLI0R) i, 4rCoon)

so that the probability of a randomly chosen occupancy to be found in isolate i is similar (up to

the error associated with the models) to the sum over all occupancy levels of the multiplication

Journal of Biogeography
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of two probabilities. The first is the probability of a randomly chosen occupancy to be from
occupancy level j. The second is the conditional probability of this occupancy to be found in
isolate i, given the SAR of occupancy level j. The two probabilities reflect the two marginal
sums of the presence/absence data table. In fact, the first probability is the generalization of
Serensen probabilities to multiple-sites, as explained in the next section.
Similarity indices, SODs and weighted SODs

The most commonly used pairwise similarity indices of binary data are Jaccard and Sorensen.
Let S; and S be the number of species in isolates 1 and 2, respectively, and let Sg4/.qs be the
number of species shared by the two isolates. Jaccard similarity can be expressed as
Sshared! (S1+82-Ssharea), While Sorensen similarity is 2- Sgared/(S1+S2) (Chao et al., 2005). Therefore,
Jaccard similarity is the ratio of the number of species in occupancy level j=2 and the total
number of species. Sorensen similarity is the ratio of the number of occupancies in occupancy
level j=2 and the total number of occupancies. When viewed as probabilities, Jaccard is the
probability of randomly selecting a species that is shared by the two isolates. Sorensen is the
probability of randomly selecting an occupancy from a species shared by two isolates. That is,
when n=2, Jaccard can be expressed as R,/(R;+R;), while Sorensen can be expressed as
2:Ry/(1'R +2°R;). Jaccard and Seorensen dissimilarities are the complimentary of the indices to 1,
which can be expressed as R;/(R;+R;) and 1-R;/(1:R;+2R,), respectively. Thus, when there are
only two isolates, the additive-constrained SAR (equation 10) explicitly contains Sorensen
similarity and dissimilarity as weights.

The SOD summarizes the change in R; with j. If we standardize the SOD by dividing it by
2iR;, we get for each occupancy level the term R;/2;R;, which is the generalization of Jaccard

probabilities into multiple isolates. A weighted form of the SOD (wSOD, Fig. 1C) summarizes

Journal of Biogeography
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the change in j-R; with j. When standardizing the wSOD by dividing it with 2j(j-R;), we get for
each occupancy level the term j-R;/2i(j-R;), which is the generalization of Sorensen probabilities
to multiple isolates. Since the basic unit of type IV SARs is occupancy and not species, Sarensen
probabilities are more relevant to the study of type IV SARs. Therefore, when there are more
than two sites, equation 10 incorporates the generalization of Serensen probabilities into the
general SAR framework.

We suggest that summary statistics of the standardized SOD and wSOD can be considered as
measures of beta diversity, since their constituting values may serve as the building blocks for
multiple-sites similarity indices. Such multiple-sites similarity measures may differ from one
another in their treatment of the difference between species in occupancy level. For example, the
strictest definition of Jaccard multiple-sites similarity may be the proportion of species that are
found in all isolates from the total number of species, i.e., R,/2;R;, and for Sorensen, the
equivalent proportion of occupancies from the total number of occupancies, i.e., n°R,/2i(j*R)).
The least strict may be the proportion of species/occupancies that are found in at least two
isolates, i.e., Xj=/[R; /2;R;] for Jaccard, and Xj=[j-R;/2; j R;] for Serensen. In fact, if w; is the
weight given to occupancy level j in the multiple-sites similarity measure (such that 0<w;<1),
then a general multiple-sites similarity of Jaccard and Serensen, which still conserves the 2
isolates interpretation as the proportion of species or occupancies may be:

_ jkalwR]

= k) (E11)

]acmult

_ N wiiR)]

SOTmuie = Z?Ll[i'Rj]

(E12)
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with w;=w,=...=wy.;=0 and wy=1 for the most strict example while w;=0 and w=w;=...=wy=1
for the least strict example. A more interesting option for the weights may be the proportion of

isolates pairs in which a species co-occur, resulting with

_yn [JUu=n B
Jacmuie = Zj=1 [N(N—l) Z?’:JRJ']] o

_wyn [JG-D . JRj
SOTmute = Lj=1 [N(N—l) z;‘;l[j-R,-]] o

which converges to Jaccard and Sorensen similarities for n=2, while satisfying w;=0 and wy=1
and keeping the original probabilistic interpretation of the indices. We note though, that the
multiple-sites similarity indices themselves are not incorporated directly into the SAR, but rather
they are built by the same building blocks as the SAR. We further note that published multiple-
sites versions of Jaccard (Baselga, 2012) and Sorensen similarities (Baselga, 2010) can also be

restructured using terms from the SOD as:

[Z0L.GiR)-Z R) sN[G-1)R;]
ac = = - — El15
L I R IR B ey B A (SRS Y EL)
2|3% (j-R)-IN__R; NT(2j-2)R;
SO muit,Bas = [ =1 U) 2 1] = ZinlG/ok] (E16)

2[ZN R -2, Ry| + EN (R N=p)) — EN[(27-2+i0N=1)-R)]
yet, such extensions to multiple sites do not conserve the total number of species or occupancies
in the denominator, and therefore loses the probabilistic interpretation of Jaccard and Serensen
similarities. Furthermore, although the contribution to the similarity measure increases with
occupancy level in the numerators of Jac i, pas and Sov 1 pas, the denominator reaches a
maximum value for j=(N+1)/2 and j=(N+2)/2, respectively. If the SOD is indeed the unifying
concept between beta-diversity and SARs, we suggest focusing on multiple-sites similarity
indices that conserve the probabilistic interpretation of the SOD and the wSOD. In addition to

the ecological meaning that of the probabilities, it opens a possible direction to incorporate the
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effect of unsampled species to multiple-site similarity indices and SARs, as shown for pairwise
similarity by Chao et al. (2005).

Other SAR functions

Constrained SARs and additively constrained SARs can be based on any SAR function (Tjerve,
2003, 2009; Williams et al., 2009; Triantis et al., 2012). Repeating the steps that led from
equation 1 to 2 for other SAR functions has a similar effect — all SAR functions lose one of their
parameters (Table 1). Similar additive forms to those shown here for the power-model can be
developed for all other SAR functions. Therefore, all SAR functions may have one unnecessary
parameter that can be excluded, apparently, without loss of statistical power.

Empirical analysis of 154 datasets

We explored 154 published datasets (see Appendix S2) to examine whether a parameter can be
dropped without loss of goodness-of-fit if the SAR is constrained. The datasets cover various
spatial scales (from 6 m?” isolates to inter-provincial SARs), taxa (fungi, plants, invertebrates and
vertebrates) and systems (inter-provincials, ecoregions, true islands, fragmented terrestrial
landscapes, etc.). Before fitting any model and to ease the search for appropriate starting values
for parameters, we first standardized the area units to relative area: P=4,/2:4; (and 2; P=1). We
fitted each dataset with the original and constrained forms of the twelve functions given in bold
face in Table 1, a total of 24 functions. Non-linear least square regressions (using the Levenberg-
Marquardt convergence algorithm) were used to fit each dataset with the 24 models, and various
parameter-starting values were used to avoid local minima. After convergence, for the original
and constrained forms of each SAR function, the estimated parameters of the form that resulted

with lower residuals sum-of-squares (RSS) were used as the starting parameters of the second
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form in an additional non-linear regression and the newly estimated parameters were kept if the
fit was improved.

After fitting the 24 models, we calculated for each model the corrected Akaike Information
Criteria (AICc; Burnham & Anderson, 2002; see Appendix S1 in Supporting Information). Next,
AICc weights (WAICc,, with g being the name of the model out of G models) were calculated for
the entire set of 24 models (i.e., G=24). We then focused on each of the 12 SAR functions
separately and estimated the wAICc, of the functions’s original and constrained forms of each
SAR function (i.e., 12 different sets, each with G=2). For the 12 sets, we estimated the expected
wAICc for the special case in which the original and constrained form have identical log—
likelihood and only differ in the number of parameters (Appendix S1). Finally, we applied a
least-square linear regression of the observed wAICc of the constrained form against the
expected value under identical log-likelihood and explored whether the confidence intervals of
the intercept and slope overlapped with zero and one, respectively.

The 154 datasets were also used to explore the shape of z-occupancy curves. Firstly, for each
dataset, we fitted equation 3 separately for the species from each occupancy level. This yielded
the observed z; values for every j for which some species were observed. Next, we fitted the
observed z-occupancy curve with equation 8, while recording the explained variance and
significance. For the datasets presented in Fig.3, we fitted equation 9 as well, and compared the
predicted z occupancy curve to the fitted one. We further compared the AICc values and weights
of the original power-model (equation 1), constrained power-model (equation 2) and additive-
constrained power-model (equation 9).

