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Sialic acid, periodontal pathogens and Tannerella forsythia:
stick around and enjoy the feast!

G Stafford1, S Roy1, K Honma2, and A Sharma2

1Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of
Sheffield, S10 2TA, Sheffield, United Kingdom

2Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State
University of New York, 311 Foster Hall, Buffalo, NY 14214, USA

Abstract

Periodontal pathogens, like any other human commensal or pathogenic bacterium, must possess

both the ability to acquire the necessary growth factors but also the means to adhere to surfaces or

reside and survive in their environmental niche. Recent evidence has suggested that sialic acid

containing host molecules may provide both of these requirements in vivo for several periodontal

pathogens but most notably for the red complex organism Tannerella forsythia. Several other

periodontal pathogens also possess sialic acid scavenging enzymes – sialidases, which can also

expose adhesive epitopes, but might also act as adhesins in their own right. In addition recent

experimental work coupled with the release of several genome sequences has revealed that

periodontal bacteria have a range of sialic acid uptake and utilisation systems while others may

also use sialic acid as a cloaking device on their surface to mimic host and avoid immune

recognition. This review will focus on these systems in a range of periodontal bacteria with a

focus on T. forsythia.

Sialic acid as a growth factor or carbon source

An increasing number of human pathogens are being uncovered that have the ability to use

sialic acid as a growth factor or sole carbon source (Vimr ref, Severi ref, others). These now

include representatives of several bacterial genera (including Neisseria (ref), Haemophilus

(ref), Bacteroides (ref), Fusobacteria (ref) and Streptococci ref) that inhabit a range of

biological niches within the human body from the oral cavity through the respiratory system

and into the gastrointestinal and urinary tracts, although none have been found in free-living

bacterial species to date.

While sialic acid seems an obvious source of carbon for bacterial pathogens and other

human and mammalian dwelling bacteria since it is present on the surface of glycoproteins,

gangliosides and sphingolipids (ref), its role in the biology and pathogenesis of periodontal

pathogens is only now coming to light. The discovery that the nutritionally fastidious

periodontal pathogen Tannerella forsythia is able to substitute its requirement for N-acetyl

muramic acid (MurNAc) (Wyss), a building block used to produce cell wall peptidoglycans,
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with sialic acid in biofilm culture (ref) was not only surprising but also suggested that in

vivo it may actually be more adaptable than its fastidious laboratory growth requirements

suggest. Its ability to utilise sialic acid is reliant on a large nan gene cluster located over an

16kb section of its genome (Fig 1). This cluster contains all the genes required for sialic acid

catabolism (nanA, nanE), using a putative pathway that is most related to that of the

Gastrointestinal (GI) anaerobe Bacteroides fragilis (Brigham), and uptake across both inner

(nanT) and outer (nanOU) membranes plus several auxillary genes which most likely play a

role in scavenging sialic acid from the environment (nanS, hexA, nanH). Indeed a mutation

in the nanH gene abrogates growth of this organism with siallylactose as the sole sialic acid

source in biofilm culture (Roy new paper). This operon bears homology both at the sequence

level but also at the genome organisation with related human dwelling GI anaerobes such as

B. fragilis (BF1711-1720, BF1806-1809) and Parabacteroides distastonis (Figure 1) and

represents a new departure from the E. coli paradigm pathway for sialic acid utilisation that

dictates the requirement of a neuraminate lyase (NanA), N-acetylmannosamine epimerase

(NanE) and an N-acetylmannosamine kinase (NanK) in an operon alongside relevant

regulatory, accessory (NanM mutarotase, NanS neuraminate acetyl esterase and

transcriptional regulator genes (NanR) (Vimr, Severi) (Fig.1). In E. coli and Haemophilus

influenzae NanK is required for phosphorylation of N-acetylmannosamine (ManNac) to

ManNac-6P before conversion into N-acetylglucosamine-6-phosphate (NAG-6P). However,

in B. fragilis and probably in T. forsythia NanE is capable of converting ManNac to N-acetyl

glucosamine, which is then phosphorylated by a hexokinase called RokA (Tf1997 in TF)

before being processed by the rest of the pathway (Brigham et al., Roy et al.). Evidence

discussed below also suggests that this group of organisms have also adapted a TonB

dependent transport module to deal with sialic acid.

