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Chemokines control the migration of cells in normal physiological processes

and in the context of disease such as inflammation, autoimmunity and

cancer. Two major interactions are involved: (i) binding of chemokines to

chemokine receptors, which activates the cellular machinery required for

movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs),

which facilitates the organization of chemokines into haptotactic gradients

that direct cell movement. Chemokines can bind and activate their receptors

as monomers; however, the ability to oligomerize is critical for the function

of many chemokines in vivo. Chemokine oligomerization is thought to

enhance their affinity for GAGs, and here we show that it significantly affects

the ability of chemokines to accumulate on and be retained by heparan sul-

fate (HS). We also demonstrate that several chemokines differentially rigidify

and cross-link HS, thereby affecting HS rigidity and mobility, and that HS

cross-linking is significantly enhanced by chemokine oligomerization.

These findings suggest that chemokine–GAG interactions may play more

diverse biological roles than the traditional paradigms of physical immobil-

ization and establishment of chemokine gradients; we hypothesize that they

may promote receptor-independent events such as physical re-organization

of the endothelial glycocalyx and extracellular matrix, as well as signalling

through proteoglycans to facilitate leucocyte adhesion and transmigration.
1. Introduction
Glycosaminoglycans (GAGs) are long chains of repeating saccharide units that

get attached to protein cores to form proteoglycans that are either inserted into

cell membranes or secreted/shed into the extracellular matrix (ECM) [1,2]. For

example, heparan sulfate (HS) is a ubiquitous GAG found on almost all cell sur-

faces where it is attached as part of the HS proteoglycans syndecan and

glypican to the membrane and forms a large component of the endothelial gly-

cocalyx [1–3]. Along with the ECM, one function of HS and other GAGs in the

glycocalyx is to provide structural support for the physical deposition of a wide

number of growth factors, cytokines, chemokines and other ECM proteins [4].

However, more recently this layer has been described as playing a dynamic

physical role in controlling the permeability of the endothelium to leucocytes

by regulating leucocyte adhesion to the endothelial cells prior to their transmi-

gration through the endothelial cell layer [5–8]. It also physically responds to

forces such as shear stress, thereby transducing mechanical signals into cellular
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Figure 1. Structures of chemokines used in this study with major GAG-
binding residues highlighted. Different subunits of chemokines are shown
as grey and cyan ribbons. Highlighted residues (space-filling representation,
blue) are those previously identified as being important for binding to
GAGs. (a) CCL7 (PDB ID 1BO0 [34]; residues highlighted include R14, K18,
K19, K22, R24, K46, K49 [32]). (b) CXCL11 ((PDB ID 1RJT [35]; residues high-
lighted include K46, K50, K52, K57, K59, R62 [36]). (c) CCL2 (PDB ID 1DOM
[37]; residues highlighted include R18, K19, R24, K49 [38]). (d ) CXCL8 (PDB
ID 1IL8 [39]; residues highlighted include H18, K20, R60, K64, K67, R68 [40]).
(e) CXCL4 (PDB ID 1RHP [41]; residues highlighted include K61, K62, K65, K66
[42]). ( f ) CCL5 (PDB ID 5CMD [43], only hexamer shown; residues highlighted
include R44, K45, R47 [44]).
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responses [9] and undergoes physical remodelling as a

consequence of disease [10–13]. The control mechanisms

involved in physical regulation of this barrier have yet to be

fully described but are thought to be integral factors in

inflammation and cell migration [11,14,15], suggesting the

potential involvement of chemokines.

Chemokines are a family of chemotactic cytokines that

play key roles in mediating leucocyte adhesion and cell

migration [16–18]. In addition to binding and activating che-

mokine receptors on the migrating cells, chemokines bind to

GAGs, an interaction that has been demonstrated to be vital

for their function in vivo [19]. This functional requirement

has been demonstrated with GAG-binding-deficient mutants

of several chemokines (e.g. CXCL8, CXCL12, CCL2, CCL5

and CCL7) using in vivo mouse models of inflammation

where the mutants block the function of wild-type (WT) che-

mokines and/or fail to recruit immune cells [20–26]. The

importance of chemokine–GAG interactions has been attrib-

uted to the need to localize chemokines to inflammatory

environments where they are produced [27], particularly in

the presence of convective transport by flow in blood vessels

and capillaries. These interactions are also thought to be

important for the formation of haptotactic chemokine gradi-

ents that provide directional cues for migrating cells [27,28].

However, other mechanisms related to modifying the organ-

ization of GAGs on cell surfaces and the ECM may be

operative [29]. Along these lines, recent studies demonstrated

that the tumour necrosis factor-stimulated gene-6 (TSG-6)

can interconnect individual chains of hyaluronan (HA), and

thus non-covalently cross-links this GAG [30]. The functio-

nal consequence of this cross-linking was suggested to

be ‘HA-remodelling’ for regulating leucocyte adhesion and

enhancing the sequestration of additional ECM proinflamma-

tory mediators [31]. Similarly, cross-linking of HS by growth

factors such as FGF-2 as well as the chemokines CXCL12a

and g has also been demonstrated [29]. These studies

involved the use of biophysical techniques referred to as

quartz crystal microbalance with dissipation monitoring

(QCM-D) and fluorescence recovery after photobleaching

(FRAP) to report on physical properties (rigidification and

mobility, respectively) of GAG films upon protein binding.

The observation that CXCL12a cross-links HS chains by

QCM-D and FRAP is in agreement with results from surface

plasmon resonance (SPR), which revealed a dependence of

chemokine–GAG affinities on the density of the immobilized

GAG chains, in a manner suggestive of cross-linking [32,33].