Finally, for the 154 datasets we estimated the Sorensen multiple-sites similarity index based

on equation 14. We used linear regression to explore the relation between the power-model z
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values and the multiple-sites similarity value. For this analysis we use only dataset where the
power-model explained variance was larger than 0.25. All regression analyses were carried out

with the minpack.lm package in R (R Development Core Team, 2014).

RESULTS

When comparing the 24 models, in all 154 datasets the model with the highest wAICc had a
constrained form. In general, SAR functions with the highest wAICc usually had only two
parameters in the original form (80% of datasets), had a convex shape (63%) and had no
asymptote (64%). Indeed, in 32% of the datasets, the best SAR function had all three of these
characters. The power-model had the highest wAICc for 25.4% of the datasets.

From a total of 1848 (12x154) combinations of SAR models and datasets, the non-linear
regression achieved convergence for both the original and constrained forms in 1811 analyses.
The constrained form received a higher wAICc than the original form in 1789 out of 1811
pairwise comparisons (98.79%, Table S3 in Appendix S2, Fig. 2). The wAICc of the constrained
form approached the expected weight for the special case in which the original and constrained
forms had identical log-likelihood (Fig. 2). For ten of the twelve SAR functions the confidence
intervals of the intercept and slope of the linear regression between the observed and expected
AlICc weight of the constrained form overlapped with 0 and 1, respectively (Table S3). The two
exceptions were the Monod and Negative Exponential SAR functions. However, in these two
SAR functions, large deviation from the expected wAICc occurred in datasets that were not
adequately described by the SAR function (Fig. S1 in Appendix S3).

The non-linear regression of observed z; values against j according to the exponential decay

function (equation 8) was statistically significant (p<0.05) for 138 of the 154 datasets. In some
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cases, a very clear decay pattern was evident (see a few examples in Fig. 3), while in others the
pattern was not that clear. The decay of z; with j was less well defined when the SAR pattern
itself was weak or when the number of species was very low relative to the number of isolates
(resulting in poor representativeness in many occupancy levels). The 25th, 50th, and 75th
percentiles of parameter a of equation 8 — i.e., the slope of the endemic area relationship — were
0.43, 0.65, and 1.12, respectively. The explained variance of the regressions had a 25th, 50th and
75th percentiles of 0.29, 0.65, and 0.81, respectively. For the datasets presented in Fig. 3, the z
values predicted for each occupancy level by fitting equation 9 as the general SAR function (red
line) was highly correlated to the z values when fitting each occupancy level separately (black
diamonds, equation 3). The predicted z values according to equation 9 was very similar to those
achieved by fitting equation 8 to the fitted z values (black line). The additive-constrained SAR
received higher AICc weights than the original power-model in 6 out of 9 datasets (table 2), and
in two of these cases, it also out-performed the constrained power-model.

We found a statistically significant negative correlation between the power-model z (equation
2) and Sorensen multiple-sites similarity index (equation 14, Fig. 4). We observed a strong effect
of the number of isolates on the z-similarity trend. Dataset with large number of isolates tended
to have lower z values, and lower similarity values, probably since most species remain rare even

when a large number of isolates are sampled.

DISCUSSION
We developed the constrained form of 23 known SAR functions, which forces the SAR to
conserve the total number of occupancies (Table 1). For all SAR functions, constraining the

SAR resulted in a decrease of one parameter in the number of function parameters. The meta-
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analysis of the 154 datasets revealed that the constrained forms outperformed the original
ones. This is evident for the 154 datasets in the wAICc of the constrained form approaching
its expected value for the special case in which the original and constrained forms have
identical log-likelihood (Fig. 3). In the two SAR functions (Monod and Negative Exponential)
for which some deviation from linear correlation were observed, the deviations mainly
occurred in datasets for which the SAR function did not describe the pattern well, relative to
other SAR function (Fig. S1, Appendix S3). Therefore, the deviations probably resulted from
failure to converge to the same global minima, since many local minima have very similar
log-likelihoods.

Consequently, for any given SAR function we have two competing models having similar
predictions and log-likelihoods, with one of the models having fewer parameters than the
other. The basic principle of parsimony requires us to prefer the model with fewer parameters,
and therefore for each SAR function to prefer the constrained forms over the original ones.
Considering the most common power-model SAR, the parameter which is canceled-out is
parameter c, the ‘politically ignored’ parameter (sensu, Gould, 1979; Triantis et al., 2012).
Our results suggest that it is correctly ignored since it is an unnecessary fitting parameter that
comes on the expense of the more informative, process-based component of the SOD. This
parameter can be isolated from equation 2, to get: c=X,(j'R;)/Z{(4;"). Therefore, Lomolino
(2000) statement that parameter ¢ “varies in a poorly understood manner among taxa and
types of systems” is not surprising, given that even when the area units are standardized, it is a
function of the total number of occupancies, the number of isolates, the distribution of area
between isolates and the second parameter z. Parameter ¢ (and it’s above approximation) is

usually interpreted as the number of species in one unit of area. The general SAR is then
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constructed by multiplying the number of species in one unit area by an area dependent
function. This is still true for the constrained SAR (equation 2). However, we show here that
it is also true for the constrained SAR of all other SAR models (table 1).

Removing a parameter from a widely used function may seem to present a small technical
improvement. However, given its broad use and the importance of SARs for various
applications, simplification of SAR models is crucial to understanding patterns and processes,
since simpler models are easier to interpret. Although having more parameters allows better
fit to data, parameters should be added if the additional goodness-of-fit is needed to better

understand the pattern. For SARs, this does not seem to be the case. In fact, the proximity of

the wAICc to the expected AICc weight under identical log likelihood (Fig. 2) suggest that the

two forms have very similar goodness-of-fit.

By constraining the SAR we have shown that SAR represents the turnover of occupancies
between isolates. Although SARs predict the number of species in each isolate, it is more
correct to treat occupancy as their basic unit. To claim that the unit of SARSs is species is
similar to claiming that the unit of the abundance-area relationship (i.e., the total number of
individuals per isolate) is species and not individuals. Accepting that SARs represent the
turnover of occupancies between isolates suggests that SARs may also be affected by the
second occupancies turnover component — i.e., the turnover of occupancies between species.
This second component is captured by the SOD and the additive-constrained SAR.

The additive-constrained SAR (equations 7 and 9) sums over all occupancy levels the
multiplication of two probabilities. The first is the probability that a random occupancy is
from occupancy level j, and the second is the probability of this occupancy being in isolate i,

given its occupancy level. The two probabilities represent the two turnover components of
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occupancies: i. turnover of occupancies between species, and ii. turnover of occupancies
between isolates. The first turnover component relates to the shape of the wSOD, and as such
to the extended Serensen probabilities. The effect of this turnover component on the SAR’s
shape is evident in the relation between z and the multiple-sites similarity index (Fig. 4). The
second relates to the shape of the z-occupancy curves.

Here we explored a very specific additive-constrained SAR that assumes a power-model at
all occupancy levels. Of-course, similar to the general SAR, this might not be correct in all
datasets. However, even under this strict assumption, the additive-constrained SAR
outperformed the original power-model in six out of nine datasets (table 2), while providing
excellent prediction to the actual shape of the z-occupancy curves (Fig. 3). Furthermore, even
within a given dataset, different models may best describe SARs of different occupancy
levels. Unfortunately, occupancy-specific SARs have never been explored before, with the
exception of the endemics-area relationship that was mainly explored using a power-model
(Triantis et al., 2008). We predict that the best fitting SAR model will change in a consistent
manner with occupancy level, (e.g., from a sigmoid curve, to power-law and then to linear
models as occupancy increases). Alternatively, additive-constrained SARs can be based on
single models with greater flexibility such as the two models suggested by Tjerve (2012).

The constrained form does not suggest any clear ecological interpretation of z, yet it is still
unclear if any such interpretation will ever arise (Connor & McCoy, 2001; but see: Rosindell
& Cornell, 2007; O'Dwyer & Green, 2010; Grilli ef al., 2012). Mathematically, z is a scaling
parameter that changes the proportion 4,/X,(4;°), relative to z=1, for which each isolate
receives a proportion from the total occupancies that is identical to its relative area. Therefore,

the ecological interpretation added in the constrained form is not in the meaning of z, but
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rather in the meaning of the proportion 4,/Z,(4;"). Since equation 2 is structured as the total
number of occupancies multiplied by this proportion we can interpret it as the probability of a
randomly drawn occupancy to be from isolate i. The proportion also explains why z has
maximal values (equation 5), as no isolate can receive more occupancies than the number of
species. This restriction on the values of z may be the reason why various theories, in spite of
their very different underlying assumptions, also predict it to have a restricted range (e.g.,
Preston, 1962). Note, that z,,,, cannot be estimated from the original form of SAR, since many
different combinations of ¢ and z may satisfy the maximal proportion criteria. Similar
maximal values for parameters can be found for six other SAR functions that have a single
parameter in their constrained form (table 1).