In view of the ability of T. forsythia in particular to use sialic acid one asks the question why

and how can it substitute for NAM? And strikingly, why only in a biofilm? However, at

present while one can only speculate why this is the case, it is worth noting that in vivo this

organism would probably be present as part of the subgingival plaque biofilm where the

ability to utilize sialic acid must confer a competitive advantage for nutrition. We have

evidence that nan operon gene expression is not only induced in biofilm but also that several

of these genes are induced in the presence of sialic acid (Ref Sumi Thesis). In the absence of

a putative regulator in this region of the chromosome the route for this regulation is unclear.

The ability of this notoriously fastidious bacterium to substitute sialic acid for NAM at all is

almost as intriguing as its ability to utilize NAM in the first place (Wyss). Our hypothesis is

that T. forsythia might use sialic acid as a means to produce N-acetylmuramic acid (NAM,

MurNAc) from N-acetylglucosamine but in a presumably inefficient manner since the

amount of sialic acid that supports T. forsythia growth in biofilm (6mM) is far in excess of

the 170μM NAM that is equivalent (Roy et al). In E. coli, NagE (GlcNAc-specific

phosphotransferase enzyme) (Plumbridge, 2009) and NagZ (N-acetylglucosaminidase)

(Dahl et al., 2004) are responsible for converting N-acetylglucosamine (NAG) to N-

acetylmuramic acid (NAM) while Bacillus subtilis uses NagE and MurP (MurNAc-specific

phosphotransferase system (PTS) ) to yield NAM that it converts into MurNAc-6-phosphate

using the NagZ orthologue MurQ (MurAc-6-phosphate-esterase) (Litzinger et al., 2010).

However, T. forsythia does not contain any homologues of NagE, MurP or MurQ and also
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lacks the two step NAM synthesis pathway which includes UDP-N-acetylglucosamine-

enolpyruvate transferase and UDP-enolpyruvate reductase (Kolenbrander book: A. Sharma,

Genome functions of Tannerella forsythia in bacterial communities. in: P.E. Kolenbrander,

(ed.) Oral Microbial Communities: Genome inquiry and interspecies communication,

American Society for Microbiology, Washington, D. C., 2011.). Even more intriguing is

how exogenous NAM is transported and utilized by T. forsythia in the absence of a putative

PTS-like amino sugar uptake system. This suggest that the NAM (and sialic) metabolic

pathways in T. forsythia are likely to utilize completely novel pathways and enzymes for

sugar transport and utilization of these sugars. The identification and characterization of

these pathways will be a focus of our laboratories and others in the near future.

Other periodontal pathogens

While several studies on the periodontal pathogen Porphyromonas gingivalis have

highlighted a role for sialic acid in adhesion to human cells – refs from dunhill grant, there is

no evidence that it utilises sialic acid as a growth substrate nor contains any catabolic genes

in its genome sequence. A similar story also seems to hold true for the fellow red-complex

periodontal pathogen Treponema denticola with both possessing at least one putative

sialidase encoding gene (genome and Fletcher).

Among other periodontal bacteria the presence of sialic acid catabolic and scavenging genes

is varied. For example, the Gram-negative periodontal pathogen Aggregatibacter

actinomyceteconcomitans (Aa contains a putative nan operon, while the orange complex

bridging organism Fusobacterium nucleatum harbours a full sialic acid utilisation operon

comparable to that of H. influenzae with catabolic, inner membrane transport (TRAP type,

see below) and regulatory genes clustered together (Figure 1). In addition F. nucleatum has

previously been shown to be able to utlilise Sialic acid as a sole carbon source - REF.