The purpose of the present study was to determine

whether cross-linking of GAG chains is a common feature of

chemokine–GAG interactions, and to provide insight into the

underlying structural mechanisms. In particular, prior studies

demonstrating that HA induces oligomerization of TSG-6,

and that the TSG-6 oligomers act as cross-linkers of HA films

[30], motivated us to consider analogous mechanisms with

chemokines. Indeed, all chemokines have the same basic ter-

tiary fold (figure 1a,b; CCL7 and CXCL11, respectively), and

they generally bind and fully activate their receptors as mono-

mers [20,45–47]. However, many chemokines oligomerize,

which might facilitate bridging of individual GAG chains as

observed for TSG-6 oligomers. Chemokines from the CC sub-

family generally form ‘CC-like’ dimers through association of

N-termini (figure 1c, CCL2) while CXC chemokines generally

form ‘CXC-like’ dimers through association of b-sheets [39]

(figure 1d, CXCL8). Others form larger oligomers, such as
tetramers in the case of CXCL4 [41] (figure 1e) and polymers

in the case of CCL5 [43] (figure 1f). As for HA-induced oligo-

merization of TSG-6 [30], GAGs can also stabilize or induce

chemokine oligomerization [32,38]. Thus within the chemokine

family, there is a broad range of GAG affinities and oligomer-

ization propensities, as well as effects of GAGs on chemokine

oligomerization, that could contribute to chemokine specific

effects in modulating the biomechanical and structural

properties of endothelial and ECM GAGs.

In this study, we characterized six chemokines that have a

wide range of GAG-binding affinities and oligomerization

propensities, from monomers to polymers (figure 1), for their

ability to bind to and modify HS films using QCM-D

(figure 2a) and FRAP (figure 2b). We also examined oligomer-

ization-deficient chemokines to directly probe the role of

oligomerization. Our results suggest that chemokines differen-

tially accumulate on and rigidify HS films. In the case of CCL2,

CCL5 and CXCL4, we also show that HS chain modification is

dependent on their ability to oligomerize and that oligomeriza-

tion allows chemokines to cross-link HS chains over greater

distances than non-oligomerizing counterparts. These results

provide insight into the potential of chemokines to modify

the physical properties of HS chains in the ECM and the glyco-

calyx, which may reflect an important aspect of chemokine

function—modulating the ECM and endothelial cell barrier

function to facilitate leucocyte adhesion and transmigration.
2. Results
2.1. Chemokines differentially bind to and rigidify

heparan sulfate films
In previous studies, we investigated the interaction of

several chemokines and oligomerization-deficient chemokine
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Figure 2. Formation of HS films on a passivated QCM-D sensor and for FRAP. Schematic of surfaces used for (a) QCM-D and (b) FRAP adapted from [29]. Formation
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mutants with HS using SPR. In addition to determining inter-

action affinities and kinetic on/off rates as well as insight into

the relative propensity of the chemokines and their mutants

to oligomerize on HS, we observed that for some chemo-

kines, the affinities were dependent on the density of the

immobilized HS chains [32,33]. These observations led us to

hypothesize that some chemokines, particularly those that

oligomerize, might cross-link HS chains. In order to test

this hypothesis, we set out to determine if the same set of

chemokines could modify HS surfaces, possibly through

cross-linking, using QCM-D experiments. QCM-D has been

previously used to investigate cross-linking/remodelling of

HA by TSG-6 [30,48] and, more recently, HS by growth

factors FGF-2 and -9, the cytokine IFNg and chemokines

CXCL12a and CXCL12g [29,49].

In the QCM-D approach, one creates an artificial biomi-

metic surface by passivating gold-coated QCM-D sensors

with a monolayer of oligo ethylene glycol (OEG) thiols

doped with biotinylated OEG thiol. The surfaces are then

coated with a monolayer of streptavidin, followed by a mono-

layer of biotinylated HS. The resulting film presents a

monolayer of HS whose density can be controlled and inter-

actions with various GAG-binding proteins interrogated

(figure 2a). Note that in these experiments, HS is biotinylated

and then immobilized on streptavidin through its reducing

end to mimic attachment to proteoglycans and thereby mini-

mize artificial perturbations of the protein–HS interactions

under study.
QCM-D measures two parameters: (i) the frequency, or fre-

quency shift relative to a control (Df, in Hertz), which is

sensitive to changes in areal mass density, and therefore

reports on molecular binding events (e.g. binding of HS, strep-

tavidin or chemokine in our study); and (ii) the dissipation, or

dissipation shift relative to a control (DD, in dissipation units,

1026), which reflects changes in the morphology of the bio-

molecular film on the sensor surface (e.g. relative softness or

rigidification). Figure 2c,d illustrates the formation of a

lower-density (27 Hz, þ1.5 dissipation units) HS surface

and a saturated (224 Hz, þ4.5 dissipation units) HS surface,

respectively, as previously described [29,49]. The resulting

HS films are soft and hydrated, as indicated by the increase

in dissipation upon HS addition [50]. The frequency shifts

upon HS binding correspond to areal HS densities of 10 and

36 ng cm22, respectively [51]. Changes in frequency and dissi-

pation upon flowing chemokine over the surface can then be

used to assess binding to and rigidification of the HS film

[49]. The frequency and dissipation corresponding to bound

HS and HS film softness, respectively, are set to zero in sub-

sequent figures (described below) to focus exclusively on the

effects of chemokine addition.

Figures 3 and 4 (black curves) demonstrate the changes in

frequency and dissipation of a saturated HS surface after WT

chemokines are flown over the surface. Several chemokines,

representative of a broad range of oligomerization propensi-

ties, were chosen for this study in order to determine the

effect of oligomerization on cross-linking HS: CCL7 (monomer
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Figure 3. CXCL8-, CCL2- and CCL7-mediated modification of high- and low-density HS films. (a) CXCL8, (b) CCL2 or (c) CCL7 (500 nM) were passed over a QCM-D sensor
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HS film rigidification) as a function of time are plotted. Chemokine injection start and endpoints are indicated by arrows on each curve.
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[34]), CXCL11 (monomer at pH 4.5 [35]; weak dimer at pH 5.6

[36]), CXCL8 (dimer [52]), CCL2 (dimer [38]), CXCL4 (tetra-

mer [41]) and CCL5 (polymer [43]). All chemokines produce

a reduction in frequency, indicative of binding to the HS surface

with the order of maximal signal change as follows: CCL5

(less than 230 Hz) . CXCL4 (221+3 Hz) . CCL2 (220+
1 Hz) . CXCL11 (214+1 Hz)¼ CCL7 (214+1 Hz) .