In a wider perspective, we used the SOD as a pre-defined pattern that is plugged into the
SAR. However, species occupancy levels may be explored in relation to any of the species
traits. For example, species dispersal ability is likely to effect the intensity of rescue effects
and recolonization rates. Thus, species with higher dispersal abilities are likely to be found in
more isolates than species with lower dispersal ability. Alternatively, species with high
competitive ability are likely to persist longer in isolates once they are colonized. Thus,
species with high competitive abilities are also lankly to occur on more isolates than species
with poor competitive abilities. Now, if we can model the probability of a species to have a
certain occupancy level (j) based on its’ dispersal and competitive abilities, we can sum these
probabilities over all species for a given j to represent R;. These R; can then be used in
equation 2 , 4 or 9 above. In such analyses, the parameters linking species occupancy levels to
species dispersal and competitive abilities (or any other relevant trait) can be estimated

simultaneously with the parameters of the SAR, thereby allowing a more mechanistic
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understanding of SARs. The incorporation of species traits directly into SAR functions may
compliment other relations between SARs and traits, such as exploring SAR’s slope for
various trait values (Franzen et al., 2012), substituting species richness with functional trait
diversity as the dependent variable (Whittaker et al., 2014) or building SARs from species-
specific incidence functions (Ovaskainen & Hanski, 2003). The advantage here is that one
does not need to know in advance the effect of these traits on the probability to occur on j
isolates, and can learn on it from the SAR function.

Similarly, SARs are only one of the biodiversity patterns that relate the number of species
per isolate with one of the isolate’s attributes. Other attributes may include, for example,
habitat heterogeneity, degree of isolation or the availability of resources (e.g., species energy
relationship). Probably, many of the mathematical functions used to describe SARs (Table 1)
may be used to describe other biodiversity patterns, such as species-connectivity relationships
and species-heterogeneity relationships. The constrained and additive-constrained forms may
be used to explore any of these biodiversity patterns.

Here we show, both theoretically (Table 1) and empirically (Fig. 2), that all known SAR
functions have one unnecessary parameter. Simplification of models is crucial to understanding
patterns and processes, since simpler models are easier to interpret. By constraining the SAR, we
have clarified its basic units, united all functions to a similar general structure (Table 1),
introduced Serensen probabilities into the SAR framework and linked the two sides of
presence/absence tables (Fig. 1). SARs are fundamental to the development and testing of many
ecological theories (McGill, 2010) and play an important role in conservation and management,

including identifying biodiversity hotspots (Guilhaumon et al., 2008) and predicting the effect of
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habitat loss on species richness (Rosenzweig et al., 2012; Keil et al., 2015). Hopefully, our work

will shed new light on this important biodiversity pattern.
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602  Table 1: The original and constrained forms of 23 known species-area relationship (SAR)
603  functions (¢, z, f, and k are function parameters). The parameters column indicate the change in
604  the number of parameters when moving from the original to the constrained form. Functions

605  given in bold face were used in the empirical analysis of the 154 datasets.
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Pow. — Power; Pow.Ros. — Power Rosenzweig; Ext.P1- Extended Power 1; Ext.P2— Extended Power 2; P1 —
Persistence Function 1; P2 — Persistence Function 2; Exp. — Exponential; Kob. — Kobayashi Logarithmic; Mon. —
Monod; MMF. — Morgan-Mercer-Flodin; Arc.Log. — Archibald Logistic; Neg.Exp. — Negative Exponential;
Chp.Ric. — Chapman-Richards; Wei.3 — Weibull-3; Wei.4 — Weibull-4; Asy. — Asymptotic; Rat. — Rational. Gom.
— Gompertz; Beta.P. — Beta-P; Com.Log. - Common Logistic; EVF. — Extreme-Value Function; Lom. — Lomolino

function.
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643
644
645

646
647
648
649
650
651
652
653
654
655
656
657

658

659

Table 2: Corrected Akaike Information Criteria (AICc) values and weights of the original
power-model (equation 1), the constrained power-model (equation 2) and the additive-
constrained power-model (equation 9) for the nine datasets presented in figure 2. Values in

parentheses are the ranking of each model according to the AICc weights.

Data set
DS49
DS104
DS125
DS16
DS38
DS64
DSI115
DS136
DS117

AlCc
Equation 1
135.89
50.04
107.16
208.25
108.49
114.13
232.96
58.69
1135.18

Equation 2
133.01
45.79
103.49
205.47
101.49
111.39
230.64
53.91
1133.04
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Equation 9
135.90
53.27
106.00
207.81
101.26
113.72
236.1
51.19
1133.90

AlICc weights
Equation 1
0.161 (2)
0.104 (2)
0.111 (3)
0.160 (3)
0.014 (3)
0.162 (3)
0.227 (2)
0.018 (3)
0.172 (3)
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Equation 2
0.679 (1)
0.875 (1)
0.692 (1)
0.642 (1)
0.465 (2)
0.639 (1)
0.725 (1)
0.201 (2)
0.501 (1)

Equation 9
0.160 (3)
0.021 (3)
0.197 (2)
0.199 (2)
0.521 (1)
0.199 (2)
0.047 (3)
0.781 (1)
0.326 (2)
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Figure 1. General framework for species-occupancy distributions (SODs) and species-area
relationships (SARs). The marginal sums of presence/absence tables (A) yields the number of
species per isolate which can be used to plot the general SAR (D). The second marginal sums
yields the number of isolates per species (i.e., the species occupancy level), which can be used to
produce the SOD (C). However, the presence/absence table can be rearranged by grouping
species from the same occupancy level (B). From the resulting NxN square matrix the
occupancy-specific SARs can be produced (E) as well as a weighted version of the SOD (wSOD,
C). The additive-constrained SAR develop here is based on this square matrix. The notations

used here and in text are given in (F).

Figure 2. The corrected Akaike Information Criteria weight (WAICc) of the constrained species-
area relationships (SAR) form for 154 datasets and 12 SAR functions. For 1789 of 1811 valid
combinations of 154 datasets and 12 functions, the (WAICc of the constrained form (red, shown
here against the number of isolates), was higher than that of the original form. The observed
wAICc of the constrained form approaches the expected weight, if the two forms have identical
log-likelihood (and as such similar goodness-of-fit) and only differ in the number of parameters
(solid black line). As the number of isolates increases, the wAICc approach the expected values
under identical log likelihood and infinite number of isolates (horizontal dashed line). See

appendix 1 for details.

Figure 3. A few examples of z-occupancy curves. The predicted z values in each occupancy
level as predicted when fitting equation 9 (red line), compared to the z value obtained when
fitting each occupancy level separately with a constrained power-model (equation 3, black
diamonds). The dashed black line was obtained by fitting equation 8 to the fitted z values. Each
panel is for one dataset (DS), numbered according to Table S2 (Appendix S2).

Figure 4. The relation between z and Sorensen multiple-sites similarity index. The power-
model’s z values decrease with increase in multiple-sites similarity index (y =0.53 — 0.61 x x,
Fi13,1 =14.491, p <0.001). The size of the points is relative to the square root of the number of

1solates in the dataset.
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Figure 1. General framework for species-occupancy distributions (SODs) and species-area relationships
(SARs). The marginal sums of presence/absence tables (A) yields the number of species per isolate which
can be used to plot the general SAR (D). The second marginal sums yields the number of isolates per
species (i.e., the species occupancy level), which can be used to produce the SOD (C). However, the
presence/absence table can be rearranged by grouping species from the same occupancy level (B). From
the resulting NxN square matrix the occupancy-specific SARs can be produced (E) as well as a weighted
version of the SOD (wSOD, C). The additive-constrained SAR develop here is based on this square matrix.
The notations used here and in text are given in (F).
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Species-occupancy distribution removes excessive parameter from species-area relationship

Yoni Gavish and Yaron Ziv

Supplementary Information

Appendix S1 — explaining the AICc, wAICc and expected AICc

Appendix S2 — Reference list of all datasets used in the analysis (Table S1) and basic information on each dataset (table S2).
Appendix S3 — Linear regression between the expected and observed wAICc of the constrained form (table S3) with

additional focus on the Monod and negative exponential functions (figure S1).
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Appendix S1
Explaining the AICc, wAICc and expected AICc

Empirical datasets - data analysis. Non-linear least square regressions (using the Levenberg-Marquardt algorithm)
were used to fit each dataset with 24 models (two forms of the 12 functions in Table 1). We used various parameter
starting values to avoid local minima. All analyses were carried out with the function nlsLM (Minpack.lm Package)
in R (R Development Core Team, 2011). After fitting the 24 models, we calculated Log-likelihood as:

LL=-(n/2) ‘In(2m)-(n/2) -In(RSS/n)-(n/2) (SI1.1)

where RSS is the residuals sum of square and # is the number of isolates. Next, AICc values were calculated as:
-2-LL +2-F+2-F- (F+1)/(n-F-1) (S11.2)

with F being the number of parameters of the model plus one for the residuals variance (Burnham & Anderson,
2002). As such, original and constrained forms of SAR function with two function parameters add F=3 and F=2,
respectively. Original and constrained forms of SAR function with three function parameters add F=4 and F=3,
respectively. We then calculated delta AICc and AICc weights. To avoid mixing the frequentist approach with the
model-selection approach we employed in this study, we have not checked for normality with commonly used
methods (e.g., Kolmogorov-Smirnov). Instead, we repeated the entire analysis using a Poisson error distribution,
with: LL = T, Infexp(—p; - 17%)/v: ]

(where y; and ; are the observed and expected number of species for isolate /). Using the Poisson error had no
qualitative effect on the results shown in the paper.

