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 29 

SlyA is a member of the MarR family of bacterial transcriptional regulators.  Previously, SlyA 30 

has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB 31 

and hlyE (clyA).  In both cases SlyA activates gene expression by antagonizing repression 32 

by the nucleoid associated protein H-NS.  Here the transcript profiles of aerobic glucose-33 

limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-34 

expression strains are reported. The transcript profile of the slyA mutant was not significantly 35 

different to that of the parent; however, that of the slyA expression strain was significantly 36 

different from that of the vector control. Transcripts representing 27 operons were increased 37 

in abundance, whereas 3 were decreased.  Of the 30 differentially regulated operons, 24 38 

have been previously associated with sites of H-NS binding, suggesting that antagonism of 39 

H-NS repression is a common feature of SlyA-mediated transcription regulation.  Direct 40 

binding of SlyA to DNA located upstream of a selection of these targets permitted the 41 

identification of new operons likely to be directly regulated by SlyA.  Transcripts of four 42 

operons coding for cryptic adhesins exhibited enhanced expression and this was consistent 43 

with enhanced biofilm formation associated with the SlyA over-producing strain.   44 

 45 

INTRODUCTION 46 

The MarR family of transcription regulators are widespread throughout the Bacterial and Archeal 47 

kingdoms [1].  MarR family members are homodimeric and bind to palindromic DNA sequences 48 

within regulated promoters using a characteristic winged-helix-turn-helix DNA-binding domain [2].  49 

These regulators repress gene expression by promoter occlusion (e.g. MarR; [3]), or activate gene 50 

expression by stabilizing RNA polymerase-promoter DNA interactions (e.g. OhrR; [4]), or by 51 

antagonizing the action of repressors (e.g. RovA; [5]).  These activities of MarR proteins are inhibited 52 

upon interaction with cognate signalling molecules, although for many members the natural ligand is 53 

unknown [6].    54 

 The Salmonella enterica serovar Typhimurium LT2 SlyA protein is one of the best 55 

characterized members of the MarR family.  The S. enterica serovar Typhimurium slyA mutant is 56 

attenuated for virulence, is hypersensitive to oxidative stress and is impaired for survival in 57 

macrophages [7, 8].  A consensus DNA binding site has been proposed, TTAGCAAGCTAA [9, 10], 58 

and proteomic and transcriptomic comparisons of parent and slyA mutant strains suggest that SlyA 59 

can act as both a negative and positive regulator of gene expression, with significant overlap with 60 

genes of the PhoPQ regulon involved in cell envelope function, virulence, resistance to anti-microbial 61 

peptides and regulation of small RNAs [11-15].  Salmonella enterica serovar Typhimurium 14028s 62 

SlyA has also been linked to the stringent response by binding ppGpp resulting in enhanced DNA-63 

binding [16, 17]. The expression of many SlyA-regulated genes is subject to H-NS-mediated silencing 64 
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and activation of these genes generally involves an element of antagonism of H-NS repression by 65 

SlyA; e.g. [11, 18-22]. 66 

 The SlyA protein of E. coli MG1655 is 91% identical, 95% similar (over 142 amino acids) to 67 

the S. enterica serovar Typhimurium LT2 protein, but is much more poorly characterized.  Only two 68 

genes, hlyE and fimB (as well as autoregulation of slyA) have been shown to be directly regulated by 69 

SlyA [19, 21, 23].  In some other E. coli strains, SlyA regulates capsule synthesis and lipid A 70 

palmitoylation in biofilms [18, 19, 22].  Here transcriptional profiling of parent, slyA mutant and slyA 71 

over-expression strains reveals the breadth of the E. coli MG1655 SlyA regulon, indicating roles in 72 

activating expression of cryptic fimbrial-like adhesins that contribute to enhanced biofilm formation.     73 

 74 

METHODS 75 

Bacterial strains, plasmids, oligonucleotides and growth conditions. The bacterial strains 76 

plasmids and oligonucleotides that were used are listed in Table 1.  Bacterial strains were routinely 77 

cultured in Luria Bertani broth or on Luria Bertani agar plates [24].  Aerobic glucose-limited steady-78 

state chemostat cultures of E. coli were established in Evans minimal medium [25] in Labfors 3 79 

fermentation vessels (Infors-HT, Switzerland) with a 1 L working volume, 0.2 h-1 dilution rate, 37°C, 80 

pH 6.9, 400 rpm stirring rate and sparging with 1 L min-1 air.  Evans minimal medium consists of: 10 81 

mM NaH2PO4, 10 mM KCl, 1.25 mM MgCl2, 20 mM NH4Cl, 0.02 mM CaCl2, 0.1 mM Na2SeO3, 1.5 82 

mM monosodium nitrilotriacetate, 20 mM glucose and 100 ml trace element solution.  The trace 83 

element solution consisted of (g L-1): ZnO (0.412), FeCl3.6H2O (5.4), MnCl2.4H2O (2.0), CuCl2.2H2O 84 

(0.172), CoCl2.6H2O (0.476), H3BO3 (0.064), Na2MoO4.H2O (0.004) in 0.3% v/v HCl.  For generation 85 

of cell paste for purification of His-tagged SlyA, E. coli BL21 (DE3) transformed with pGS2469 86 

was grown in auto-induction medium supplemented with ampicillin (100 mg L-1) [26].   Resistance to 87 

chloramphenicol was tested by inoculating Luria Bertani broth (2 ml) containing kanamycin (30 g 88 

ml-1) and either 0, 1, 2, 3 or 4 g ml-1 chloramphenicol with 10 l of overnight starter cultures (E. coli 89 