CXCL8 (29+1 Hz). These values indicate the level of accumu-

lation reached at equilibrium by each chemokine on the HS

surface with 500 nM chemokine in the solution phase, except

for CCL5, which showed continued binding even after pro-

longed incubation for 60 min. Because the molecular weights

of the chemokines are within 15% of each other, the values

reflect to a first approximation the relative number of bound

chemokine molecules, although their exact localization within

the HS film and effects on the morphology of the HS film

may also affect the frequency shift. It is important to note that

the maximal accumulation is not determined exclusively

by the chemokine–HS affinity but rather affinity coupled

with the propensity of the chemokine to oligomerize; thus it
is not surprising that CCL5 and CXCL4 showed the greatest

accumulation because they form polymers and tetramers,

respectively, and also have the highest apparent affinity for

HS of the chemokines tested [33]. These QCM-D experiments

also demonstrate the variable rates of chemokine dissociation

from the HS surface, where CXCL4, CXCL11 and CCL5 have

slower rates of dissociation than CXCL8, CCL2 and CCL7, con-

sistent with prior SPR kinetic data and the higher HS affinities

of the former group [33]. CXCL8 also has a notably slow rate of

association, again consistent with its relatively low affinity for

HS [33].

In addition to providing insight into relative variations in

the amount of chemokine bound to the HS films, QCM-D

also enables simultaneous monitoring of the effect of chemo-

kine binding on the rigidity of the HS surface through the

dissipation readout, DD [50]. All chemokines produced a

reduction in dissipation of the HS film indicating increased

rigidity or reduced softness. However, the magnitude of the

effect broadly distinguished two groups of chemokines.

Chemokines that had a modest maximal effect on HS film
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rigidity (less than 2 dissipation units) include CXCL8 (20.6

dissipation units), CCL7 (21.2 dissipation units) and CCL2

(21.3 dissipation units) (figure 3). The second group, which

produced larger maximal reductions in dissipation (more

than 2 dissipation units), and therefore greater HS film rigidi-

fication, includes CXCL4 (22.8 dissipation units), CXCL11

(22.4 dissipation units) and CCL5 (22.7 dissipation units)

(figure 4). After washing with buffer, dissociation of the che-

mokines from the HS film resulted in a reversal of HS film

rigidification. In the cases of CXCL8, CCL2 and CCL7, the

dissipation signal returned to pre-chemokine levels following

buffer wash due to their relatively rapid rates of dissociation

from the HS surface (figure 3). Conversely, the slower rates of

chemokine dissociation observed for CXCL4, CXCL11 and

CCL5 (figure 4) resulted in only small increases in dissipation

following buffer wash. CXCL11 demonstrated an initial rapid
loss of chemokine (indicated by the increase in frequency;

figure 4b(i)), which then plateaued, and the dissipation

signal showed a similar pattern (figure 4b(ii)). Thus, modifi-

cation of the HS film softness is a direct result of

chemokine binding, the magnitude of which is chemokine

dependent. Moreover, the dissociation rates of different che-

mokines dictate the duration of the modifications, and

result in both transient and more long-lasting effects.

2.2. Chemokine-mediated effects on heparan sulfate
film rigidity are dependent on the surface density
of the heparan sulfate chains

Given our previous observations of density-dependent

chemokine–HS interactions by SPR [32,33], we investigated
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the density dependence of chemokine-mediated HS film rigi-

dification using QCM-D. QCM-D sensor surfaces were

functionalized as described above, but with only a third

of the amount of HS (27 Hz; ‘low-density HS surface’)

immobilized relative to the saturated HS surface (224 Hz;

‘high-density HS surface’) (figure 2) [51].

As shown in figures 3 and 4 (red curves), the low-density

HS surface results in a reduction of the maximal level of bound

chemokine, with the exception of CXCL4, with the most dra-

matic reductions observed for CXCL8, CCL2 and CCL7

compared with more moderate reductions with CXCL11 and

CCL5. Conspicuously, CXCL8, CCL2 and CCL7 produced

no reduction in dissipation in contrast with their effects on

the high-density HS surface (figure 3), indicating that the rigi-

difying effect is reduced on the low-density HS surface. In the

case of CCL2 and CCL7, the lack of measurable dissipation

shift is despite their ability to bind to the surface, as indicated

by the frequency measurements; in the case of CXCL8, very

little chemokine even bound to the low-density HS surface

(figure 3a). By contrast, CXCL4, CXCL11 and CCL5 were

able to rigidify the low-density HS film substantially as indi-

cated by the marked decrease in dissipation (figure 4). As

with the high-density surface, CCL5 and CXCL4 produced a

greater reduction in dissipation on the low-density surface

than CXCL11. Although the effects were diminished in com-

parison with the high-density HS surface, the fact that these

three chemokines could still substantially modify the low-

density HS surface suggests that they can overcome the greater

distance between HS chains and/or reduced density of HS

binding sites to effectively rigidify the film.
2.3. Chemokine-mediated heparan sulfate rigidification
is facilitated by oligomerization