Empirical datasets - expected AICc weights. If constraining the SAR has no effect on the model’s goodness-of-fit,
the log-likelihood of the two forms should be identical. Under identical log-likelihoods, the constrained form (with
one parameter less) will have a lower AICc value than the original form. Therefore, the delta AICc of the

constrained form will be 0, and that of the original form will be:

2-F(F+1)

AAICc ey = AlCC,oq — AICCcon = [2 -F+ ——

_[2.(1:_1)_,_@]

o (S11.3)
The expected AICc weight of the constrained form (solid black line in Fig. 2) can then be calculated as:

exp(—0.5-0)
(exp(—0.5-0)+exp(—0.5*AAICcreg))

WAICc.on = SI11.4)
con

depending only on the number of isolates (n) and the number of parameters of the original form (F). When the

number of isolates approaches infinity, the second term within the brackets of equation SI1.3 can be omitted,
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AAICc g = 2, and wAICc,,, = 0.731 (dashed horizontal line in Fig. 1 of the main text). Finally, for each of the 12
SAR functions we explored the relation between the observed and expected wAICc,,, using linear regressions. If no

information is lost, we expected the 154 datasets to fall on the unity line (Supplementary Table S3).

Burnham K.P. & Anderson R. (2002). Model selection and multimodel inference - A practical information - theoretic approach.

Second edn. Springer Press.
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, http://www.R-project.org.
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Appendix S1

Reference list of all datasets used in the analysis (Table S1) and basic information on each
dataset (table S2).

The 154 dataset explored in this manuscript were collected using several methodologies. Our criteria for

inclusion in the meta-analysis was that the reference:

e Reported the entire presence/absence data and not only the total number of species per site

e The area of the isolates was reported or can be extracted from online sources such as the island
directory (http://islands.unep.ch/isldir.htm).

e Sampling effort increased with area.

e The pdf was available online or was received from the authors upon request.

We looked for dataset using several sources:
1. Manuscript known by the authors from there general reading in the fields.
2. Data collected by the authors
3. Dataset lists of other meta-analyses, mainly:
a. Triantis et al., 2012, The island species-area relationship: biology and statistics, Journal
of Biogeography, 39 (2): 215-231
b. Drakare et al., 2006, The imprint of the geographical, evolutionary and ecological context
on species—area relationships, Ecology Letters 9 (2): 215-227
c. Boecklen, W. J., 1997, Nestedness, biogeographic theory, and the design of nature
reserves, Oecologia, 112 (1): 123-142
4. General google scholar/web of knowledge search using different crossing of the terms (and
closely related terms):

System term Crossed with Data type
fragmentation species list
fragmented landscapes presence/absence
patchy landscape X occurrence
islands abundance
archipelagos Species atlas

Table S1 contains the list of references for all the datasets (with some references providing more than 1
dataset), while table S2 provides additional information (as well as some analytical results for each
dataset)

Table S1:
Reference details for the 154 datasets used in the analysis. Reference number in supplementary table 2
refers to the numbers here.

1 Aldasoro, J. J., Cabezas, F. & Aedo, C. Diversity and distribution of ferns in sub-Saharan Africa,
Madagascar and some islands of the South Atlantic. Journal of Biogeography 31, 1579-1604,
doi:10.1111/5.1365-2699.2004.01106.x (2004).

2 Andrade, R. D. & Marini, M. A. Bird species richness in natural forest patches in southeast Brazil.
Lundiana 3, 141-149 (2002).

3 Anjos, L. D. & Bocon, R. Bird communities in natural forest patches in southern Brazil. Wilson Bull.
111, 397-414 (1999).

4  Arechavaleta, M., Zurita, N., Marrero, M. C. & Martin, J. L. Lista preliminary de especies silvestres
de Cabo Verde (hongos plantas y animals terrestres) - Consejeria de Medio Ambiente y Ordenacion
Territorial, Gobierno de Canarias. . (2005).
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10
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12

13
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15

16

17

18

19

20

21

22

23

24

25

Arechavaleta, M., Zurita, N. & Garcia, A. Lista de especies silvestres de Canarias. Hongos, plantas y
animales terrestres. Gobierno de Canarias, 1-577 (2009).

Azeria, E. T. Terrestrial bird community patterns on the coralline islands of the Dahlak Archipelago,
Red Sea, Eritrea. Glob. Ecol. Biogeogr. 13, 177-187, doi:10.1111/j.1466-882X.2004.00079.x (2004).
Baker, R. J. & Genoways, H. H. Zoogeography of Antillean bats. Zoogeography in the Caribbean
Special publication 13, 53-97 (1978).

Baldi, A. & Kisbenedek, T. Orthopterans in small steppe patches: an investigation for the best-fit
model of the species-area curve and evidences for their non-random distribution in the patches. Acta
Oecol.-Int. J. Ecol. 20, 125-132, d0i:10.1016/s1146-609x(99)80025-3 (1999)

Baz, A. & GarciaBoyero, A. The SLOSS dilemma: A butterfly case study. Biodivers. Conserv. 5,
493-502 (1996).

Bolger, D. T. ef al. Response of rodents to habitat fragmentation in coastal southern California. Ecol.
Appl. 7, 552-563, d0i:10.2307/2269520 (1997).

Brown, J. H. Mammals on mountaintops - nonequilibrium insular biogeography. Am. Nat. 105, 467-
&, doi:10.1086/282738 (1971).

Case, T. J., Cody, M. L. & Ezcurra, E. (editors) A4 new island biogeography of the sea of Cortes.
(Oxford University Press, 2002).

Castelletta, M., Thiollay, J. M. & Sodhi, N. S. The effects of extreme forest fragmentation on the bird
community of Singapore Island. Biol. Conserv. 121, 135-155, doi:10.1016/j.biocon.2004.03.033
(2005).

Chinnaraj, S. Higher marine fungi from mangroves of Andaman and Nicobar Islands. Sydowia 45,
109-115 (1993).

Conroy, C. J., Demboski, J. R. & Cook, J. A. Mammalian biogeography of the Alexander
Archipelago of Alaska: a north temperate nested fauna. Journal of Biogeography 26, 343-352,
doi:10.1046/j.1365-2699.1999.00266.x (1999).

Corti, C., Masseti, M., Delfino, M. & Perez-Mellado, V. Man and herpatofauna of the mediterranean
islands. Revista Espariola de Herpetologia 13, 83-100 (1999).

Cramer, K. L. New mammal record for Fremont Island with an updated checklist of mammals on
islands in the Great-Salt-Lake. Gt. Basin Nat. 54, 287-289 (1994).

Crowell, K. L. A comparison of relict versus equilibrium-models for insular mammals of the gulf of
Maine. Biol. J. Linnean Soc. 28, 37-64, doi:10.1111/j.1095-8312.1986.tb01748.x (1986).

Dapporto, L. & Cini, A. Faunal patterns in Tuscan archipelago butterflies: The dominant influence is
recent geography not paleogeography. Eur. J. Entomol. 104, 497-503 (2007).

Dapporto, L. & Dennis, R. L. H. Species richness, rarity and endemicity on Italian offshore islands:
complementary signals from island-focused and species-focused analyses. Journal of Biogeography
35, 664-674, doi:10.1111/§.1365-2699.2007.01812.x (2008).

de Castro, E. B. V. & Fernandez, F. A. S. Determinants of differential extinction vulnerabilities of
small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119, 73-80,
doi:10.1016/jbiocon.2003.10.023. (2004).