However, the closely related oral species Fusobacterium nucleatum subsp polymorphum has

no catabolic genes but does contain an lst operon that is potentially involved in LPS

sialylation (see below). These observations are intriguing given that F. polymorphum is

known to form synergistic biofilms with T. forsythia via co-aggregation dependent

mechanisms- implying that T. forsythia may adhere to the F. polymorphum surface and

scavenge its sialic acid for growth (Ashu synergy paper. In this regard, NanH sialidase is

likely to be involved in binding to and cleaving F. polymorphum surface sialic acid residues.

In support of this we have preliminary data suggesting that F. polymorphum coaggregates

less readily with our T. forsythia nanH mutant than the wild-type and that its LPS banding

pattern is altered after sialidase treatment in vitro (unpublished data). Thus it may be that

sialic acid also plays a role in nutritional and physical interactions between bacteria known

to cohabit within subgingival biofilm. These interactions may also contribute to fitness in

vivo as removal of sialic acid from the lipooligosaccharide of H. Influenzae and Neisseria

meningitidis by the NanA sialidase of Streptococcus pneumoniae has been suggested to

contribute to survival in the respiratory tract during co-infections (Shaknovich et al., 2002).

Diversity of membrane transport systems in periodontal bacteria

Despite the obvious requirement for largely similar biochemical pathways for sialic acid

utilisation in pathogenic bacteria, i.e. a mechanism to breakdown sialic acid and assimilate
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into biomass, there is much more diversity in the mechanisms by which sialic is transported

from the extracellular to intracellular environments.

Transit of sialic acid across the inner membrane has been studied in some detail with the

identification of dedicated uptake systems that fall into two main categories: 1) Major

Facilitator permeases, commonly annotated as NanT (Vimr, Kalivoda, Deszo, &

Steenbergen, 2004) and 2) the siaPQM Tripartite ATP-independent periplasmic (TRAP)

transporters (Steenbergen et al., 2005) (Figure 2). Recently a third type of sialic acid

transporter was discovered in Salmonella typhimurium which is predicted to be present in a

range of pathogenic bacteria and is a member of the sodium solute symporter (SSS) family

(Severi et al., 2010), while the SatABCD system seems to be limited to Haemophilus

ducreyi (ref). Our published work has established that the NanT type permease of T.

forsythia is functional upon transplantation into E. coli (ref). Bioinformatic searches of

completed genomes reveals that in addition to sharing similar sialic acid catabolic pathways

with enteric Bacteroides species, the sialic acid transport systems also seem to be related.

Both possess a NanT type permease and notably the novel TonB-dependent NanOU outer

membrane transporters also identified in T. forsythia (Figure 1). The other major type of

sialic acid inner membrane transport system is of the TRAP family, the mechanisms of

which have been revealed in classic biochemical studies by several groups (reviewed by

Thomas…). It is in fact this TRAP type transporter that is present in F. nucleatum and Aa

(Figure 1,2).

In contrast to the inner membrane transport systems, only two sialic acid specific outer

membrane transporters have been identified to date. The first was the NanC sialic acid-

specific outer membrane porin from E. coli K-12, which is essential for growth on Neu5Ac

when the general porins, OmpF, OmpC are not expressed (Condemine et al., 2005). In the

genomes of periodontal bacteria sequenced to date, NanC homologues have not been

identified thereby leading to the assumption that a general porin may perform this function

in these organisms (Figure 2). Our recent work identified the functionality of a second type

of outer membrane sialic acid transport system in the T. forsythia sialic acid operon,

encoded by the genes NanO and NanU (TF0033 and TF0034), that are able to complement

sialic acid growth defects in an E. coli strain devoid of sialic acid transport across its outer

membrane (Roy). The protein encoded by nanO is a member of the TonB-dependent

receptor family, a class of protein that is often involved in small molecule transport in a

mechanism that is energised by the TonB-ExbB-ExbD (TBDR) protein complex

(unpublished Roy). Such complexes are typically involved in iron transport but are

becoming increasingly recognised as having a role in sugar transport in a range of organisms