In our previous studies on the affinity and interaction kinetics

of chemokines with GAGs by SPR, we observed a striking

role of chemokine oligomerization through the use of

oligomerization-deficient chemokine mutants [32,33]. The

results motivated experiments to explore whether oligomeri-

zation plays a role in the observed chemokine-mediated

rigidification of HS films using QCM-D. For this purpose,

we used an E26A mutant of CCL5 (which forms tetramers)

and an E66S mutant (which forms dimers) [53] for comparison

with WT CCL5 (which forms polymers) [43]. Addition of WT

CCL5 to a high-density HS surface produced a reduction of

the dissipation measurement (22.7 dissipation units) compar-

able with the E66S dimer (22.7 dissipation units) but less than

the E26A tetramer (23 dissipation units) (figure 5a(ii)). This

lower effect of WT CCL5 may be due to the effects of non-

specifically bound protein, as described in the legend of

figure 4. The QCM-D frequency measurement also demon-

strated that the E66S dimer, and to a lesser extent the E26A

tetramer, dissociated more rapidly from HS films than WT

CCL5 following buffer wash (figure 5a(i)). On low-density

HS surfaces, WT CCL5 and the E26A tetramer had the same

maximal effect on dissipation (21 dissipation unit) while the

E66S dimer showed a reduced maximal effect (20.6 dissipa-

tion units), presumably due to a reduced level of bound

E66S dimer compared with WT CCL5 and the E26A tetramer

(figure 5b). This small E66S-mediated reduction in dissipation

was also entirely lost following buffer washing, in contrast

with the E26A tetramer. Together these data suggest that
although the dimeric form of CCL5 is able to rigidify the HS

chains, higher-order oligomers are necessary for maximal

binding and retention of CCL5 on the HS surface.

We also explored the role of oligomerization on CCL2-

mediated HS rigidification using a P8A mutant that forms

monomers instead of WT dimers [46]. Addition of the P8A

monomer to the high-density HS surface resulted in very

little binding at the same concentration as WT CCL2 (data

not shown); thus a sixfold higher concentration of P8A was

used to produce sufficient binding and enable comparison

with the WT chemokine (figure 5c). Despite significant

binding of P8A compared with WT CCL2, no reduction in

dissipation was achieved. This finding suggests that oligo-

merization of CCL2 is necessary to produce high-affinity

HS interactions and enable modification of HS chains, in

agreement with the previous interpretation of SPR data [32].

Finally, we compared WT CXCL4 (tetramer) and a K50E

mutant dimer to assess the effect of tetramer formation on

HS film rigidification [54]. Previous characterization of this

chemokine/mutant pair by SPR showed that dimeric K50E

has a weaker affinity for HS primarily due to a more rapid

off rate [33]. This finding was replicated here, as demon-

strated by the frequency measurements; CXCL4 showed

initial loss of bound protein followed by a levelling out,

whereas less of the K50E dimer bound, and it was continu-

ously released from the HS surface as buffer was flowed

over (figure 5d ). WT CXCL4 produced a significantly greater

rigidifying effect on high-density HS films (22.8 dissipation

units) in comparison with the K50E dimer (21.4 dissipation

units). This finding was also replicated on low-density HS

films, where K50E produced no effect on dissipation despite

the significant levels of bound protein, in contrast to WT

CXCL4 (figure 5e). These data suggest that the ability of

CXCL4 to rigidify HS chains is dependent on its ability to

form tetramers, which also promotes retention of the chemo-

kine on the HS surface. Also of note is that a reproducibly

observed discontinuity in the frequency change for binding

of WT CXCL4 to the high-density HS surface is not replicated

on the low-density surface or with the K50E mutant. The

cause of the discontinuity is unknown but seems likely to

be dependent on tetramer formation or a dimer–tetramer

equilibrium, where the nature of the interaction of CXCL4

with HS changes at a given level of bound CXCL4.

2.4. Chemokine-mediated heparan sulfate cross-linking
is a major cause of heparan sulfate film
rigidification

The QCM-D experiments described above demonstrate that

certain chemokines can increase the rigidity of HS films

and that this property is dependent on their ability to oligo-

merize. However, this assay does not directly address

whether the observed rigidification is due to cross-linking

of the HS chains (which has potential relevance to proteogly-

can clustering, and related functional effects [29,55]), or

whether the HS chains simply wrap around the chemokine.

Importantly, the HS anchor points (e.g. biotin sites) are

estimated to be 5 nm apart from each other on the high-

density surfaces, whereas on the low-density surfaces they

are approximately 9 nm apart [29,49,51]. In an earlier study,

the chain length of the bound HS was also estimated to be

20 monosaccharides or approximately 10 nm [29]. Taken
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together, these dimensions suggest that chains from adjacent

oligosaccharides should be able to contact each other, thereby

allowing for cross-linking [29].
To address this question, we turned to FRAP to directly

examine the lateral mobility of the HS chains in the presence

and absence of chemokine. For these experiments, an HS film



rsob.royalsocietypublishing.org
Open

Biol.7:160286

8
with laterally mobile HS anchor points was created by pla-

cing a lipid bilayer doped with biotinylated lipids onto a

glass slide, followed by fluorescently labelled streptavidin

and finally biotinylated HS (figure 2b) [29,49]. In this exper-

imental set-up, a slowing of the fluorescence recovery

reflects the reduced diffusion of streptavidin due to

cross-linking of the attached HS chains.

In the absence of chemokine, a diffusion rate of

1.6 mm2 s21 was measured for fluorescently labelled strepta-

vidin. Upon addition of CCL5 followed by a wash step, it

was reduced to 0.05 mm2 s21 (figures 6a and 7a). By compari-

son, CXCL11 produced a lesser, but significant, reduction in

diffusion to 1.0 mm2 s21 (figures 6b and 7b). In the case of

CXCL4, the default model with one mobile and one immobile

fraction fitted the data poorly, indicating that a more complex

situation was operative than that observed for CCL5 and

CXCL11 (which may or may not be related to the discontinu-

ity seen in the QCM-D frequency data). An extended model

with two mobile fractions with distinct diffusion coefficients

fit the data well and suggested that 78% of the film had a sig-

nificantly reduced diffusion constant (0.005 mm2 s21) and

22% had a more rapid (0.6 mm2 s21) but still significantly

reduced diffusion compared with the film in the absence of

CXCL4 (figures 6c and 7c). In all cases, guanidinium hydro-

chloride (GuaHCl) was incubated on the HS film to remove

bound chemokine and to demonstrate that this treatment

returned films to their original laterally mobile state. Thus,

it seems likely that CXCL4-, CXCL11- and CCL5-mediated

rigidification of the HS films observed in the QCM-D

experiments is due to cross-linking of the HS chains.