Dennis, R. L. H., Shreeve, T. G., Olivier, A. & Coutsis, J. G. Contemporary geography dominates
butterfly diversity gradients within the Aegean archipelago (Lepidoptera : Papilionoidea,
Hesperioidea). Journal of Biogeography 27, 1365-1383, doi:10.1046/j.1365-2699.2000.00514.x
(2000).

Donazar, J. A., Gangoso, L., Forero, M. G. & Juste, J. Presence, richness and extinction of birds of
prey in the Mediterranean and Macaronesian islands. Journal of Biogeography 32, 1701-1713,
doi:10.1111/5.1365-2699.2005.01294.x (2005).

Dueser, R. D. & Brown, W. C. Ecological correlates of insular rodent diversity. Ecology 61, 50-56,
doi:10.2307/1937154 (1980).

Enderson, E. F., Quijada-Mascarefias, A., Turner, D. S., Rosen, P. C. & Bezy, R. L. The herpetofauna
of Sonora, Mexico, with comparisons to adjoining states. Check List 5, 632-672 (2009).
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Table S2: Basic information on each dataset used in the analysis. The best model is the model that received the highest AICc weight from the 24
models (the constrained and regular forms of 12 functions). Abbreviations: » — number of isolates; Models abbreviations follow table 1 and are
given below; Ori — original form; Con — constrained form; Ref” — the reference number according to supplementary table S1. A version of the table
in .xIs format is available from the authors upon request (YG at gavishyoni@gmail.com).

Major Taxon system Location n Area range Species Number of mean Best Model | Ref
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
1 Fungi Archipelago Andaman and Nicobar 6 127- 63 180 2.86 Lin. 14
Islands 1539 (24, (Con)
(km®) 38.1%)
2 Fungi Archipelago Canary islands 7 290.5- 1825 3599 1.97 Lin. 5
20027 (963, (Con)
(km®) 52.8%)
3 Fungi Archipelago Cape-Verde 12 1.4- 58 93 1.60 Pow. 4
?k91 2 é?>261,(y ) (Con)
m 17
4 Fungi Archipelago Canary islands 7 290.5- 1438 3364 2.34 Lin. 5
(Lichens) 20027 (618, (Con)
(km*®) 43%)
5 Fungi Archipelago Cape-Verde 12 1.4- 244 773 3.17 Pow. 4
(Lichens) ?k912) g717éfy ) (Con)
m .07
6 Plants Archipelago Canary islands 7 290.5- 351 1263 3.60 Lin. 5
(Bryophyta) (2k0027) (28581,(7 ) (Con)
m 17
7 Plants Archipelago Cape-Verde 12 1.4- 139 323 2.32 Neg.Exp. 4
(Bryophyta) ?k91 2 §34254‘fy ) (Con)
m 47
8 Plants Other Sub-Saharan Africa 27 17- 687 3115 4.53 Pow. 1
(Ferns) 311940 (180, (Con)
(km®) 26.2%)
9 Plants Archipelago Canary islands 7 290.5- 138 502 3.64 Lin. 5
(Marchantio- 2007 (27, (Con)
phyta) (km?) 19.6%)
10 Plants Anthropogenic  Lachish, Israel 40 0.06- 408 6012 14.74 Exp. 32
fragmented 7.93 77, (Con)
landscape (ha) 18.9%)
11 Plants Archipelago Leros islets' group, east 17 0.6- 290 958 3.30 Neg.Exp. 46
Aegean, Greece (1hZ4) 8‘91,(” (Con)
a 17
12 Plants Archipelago Canary islands 7 290.5- 49 218 4.45 Mon. 5
(Pteridophyta) 2007 5, (Con)
(km?) 10.2%)
13 Plants Archipelago Cape-Verde 12 1.4- 35 118 3.37 P2 4
(Pteridophyta) 9912 11, (Con)
(km®) 31.4%)
8
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level

14 Plants Archipelago Canary islands 7 290.5- 1314 4461 3.39 Lin. 5

(Spermatophyta) 2007 (416, (Con)
(km?) 31.7%)

15 Plants Archipelago Cape-Verde 12 1.4- 757 3196 4.22 Pow. 4

(Spermatophyta) 991 (195, (Con)
(km?) 25.8%)

16 Plants Archipelago Sea of Cortes 20 0.6- 707 2734 3.87 Kob. 12

(Vascular) 1223 (281, (Con)
(km?) 39.8%)

17 Plants Archipelago Sea of Cortes, Bahia de 14 0.02- 99 396 4.00 Kob. 12

(Vascular) Los Angeles 9.13 (23, (Con)
(km?) 23.2%)
18 Plants Archipelago Sea of Cortes, small gulf | 10 0.02- 153 271 1.77 Lin. 12
(Vascular) islands 2.26 (96, (Con)
(km?) 62.8%)
19 Invertebrates Archipelago mangrove islands, 9 264- 205 732 3.57 P2 50
Florida Bay, USA (1969) 1263 (75, (Con)
(m?) 36.6%)
20 Invertebrates Archipelago mangrove islands, 9 104- 179 652 3.64 Kob. 50
Florida Bay, USA (1970) 779 (67, (Con)
(m?) 37.4%)

21 Invertebrates Inland water Connecticut, USA 14 6.03- 89 232 2.61 Pow. 53
(Freshwater bodies 8318 (43, (Con)
invertebrates) (m?) 48.3%)

22 Invertebrates Archipelago Canary islands 7 290.5- 259 354 1.37 Lin. 5
(Mollusca) 2007 (219, (Con)

(km?) 84.6%)

23 Invertebrates Archipelago Cape-Verde 12 1.4- 50 192 3.84 Pow. 4

(Mollusca) 991 (13, (Con)
(km?) 26%)

24 Invertebrates Archipelago Aegean Islands 34 3.4- 152 996 6.55 Pow. 34
(Mollusca- 842 (47, (Con)

Land snails) (km?) 30.9%)

25 Invertebrates Archipelago Canary islands 7 290.5- 391 620 1.59 Neg.Exp. 5
(Acarina) 2007 (236, (Con)

(km?) 60.4%)

26 Invertebrates Anthropogenic  Duvir, Israel 12 0.11- 114 389 3.41 Exp. 30

(Araneae) fragmented 3.90 (43, (Con)
landscape (ha) 37.7%)

27 Invertebrates Anthropogenic  Galon, Israel 8 0.16- 99 308 3.11 Mon. 31

(Araneae) fragmented 4.24 (39, (Con)
landscape (ha) 39.4%)

28 Invertebrates Anthropogenic  Lachish, Israel 12 0.06- 115 447 3.89 Pow. 30

(Araneae) fragmented 2.81 (35, (Con)
landscape (ha) 30.4%)

29 Invertebrates Anthropogenic  Tokyo, Japan 7 0.2- 34 103 3.03 Mon. 44

(Araneae) fragmented 27 (12, (Con)
9
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
landscape (ha) 35.3%)

30 Invertebrates Anthropogenic  Yokohama, Japan 9 0.4- 52 223 4.29 Pow. 44

(Araneae) fragmented 15.1 12, (Con)
landscape (ha) 23.1%)

31 Invertebrates Archipelago Canary islands 7 290.5- 455 962 2.1 Lin. 5

(Araneae) 2007 (258 , (Con)
(km”2) 56.7%)

32 Invertebrates Archipelago Cape-Verde 12 1.4- 114 233 2.04 Kob. 4

(Araneae) 991 (44, (Con)
(km?) 38.6%)

33 Invertebrates Archipelago Canary islands 7 290.5- 99 170 1.72 Arc.Log. 5

(Crustacea) 2007 (63, (Con)
(km?) 63.6%)

34 Invertebrates Archipelago Aegean Islands 23 3.4- 67 569 8.49 Pow. 34
(Crustacea- 476 (14, (Con)

Land isopods) (kmz) 20.9%)

35 Invertebrates Archipelago Canary islands 7 290.5- 30 90 3.00 Lin. 5
(Chilopoda) 2007 (11, (Con)

(km?) 36.7%)

36 Invertebrates Archipelago Canary islands 7 290.5- 67 91 1.36 Rat. 5

(Diplopoda) 2007 (56, (Con)
(km?) 83.6%)

37 Invertebrates Archipelago Canary islands 7 290.5- 98 195 1.99 Rat. 5

(Nematoda) 2007 61, (Con)
(km?) 62.2%)

38 Invertebrates Archipelago Canary islands 7 290.5- 1926 4638 2.41 Lin. 5

(Coleoptera) 2007 (950, (Con)
(km?) 49.3%)

39 Invertebrates Archipelago Cape-Verde 12 1.4- 474 1408 2.97 Lin. 4

(Coleoptera) 991 171, (Con)
(km?) 36.1%)