(3,44,47) and in signal transduction and transcription via ECF-type sigma factors (19). In

fact, T. forsythia contains over 60 TBDRs in a genome of 3.4 Mbp and three TonB

homologues (1). Therefore, according to the definition of Blanvillain et al., (3) where a ratio

of >5 indicates over-representation, the genome of T. forsythia would be considered to be

over-represented for TBDRs with a TBDR/Mbp ratio of at least 17.6. This compares with

genomes of other members of the Bacteroidetes group where TBDRs are also over-

represented (e.g B. fragilis and B. thetaiotaomicron have ratios of 17.7 and 19.1,

respectively) (3). The overrepresentation in B. fragilis and Bacteroides thetaiotaomicron is
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considered an evolutionary adaptation to the gut environment in which they reside, with

these TBDRs probably allowing them to acquire and sense a large range of host and dietary

carbohydrate molecules (32,44,45,47). These putative TBDRs are also often accompanied in

their genome by associated ECF-sigma and anti-sigma factors (19,32,44,45,47), and a

preliminary survey of the genome of T. forsythia reveals that 12 of the TBDRs have partner

ECF sigma and anti-sigma factors directly adjacent to them on the chromosome. These data

indicate that the identified NanO TBDR, that seems to be specific for sialic acid, is part of a

much larger repertoire of TBDRs that may well play a similar role for T. forsythia in the oral

environment where it is also exposed to a range of dietary sugars as they do for gut

Bacteroides.

In contrast to NanO, NanU has homology to other members of the SusD family, that are all

predicted to be involved in nutrient utilisation of a range of carbohydrates, often oligomeric

(24). It possesses a Type II Signal Recognition particle signal (18) and has predicted

structural similarity to the SusD protein from B. thetaiotaomicron (Stafford, G.P.

unpublished data). There are a number of homologues of this gene in the T. forsythia

genome (1), again indicating that like other Bacteroides species this may be an important

mechanism for nutrient uptake. Notably the genomes of several members of the

Bacteroidetes also seem to possess homologues of this transport system including B. fragilis

(NCTC 9343; BF1719 and 1720) and Parabacteroides diastonis (ATCC 8503: BD_2944

and 2945) both which are adjacent to sialic acid catabolic genes (Figure 1). This indicates

that this type of sialic acid uptake system is present in a range of species and may therefore

be important not only in the oral cavity but also in the gut. In addition, several other

Bacteroides species (e.g. B. thetaiotaomicron) seem to possess NanOU homologues that are

associated with fucosidase genes indicating that this family of transporter may also be

involved in fucose uptake.

Clearly many questions remain regarding the mechanism of sialic acid transport via the

NanOU system such as the putative protein interactions between NanO and NanU, the

binding of sialic acid to NanU and the role of TonB in energising the process, which are all

currently under investigation in our groups.

Sialidases appear to be multifunctional virulence factors for T. forsythia

and other periodontal pathogens

The ability of periodontal pathogens to utilise sialic acid as a growth substrate is particularly

pertinent given the range of sialylated glycoproteins present both in oral secretions (e.g.

mucins) and on the surface of epithelial cells (e.g. fibronectin, integrins, Toll-like receptors).

However, this sialic acid is not freely available and bacteria often employ secreted or

membrane-bound sialidase enzymes to capture this sialic acid (Corfield, 1992). In common

with many human dwelling organisms T. forsythia and several other periodontal pathogens

such as P. gingivalis possess sialidase activity (Moncla, Braham, Hillier 1990) and many of

the sequenced stains contain predicted nanH genes (Figure 1).