The HS density used in the above FRAP experiments is likely

to be comparable with the low-density HS surface used for

QCM-D [29]; thus it is not surprising that addition of CXCL8,

CCL2 or CCL7 produced no reduction of the HS diffusion

constant as detected by FRAP (figure 6d) because no reduction

in dissipation was observed in the QCM-D experiments

(figure 3). We therefore examined whether this was also the

case on a higher-density surface, where QCM-D showed a

decrease in dissipation and thus a higher degree of rigidification

than on the low-density HS films (figure 3). As indicated in

figure 6e, the high-density HS surface was characterized by a

lower starting diffusion constant (0.9 mm2 s21) compared with

the lower density HS FRAP surface (1.6 mm2 s21), probably

because of the greater density of streptavidin and the associated

HS chains. When CCL2 was incubated with this surface, fol-

lowed by buffer washing, no effect on the mobile fraction or

diffusion constant was produced, presumably due to loss of

bound protein, as suggested by rapid dissociation of CCL2 in

the QCM-D experiments. However, if the FRAP experiment

was performed without buffer washing, then CCL2 significantly

reduced the diffusion constant to 0.5 mm2 s21 (figures 6e and 7d).

This suggests that CCL2 transiently cross-links HS chains to pro-

duce the effects on rigidification seen by QCM-D. CCL7 and

CXCL8 had no effect on either the mobile fraction or diffusion

constant of these higher density HS surfaces (figure 6e), despite

the presence of bound protein (figure 3).
2.5. Chemokine-mediated heparan sulfate cross-linking
is dependent on oligomerization

In order to expand our understanding of the role of chemo-

kine oligomerization in HS chain modification, we also
examined oligomerization-deficient mutants by FRAP. The

CCL5 E26A tetrameric mutant produced a significant

reduction of the diffusion constant (0.4 mm2 s21) compared

with the HS chains alone (1.6 mm2 s21), but the reduction

was much less than that produced by WT CCL5

(0.05 mm2 s21). No observable effect was produced by the

CCL5 E66S dimer (figures 6a and 7a). Similarly, while WT

CXCL4 produced two fractions with reduced diffusion

constants, the K50E dimer had no effect on the mobility of

the HS chains (figures 6c and 7c). Finally, in contrast to WT

CCL2 on the high-density HS FRAP experiment, the mono-

meric CCL2 mutant, P8A, had no effect on HS chain

mobility (figures 6e and 7d ). As in the QCM-D assays

(figure 5c), P8A was administered at sixfold higher concen-

tration than WT CCL2 to reach comparable degrees of

binding to the HS film. These results demonstrate that

CCL5, CXCL4 and CCL2 need to form higher-order

oligomeric structures in order to cross-link HS chains.
3. Discussion
3.1. Mechanisms of chemokine-induced remodelling

of heparan sulfate
Cross-linking or clustering of HS proteoglycans is known to

have functional effects that result in glycocalyx remodelling

and changes in adhesion and barrier permeability to cells

[10,12,56], and chemokines would seem to be prime candi-

dates for initiating such a process. Prior studies suggestive

of cross-linking [29,32,33] motivated the present study to

broadly investigate this phenomenon with a panel of chemo-

kines and with biophysical methods that directly assess GAG

film rigidification and cross-linking, and to explore the role of

chemokine oligomerization.

The QCM-D experiments directly probed film rigidifica-

tion, and the results demonstrate that all chemokines

rigidify HS films, but to different extents, for different dur-

ations and probably by different structural mechanisms.

The chemokines examined in this study have a broad range

of affinities and oligomerization propensities; thus in order

to compare rigidification at comparable levels of bound

protein, a normalized representation of the data is useful

(figure 8). In this representation, the ratio of dissipation

over frequency shift (DD/2Df ) for the HS film, bare or

with chemokines, is a relative measure of film softness [50],

and the negative frequency shift (2Df ) is a relative measure

of the amount of bound protein. As illustrated in figure 8a,

the six WT chemokines studied here show only minor differ-

ences in their ability to rigidify the HS surfaces (i.e. decrease

film softness) when compared at similar load levels (2Df ),
with the expected trend of CCL5, CXCL4 and CXCL11 show-

ing greater rigidification than CCL2, CCL7 and CXCL8. For

completeness, this plot also includes data for CXCL12a,

which was investigated in a previous study [29]. The com-

parison indicates that CXCL12a is at least as potent as

CCL5, CXCL4 and CXCL11 in rigidifying HS films at com-

parable protein load, a finding that is consistent with

CXCL12a also being a very potent HS cross-linker [29].

From figure 8a, it is also clear that given sufficient levels of

protein, all chemokines can rigidify the films to some

degree. However, in general, the chemokines with the highest

affinity for HS (CCL5, CXCL4 and CXCL11 [33]) showed the
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greatest propensity to rigidify the HS films on an absolute

level (cf. minimal DD/2Df values reached in figure 8a) and

also to remain stably associated with the HS films despite

prolonged washing (cf. figures 3 and 4).

FRAP experiments were used to probe the lateral mobility

of HS chains as an indicator of HS cross-linking. These results

demonstrate that CCL5, CXCL4, CXCL11 and, to a lesser

extent, CCL2 reduce the lateral mobility of HS chains,

whereas CXCL8 and CCL7 have no effect at all. Clearly, HS

cross-linking would be expected to contribute to HS film

rigidification, but the distinct trends in the normalized rep-

resentation of the QCM-D data (figure 8) and the FRAP

data (figure 6) also imply that additional mechanisms of

film rigidification must be at play. Possible mechanisms

include HS chains individually wrapping around chemo-

kines, or simply the crowding of the HS film by chemokines.

The ability of CXCL4 and CCL5 to oligomerize is clearly

important not only for their affinity and slow off rates from

GAGs, but also for their ability to rigidify and cross-link HS

films. This was demonstrated with dimeric and tetrameric

mutants of polymeric WT CCL5, both of which showed a

reduced capacity to rigidify and remain stably associated

with HS films (figure 5a,b); moreover, the E26A tetramer

showed a reduced ability to cross-link the films relative to

WT, while the E66S dimer showed no cross-linking under

the conditions tested (figure 6a). Similarly, the CXCL4 K50E

dimeric mutant showed a reduced capacity to bind, to

remain associated with and to rigidify HS films compared

with WT tetrameric CXCL4 (figure 5d,e), and it also lost the
ability to cross-link HS (figure 6c). CCL5 and CXCL4 have

relatively extensive GAG-binding epitopes in the context of

their polymeric [43] (figure 1f ) and tetrameric [41] (figure 1e)

structures, respectively, which would facilitate their affinity

for, retention on and ability to cross-link HS chains.

In the case of CXCL4, normalized softness plots also

suggest that the WT chemokine is more effective in rigidify-

ing HS films than the oligomerization-impaired mutant,

even at equivalent levels of bound protein (figure 8b). It is

notable that this is not so for CCL5, as the curves for the

WT and mutant forms overlap closely (figure 8c). The com-

parable capacity of WT and mutant CCL5 to rigidify HS

films when considered on a per molecule basis contrasts

with their differential abilities to slow down HS diffusion

(cf. figures 6 and 7). A possible explanation is that dimers, tet-

ramers and polymers of CCL5 can all cross-link HS chains,

but that the stability of the cross-links increases with oligo-

mer size. In this scenario, the two HS binding patches per

CCL5 dimer (figure 1f ) bind two distinct HS chains, thus

promoting film rigidification, but such cross-links are too

short-lived to slow HS diffusion appreciably; larger oligo-

mers enhance binding to the individual HS chains, and

thus stabilize the cross-link and effectively slow HS diffusion.

The example of CCL5 thus illustrates that chemokine oligo-

merization can differentially modulate the rigidification of

HS matrices and the mobility of HS chains.

CXCL11 was also able to rigidify and cross-link HS films,

although not as robustly as CXCL4 and CCL5 (figures 4

and 6a–c). The CXCL11 structure was solved as a monomer
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by nuclear magnetic resonance (NMR) but under conditions of

low pH (pH 4.5), which generally destabilizes or dissociates

chemokine into monomers or smaller oligomers [35]. At pH

5.6, however, NMR diffusion experiments indicate that

CXCL11 forms weak dimers [36]. Dimers are also consistent

with the level of accumulation of CXCL11 on heparin and
HS as observed by SPR data, when compared with other che-

mokines of known oligomerization states and affinities [33];

thus we predict that dimerization is important for its HS

modifying capacity, which would make for a rather extended

GAG-binding surface (figure 1b). Several studies have also

shown that chemokines oligomerize on GAGs and that GAGs
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stabilize chemokine oligomers, implying that chemokine oligo-

merization and GAG binding are thermodynamically coupled.

Among the chemokines studied here, CXCL11 may represent a

typical chemokine whose oligomerization is weak in solution

but strongly promoted upon binding to HS.

CXCL8 and CCL2 form stable dimers in solution

(figure 1c,d) [39,57]; however, because of their reduced affinity

for GAGs [32,33], they are less efficient in modifying HS com-

pared with CCL5, CXCL4 and CXCL11. CXCL8 has the lowest

affinity for HS of all the chemokines examined in this study

[33] and it showed no ability to cross-link HS chains

(figure 6d,e). CCL2 did cross-link HS, although only transi-

ently and only on high-density HS films (figure 6d,e). Similar

to CCL5 and CXCL4, CCL2-mediated rigidification and

cross-linking was dependent on oligomerization as monomeric

P8A [46] was ineffective, even at a sixfold higher concentration

than that used for the other chemokines (figures 5c and 6e). It

was also inefficient in rigidifying high-density films, and nor-

malized softness plots indicated that WT CCL2 was more

effective than P8A in rigidifying the films on a per molecule

basis (figure 8d). The fact that CCL2 requires oligomerization

to rigidify and cross-link HS films makes intuitive sense given

the position of its single GAG-binding epitope at opposite

ends of the dimer (figure 1c).

CCL7 is a monomeric chemokine [34], and thus the fact

that it did not cross-link HS (figure 6d,e) was unsurprising.