40 Invertebrates Archipelago Aegean Islands 32 3.8- 165 514 3.12 Lin. 26
(Coleoptera, 8260 92, (Con)
Tenebrionidae) (kmz) 55.8%)

41 Invertebrates Archipelago Sea of Cortes 18 0.004- 31 120 3.87 Pow. 12
(Coleoptera, 9.13 12, (Con)
Tenebrionidae) (kmz) 38.7%)

42 Invertebrates Archipelago Canary islands 7 290.5- 113 249 2.20 Rat. 5
(Collembola) 2007 (53, (Con)

(km?) 46.9%)

43 Invertebrates Archipelago Canary islands 7 290.5- 989 2439 2.47 Lin. 5

(Diptera) 2007 (350, (Con)
(km?) 35.4%)

44 Invertebrates Archipelago Cape-Verde 12 1.4- 220 546 2.48 Pow. 4

(Diptera) 991 97, (Con)
(km?) 44.1%)
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
45 Invertebrates Archipelago Canary islands 7 290.5- 725 2052 2.83 Lin. 5
(Hemiptera) 2007 (254 , (Con)
(km?) 35%)
46 Invertebrates Archipelago Cape-Verde 12 1.4- 308 937 3.04 Pow. 4
(Hemiptera) 991 (105, (Con)
(km?) 34.1%)
47 Invertebrates Archipelago Canary islands 7 290.5- 960 2086 217 Rat. 5
(Hymenoptera) 2007 (434, (Con)
(km?)) 45.2%)
48 Invertebrates Archipelago Cape-Verde 12 1.4- 229 370 1.62 Rat. 4
(Hymenoptera) 991 (142, (Con)
(km?) 62%)
49 Invertebrates Anthropogenic  south-eastern Brazil 18 3- 120 535 4.46 Gom. 49
(Hymenoptera- fragmented 299 (26, (Con)
Ants) landscape (ha) 21.7%)
50 Invertebrates Archipelago Sea of Cortes 13 0.02- 24 84 3.50 Kob. 12
(Hymenoptera- 8.68 9, (Con)
Ants) (km?) 37.5%)
51 Invertebrates Anthropogenic  Southern Spain 13 3.6- 81 481 5.94 Mon. 9
(Lepidoptera) fragmented 2115 (21, (Con)
landscape (ha) 25.9%)
52 Invertebrates Archipelago Aegean Islands 31 9- 127 1052 8.28 Com.Log. 22
(Lepidoptera) 9254 (41, (Con)
(km?) 32.3%)
53 Invertebrates Archipelago Canary islands 7 290.5- 606 1576 2.60 Lin. 5
(Lepidoptera) 2007 (222, (Con)
(km?) 36.6%)
54 Invertebrates Archipelago Cape-Verde 12 1.4- 163 450 2.76 Lin. 4
(Lepidoptera) 991 (68, (Con)
(km?) 41.7%)
55 Invertebrates Archipelago Italian islands 10 40- 76 307 4.04 Pow. 20
(Lepidoptera) 22352 (18, (Con)
(ha) 23.7%)
56 Invertebrates Archipelago Sardinian—Corsican 11 40- 32 175 5.47 Kob. 20
(Lepidoptera) islands 11559 5, (Con)
(ha) 15.6%)
57 Invertebrates Archipelago Sicilian islands 10 250- 30 160 5.33 Pow. 20
(Lepidoptera) 24600 5, (Con)
(ha) 16.7%)
58 Invertebrates Archipelago Tuscan islands 8 220- 67 198 2.96 Mon. 19
(Lepidoptera) 6030 (23, (Con)
(ha) 34.3%)
59 Invertebrates Anthropogenic  Small steppe patches, 26 0.018- 32 224 7.00 Lin. 8
(Orthoptera) fragmented Buda Hills, Hungary 10.117 (7, (Con)
landscape (ha) 21.9%)
60 Invertebrates Anthropogenic  south-eastern Brazil 18 3- 16 43 2.69 Kob. 49
(Orthoptera) fragmented 299 9, (Con)
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
landscape (ha) 56.3%)
61 Invertebrates Archipelago Canary islands 7 290.5- 82 236 2.88 Lin. 5
(Orthoptera) (26, (Con)
20027 31.7%)
(km®)
62 Invertebrates Archipelago Canary islands 7 290.5- 68 189 2.78 Pow. 5
(Thysanoptera) 2007 (28, (Con)
(km?) 41.2%)
63 Vertebrates Archipelago Abaco Cays, West- 21 0.05- 8 56 7.00 Pow. 47
(Herpatofauna) Indian islands 16.4'5 3, (Con)
(km*®) 37.5%)
64 Vertebrates Archipelago Anguilla bank, West- 21 0.007- 40 129 3.23 Com.Log. 47
(Herpatofauna) Indian islands 90.72 (19, (Con)
(km*®) 47.5%)
65 Vertebrates Archipelago Baubyan islands, 5 0.7- 44 83 1.89 Exp. 45
(Herpatofauna) Northern Philippines 1962 (20, (Con)
(km*®) 45.5%)
66 Vertebrates Archipelago Berry Islands, West- 15 0.09- 18 69 3.83 Pow. 47
(Herpatofauna) Indian islands 25.92 4, (Con)
(km*®) 22.2%)
67 Vertebrates Archipelago Bimini Islands, West- 15 0.003- 22 71 3.23 Lin. 47
(Herpatofauna) Indian islands 8.8 . 9, (Con)
(km*®) 40.9%)
68 Vertebrates Archipelago Caicos Cays, West- 29 0.01- 14 130 9.29 Pow. 47
(Herpatofauna) Indian islands 1442 2, (Con)
(km*®) 14.3%)
69 Vertebrates Archipelago Central Exuma Cays, 26 0.018- 16 108 6.75 Com.Log. 47
(Herpatofauna) West-Indian islands 12.32 2, (Con)
(km*®) 12.5%)
70 Vertebrates Archipelago Crooked-Acklins bank , 11 0.03- 10 35 3.50 Pow. 47
(Herpatofauna) West-Indian islands 4972 (2, (Con)
(km*®) 20%)
71 Vertebrates Archipelago Grenada bank, West- 35 0.01- 28 160 5.71 Com.Log. 47
(Herpatofauna) Indian islands 32 . (10, (Con)
(km*®) 35.7%)
72 Vertebrates Archipelago Guadeloupe bank, 14 0.005- 17 45 2.65 Pow. 47
(Herpatofauna) West-Indian islands 22 . 8, (Con)
(km*®) 47.1%)
73 Vertebrates Archipelago Hispaniola bank, West- 17 0.09- 65 154 2.37 Pow. 47
(Herpatofauna) Indian islands 6922 (29, (Con)
(km*®) 44.6%)
74 Vertebrates Archipelago Jamaica bank, West- 14 0.02- 10 27 2.70 Com.Log. 47
(Herpatofauna) Indian islands 2.2 . 3, (Con)
(km*®) 30%)
75 Vertebrates Archipelago Keys of the northern 35 0.02- 59 346 5.86 Pow. 47
(Herpatofauna) coast of Cuba, West- 680 (15, (Con)
12
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)