K-12 MG1655 pET28a or E. coli K-12 MG1655 pGS2468).  Triplicate cultures were grown under 90 

aerobic conditions for 6 h at 37°C before measuring OD600 as a measure of growth.  The experiment 91 

was carried out twice.  92 

 93 

Biofilm assay.  Biofilm assays were performed using 96-well plates essentially as described 94 

by Tagliabue et al. [27] using M9 minimal medium with 20% (w/v) glucose and 50 µg ml-1 95 

kanamycin. Wells containing 200 μl of medium were inoculated (1 :10) from an overnight culture of E. 96 

coli K-12 MG1655 pET28a or E. coli K-12 MG1655 pGS2468 and then incubated for 16 h under 97 

aerobic conditions at 37°C. Growth of cultures was monitored by measuring OD600. The planktonic 98 

cells were removed and the remaining biofilm was stained for 5 min with 200 μl 1 % (w/v) crystal 99 

violet solution. Excess stain was removed by three washes with deionized water before the plate was 100 
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air-dried. To quantify the extent of staining, 200 μl ethanol : acetone (4 : 1) was added to each well, and 101 

after incubating for 20 min the amount of biofilm was estimated by measuring A600. Adhesion units 102 

were calculated by dividing the A600 values for crystal violet-stained adhered cells by the OD600 values 103 

for the corresponding planktonic cells. 104 

 105 

Creation of E. coli K-12 MG1655 slyA mutant.  A PCR-amplified DNA fragment containing 106 

the kanamycin cassette from pKD4 flanked by 40 bp DNA homologous to regions surrounding the 107 

slyA gene was synthesized using oligonucleotide primers TC7 and TC8 (Table 1).  The purified 108 

(QiaQuick PCR cleanup, Qiagen) PCR product (5 g) was used to transform E. coli JRG6072 by 109 

electroporation (Hybaid Cell Shock unit; 1800 V, 1 mm path length).  The E. coli JRG6072 competent 110 

cells were prepared from aerobic Luria Bertani broth batch cultures supplemented with ampicillin 111 

(100 mg L-1) at 30°C that had been induced to express the red recombinase by addition of L-112 

arabinose (1 mM).  Kanamycin resistant mutants were selected on Luria Bertani agar plates 113 

containing kanamycin (30 mg L-1) at 37°C.  Mutation of the slyA gene by insertion of the kanamycin 114 

resistance cassette was confirmed by colony PCR using oligonucleotides TC9 and TC10.  The slyA 115 

mutation was then transduced using bacteriophage P1 to E. coli MG1655 [24].      116 

 117 

Transcriptional profiling. Transcriptomic analyses were carried out as described by Rolfe et al. 118 

[28] using directly quenched samples from glucose-limited steady-state chemostat cultures (dilution 119 

rate 0.2 h-1) for the three E. coli K-12 MG1655 strains; parent, slyA mutant (JRG6457) and slyA over-120 

producer (JRG6636).  RNA samples were labelled with Cy5 and the reference E. coli K-12 MG1655 121 

genomic DNA was labelled with Cy3.  In total, two independent biological replicates were performed 122 

that were hybridised in duplicate (technical replicates) giving four replicates. After hybridization and 123 

image capture, data were extracted from the raw image files using Agilent Feature Extraction v11.5 124 

software and analyzed using GeneSpring v7.3.1.  Transcriptomic data have been deposited with 125 

ArrayExpress (accession E-MTAB-5220). 126 

 127 

Purification of SlyA and Western blotting.  Cultures (500 ml auto-induction medium 128 

supplemented with ampicillin in 2 L conical flasks) of E. coli BL21 (DE3) pGS2469 were grown at 129 

37°C for 24 h with shaking (250 rpm).  Bacteria were collected by centrifugation, the pellet was re-130 

suspended in 15 ml of breakage buffer (20 mM Tris-HCl, 500 mM NaCl, 5% v/v glycerol, pH 7.5), 131 

the bacteria were lysed by two passages through a French pressure cell (16,000 psi) and the extract 132 

clarified by centrifugation (27,000 g, 15 min, 4°C).  The His-tagged SlyA protein was isolated from 133 

the cell-free extract by affinity chromatography on a HiTrap chelating column (1 ml) attached to an 134 

AKTA prime according to the standard manufacturer’s protocol (GE Healthcare).  The eluted SlyA 135 

was buffer exchanged into 20 mM Tris-HCl, pH 7.4 containing 200 mM NaCl by repeated dilution 136 
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and Vivaspin 6 concentration (Sartorius Stedim Biotech).  The protein was judged to be >90% pure by 137 

Coomassie blue-stained SDS-PAGE and protein concentration was estimated by the BioRad protein 138 

reagent protocol [29].  SlyA protein was detected by Western blotting after separation of polypeptides 139 

by SDS-PAGE and electrophoretic transfer (100 V for 1 h; transfer buffer: 5.8 g L-1 Tris, 2.9 g L-1 140 

glycine, 20% v/v methanol, 0.037% w/v SDS) to Hybond-C Extra nitrocellulose membranes (GE 141 

Healthcare).  The membranes were soaked in a blocking solution, which contained 5% w/v dried 142 

skimmed milk in PBS (10 mM phosphate buffer, 137 mM NaCl, 2.7 mM KCl, pH 7.4) and 0.05% v/v 143 

Tween 20, for 16 h at 4°C.  The blocking solution was then removed and the membranes washed in 144 

PBS containing 0.05% v/v Tween 20 before exposure to a 1:1000 dilution of the SlyA antibody 145 

(raised in rabbit and provided by Prof. Ian Blomfield, University of Kent) in blocking solution for 1 h 146 

at room temperature.  After four washes with PBS containing 0.05% v/v Tween 20, the membranes 147 

were soaked in blocking solution containing anti-rabbit secondary antibody provided in the Pierce 148 

ECL Western Blotting kit and the presence of SlyA was visualized according to the manfacturer’s 149 

standard protocol (Thermo Scientific).   150 

    151 

Electrophoretic mobility shift assays (EMSA).  The LightShift Chemiluminescent EMSA kit 152 

(Thermo Scientific) was used according the manufacturer’s intstructions.  Biotin-labelled DNA of 153 

target promoter regions was amplified from genomic DNA using the appropriate oligonucleotide 154 

primer pairs (Table 1).  The core binding assays (20 l) contained: 2 l 10x binding buffer (100 mM 155 

Tris-HCl, pH 7.5, containing 500 mM KCl and 10 mM dithiothreitol and 1 g poly (dIdC).  The 156 

DNA concentration was ~1 nM and the concentration of SlyA ranged from 0 to 500 nM as indicated.  157 

Mixtures were incubated at 25°C for 30 min before separation of SlyA-DNA complexes by native gel 158 

electrophoresis, followed by transfer to Hybond-N+ nylon membranes, UV-crosslinking for 60 s at 159 

120 mJ cm-2 and detection of labelled DNA using the Nucleic Acid Detection Module (Thermo 160 

Scientific). 161 

    162 

RESULTS AND DISCUSSION 163 

Enhanced expression of slyA in E. coli K-12 MG1655 results in altered abundance of 164 

transcripts from 30 operons   165 

Previous work has shown that SlyA directly activates the expression of two genes in E. coli K-12 166 

(hlyE and fimB) by antagonising H-NS repression [20, 21, 23]. However, in S. enterica serovar 167 

Typhimurium the influence of SlyA is much more extensive, with at least 31 regulated genes resulting 168 

in hypersensitivity to reactive oxygen species and attenuation in infection models [7, 8, 12].  The 169 

initial aim of this work was to apply transcript profiling to determine the extent of the E. coli K-12 170 

MG1655 SlyA regulon by comparison of steady-state glucose-limited aerobic chemostat cultures of 171 

wild-type and slyA mutant strains.  Comparison of transcript profiles of wild-type and slyA mutant 172 
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cultures grown at a dilution rate of 0.5 h-1 (equivalent to a doubling time of 1.4 h) revealed no 173 

significant (2-fold; p≤0.05) changes in transcript abundance.  Because SlyA translation might be 174 

enhanced at low growth rates, due to its unusual UUG start codon [21], steady-state cultures at 175 

dilution rates 0.2, 0.1 and 0.05 h-1 were established (equivalent to doubling times of 3.5, 6.9 and 13.8 176 

h, respectively).  However, once again, when the transcript profiles and growth characteristics of the 177 

wild-type and slyA mutant cultures were compared no significant differences were detected.  These 178 

observations indicated that, under the conditions tested, deletion of the slyA gene had no significant 179 

effect on gene expression in E. coli K-12 MG1655, even at low growth rates. 180 

Anti-SlyA serum was used to determine whether SlyA was detectable in E. coli K-12 181 

MG1655 cells grown in glucose-limited chemostats at a dilution rate of 0.2 h-1.  In accordance with 182 

the transcript profiling, SlyA was not detected (Fig. 1). This suggests that the expression of SlyA is 183 

regulated and switched on under conditions other than those imposed here; for example, SlyA protein 184 

has been detected by Western blotting extracts from E. coli batch cultures grown in minimal medium 185 

with glycerol as the carbon and energy source [21].  To overcome any regulatory barrier to identifying 186 

genes potentially controlled by SlyA, a plasmid (pGS2468) to express slyA under the control of its 187 

own promoter was constructed. Western blotting showed that SlyA protein was now readily 188 

detectable in the transformed E. coli K-12 MG1655 cells grown in glucose-limited chemostats at a 189 

dilution rate of 0.2 h-1 (Fig. 1).  The growth characteristics of the vector control and the slyA 190 

expression strains were essentially the same, with similar yields (1.4 0.2 g cell dry weight per litre) 191 

and no detectable glucose or over-metabolites in the culture supernatants.  Therefore, the transcript 192 

profiling experiments were carried out with these strains grown in aerobic glucose-limited chemostats 193 

at a dilution rate of 0.2 h-1.  The transcript profile of the SlyA over-production strain was significantly 194 

different from that of the vector control. Transcripts representing 27 operons were increased in 195 

abundance and 3 were decreased (Table 2; Fig. 1c).  The transcripts exhibiting decreased abundance 196 

were: the sgc operon (sgcXBCQAER), which encodes a phosphotransferase system for the uptake of 197 

an unknown sugar; fecIR the membrane-bound sensor (FecR) that receives signals from the outer 198 

membrane ferric citrate uptake receptor (FecA) for transmission to FecI (σ19), which activates 199 

transcription of the fecABCDE operon encoding components of a cytoplasmic membrane bound ferric 200 

citrate uptake system; and yecH, which encodes a predicted protein of unknown function (Table 2) 201 

[30, 31]. 202 

Amongst the up-regulated transcripts were the previously identified SlyA-regulated gene hlyE 203 

and slyA itself (Table 2).  The latter was not surprising as the slyA gene was present in multi-copy, but 204 

despite this the slyA transcript only increased ~3-fold in abundance, yet the SlyA protein level 205 

increased from being undetectable in the control to a level equivalent to ~1.5 M in the cytoplasm 206 

(based on the dry weight of E. coli being 3 x 10-13 g with an aqueous volume of 7 x 10-13 ml per cell; 207 

[32]).  The relatively low level of induction of the slyA transcript when present in multi-copy but 208 
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much greater induction of SlyA protein suggests that the slyA promoter is subject to auto-regulation, 209 

consistent with the reported SlyA binding at the slyA promoter [19].  It was also notable that the ydhI-210 

K operon, which is divergently transcribed from slyA and not present on the slyA expression plasmid, 211 

also exhibited enhanced transcript abundance, suggesting that SlyA is capable of activating expression 212 

from divergent promoters; an assertion supported by the enhanced abundances of the divergently 213 

transcribed hlyE and C0299 (encodes a small RNA) genes in the presence of SlyA (Table 2). 214 

Twenty-four of the 30 operons (~80%) that showed altered transcript abundance upon over-215 

production of SlyA have also been shown to be associated with H-NS binding sites (Table 2).  Thus, it 216 

appears that H-NS repressed genes are over-represented in the set of transcripts that increase in 217 

abundance when SlyA is expressed, suggesting that SlyA acts by antagonizing H-NS repression at the 218 

corresponding promoters; a mechanism that is established for hlyE [20].  H-NS binds DNA by 219 

recognizing the structure of A-T-rich minor grooves and silences the expression of horizontally 220 

acquired A-T-rich genes (reviewed by [33]).  H-NS is thus considered crucial in permitting the 221 

acquisition of new genes whilst counteracting the potentially detrimental effects of inappropriate 222 

expression of these genes.  Counter-silencing by H-NS antagonists, such as SlyA, provides a route to 223 

integrate expression of the genes into the regulatory circuits of E. coli under appropriate conditions.  224 

Horizontally acquired genes are located within genomic islands, which are regions of bacterial 225 

chromosomes containing that are often associated with drug resistance, metabolic adaptability, stress 226 

tolerance and pathogenesis.  Genomic islands can be recognized by their sequence composition and 227 

increased transcript start point densities [32].  The analysis tools GIST (Genomic-island Identification 228 

by Signals of Transcription) and IslandViewer have been used to map the genomic islands of E. coli 229 

K-12 MG1655 [34].  Notably, 13 of the 30 differentially regulated operons overlapped predicted 230 

genomic islands, suggesting a general role for SlyA in the counter-silencing of H-NS repressed 231 

horizontally acquired genes under conditions when slyA is up-regulated (Table 2).           232 

The H-NS-repressed casABC operon was up-regulated by SlyA (Table 2).  This operon 233 

encodes proteins involved in maintaining and utilising the library of foreign genetic elements 234 

interspersed between CRISPR sequences which act as the immune system memory of Bacteria and 235 

Archaea [35]. CRISPR loci, in general, consist of closely spaced direct repeats separated by short 236 

spacer regions of variable sequence. Spacer regions mostly correspond to sections of foreign plasmid 237 

or viral sequences which have been integrated. The CRISPR loci are found adjacent to the casABC 238 

operon.  The fact that the casABC operon was significantly up-regulated by SlyA suggests that this 239 

regulator may contribute to viral resistance and immunity in E. coli K-12 MG1655. 240 

 Other transcripts that exhibited increased abundance in the presence of SlyA were associated 241 

with uptake and metabolism of phenylacetic acid (paaA-K), utilization of alkanesulfonates as 242 

alternative sulfur sources (ssuEADCB; divergently transcribed from the elf operon; see below), a 243 

cryptic galactosamine transport and catabolism system (agaS-I) and a 2-O--mannosyl-D-glycerate 244 

phosphotransferase and -mannosidase (Table 2) [36-39].  Hence, it appears that SlyA plays a role in 245 
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regulating systems that expand the repertoire of substrates utilized by E. coli.  Increased abundance of 246 

the mdtM transcript suggests a role for SlyA in enhancing expression of this multidrug transporter that 247 

confers resistance to ethidium bromide and chloramphenicol with mutants exhibiting attenuated 248 

growth at alkaline pH [40].  However, simple growth inhibition studies suggested that slyA expression 249 

led to increased sensitivity to chloramphenicol (growth yield after 6 h at 37°C in Luria Bertani broth 250 

was lowered to ~50% by 2 g ml-1 for the wild-type carrying the empty vector compared to 1 g ml-1 251 

for the wild-type carrying the slyA expression plasmid), rather than increased resistance, perhaps 252 

reflecting the complexity of the phenotype of the slyA expression strain. 253 

Several of the SlyA-regulated operons code for proteins involved in membrane function.  In S. 254 

enterica serovar Typhimurium the majority of genes affected by SlyA encode proteins associated with 255 

the bacterial cell envelope and are important for virulence and survival within murine macrophages. 256 

Although it has been previously shown that the majority of genes regulated by SlyA in S. enterica 257 

serovar Typhimurium are not present in E. coli K-12 [12, 15], a similar propensity for cell envelope 258 

proteins being regulated by the E. coli SlyA was evident here. Thirteen (43%) of the 30 operons that 259 

exhibited altered expression in SlyA-expressing bacteria were associated with cell-surface/membrane 260 

functions (Table 2). 261 

The gspC-O operon is cryptic membrane-associated, H-NS-repressed, transcription unit that 262 

was up-regulated by SlyA (Table 2).  The gspC-O operon encodes a Type-II Secretion System (T2SS) 263 

for the export of endogenous proteins and formation of structural elements of the Gsp secreton, which 264 

is thought to facilitate the export of the endogenous endochitinase ChiA, a product of another H-NS 265 

silenced gene [41, 42]. 266 

Amongst the transcripts with increased abundance in the SlyA over-producing strain were 267 

four cryptic operons (elfADCG-ycbUVF, sfmHF, yehDCBA and yadN) encoding fimbrial-like 268 

adhesins (Table 2). These four operons were amongst seven putative chaperone-usher fimbrial 269 

systems shown to be poorly expressed under laboratory conditions by Korea et al. [43].  Nevertheless, 270 

when these operons were individually expressed by placing them under the control of a constitutive 271 

promoter six were shown to be functional and expression of the elf (ycb), yad and yeh operons 272 

resulted in enhanced biofilm formation on abiotic surfaces, whereas sfm promoted binding to 273 

eukaryotic cells [43].  Moreover, all four operons were repressed by H-NS.  The increased 274 

abundances of the elf, sfm, yad and yeh transcripts upon expression of SlyA is consistent with the 275 

cryptic status of these genes under normal laboratory conditions and suggests that these chaperone-276 

usher fimbriae are functional under environmental conditions that enhance slyA expression such that 277 

SlyA can operate as an H-NS antagonist (Table 2). 278 

 279 

SlyA over-production is associated with enhanced biofilm formation 280 

The observation that SlyA increased transcription of four cryptic fimbrial-like adhesins suggested that 281 

the SlyA over-producing strain should exhibit enhanced biofilm production. This was tested using 282 
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static cultures of E. coli K-12 MG1655 transformed with pET28a (control) or the slyA expression 283 

plasmid pGS2468 in conditions that mirrored the transcript profiling experiment.  The data showed a 284 

4-fold increase in biofilm formation when slyA was over-expressed, consistent with the transcript 285 

profiling data (Fig. 2). 286 

 287 

Identification of new E. coli K-12 MG1655 operons that are directly regulated by SlyA 288 

The changes in transcript profiles that were observed upon over-production of SlyA could result from 289 

direct interaction of SlyA with the promoter regions of the corresponding genes or indirectly via 290 

SlyA-regulated factors.  For example, one of the genes up-regulated upon SlyA over-production, leuO, 291 

encodes a transcriptional regulator that, like SlyA, operates by antagonising H-NS regulation [44, 45]. 292 

Fourteen (52%) of the 27 transcripts that were increased in abundance when SlyA was expressed in E. 293 

coli K-12 MG1655 were associated with LeuO binding sites identified in the SELEX-chip study of 294 

Shimada et al. [44]. This strong correlation could arise from; (1) the positive effect SlyA has on the 295 

expression of leuO resulting in an increase in expression of the entire LeuO regulon, i.e. indirect 296 

regulation by SlyA; or (2) SlyA and LeuO have overlapping regulons as a consequence of the fact 297 

they both operate by antagonising H-NS-mediated repression.  To further investigate the extent of 298 

direct SlyA-mediated regulation in E. coli K-12 MG1655 binding of SlyA to ten promoter regions 299 

was examined by electrophoretic mobility shift assays (EMSA). 300 

Amongst the transcripts differentially regulated by over-production of SlyA there were three 301 

arranged as divergent operons (Fig. 3).  Binding of SlyA at the hlyE-C0299 intergenic region was 302 

shown previously (Fig. 3) [20].  Two other examples of SlyA-activated divergent operons (slyA-303 

ydhIJK and ssuE-B-elfADCG-ycbUVF) were shown to bind SlyA in EMSA (Fig. 3).  Furthermore, 304 

SlyA bound at the casA, fecIR, gspCDEF, leuO, mdtM and paaA-K promoters (Fig. 3).  The Kd(app) 305 

values for SlyA binding at these promoters were similar at ~50-100 nM.  These experiments indicate 306 

that these operons are likely to be directly regulated by SlyA.  The sgcXBCQ-sgcAER genes are 307 

separated by a sRNA ryjB on the opposite DNA strand (Fig. 3).  It is suggested that the sgcXBCQAER 308 

is a single transcription unit, but there is no high quality evidence to support this suggestion [46].  309 