The T. forsythia NanH protein is most closely related to the sialidase of B. fragilis (65%

identity) containing typical sialidase motifs (Roggentin et al., 1993), (Thompson), in
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addition to a typical putative secretion signal sequence. Recent work has shown that the T.

forsythia NanH is able to cleave a2,3 and a2,6 sialyl bonds from both the model sugar

siallyllactose (Thompson), the glycoprotein fetuin (Roy- Submitted) and sialic acid lectin

binding epitopes from the surface of Ginigival epithelial cells (Honma paper), all suggesting

T. forsythia can recover sialic acid from host-glycoproteins and that it is a significant

virulence factor. In support of this we now have evidence that fetuin, mucin (less

efficiently), and saliva support growth of T. forsythia in a sialic acid dependent manner- i.e.

growth is inhibited by sialidase inhibitors and by loss of the nanH gene by mutation (Roy et

al., in submission). The idea that sialidases may be important in vivo for periodontal bacteria

is not unexpected given that a nanH mutant of the related organism B. fragilis displayed

reduced colonisation ability in rats (Godoy et al., 1993) and that the periodontal pocket in

which periodontal pathogens reside contains an abundance of sialylated glycoproteins

(Pollanen et al., 2003). Notably, all Bacteroidetes members that contain a nan-operon linked

nanH gene also contain a putative 9-O-acetylesterase enzyme for the removal of the acetyl

group at position 9 of sialic acid which is known to inhibit sialidase enzymes ref also

(Figure 1). Presumably this implies that 9-O-acetylated sialic acid, which makes up a large

proportion of the sialic acid in the human body e.g. 80% of the sialic acid content of mucins

is o-acetylated (Varki and Diaz, 1983), is an important source of sialic acid for these

organisms. This is not completely surprising since the enteric human bacterium E. coli has

an 9-O-acetylesterase (NanS) which has specificity towards 9-O-acetyl sialic acid as a

growth substrate (Steenbergen et al., 2009). In contrast P. gingivalis which possesses a true

sialidase (PG0352) and two O-sialoglycoproteases (PG0778 & PG1724), but no metabolic

genes, does not, but may be able to cleave these linkages via the sialoglycoproteases

(Fletcher).

Bacterial sialidase enzymes also play an important role in adherence to both human cells and

solid surfaces (Corfield, 1992). For example, the lectin-like Streptococcus pneumoniae

sialidase, NanA, is important for adherence to endothelial cells (Uchiyama et al., 2009)

while our work on T. forsythia highlighted a role in adhesion to oral epithelial cells (Honma)

and others also showed that interaction of T. forsythia with blood cells can be inhibited by

sialyllactose (Murakami et al., 2002). The picture for Porphyromonas gingivalis is less clear

with various sialidase and sialoglycoprotease mutants having different adhesion and

invasion phenotypes (Fletcher) while pretreatment of human cells with sialidase or

incubation with sialic acid reduces invasion (Hallen, Agnani). The importance of sialic acid

in host interactions of periodontal pathogens though is clear and holds true for the final Red

complex organism T. denticola whose interaction with erythrocytes is inhibited by low

concentrations of sialic acid (Mixk paper).

In addition to interactions with host cells (and secretions in the oral cavity periodontal

pathogens also display various interactions with other oral bacteria and in the formation of

biofilm evidence body of data now suggesting a role for sialic acid and sialidases here too.

For example pretreatment of P. gingivalis with sialidase enzyme reduces interactions with

Streptococcus sanguis (Stinson) and we have preliminary evidence that a nanH mutant of T.

forsythia aggregates less readily with the putatively sialic acid coated important bridging

organism F. polymorphum (Bolstad et al., 1996), suggesting a nutritional and physical basis

Stafford et al. Page 6

Mol Oral Microbiol. Author manuscript; available in PMC 2014 June 09.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



for their synergistic relationship (Sharma). Our recent work has also highlighted that T.

forsythia sialidase is key to adhesion and biofilm formation on glycoprotein coated surfaces

(Roy et al., unpub.), an observation that reflects a possible role in colonization of epithelial

surfaces as was observed for the important respiratory pathogens Pseudomonas aeruginosa

(Soong et al., 2006) and S. pneumoniae (Parker, Soong, Planet, Brower, Ratner & Prince,

2009) King et al., 2006 (Krivan et al., 1988). The role of sialidase in these cases may be both

as an adhesin itself (many have lectin like properties) but also in the exposure of underlying

adhesive epitopes such as galactose, as is the case for Bacteroides intermedius, Actinomyces

spp. and Vibrio cholera toxins (Okuda et al., 1989; Gibbons et al., 1990; Moustafa et al.,

JBC 2004). With respect to colonization by F. nucleatum in the oral cavity, sialidases could

be involved in exposing galactose residues on host surfaces for subsequent binding by

lectin-like adhesin expressed by the bacterium (Infect. Immun. 56 (1988) 1314-1319).