% endemics) level
Indian islands (km?) 25.4%)
76 Vertebrates Archipelago Martinique bank, West- 28 0.002- 41 77 1.88 Pow. 47
(Herpatofauna) Indian islands 0.8 4, (Con)
(km?) 9.8%)
77 Vertebrates Archipelago Mediterranean sea 14 84.9- 89 234 2.63 Exp. 16
(Herpatofauna) 25662 (40, (Con
(km?) 44.9%)
78 Vertebrates Archipelago Puerto-Rico bank, 92 0.001- 57 581 10.19 Pow. 47
(Herpatofauna) West-Indian islands 137 (20, (Con)
(km?) 35.1%)
79 Vertebrates Archipelago Sea of Cortes, major 23 0.6- 85 212 2.49 Pow. 12
(Herpatofauna) islands 1173 (49, (Con)
(km?) 57.7%)
80 Vertebrates Archipelago Southern Exuma Cays, 20 0.019- 18 68 3.78 Lin. 47
(Herpatofauna) West-Indian islands 9.26 8, (Con)
(km?) 44.4%)
81 Vertebrates Archipelago Turks bank, West-Indian | 10 0.01- 13 42 3.23 Lin. 47
(Herpatofauna) islands 17.39 6, (Con)
(km?) 46.2%)
82 Vertebrates Political Sonora, Mexico and 7 58238- 416 994 2.39 Neg.Exp. 25
(Herpatofauna) adjoining states 315194 (km?) (169, (Con)
40.6%)
83 Vertebrates Ecoregions Australasia 66 1600- 528 1712 3.24 Mon. 56
(Herpatofauna- 823000 (211, (Con)
Amphibia) (km?) 40%)
84 Vertebrates Ecoregions Indo-Malaysia 89 2600- 711 2220 3.12 Lin. 56
(Herpatofauna- 663600 (382, (Con)
Amphibia) (km?) 53.7%)
85 Vertebrates Ecoregions Neoarctic 102 3900- 267 1640 6.14 Neg.Exp. 56
(Herpatofauna- 753800 (87, (Con)
Amphibia) (km?) 32.6%)
86 Vertebrates Ecoregions Neotropics 141 100- 2167 8190 3.78 Pow. 56
(Herpatofauna- 1916900 (919, (Con)
Amphibia) (km?) 42.4%)
87 Vertebrates Ecoregions Palearctic 182 2900- 377 1920 5.09 Neg.Exp. 56
(Herpatofauna- 4639900 117, (Con)
Amphibia) (km?) 31%)
88 Vertebrates Ecoregions Sub-Saharan Africa 96 1000- 629 2669 4.24 Pow. 56
(Herpatofauna- 3053200 (237, (Con)
Amphibia) (km?) 37.7%)
89 Vertebrates Inter-provincial ~ Global 9 16800- 4587 4826 1.05 P2 56
(Herpatofauna- 52731900 (4355, (Con)
Amphibia) (km?) 94.9%)
90 Vertebrates Archipelago Canary islands 7 290.5- 15 27 1.80 P2 5
(Herpatofauna- 2007 5, (Con)
Reptiles) (km?) 33.3%)
13
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
91 Vertebrates Archipelago Islands, north-eastern 14 15- 28 170 6.07 Lin. 39
(Herpatofauna- Adriatic coast 410 6, (Con)
Reptiles) (km?) 21.4%)
92 Vertebrates Ecoregions Australasia 69 100- 1216 6042 4.97 Gom. 56
(Herpatofauna- 823000 (412, (Con)
Reptiles) (km?) 33.9%)
93 Vertebrates Ecoregions Indo-Malaysia 92 100- 1252 5978 4.77 Pow. 56
(Herpatofauna- 663600 (537, (Con)
Reptiles) (km?) 42.9%)
94 Vertebrates Ecoregions Neoarctic 89 100- 474 3226 6.81 Mon. 56
(Herpatofauna- 753800 (135, (Con)
Reptiles) (km?) 28.5%)
95 Vertebrates Ecoregions Neotropics 145 100- 2164 11768 5.44 Pow. 56
(Herpatofauna- 1916900 (771, (Con)
Reptiles) (km?) 35.6%)
96 Vertebrates Ecoregions Palearctic 180 1400- 789 4931 6.25 Mon. 56
(Herpatofauna- 4639900 (242, (Con)
Reptiles) (km?) 30.7%)
97 Vertebrates Ecoregions Sub-Saharan Africa 98 200- 1330 6913 5.20 Wei.3 56
(Herpatofauna- 3053200 (478, (Con)
Reptiles) (km?) 35.9%)
98 Vertebrates Inter-provincial ~ Global 9 16800- 6856 7607 1.1 Neg.Exp. 56
(Herpatofauna- 52731900 (6168 , (Con)
Reptiles) (km?) 90%)
99 Vertebrates Anthropogenic  Reserves, Western 23 34- 69 384 5.57 Mon. 37
(Herpatofauna- fragmented Australia 5119 (22, (Con)
Lizards) landscape (ha) 31.9%)
100 Vertebrates Anthropogenic ~ Western Australia 26 0.5- 15 106 7.07 Pow. 51
(Herpatofauna- fragmented 174 (2, (Con)
Lizards) landscape (ha) 13.3%)
101 Vertebrates Archipelago Sea of Cortes 9 0.6- 13 77 5.92 Neg.Exp. 12
(Herpatofauna- 187 1, (Con)
Lizards) (km?) 7.7%)
102 Vertebrates Anthropogenic  Brazil 12 0.09- 19 73 3.84 Lin. 2
(Aves) fragmented 1.02 4, (Con)
landscape (ha) 21.1%)
103 Vertebrates Anthropogenic ~ Canyon habitats, San 37 0.4- 9 73 8.11 Lin. 52
(Aves) fragmented Diego County, 102 1, (Con)
landscape California, USA (ha) 11.1%)
104 Vertebrates Anthropogenic  Forest islands, central 10 0.01- 35 205 5.86 Pow. 29
(Aves) fragmented New-Jersey, USA 24 ©, (Con)
landscape (ha) 0%)
105 Vertebrates Anthropogenic  Sewage works, Britain 12 3- 24 109 4.54 Mon. 28
(Aves) fragmented 400 5, (Con)
landscape (ha) 20.8%)
106 Vertebrates Anthropogenic  Singapore 17 7- 166 1234 7.43 Mon. 13
(Aves) fragmented 935 (26, (Con)
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
landscape (ha) 15.7%)
107 Vertebrates Anthropogenic ~ Small woodlots, 9 0.2- 26 108 4.15 Neg.Exp. 36
(Aves) fragmented Wisconsin, USA 4.41 8, (Con)
landscape (ha) 30.8%)
108 Vertebrates Anthropogenic  Urban parks, Madrid, 25 1- 32 293 9.16 Exp. 27
(Aves) fragmented Spain 118.2 6, (Con)
landscape (ha) 18.8%)
109 Vertebrates Archipelago Baubyan islands, 5 0.7- 137 332 2.42 Kob. 45
(Aves) Northern Philippines 1962 (46, (Con)
(km*®) 33.6%)
110 Vertebrates Archipelago Canary islands 7 290.5- 78 364 4.67 Lin. 5
(Aves) 20027 9, (Con)
(km*®) 11.5%)
111 Vertebrates Archipelago Cape-Verde 12 1.4- 55 344 6.25 Pow. 4
(Aves) ?k91 2 (743,0/ ) (Con)
m .07/
112 Vertebrates Archipelago Dahlak Archipelago 26 2- 38 162 4.26 Com.Log. 6
(Aves) 2143 (16, (Con)
(ha) 42.1%)
113 Vertebrates Archipelago Northern islands, Sea of | 16 0.03- 32 147 4.59 Rat. 12
(Aves) Cortes 15.023 (10, (Con)
(km*®) 31.3%)
114 Vertebrates Archipelago Southern islands, Sea of | 16 0.05- 28 218 7.79 Kob. 12
(Aves) Cortes 1872 o, (Con)
(km*®) 0%)
115 Vertebrates Archipelago Thousand Island lake, 42 0.3- 93 1193 12.83 Arc.Log. 54
(Aves) china 1289 (25, (Con)
(ha) 26.9%)
116 Vertebrates Ecoregions Australasia 69 100- 1605 16038 9.99 Mon. 56
(Aves) 823900 (409, (Con)
(km*®) 25.5%)
117 Vertebrates Ecoregions Indo-Malaysia 93 300- 1781 30768 17.28 Exp. 56
(Aves) 663900 (161, (Con)
(km*®) 9%)
118 Vertebrates Ecoregions Neoarctic 118 100- 728 21702 29.81 Com.Log. 56
(Aves) 10322800 (74, (Con)
(km*®) 10.2%)
119 Vertebrates Ecoregions Neotropics 150 100- 3687 54165 14.69 Exp. 56
(Aves) 1919900 (569, (Con)
(km*®) 15.4%)
120 Vertebrates Ecoregions Palearctic 195 1400- 1570 46043 29.33 Mon. 56
(Aves) 463?900 (159, (Con)
(km*®) 10.1%)
121 Vertebrates Ecoregions Sub-Saharan Africa 100 100- 2046 36905 18.04 Exp. 56
(Aves) 3053200 (239, (Con)
(km?) 11.7%)
15
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
122 Vertebrates Inland water Bogs, Wetland habitats, 47 8- 13 161 12.38 Neg.Exp. 33
(Aves) bodies SW Sweden 66 ©, (Con)
(ha) 0%)
123 Vertebrates Inland water Wet meadows, Wetland 15 2- 11 60 5.45 Neg.Exp. 33
(Aves) bodies habitats, SW Sweden 22 (2, (Con)
(ha) 18.2%)
124 Vertebrates Inter-provincial ~ Global 9 16800- 9008 11861 1.32 Neg.Exp. 56
(Aves) 52731900 (6965 , (Con)
(km?) 77.3%)
125 Vertebrates Naturally Forest patches, 12 0.5- 189 938 4.96 Com.Log. 3
(Aves) fragmented Southern Brazil 840 (36, (Con)
(ha) 19.1%)
126 Vertebrates Naturally Oaxaca, Mexico 17 2- 60 478 7.97 Gom. 55
(Aves) fragmented 159246 0, (Con)
(ha) 0%)
127 Vertebrates Archipelago Mediterranean sea 43 143- 25 307 12.28 Pow. 23
(Aves- 25662 o, (Con)
Birds of prey) (km?) 0%)
128 Vertebrates Anthropogenic  Atlantic forest 8 1.2- 12 62 5.17 Neg.Exp. 21
(Mammals) fragmented fragments, Brazil 13.3 1, (Con)
landscape (ha) 8.3%)
129 Vertebrates Anthropogenic  Reserves, Western 23 34- 24 171 713 Neg.Exp. 38
(Mammals) fragmented Australia 5119 5, (Con)
landscape (ha) 20.8%)
130 Vertebrates Anthropogenic  Temperate rain forest, 20 0.93- 18 142 7.89 Lin. 42
(Mammals) fragmented Olympic Peninsula, 58.91 (2, (Con)
landscape Washington, USA (ha) 11.1%)
131 Vertebrates Archipelago Alexander archipelago, 24 10.1- 23 199 8.65 Com.Log. 15
(Mammals) Alaska 5777 4, (Con)
(km?) 17.4%)
132 Vertebrates Archipelago Baubyan islands, 5 0.7- 20 35 1.75 Pow. 45
(Mammals) Northern Philippines 196 (13, (Con)
(km?) 65%)
133 Vertebrates Archipelago Great Salt Lake, Utah, 7 9- 27 63 2.33 Lin. 17
(Mammals) USA 10767 11, (Con)
(ha) 40.7%)
134 Vertebrates Archipelago Islands, Gulf of Maine, 8 1.243- 35 122 3.49 Lin. 18
(Mammals) USA 279 (11, (Con)
(km?) 31.4%)
135 Vertebrates Archipelago Islands, north-eastern 14 15- 13 86 6.62 Lin. 39
(Mammals) Adriatic coast 410 (2, (Con)
(km?) 15.4%)
136 Vertebrates Archipelago Philippine Trench 9 22- 35 123 3.51 Lin. 35
(Mammals) 99078 (15, (Con)
(km?) 42.9%)
137 Vertebrates Archipelago Sea of Cortes 28 0.32- 77 79 1.03 Arc.Log. 12
(Mammals) 1173 (75, (Con)
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level
(km?) 97.4%)
138 Vertebrates Archipelago Thousand Islands 20 0.04- 10 50 5.00 Gom. 40
(Mammals) Region, New-York, USA 591 o, (Con)
(ha) 0%)
139 Vertebrates Ecoregions Australasia 67 100- 674 3684 5.47 Com.Log. 56
(Mammals) 823000 (166 , (Con)
(km?) 24.6%)
140 Vertebrates Ecoregions Indo-Malaysia 93 300- 830 11697 14.09 Exp. 56
(Mammals) 663600 (126 , (Con
(km?) 15.2%)
141 Vertebrates Ecoregions Neoarctic 119 100- 481 7658 15.92 Neg.Exp. 56
(Mammals) 1032800 (65, (Con)
(km?) 13.5%)
142 Vertebrates Ecoregions Neotropics 146 100- 1227 23383 19.06 P2 56
(Mammals) 1916900 (127, (Con)
(km?) 10.4%)
143 Vertebrates Ecoregions Palearctic 193 2900- 905 14046 15.52 Mon. 56
(Mammals) 4639900 (km?) | (120, (Con)
13.3%)
144 Vertebrates Ecoregions Sub-Saharan Africa 98 200- 1039 10964 10.55 Pow. 56
(Mammals) 3053200 (195, (Con)
(km?) 18.8%)
145 Vertebrates Inter-provincial ~ Global 9 16800- 4541 5295 1.17 Neg.Exp. 56
(Mammals) 52731900 (3846, (Con)
(km?) 84.7%)
146 Vertebrates Naturally Mountain-tops, great 17 31.1- 13 97 7.46 Com.Log. 11
(Mammals) fragmented basin of north America, 3051 1, (Con)
USA (km?) 7.7%)
147 Vertebrates Naturally Montane islands, 27 6.89- 23 154 6.70 Kob. 41
(Mammals) fragmented American Southwest 11134 5, (Con)
(km?) 21.7%)
148 Vertebrates Archipelago Antillean islands 22 13- 57 189 3.32 Kob. 7
(Mammals- 105805 (31, (Con)
Bats) (km?) 54.4%)
149 Vertebrates Archipelago Islands, Bahamas 23 2.18- 13 117 9.00 Pow. 48
(Mammals- 5959 4, (Con)
Bats) (km?) 30.8%)
150 Vertebrates Archipelago Islands, Greater Antilles | 19 5.2- 37 209 5.65 P2 48
(Mammals- 105805 (13, (Con)
Bats) (km?) 35.1%)
151 Vertebrates Archipelago Islands, Lesser Antilles 23 5.49- 24 225 9.38 Pow. 48
(Mammals- 1628 (7, (Con)
Bats) (km?) 29.2%)
152 Vertebrates Anthropogenic  Coastal Southern 24 0.41- 9 67 7.44 Neg.Exp. 10
(Mammals- fragmented California 84 o, (Con)
Rodents) landscape (ha) 0%)
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Major Taxon system Location n Area range Species Number of mean Best Model | Ref’
(Taxon) (units) (endemics, occupancies occupancy | (Ori/Con)
% endemics) level

153 Vertebrates Archipelago Virginia barrier islands, 9 29- 5 19 3.80 Pow. 24
(Mammals- USA 2197 O, (Con)
Rodents) (ha) 0%)

154 Vertebrates Anthropogenic  Udzungwa Mountains of | 22 0.06- 7 69 9.86 Kob. 43
(Mammals- fragmented Tanzania 526.32 1, (Con)
Monkeys) landscape (km?) 14.3%)

Pow. — Power; Pow.Ros. — Power Rosenzweig; Ext.P1— Extended Power 1; Ext.P2— Extended Power 2; P1 — Persistence Function 1; P2 — Persistence Function

2; Exp. — Exponential; Kob. — Kobayashi Logarithmic; Mon. — Monod; MMF. — Morgan-Mercer-Flodin; Arc.Log. — Archibald Logistic; Neg.Exp. — Negative

Exponential; Chp.Ric. — Chapman-Richards; Wei.3 — Weibull-3; Wei.4 — Weibull-4; Asy. — Asymptotic; Rat. — Rational. Gom. — Gompertz; Beta.P.— Beta-P;

Com.Log. - Common Logistic; EVF. — Extreme-Value Function; Lom. — Lomolino function.
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Appendix S3

Linear regression between the expected and observed wAICc of the constrained form (table

S3) with additional focus on the Monod and negative exponential functions (figure S1).

Table S3:

For each of the twelve functions, the result of linear regression of the observed wAICc of the constrained
form against its expected wAICc, if the original and constrained forms have identical log likelihoods. N is
the number of datasets used for the regression, while ‘Low’ and "High’ stand for the lower and higher
values of the 95% confidence intervals around the intercept and slope. Cases in which the confidence
interval of the intercept or slope did not overlap with 0 and 1 (respectively) are given in bold face.

Constant Slope

Model N F Sig. | Estimate  Low High | Estimate  Low High
Power 154 0772 <0.001 -0.002 0.076  0.071 0.997 0.910 1.084
Linear 154 0998  <0.001 -0.001 20.007  0.005 1.000 0.993 1.008
Kobayashi 154 0755  <0.001 -0.069 0152 0.014 1.068 0.970 1.165
Exponential | 154  1.000  <0.001 0.000 -0.001 0.000 1.000 1.000 1.001
Monod 149 0441  <0.001 -0.329 0.538  -0.120 1.338 1.092 1.584
Negative 151 0389  <0.001 -0.470 0.726  -0.214 1.481 1.180 1.782
Exponential

P2 151 0820  <0.001 0.021 0.044  0.086 0.972 0.898 1.045
Weibull 151 0951  <0.001 0.011 -0.021 0.043 0.988 0.952 1.025
Gompertz 145  0.999  <0.001 0.000 20.004  0.005 0.999 0.994 1.004
Common 149 0.994  <0.001 -0.003 20.014  0.008 1.004 0.991 1.017
Logistic

Archibald 151 0903  <0.001 0.035 -0.009 0.080 0.961 0.910 1.012
Logistic

Rational 148 0998  <0.001 -0.002 20.008  0.004 1.002 0.994 1.009
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Figure S1: The difference between the observed and expected (under identical log-likelihood) AICc weight of the

constrained form, plotted against the cumulative AICc weight of the SAR function in the 24 SAR models analysis,

for the (a) Monod and (b) Negative Exponential SAR functions. Note that deviation from zero difference occurs

when the model poorly describes the empirical data (relative to other SAR functions).
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