Therefore, both the region upstream of sgcX and the intergenic region between sgcQ and sgcA were 310 

used in EMSAs with the SlyA protein.  No specific interaction was observed with the region upstream 311 

of sgcA but interaction, albeit weaker than that observed for the promoter regions analyzed above, was 312 

observed when the DNA upstream of sgcX was tested (Fig. 3).  These observations suggest that 313 

sgcXBCQAER is a single SlyA-repressed transcription unit. 314 

 The EMSA experiments indicate that SlyA binds Pssu, Pcas, Ppaa, Pelf, PleuO and Pgsp, all 315 

of which are promoter regions of genes or operons proposed to be part of the LeuO regulon (Table 2). 316 

This suggests that, perhaps because of the similarity in their mode of action, i.e. antagonizing H-NS 317 

repression, the SlyA and LeuO regulons substantially overlap such that upon activation by their 318 

respective signals a similar transcriptional response is elicited. 319 
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A consensus binding site (TTAGCAAGCTAA) for the Salmonella enterica serovar 320 

Typhimurium LT2 SlyA protein was proposed based on footprinting and a limited SELEX analysis 321 

[10].  This consensus was further analyzed by site-directed mutagenesis, which suggested the 322 

consensus sequence TTAN6TAA [9].  All the DNA fragments that bound E. coli SlyA in EMSAs (Fig. 323 

3) possessed DNA sequences similar to the previously proposed consensus sequences (Table 3).  Site-324 

directed replacement amino acid residues of Salmonella enterica serovar Typhimurium LT2 SlyA 325 

identified 16 locations that impaired DNA-binding [9], all these amino acids are conserved in the E. 326 

coli SlyA protein, suggesting that these closely related proteins recognize similar DNA motifs.   327 

     328 

Concluding remarks 329 

SlyA proteins have been shown to play important roles in regulating gene expression in a wide range 330 

of bacterial species.  The most common mechanism for SlyA-mediated activation of gene expression 331 

is through antagonism of H-NS repression.  Here transcript profiling has revealed the breadth of the 332 

SlyA regulon (directly and indirectly regulated genes) in E. coli K-12 MG1655 cultures grown under 333 

precisely controlled conditions such that any potential effects associated with changes in growth 334 

rate/growth phase could not confound the interpretation of the data obtained.  Enhanced transcript 335 

abundance for several cryptic fimbrial operons in a SlyA over-producing strain and an over-336 

representation of H-NS repressed genes were consistent with the current model of SlyA-mediated 337 

gene activation.  The SlyA protein was shown to bind at 9 intergenic regions controlling the 338 

expression of 11 operons, thus expanding the number of known directly SlyA-regulated genes in E. 339 

coli MG1655 from 2 to 13.  340 
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Table 1 Bacterial strains, plasmids and oligonucleotides 486 

Strain or plasmid Relevant characteristicsa Reference or source 
Bacterial strain   
E. coli BL21 

(DE3) 

E. coli BL21 lysogen for inducible (IPTG) expression of the T7 RNA 

polymerase 

Novagen 

E. coli JRG6457 E. coli MG1655 slyA  This work 

E. coli JRG6636 E. coli MG1655 pGS2468 This work 

E. coli JRG6072 E. coli MG1655 pKD46 This work 

E. coli MG1655 Genome sequenced parental strain [47] 

Plasmid   
pET28a Multi-copy plasmid; KanR Novagen 

pGS2468 pET28a derivative for expression of slyA from the slyA promoter; KanR This work 

pGS2469 pLATE-51 derivative for over-production of SlyA; AmpR This work 

pKD4 Source of kanamycin resistance cassette; AmpR, KanR [48] 

pKD46 Plasmid for inducible (L-arabinose) expression of the red recombinase; 

AmpR, Ts 

[48] 

pLATE-51 Expression vector for production of His-tagged proteins; AmpR Thermo Scientific 

Oligonucleotide   
TC7 TAAAGCCGCATAATATCTTAGCAAGCTAATTATAAGGAGATTA

CACGTCTTGAGCGATT; creation of slyA mutant 

This work 

TC8 TTGCGTGTGGTCAGGTTACTGACCACACGCCCCCTTCATTCAT

ATGAATATCCTCCTTAG; creation of slyA mutant 

This work 

TC9 CTGACGGTAACCAAATGCAG; PCR of slyA locus This work 

TC10 TTTGCGTGTGGTCAGGTTAC; PCR of slyA locus This work 

TC49 [Btn]ACTCTCTCCTTATAACCAATTG; forward primer for PCR of 

biotin (Btn)–labelled 355 bp intergenic region between ssuE and elfA 

This work 

TC50 CGTTATCATCCTGATCTCTT; reverse primer for use with TC49  This work 

TC51 [Btn]TGGTGAATATTATTGATCAATTAAT; forward primer for PCR 

of biotin (Btn)–labelled 344 bp intergenic region between leuO and leuL 

This work 

TC52 ACTTAACTCCACTGTCACACTTAA; reverse primer for use with 

TC51 

This work 

TC53 [Btn]TTGTTCTCCTTCATATGCTC; forward primer for PCR of biotin 

(Btn)–labelled 414 bp intergenic region between casA and cas3 

This work 

TC54 CTTCGGGAATGATTGTTATC; reverse primer for use with TC53 This work 

TC55 [Btn]TGTTGCTAATAGTTAAATCGC; forward primer for PCR of 

biotin (Btn)–labelled 257 bp intergenic region between paaA and paaZ 

This work 

TC56 GTCATCACCTTTACGATTCC; reverse primer for use with TC55 This work 

TC57 [Btn]AACAAACAACTCCTTGTCCG; forward primer for PCR of 

biotin (Btn)–labelled 400 bp region upstream of mdtM 

This work 

TC58 CCCCGAGGCGCTTTCCAGGC; reverse primer for use with TC57 This work 

TC59 [Btn]AGAACTTCCTGTTTTAATTATTG; forward primer for PCR of 

biotin (Btn)–labelled 179 bp intergenic region between gspA and gspC 

This work 

TC60 GATGTATGTTCTAATAAAATAGATTG; reverse primer for use with 

TC59 

This work 

TC61 [Btn]CCGTCGTTGACTCCATGC; forward primer for PCR of biotin 

(Btn)–labelled 130 bp intergenic region between sgcA and sgcQ 

This work 

TC62 GATGGGGATAAGCAGAGC; reverse primer for use with TC61 This work 

TC63 [Btn]GCGGAGTGCATCAAAAGT; forward primer for PCR of biotin 

(Btn)–labelled 291 bp intergenic region between fecI and insA-7 

This work 

TC64 GCAAGCACCTTAAAATCAC; reverse primer for use with TC63 This work 

TC65 [Btn]TTTCATCTCCTTATAATTAGCTT; forward primer for PCR of 

biotin (Btn)–labelled 200 bp intergenic region between slyA and ydhI 

This work 

TC66 AAAGTAGATTCCTTTACGACC; reverse primer for use with TC65 This work 

TC70 [Btn]AGCTATCTCCGTAGACCGT; forward primer for PCR of biotin 

(Btn)–labelled 400 bp region upstream of sgcX 

This work 

TC71 GATTATCTATACTCCCTCTGAATC; reverse primer for use with 

TC70 

This  work 

aAmpR, ampicillin resistant; KanR, kanamycin resistant; Ts, temperature sensitive replication 487 

  488 
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Table 2 Transcripts exhibiting altered abundance upon over-expression of slyA in E. coli MG1655 489 

Operona 
Fold-

changeb 
Gene functionc 

H-NS 

regulond 

LeuO 

regulone 

Overlap 

with 

genomic 

islandf 

ybeT 4.1 conserved outer membrane protein K   

trkG 3.8 Rac prophage potassium transporter 

subunit 

K,O  IV 

ssuEADCB 3.6 aliphatic sulfonate transport and 

metabolism 

G,K,O   

yehDCBA 3.6 chaperone-usher fimbrial operon 

(cryptic) 

K,O  GIST 

mngAB 3.4 2-O--mannosyl-D-glycerate PTS 

and -mannosidase 

   

casABC 3.3 CRISPR associated genes K  GIST, IV 

yghS 3.1 predicted protein with nucleoside 

triphosphate hydrolase domain 

K,O   

slyA 3.0 DNA-binding transcriptional activator O   

yfbN 2.8 predicted protein K,O  IV 

paaA-K 2.8 phenylacetic acid degradation    

ybeU-hscD 2.8 predicted tRNA ligase and chaperone K,O   

elfADCG-

ycbUVF 

2.7 predicted fimbrial-like adhesin 

protein (cryptic) 

G,K,O   

ygeG 2.7 predicted chaperone G,K,O  GIST 

crfC-yjcZ 2.6 clamp-binding sister replication fork 

co-localization protein and predicted 

protein 

K,O   

sfmHF 2.6 predicted fimbrial-like adhesin 

protein (cryptic) 

O  IV 

agaS-kbaY-

agaBCDI 

2.5 predicted galactosamine-transport and 

metabolism (cryptic) 

   

ydhYV-T 2.5 predicted oxidoreductase G,K,O  GIST 

yiiE 2.5 predicted transcriptional regulator K,O   

mdtM 2.5 multidrug efflux system protein    

leuO 2.5 DNA-binding transcriptional activator G,K,O  GIST 

C0299 2.4 sRNA C0299 O   

ycjMN-V 2.4 predicted sugar transporter and 

metabolism 

K,O   

yadN 2.4 predicted fimbrial-like adhesin 

protein (cryptic) 

G,K,O  GIST 

gspCDEF 2.4 type II secretion system (cryptic) K,O   

ydhIJK 2.2 predicted proteins O   

yfdM 2.1 CPS-53 (KpLE1) prophage predicted 

methyltransferase 

O  GIST, IV 
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hlyE 2.0 hemolysin E (cryptic) K,O   

yecH 0.5 predicted protein O  GIST 

sgcXBCQAER 0.5 predicted sugar transport and 

metabolism 

  IV 

fecIR 0.4 transcription regulation of ferric 

citrate transport 

  IV 

aThe fold-change data shown are for the first gene in the operon except where indicated by bold typeface; note 490 

that all genes in the operons followed the same pattern of regulation. 491 

bFold-change (2-fold, p≤0.05) is the product of dividing the transcript abundance for the slyA over-expression 492 

cultures by that for the control cultures. 493 

cGene functions as assigned in Ecocyc.org [46]. 494 

dGenes associated with H-NS binding were identified from Grainger et al. [49] (G), Kahramanoglou et al. [50] (K) 495 

and Oshima et al. [51] (O). 496 

eGenes located up- or down-stream of a LeuO binding site identified by Shimada et al. [44]. 497 

fGenes the overlap with genomic islands in E. coli K-12 MG1655 identified by GIST and/or IslandViewer (IV) [34]. 498 
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Table 3 Candidate SlyA binding sites within the DNA fragments used for EMSA analyses 499 

 500 

Sequences shown are those with the greatest similarity to the previously proposed consensus for the 501 

Salmonella enterica serovar Typhimurium LT2 SlyA protein (Haider et al. [9]; TTAN6TAA). Where 502 

more than one possible site was present those with the greatest similarity to the consensus sequence 503 

TTAGCAAGCTAA proposed by Stapleton et al. [10] are shown.  Locations of sites are given as the 504 

number of base pairs from the start codon of the specified gene to the centre of the proposed binding 505 

site.  506 

   507 

Promoter 
region Possible SlyA binding sites Location of site relative to start codon 

PcasA TTATTGAATTAA 100 bp upstream of casA 

PssuE/elfA TCAGGATGATAA 8 bp upstream of elfA 

PgspC TTATATTAGTAA 79 bp upstream of gspA 

PpaaA TTAAATCGCGAA 239 bp upstream of paaA 

TTATAAAAATAG 136 bp upstream of paaA 

TTACTTAACTAT 81 bp upstream of paaA 

PsgcX TTATGCTGGGAA 336 bp upstream of sgcX 

TTTCAACCATAA 188 bp upstream of sgcX 

PfecI TTAGAAAAACAA 109 bp upstream of fecI 

PslyA TTAGCAAGCTAA 22 bp upstream of slyA 

TTAGATTAATAA 161 bp upstream of slyA 

PleuO TTAATGCATTAA 305 bp upstream of leuO 

TTAAATATATAA 297 bp upstream of leuO 

PmdtM TATACACCTTAA 249 bp upstream of mdtM 
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Figure legends 508 

 509 

FIG. 1.  Changes in the transcript profile of E. coli K-12 MG1655 over-producing SlyA. (a) 510 

Transformation of E. coli K-12 MG1655 with a multi-copy plasmid expressing slyA under the 511 

control of its own promoter results in detectable SlyA protein in lysed cell suspensions from 512 

aerobic steady-state glucose-limited chemostat cultures.  The upper panel shows the  513 

Coomassie blue-stained SDS-polyacrylamide gel and the lower panel shows the relevant 514 

region of a Western blot prepared with the same samples and loadings developed with SlyA 515 

antiserum.  The gels were loaded as follows: Lane M, SDS-PAGE markers (sizes, kDa, are 516 

indicated); lanes 1 and 2, extracts from independent cultures of E. coli K-12 MG1655 517 

transformed with the vector pET28a (SlyAWT); lanes 3 and 4, extracts from independent 518 

cultures of E. coli K-12 MG1655 transformed with the expression plasmid pGS2468 (SlyA+); 519 

lane 5, purified (His)6-SlyA (~10 ng protein loaded).  (b) Western blot corresponding to the 520 

gel shown in (a).  The locations of SlyA and purified (His)6-SlyA are indicated. (c) Graphical 521 

representation of the changes in transcript abundance occurring upon over-production of 522 

SlyA in E. coli K-12 MG1655.  Comparison of the fold-changes in transcript abundance of 523 

aerobic steady-state glucose-limited chemostat cultures of E. coli K-12 MG1655 transformed 524 

with either the pET28a (SlyAWT) or pGS2468 (SlyA+).  Each line represents a gene that 525 

exhibits a 2-fold change in transcript abundance (p≤0.05) from two biological and two 526 

technical replicates i.e. four measurements. 527 

 528 

FIG. 2. Biofilm formation by E. coli K-12 MG1655 is enhanced by elevated slyA expression. 529 

Wells containing M9 minimal medium with 20% w/v glucose as a carbon source were 530 

seeded with 1:10 inocula of overnight cultures and incubated at 37°C for 16 h. The OD600 of 531 

the planktonic bacteria was measured before a biofilm assay was carried out. Values shown 532 

are the mean and standard deviation (n = 12) *** denotes p ≤0.00001 in a Student's t-test.     533 

 534 

FIG. 3. Electrophoretic mobility shift assays show specific binding of SlyA to intergenic 535 

regions of selected operons.  The dashed lines in the diagrams on the left indicate the DNA 536 

regions used in the EMSA shown on the right.  The arrows indicate the polarity of the genes 537 

(names above the arrows).  The numbers below the arrows representing genes are the fold-538 

changes in transcript abundance observed upon over-production of SlyA (Table 2). SlyA-539 

binding to the hlyE-C0299 intergenic region has been reported previously [20]. For the 540 

EMSAs, biotin labelled intergenic DNA was prepared as described in the Methods.  Labelled 541 

DNA was incubated with increasing concentrations of purified SlyA protein and protein-DNA 542 

complexes were separated by electrophoresis on native polyacrylamide gels. Lanes 1-8: 0, 1, 543 

5, 10, 50, 100, 200, 500 nM SlyA.  The locations of the free DNA (D) and the SlyA-DNA 544 
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complexes (C) are indicated.  Note that binding at the sgcX upstream region was only 545 

evident at the highest SlyA concentratrion tested and the complex (C) was located close to a 546 

contaminating DNA species.   547 

 548 
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