In addition to providing nutritional and adhesive function to organisms it is increasingly

recognized that sialidases play roles in modulation of the immune responses and immune

evasion. For example, S. pneumoniae sialidase initiates the extensive deglycosylation of

secretory component and IgA1 (Molecular Microbiology (2006) (3), 961–974) as well as

serum glycoproteins that results in reduced complement deposition and subsequent

inhibition of killing by neutrophils (IAI 78:2108). Recent studies have also reported that full

activation of Toll-like receptors in macrophage and endothelial cells that are key to the

innate immune response following exposure to infectious agent molecules such as LPS,

Teichoic acid and flagella is dependent on the function of host sialidases but that this can

also be modified by bacterially derived sialidases with specificity for alpha 2,3 linkages

(Amith, Glycoconj. J. 2009, 26:1197; Amith, Cell Signal 2010, 22:314; Stomatos et al., J.

Leukoc. Biol. 2010 88: 1227). These data also suggest that the alpha 2,3 and 2,6 specific

sialidases of periodontal bacteria may also contribute to the pathologic effects observed in

host epithelial layers.

The potential for surface coating and host mimicry

Whether sialic acid is de novo synthesized or obtained exogenously by the action of

sialidases on host and/or cohabiting bacterial glyconjugates, many pathogens are able to

decorate their surface molecules (LPS and capsular polysaccharide) with sialic acids and its

derivatives in order to mimic host cell surfaces, e.g. H. influenzae, N. meningitidis, E. coli

K1 and C. jejuni (refs). This ‘ molecular mimicry’  helps in the avoidance of host immune

attack (Vimr and Lichtensteiger, 2002, Severi). Moreover, surface sialic acid expression is

also believed to hinder the reach of complement dependent membrane attack complex

(MAC on the bacterial membrane. With regard to bactera of the oral cavity, the F.

polymorphum genome possesses (www.oralgen.org) putative genes (FNP_1104-

FNP_1109 ) which encodes neuC, neuA, neuB, N-acetylneuraminate synthase, a

polysaccharide biosynthesis export protein and lipooligosaccharide sialyltransferase (lst

respectively (http://www.oralgen.lanl.gov/) that might be involved in sialylation of LPS. It

remains to be seen whether LPS sialylation does occur in F. polymorphum and if it plays any

role in immune mimicry.
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However, to date, no other periodontal bacteria with gene homologues indicating LPS

sialylation have been reported/documented.

In addition to LPS and capsule sialylation it is becoming clear that many bacteria are

capable of glycosylation of surface proteins such as flagella (refs) and outer membrane

proteins (bfrag refs). One such example is the S-layer of T. forsythia which is known to be

heavily glycosylated. However, the nature of this glycosylation is unclear and the only hints

as to its composition come from a mutation in a putative N-acetyl-D-mannosaminuronic

acid dehydrogenase gene (wecC that results in a defect in protein glycosylation (Honma ref)

and in the presence of several potential fucosylation sites of the type identified in B. fragilis

by xxxxx (ref). While there is no evidence of sialylation of the S-layer thus far it is tempting

to speculate that this might be the case, especially given that the related organism P.

gingivalis (which also lacks sialylation pathways) contains sialic acid attached to the major

surface gingipain, Rgp (Rangarajan). One possible mechanism for this could be trans-

sialylation via sialidase enzymes as has been observed in eukaryotes in recent years.