However, it was much more effective in rigidifying the HS

surfaces than the highly homologous CCL2 monomer P8A

[46] (figures 3c and 5c). The inability of CCL7 to cross-link

may be due to an inability to span epitopes between adja-

cent HS chains coupled with a slightly reduced affinity for

HS compared with WT CCL2 [32]. The ability of CCL7 to

rigidify HS films compared with P8A is consistent with its

slightly higher affinity for HS than P8A, although even on

a normalized per molecule basis, CCL7 has a greater ability

to rigidify HS (figure 8a,d). As suggested previously [32],

this is probably because CCL7 has a more dense and

extended GAG-binding surface in the context of its tertiary

structure compared with a single subunit of CCL2

(figure 1a,c). As it does not cross-link HS chains according

to the FRAP data, its ability to rigidify HS may reflect con-

densation or wrapping of individual HS chains around a

single CCL7 subunit.
Taken together with information on the presence and dis-

tribution of the GAG-binding epitopes on these chemokines

(figure 1), the results suggest that oligomerization enhances

the ability of chemokines to modify HS films by a number

of inter-related factors: (i) enhanced affinity and accumu-

lation on HS due to the simultaneous binding of multiple

chemokine epitopes to HS; (ii) the ability to bridge gaps

between GAG chains by producing structures with multiple,

spatially separated GAG-binding sites such that the oligomer

can bind to multiple HS chains at once; and (iii) the ability of

multiple GAG-binding epitopes in the context of oligomers to

promote chemokine rebinding. Not surprisingly, the length

of the HS chain also influences cross-linking, with longer

chains promoting higher affinity interactions [58] and greater

rigidification than short-chain GAGs (e.g. dp6), as previously

demonstrated for CXCL12a [29]. Furthermore, it seems likely

that HS overall sulfation and fine structure will also play key

roles in promoting cross-linking given their importance in

chemokine–GAG interactions [33]. The results also suggest

that the magnitude and duration of HS rigidification and

cross-linking is specific to individual chemokines, reflecting

fine tuning of individual chemokine functions; this adds

more evidence to the idea that chemokine function may not

be as redundant as initially surmised based on the apparent

promiscuity of receptor–chemokine interactions [59].
3.2. Functional consequences of heparan sulfate
rigidification and cross-linking

Chemokine–GAG interactions have been hypothesized to

provide a mechanism for chemokine localization and

formation of gradients that guide migrating cells to inflam-

matory sites [27,28]. Our data certainly support the idea

that these interactions promote the retention and slow release

of high affinity HS-binding chemokines that in turn may con-

tribute to gradient formation. However, it is also possible that

chemokine–GAG interactions are involved in structural

modification of the endothelial glycocalyx, and possibly pro-

teoglycan-dependent signalling (figure 9). This would be

consistent with an emerging view that inflammatory cyto-

kines remodel the ECM and endothelial cell glycocalyx
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to mediate leucocyte adhesion, migration and endothelial

barrier permeability [10,12,29,56].

The endothelial glycocalyx, which is rich in HS-contain-

ing proteoglycans, has been described as a thick adhesion-

resistant barrier to cell migration by imposing a physical

layer, estimated as being 0.2–2 mm thick [6–8]. This depth

has been suggested to inhibit accessibility to key molecules

(e.g. selectins, integrins) involved in adhesion of leucocytes

to the endothelium, an important step in transmigration [5].

Indeed a theoretical study suggested that the combination

of intact glycocalyx structure and blood flow render it imper-

vious to penetration by leucocyte microvilli [60]. Thus,

modification of this structure would be necessary for initial

adhesion events and subsequent transmigration. Tumour

necrosis factor (TNF) stimulation of the endothelium has

been shown to reduce the glycocalyx thickness and lead to

enhanced cell adhesion due to the breakdown of this physical

barrier [56]. Conversely, therapeutic protection of the glyco-

calyx structure reduces leucocyte adhesion following

ischaemia/reperfusion [61] and has been described as a

potentially wide-ranging therapeutic approach [11]. Mechan-

isms for TNF-mediated glycocalyx remodelling and

permeability were proposed to involve production of pro-

teases and proteoglycan shedding [10,12,56] and this has

been shown to be the case for TNF-a-induced disruption of

the glomerular endothelial glycocalyx [62], a process that

can be inhibited by hydrocortisone and antithrombin [63].

Chemokines may be able to modulate the glycocalyx in

similar ways. Chemokine cross-linking of HS chains,

described here in vitro, may produce a reduced thickness

and/or permeability of the glycocalyx layer in vivo. This

would represent a novel function of chemokines where, prior

to their established function in G protein-coupled receptor

(GPCR) signalling and activation of leucocytes, they phys-

ically reorganize specific sites on the endothelial surface to

mediate localized adhesion events. Importantly, CXCL12

and CCL5 have been reported to promote clustering of the pro-

teoglycans syndecan-1 and -4 on HeLa cells [64,65], which may

be a consequence of their ability to cross-link GAG chains as

shown here. Syndecan-4 is a particularly logical player in the

function of chemokines as one of its well-studied functions is

in the formation of focal adhesions, which are important for

cell migration [66]. The function of syndecan-4 has been associ-

ated with its ability to form clusters [55,67], where multiple HS

side chains are necessary for cell adhesion unless rescued by

antibody-induced clustering [68]. Furthermore, antibody-

mediated syndecan-4 clustering has been shown to induce

migration of endothelial cells [69]. These data suggest that

HS cross-linking and subsequent clustering by ligands could

be important in the behaviour of this proteoglycan in the con-

text of chemokines as well. CCL5 and CXCL12 have also been

shown to accelerate shedding of syndecans from the surface of

cells [70,71], which again may be linked to HS cross-linking

and proteoglycan clustering. In the case of CXCL12, the pro-

cess was shown to be dependent on proteoglycans, but not

on the CXCL12 cell surface receptor, CXCR4 [70], whereas in

the case of CCL5, it was dependent on both syndecans and

the receptor CCR5 [71].

In addition to affecting the physical structure of the

glycocalyx, receptor-independent signalling of chemokines

through proteoglycans has been observed for CXCL12

and CCL5 [65,70,72,73], and indeed, ligand-mediated cluster-

ing of syndecans appears to be a key mechanism for
proteoglycan signalling [67]. For example, CCL5-mediated

signalling through the mitogen-activated protein kinase

pathway is dependent on the presence of GAGs and also

upon its ability to oligomerize [72], reflecting a potential role

for HS cross-linking. More generally, clustering of syndecan-

4 serves to concentrate the proteoglycan into micro-domains

that recruit and scaffold signalling molecules on the inside of

the cell [66], and the ability of chemokines to oligomerize

could be relevant in promoting this function. As HS chain den-

sity also affects binding of chemokines on the outside of the

cell, the interaction between chemokines and HS may serve

to synergistically concentrate chemokines and other cytokines

on the cell surface. Overall, there are many reasons to expect

that chemokine–GAG interactions play a more elaborate role

in the overall process of cell migration than simply serving

as the stationary beacons for migrating cells (figure 9).

In conclusion, here we extend a previous observation that

CXCL12 can modify HS films to include other chemokines sep-

arated into a lower modifying group (CXCL8, CCL2 and CCL7)

and a higher modifying group (CXCL4, CXCL11 and CCL5).

The relative potency is linked to the ability of the chemokines

to oligomerize coupled with their affinity for HS. The biological

function of this behaviour remains to be defined; however, it may

enable chemokines to cluster proteoglycans with concomitant

effects on proteoglycan signalling. Furthermore, remodelling of

the glycocalyx by cross-linking GAGs may represent an

additional function related to the importance of chemokine–

GAG interactions during leucocyte migration in vivo.
4. Experimental procedures
4.1. Materials
Chemokines and mutants were recombinantly expressed and

purified as described previously [32,74,75]. Streptavidin and

fluorescently labelled streptavidin (Sigma Aldrich), dioleoylpho-

sphatidylcholine (DOPC), dioleoylphosphatidylethanolamine-

CAP-biotin (DOPE-CAP-biotin) (Avanti Polar Lipids, Alabaster,

AL, USA) were purchased. HS from porcine intestinal mucosa

was kindly provided by H. Lortat-Jacob (Institut de Biologie

Structurale, Université Grenoble Alpes, Grenoble, France) and

biotinylated as described previously [51]. The HS was found

to have an average molecular weight of 12 kDa, a polydispersity

of 1.6 and an average of 1.4 sulfates per disaccharide [76].

4.2. Quartz crystal microbalance with dissipation
monitoring

QCM-D experiments were performed using a Q-Sense E4

system (Biolin Scientific, Västra Frölunda, Sweden) as pre-

viously described in detail [29,49]. Briefly, gold-coated

sensors (QSX301; Biolin Scientific) were treated in an UV/

ozone chamber for 30 min and then coated overnight by

immersion in OEG disulfide and biotinylated OEG thiol

(1000 : 1 molar thiol equivalents, 1 mM total concentration)

dissolved in ethanol. Sensors were then rinsed with ethanol

to remove any residual reagent and mounted into QCM-D

Flow Modules (Biolin Scientific) before equilibration in

running buffer (10 mM HEPES, 150 mM NaCl, pH 7.4).

Streptavidin was then grafted onto the sensor surface by

being passed over in running buffer, first at 1 mg ml21 to con-

firm no depletion from bulk flow (i.e. due to binding to the
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walls of the fluidic system), and then at 20 mg ml21 until sat-

uration was reached (typically 224 Hz). Subsequently,

immobilization of biotinylated HS was performed by flowing

a 2 mg ml21 or 5 mg ml21 suspension in running buffer over

the sensor surface until a lower HS density (27+1 Hz;

‘low-density HS surface’) or until saturation (224+1 Hz;

‘high-density HS surface’) was reached, respectively. Chemo-

kine or chemokine mutants (typically 500 nM) were then

passed over these surfaces in running buffer and the fre-

quency and dissipation changes monitored. This

concentration was chosen in order to elicit modifying effects

on this biomimetic HS film. It is hard to compare this to rel-

evant chemokine concentrations in vivo as the effect of ECM

interactions is likely to generate a high, and currently non-

defined, localized chemokine concentration within the glyco-

calyx and tissues. Surfaces were regenerated by removing

bound chemokine (a maximum of three times) using 2 M

GuaHCl in ultrapure water which returned the frequency

and dissipation to pre-chemokine levels and had no detri-

mental effect on subsequent chemokine binding (as

demonstrated previously [49]). Data are presented as normal-

ized shifts in the resonance frequency, Df ¼ Dfn/n (n being

the overtone number), and shifts in the dissipation, DD,

obtained from the fifth overtone of the QCM-D sensor in

each instance. Any other tone (n ¼ 3, 5, . . . , 13) would have

provided similar results. Measurements were repeated twice

and data displayed are representative of these independent

experiments.

4.3. Fluorescence recovery after photobleaching
FRAP experiments were undertaken as described previously

[29]. Small unilamellar vesicles (SUVs, 100 mg ml21 total

lipid) were prepared by sonication [77] in FRAP buffer

(10 mM Hepes, 150 mM NaCl, pH 7.4) supplemented with

2 mM CaCl2. SUVs containing 99.5 mol% DOPC and

0.5 mol% DOPE-CAP-biotin (for low-density HS surfaces),

or 95 mol% DOPC and 5 mol% DOPE-CAP-biotin (for

high-density HS surfaces) were incubated (30 min, room

temperature) in wells formed on a pre-conditioned glass

slide to create a biotinylated supported lipid bilayer in situ.

Fluorescently labelled streptavidin (10 mg ml21 in FRAP

buffer) was then grafted onto the surface by incubating for
20 min at room temperature, followed by washing (two

times with FRAP buffer). Biotinylated HS (10 mg ml21 in

FRAP buffer) was subsequently added and incubated for

30 min at room temperature. Chemokine or chemokine

mutants were then incubated (typically 500 nM in FRAP

buffer) with the HS film for 20 min at room temperature

prior to the FRAP experiments. GuaHCl in ultrapure water

was incubated on the HS film to remove bound chemokine

and demonstrate that this returned films to their original lat-

erally mobile state. FRAP experiments were performed using

a confocal microscope (LSM 510; Zeiss, Oberkochen,

Germany), with or without washing of the HS film with

FRAP buffer. For recovery analysis, a series of images of

the bleached spot were taken during the recovery period

(approx. 5 min). The images were then analysed using

‘time-resolved profile analysis’, a custom-made MATLAB

(MathWorks, MA, USA) protocol [29,78]. By default, a lateral

diffusion model with one mobile fraction and one immobile

fraction was used and found to fit most of the data well.

Where this was not the case, an extended model was used

featuring two mobile fractions, each with a distinct diffusion

constant, and no immobile fraction.
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