Interestingly, the molecular mimicry reaches near perfection in another human commensal/

pathogen, the Group B Streptococci (GBS). GBS express capsular polysaccharide that

displays the glycan structure Siaｳ-2-3Galｴ1-4GlcNac, found in human glycoproteins

recognized by Sia-recognizing immunoglobulin superfamily lectin (Siglecs) receptors on

immune cells, including neutrophils. Siglec receptors, due to the presence of cytoplasmic

tyrosine based inhibitory motif (ITIM are believed to dampen the inflammatory responses

following host sialoglycan binding. Thus, molecular mimicy by GBS has been postulated to

impair neutrophil defense functions by coopting Siglecs. The interaction with Siglecs can

also can lead to other consequences, such as in the case of C. jejnui where reconition of

sialic acid containing antigens contributes to autoimmune disorders such as Guillan-Barre

syndrome (Carlin et al., 2007;Ilg et al., 2010).

Whether any or all of these phenomena are present in periodontal pathogens is not clear at

present but there is clearly much scope for this to be the case, a fact that would add to the

complexity of interactions between these bacteria and the host immune system.

A Model for the role of sialic acid in periodontitis

Overall there is a growing body of evidence and opinion that sialic acid plays a key role in

the life and consequences of periodontal pathogen colonisation (Figure 3). There seems little

doubt that at least for some periodontal organisms sialic acid can act as a growth and

adhesion factor for colonisation both of host surfaces but also probably in interactions with

other oral dwelling bacteria within biofilm. The production of sialidase enzymes by a range

of periodontal pathogens and the obvious potential therefore for modulation of the immune

response means there is much to investigate and much scope for the design of new treatment

regimen as well as an increased understanding of the microbial community in the oral

cavity.
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Figure 1. Sialic acid catabolism and transport clusters from a range of bacteria
Predicted and confirmed sialic acid gene clusters from the genome sequences of the

organisms shown are illustrated using standard nan gene descriptors. Key: Catabolic genes:

nanA-neuraminate lyase(red), nanE-N-acetylmannosamine-6P epimerase (lime green),

nanK-ManNAc kinase (turquoise) ; Inner membrane transporters (yellow) : nanT- Major

facilitator Superfamily permease; siaPQM- Neu5Ac TRAP (tripartite ATP-independent

periplasmic) transporter; Outer membrane transporter (mid green) : nanOU- TonB

dependent sialic acid transport system, nanC-sialic acid specific porin; Accesory genes

(Grey) : nanS- sialic acid 9-O-acetylesterase; nahA/hexA-beta hexosaminidase; nanM- sialic

acid mutarotase; yhcH- putative Glycolyl sialic acid processing enzyme; estA- sialyl

transferase. The first gene in each cluster is noted for each species except the well

established E. coli and H. influenzae.
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Figure 2. Summary of sialic acid uptake systems present in periodontal bacteria
Sialic acid enters either via either a TonB dependent NanOU type system before entry into

the cytoplasm via a NanT MFS permease protein. In organisms that lack a NanOU system it

is likely that they employ a NanC type or general porin like OmpC or OmpF that is used in

E. coli. This might then feed either to a NanT permease or a SiaPQM TRAP type permease

as is the case for H. influenzae.
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Figure 3. Model of sialic acid dependent interactions of periodontal pathogens
All of the pathogens shown except for the Fusobacteium spp. Produce cell-anchored or

secreted sialidase enzymes (colour coded Pacman for parent strain) that potentially release

sialic acid from both bacterial, e.g. LPS of F. polymorphum or arginine gingipain (rgp) of P.

gingivalis, and host sources, e.g. cell surface or salivary glycoproteins. The consequences of

this removal of sialic acid may also be inter-bacterial interaction or activation of host cell

signaling cascades (orange arrows) such as TLR pathways or cytokine release. Key: Ac-

acetyl group, ‘ s’  in a hexagon- sialic acid residue, Aa- Aggregatibacter

actninomyceteconcomitans, rgp- arginine gingipain.

Stafford et al. Page 15

Mol Oral Microbiol. Author manuscript; available in PMC 2014 June 09.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts


