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Abstract

Testicular germ cell tumors (TGCT) are the most frequently diagnosed solid tumors in young men 

ages 15 to 44 years. Embryonal carcinomas (EC) comprise a subset of TGCTs that exhibit 

pluripotent characteristics similar to embryonic stem (ES) cells, but the genetic drivers underlying 

malignant transformation of ECs are unknown. To elucidate the abnormal genetic events 

potentially contributing to TGCT malignancy, such as the existence of fusion genes or aberrant 

fusion transcript expression, we performed RNA sequencing of EC cell lines and their non-

malignant ES cell line counterparts. We identified eight novel fusion transcripts and one gene with 

alternative promoter usage, ETV6. Four out of nine transcripts were found recurrently expressed in 

an extended panel of primary TGCTs and additional EC cell lines, but not in normal parenchyma 

of the testis, implying tumor-specific expression. Two of the recurrent transcripts involved an 

intrachromosomal fusion between RCC1 and HENMT1 located 80 Mbp apart and an 

interchromosomal fusion between RCC1 and ABHD12B. RCC1-ABHD12B and the ETV6 
transcript variant were found to be preferentially expressed in the more undifferentiated TGCT 

subtypes. In vitro differentiation of the NTERA2 EC cell line resulted in significantly reduced 

expression of both fusion transcripts involving RCC1 and the ETV6 transcript variant, indicating 

that they are markers of pluripotency in a malignant setting. In conclusion, we identified eight 

novel fusion transcripts that, to our knowledge, are the first fusion genes described in TGCT and 

may therefore potentially serve as genomic biomarkers of malignant progression.
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Introduction

Testicular germ cell tumors (TGCTs) are the most common cancer in young men ages 15-44 

years (1). Although it is a highly treatable cancer type, exemplified by a 10-year net survival 

rate of 98 % in England and Wales (2), the disease affects men in their prime and treatment 

can lead to substantially increased morbidity, including cardiovascular disease, reduced 

fertility and secondary cancers (3). Histologically, there are two main subtypes of TGCTs, 

seminomas and non-seminomas. Both are thought to develop from the pre-invasive stage 

termed intratubular germ cell neoplasia (IGCN; also known as carcinoma in situ). Non-

seminomas are further divided into the pluripotent embryonal carcinomas (EC) and more 

differentiated subtypes, with either somatic (teratoma) or extra-embryonic differentiation 

(yolk sac tumors, YST, and choriocarcinomas)(4).

EC cells are highly similar to embryonic stem (ES) cells, derived from the inner cell mass of 

the blastocyst stage embryo (5). Both cell types exhibit pluripotent characteristics 

phenotypically and in gene expression profiles (6,7). Upon extended passaging in vitro, ES 

cells have been shown to acquire genetic changes similar to those seen in malignant 

transformation in vivo of TGCTs and EC, including gain of genetic material from 

chromosomes 12, 17, and X (8). Gain of chromosome arm 12p, often as an isochromosome, 

i(12p), is found in virtually all cases of TGCT (9,10). Crucially, despite these similarities, 

EC cells are malignant in character, whereas ES cells are not. Comparative studies between 

the two cell types may therefore be useful for characterization of cancer-specific differences 

in a pluripotent context (5,11). One such study revealed that several transcription factors 

located on 12p are overexpressed in EC cells as compared to ES cells (6). Although 12p 

material is gained in virtually all cases of TGCT, no clear genetic driver for TGCT 

malignant transformation has been pinpointed (12,13).

Recently, whole-exome sequencing studies have revealed that the number of non-

synonymous mutations in coding regions of the TGCT genome are few, on a scale similar to 

that of pediatric cancers (14–16). A number of pediatric cancers with a low mutational load 

are frequently found to harbor fusion genes with oncogenic properties. Examples are MLL 
rearrangements in acute lymphoblastic leukemia (17), and subtypes of sarcomas classified 

by distinct chromosomal translocations (18). In Ewing sarcoma, fusions involving EWSR1 
are pathognomonic, while the mutation rate is low, estimated at 0.15/Mb of coding sequence 

(19). In this study, we have performed RNA sequencing of EC cell lines and their non-

malignant counterpart, ES cell lines. Application of a fusion gene analysis pipeline led to the 

identification of nine novel fusion genes and transcripts, to our knowledge the first described 

in TGCT.

Material and Methods

Cell lines and patient samples

Three EC cell lines (2102Ep, 833KE, and NTERA2) and 2 ES cell lines (H9 and Shef3) 

were subjected to RNA sequencing. The EC and ES cell lines were established in the lab of 

Peter W. Andrews, University of Sheffield, where they also were grown and sorted for 

expression of the pluripotency marker SSEA3 as previously described (11). The extended 
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experimental validation panel consisted of four categories of samples: 1) 2 additional EC 

(Tera 1 and NCCIT) and 2 additional ES (Shef6 and Shef7) cell lines (n=4), 2) NTERA2 and 

2102Ep cells treated with all-trans retinoic acid (RA) for 0, 3 and 7 days to induce 

differentiation, as previously described (n=6) (20,21). 3) Thirty-five testicular tissue samples 

including 5 normal testicular parenchyma, 6 premalignant IGCN and 24 primary TGCTs, all 

with only one histological subtype each; EC (n=8), seminoma (n=7), choriocarcinoma (n=1), 

YST (n=4), and teratoma (n=4). 4) Twenty normal tissues from miscellaneous sites of the 

body were used for exploration of cancer-specificity of the novel transcripts (adipose, 

bladder, brain, cervix, colon, esophagus, heart, kidney, liver, lung, ovary, placenta, prostate, 

skeletal muscle, spleen, stomach, testes, thymus, thyroid and trachea; FirstChoice Human 

Normal Tissue Total RNA). These were each a pool of RNA from at least three individuals, 

with the exception of one individual sample from the stomach (Ambion, Applied 

Biosystems by Life Technologies, Carlsbad, CA, USA).

DNA isolated simultaneously from the cell pellets was tested and authenticated by STR 

fingerprinting using the AmpFLSTR Identifiler PCR Amplification Kit (Applied 

Biosystems). Profiles positively matched with those reported in the literature for 2102Ep (7), 

and obtained from the European Collection of Cell Cultures (ECACC; for 833KE), ATCC 

(for NTERA2, NCCIT, and TERA1), the Wisconsin International Stem Cell Bank (H9), and 

the UK Stem Cell Bank (Shef3, Shef6, and Shef7). The biobank is registered according to 

Norwegian legislation (no. 953; Biobank Registry of Norway) and the project has been 

approved by the National Committee for Medical and Health Research Ethics (S-05368 and 

S-07453b).

External data for in silico validation

Paired-end RNA sequencing data from the Illumina Human Body Map v2 dataset, consisting 

of 16 non-malignant miscellaneous tissue types, was analyzed as an additional source of 

normal controls (ArrayExpress accession ID E-MTAB-513 and European Nucleotide 

Archive study accession ID ERP000546).

Paired end RNA-sequencing of EC and ES cell lines

Library construction was performed using the standard Illumina mRNA library preparation 

protocol (Illumina Inc, San Diego, CA, USA), including poly-A mRNA isolation, 

fragmentation, and gel-based size selection. Shearing to about 250 bp fragments was 

achieved using the Covaris S2 focused ultrasonicator (Covaris Inc, Woburn, MA, USA). 

Paired-end sequencing, 76 bp from each end, was performed according to protocol on a 

Genome Analyzer IIx (Illumina Inc.).

Fusion transcript identification

To identify fusion transcripts specific for EC, we used the fusion detection algorithm deFuse 

v. 0.6.1 (22) with hg19 sequence reference from UCSC and Ensembl release 69 annotation. 

To enrich for true positive fusion transcripts specifically expressed in EC cells, several 

heuristic filtering steps of the initial fusion breakpoint candidates were performed, some 

adapted from the recommended procedures of the original publication of deFuse (22), 

namely: 1) Only the nominated fusion breakpoint candidates with a probability score greater 
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than 0.5 were considered. 2) Breakpoints nominated in EC that were also found in ES cell 

lines or tissues of the Human Body Map v2 were removed to enrich for malignancy-specific 

candidates and remove systematic technical artifacts. 3) We removed candidates that had 

more than 5 multi-mapping spanning reads, or a ratio of multi-mapping spanning reads 

greater than 25 %. 4) To filter out candidates nominated due to homologous or repeat 

sequences, we removed candidates that had a deFuse homology score greater than 10 and 

candidates having either of the following three criteria: cDNA adjusted-, genome adjusted- 

or EST adjusted percent identity greater than 0.1. In an effort to enrich for functionally 

interesting fusion candidates, we applied 4 functional filters of which candidates needed to 

pass 3 in order to proceed. 1) Both gene partners are annotated as protein-coding genes. 2) 

The number of split reads and spanning reads supporting the fusion breakpoint sequence is 

greater than or equal to 3 or 5, respectively. 3) The fusion breakpoint includes 5ᓉ UTR or 

coding parts of at least one of the partner genes. 4) The distance between the two partner 

genes is greater than 30 kb. We also used an additional fusion finder algorithm, SOAPfuse v.

1.26 (23), and included all fusion breakpoints that were picked up by both deFuse and 

SOAPfuse independently. For the remaining fusion transcripts, breakpoint alignments were 

evaluated in the UCSC genome browser and the Integrative Genomic Viewer (IGV). In 

general, we removed chimeric breakpoint sequences likely to derive from read-through 

transcripts, and those not aligning to conserved exon to exon boundaries.

Validation of fusion transcript breakpoints by reverse-transcriptase PCR and Sanger 
sequencing

Selected fusion transcript candidates were validated with reverse transcription PCR (RT-

PCR) in the RNA-sequenced cell lines and in an extended validation panel. Primers were 

designed to the fusion transcript breakpoint sequences as detected by deFuse by using the 

Primer3 web application (24). All primer sequences used in this study are listed in 

Supplementary Table S1. Briefly, reverse transcription was performed using the high-

capacity reverse transcription kit according to protocol (Applied Biosystems by Life 

Technologies, CA, USA). From 50 ng of starting cDNA template, a PCR protocol was 

initiated with 15 minutes of HotStarTaq DNA polymerase activation at 95°C, followed by 30 

thermal cycles of denaturation for 30 seconds at 95°C, primer annealing for 1 minute at 

optimal primer melting temperatures (Supplementary Table S1), and extension for one 

minute at 72°C. After the last cycle, a final extension step was performed at 72°C for 10 

minutes. The PCR products were separated by electrophoresis at 200 V for 30 minutes on a 

2 % agarose gel and visualized using ethidium bromide and UV light.

To ensure specific amplification of the breakpoint sequences, PCR products from the cell 

lines that were nominated by RNA-seq to harbor the individual fusion transcripts were 

sequenced by Sanger sequencing. PCR products that showed a single nucleotide band on the 

agarose gel were sequenced directly from both sides using forward and reverse primers. 

Prior to sequencing, the PCR products were purified using Illustra ExoStar 1-step cleanup 

(GE Healthcare, Little Chalfront, UK). The cycle sequencing reactions were performed 

using the BigDye Terminator v.1.1 cycle sequencing kit (Applied Biosystems, Foster City, 

CA, USA) following manufacturer’ s recommendations. The sequencing products were 

purified using BigDye Xterminator (Applied Biosystems) before being analyzed by capillary 
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electrophoresis using the ABI 3730 DNA Analyzer (Applied Biosystems). The resulting 

sequences were analyzed using the Sequencing Analysis v.5.3.1 software.

The quantity of fusion transcripts assessed by TaqMan real-time PCR

Several fusion transcripts confirmed by regular RT-PCR were recurrent, however with 

varying nucleotide band intensities between samples, as observed by agarose gel 

electrophoresis. We performed TaqMan quantitative RT-PCR (qRT-PCR) to quantify the 

relative expression of these fusion transcripts. Primers and MGB-probes were designed with 

the Primer Express v.3.0 software (Applied Biosystems) to cross the fusion transcript 

boundaries (Supplementary Table S1). Two endogenous control assays targeting ACTB and 

GUSB were analyzed in all samples to normalize for input template amounts. The qRT-PCR 

reactions were performed in reaction volumes of 10 μl, with 15 ng of template cDNA, 

TaqMan universal mastermix II with uracil-N-glycosylase (Applied Biosystems) and final 

primer and probe concentrations of 0.9 μM and 0.2 μM, respectively. The PCR reactions 

were run in triplicate on an ABI 7900HT fast real-time PCR system (Applied Biosystems). 

Expression levels were reported as the median cycle threshold (CT) of the triplicates and 

normalized to median CT values of the endogenous controls. A threshold value at CT = 35 

was set for all assays as positive expression.

Assessment of DNA-level fusions with multiplexed droplet digital PCR

Droplet digital PCR (ddPCR) takes advantage of oil/water emulsion, separating PCR 

reagents and template into thousands of nano-liter sized droplets. Subsequent thermal 

cycling by traditional fluorescent PCR specifically amplifies target templates in the droplets. 

The number of target molecules in a reaction mixture is inferred by counting the number of 

droplets with and without amplified fluorescent signal. It is also possible to measure two 

target molecules simultaneously, by multiplexing 2 PCR assays with different fluorescent 

dyes (FAM and VIC/HEX). Since template molecules distribute randomly into droplets, 

droplets can be expected to contain one, the other, both or none of the target molecules by 

chance in a multiplexed assay. However, if two template targets are located in close 

proximity on the same DNA molecule and thereby linked, these would distribute together in 

a non-random fashion with a higher number of double positive droplets than expected by 

chance.

Here, we performed ddPCR to investigate DNA-level linkage of the partner genes of 2 

recurrent fusion transcripts, as well as 2 fusion transcripts that each were expressed only in 

one EC cell line. As proof of concept, we included duplex linkage assays for the known 

fusion VTI1A-TCF7L2, which in the NCI-H508 cell line is known to be formed by a 

genomic deletion (25). To evaluate the integrity of DNA fragments, and as an additional 

positive control of the ddPCR linkage approach, we used a custom milepost experiment 

which measures linkage with assays 1 kb, 10 kb, 50 kb and 100 kb apart. In all experiments, 

a reference assay with FAM fluorescence was multiplexed with one of the milepost assays 

with VIC fluorescence. FAM and VIC assays were also designed for the two partner genes 

of the fusion transcripts. All assays used in the ddPCR linkage experiments are listed in 

Supplementary Table S2. As control experiments for the linkage assays we performed 

fragmentation of genomic DNA with the NspI restriction endonuclease. We ensured that 
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none of the assay’ s target sequences overlapped with the restriction enzyme target sequence. 

Each ddPCR experiment was carried out in 22 μl reaction volumes, with final concentrations 

of 0.9 μM of each primer and 0.25 μM probe, 1x ddPCR supermix (Bio-Rad) and 25 to 50 

ng genomic DNA. Droplet generation was performed with 20 μL of the reaction mix, 

according to the manufacturer’ s protocol. Droplets were then transferred to a 96-well plate 

and PCR performed with the following thermal cycling profile: initial enzyme activation at 

95°C for 10 minutes, followed by 40 cycles of denaturation at 94°C for 30 seconds and 

annealing/extension at 60°C for 1 minute. As a final step, the enzyme was deactivated at 

98°C for 10 min. The droplets were read using the QX200 droplet reader according to 

manufacturer’ s protocol. The data was analyzed using the QuantaSoft software (1.7.4.0917; 

Bio-Rad). Crosshair gating was used to set a threshold for the four quadrants of droplet 

populations: double-negative, FAM-positive, VIC-positive and double-positive. QuantaSoft 

outputs the concentration in molecules/μl for each of the assays. Additionally, a linkage 

concentration is calculated based on the ratio of double-positive droplets, given in linked 

molecules/μl. We calculated percent linkage as the concentration of linked molecules 

divided by the mean concentration of the individual assays transformed to percentage.

Results

Identification of fusion transcripts in EC cell lines from paired-end RNA-seq data

RNA sequencing of the three EC (2102Ep, 833KE, and NTERA2) and two ES (H9 and 

Shef3) cell lines generated a total of 199 million pairs of 76 bp sequencing reads that passed 

filtering (Supplementary Table S3).

Fusion transcript analyses of the RNA-seq data resulted in an initial list of 1210 unique 

fusion breakpoints with a probability score above 0.5. Subsequent heuristic filtering 

nominated nine fusion transcripts which were considered strong enough for further 

experimental validation (Figure 1). Briefly, 283 candidate fusions were first removed as they 

were also detected in ES cell lines or normal human tissues (i.e. external data from the 

Illumina Human Body Map v2 data set). Further technical filtering of fusion breakpoints 

with a high ratio of multi-mapping spanning reads and breakpoints with a high degree of 

homology or breakpoint sequence identity, removed 621 and 130 candidates respectively. To 

enrich for functionally important breakpoints, we removed breakpoints that did not pass at 

least three out of four functional filters. As an additional step, we used the SOAPfuse fusion 

finder to identify a list of 85 potential EC fusion breakpoint candidates. Of these, only 11 

overlapped with the initial list of EC specific breakpoints generated by deFuse, where five of 

these were already kept through the filtering process. The remaining six overlapping 

candidates were retrieved for evaluation in the final candidate list. After filtering steps, a list 

of 65 unique candidate fusion breakpoints remained, and was manually curated by viewing 

alignments in IGV and the UCSC genome browser. Fusion transcripts likely to be generated 

by polymerase read-through were filtered out, except for a read-through between CLEC6A 
and CLEC4D located on chromosome arm 12p found to be recurrent in all three EC cell 

lines. Fusion candidates where the breakpoint did not match intact conserved exon – exon 

boundaries were filtered out, except for a breakpoint, ETV6-RP11-434C1.1, also located on 

chromosome arm 12p, which was not strictly a fusion transcript but a transcript produced 
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from an unannotated alternative promoter. This alternative promoter of ETV6 was specially 

considered based on the known oncogenic relevance of the ETS family of transcription 

factors (26). The final list of transcripts selected for experimental validation consisted of two 

inter-chromosomal and seven intra-chromosomal fusion transcript candidates (Figure 2, 

Table 1). Of the seven intra-chromosomal fusions, five included breakpoints with both 

partner genes located on chromosome arm 12p.

Technical and clinical validation of the fusion transcripts

We performed RT-PCR to validate the presence of the nine nominated fusion transcript 

breakpoints in the EC and ES cell lines investigated, and for further clinical evaluation in a 

series of IGCN and TGCTs. All nine nominated fusion transcripts were confirmed by RT-

PCR spanning the breakpoint. Successful Sanger sequences were produced from eight of 

these, confirming breakpoint sequences between the two gene pairs, and all found to use 

intact exon – exon boundaries (Supplementary Figure S1). The eight fusion transcripts as 

well as the alternative promoter usage of ETV6 all had intact open reading frames (ORFs), 

theoretically encoding functional proteins. The ORFs of five out of nine encode N-

terminally truncated proteins of the downstream partner gene, while three out of nine encode 

the full length coding sequence of the downstream partner. None of the fusion transcripts 

encode potential hybrid proteins with in-frame coding sequence from both intact partner 

proteins. However, one of the fusion transcripts, PPP6R3-DPP3, encodes an out-of-frame 

ORF encoding 198 amino acids.

Five of the fusion transcripts were only expressed in the originally nominated EC cell lines, 

and were thus considered private fusion events. The remaining four candidates were however 

found to be recurrently expressed in TGCT (Supplementary Table S4), and crucially, not in 

normal testicular parenchyma. The four recurrent candidates included the read-through 

between CLEC6A and CLEC4D, alternative promoter usage of ETV6, and two fusion 

transcripts both involving the first two exons of RCC1 as an upstream partner gene 

connected to HENMT1 and ABHD12B, located 80 Mbp apart on chromosome 1 and on 

chromosome 14 respectively. Expression of these recurrent transcripts was variable, with 

both strongly positive and weaker bands detected by agarose gel electrophoresis. For more 

accurate assessment of expression, we used qRT-PCR to quantify the expression level of 

each fusion transcript. All custom TaqMan assays were found to have efficiencies between 

80-90 %. Here, a total of 73 tissue samples and cell lines were tested. None of the recurrent 

transcripts were expressed in normal testicular parenchyma (n = 6). The read-through 

between CLEC6A and CLEC4D was found to be expressed in all subtypes of TGCT, as well 

as pre-malignant IGCN (6/6) and ES cell lines (3/3). However, only two of the four teratoma 

tissue samples showed expression of the read-through. The read-through was only detected 

in one (the placenta) of 20 normal tissues from the human body (Figure 3A). Alternative 

promoter usage of the ETV6 gene was predominantly detected in EC tissue samples and cell 

lines (75 % and 92 %, respectively; 6/8 and 12/13). Alternative promoter usage was also 

observed in ES cell lines (100 %; 3/3), seminoma (14 %; 1/7), Cc (100 %; 1/1) and YST 

(50 %; 2/4). None of the 20 included normal tissues expressed the alternative promoter of 

ETV6 (Figure 3B). The intrachromosomal fusion transcript RCC1-HENMT1 was widely 

expressed in all subtypes of TGCT, IGCN, ES cell lines, and in 6/20 normal tissue types 
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(spleen, esophagus, trachea, thyroid, thymus and skeletal muscle; Figure 3C). By contrast, 

the interchromosomal fusion transcript RCC1-ABHD12B was found expressed 

predominantly in EC tissue samples and cell lines (100 %) and in seminomas (86 %; 6/7). 

RCC1-ABHD12B was further detected in 67 % (4/6) IGCN, in one of four teratomas and in 

one of three ES cell lines. None of the tested tissue samples from sites of the human body 

showed expression of this fusion transcript (Figure 3D).

RCC1 involving fusion transcripts and alternative promoter usage in ETV6 are 
associated with undifferentiated subtypes of TGCT— Total RNA isolated from 

NTERA2 and 2102Ep cell lines treated with RA for 0, 3 and 7 days were included in the 

validation panel. The NTERA2 cell line has previously been shown to differentiate in culture 

when treated with morphogens such as RA (21). 2102Ep, on the other hand, does not 

differentiate upon in vitro treatment with RA and remains pluripotent (27). Intriguingly, 

qRT-PCR analyses of both fusion transcripts involving RCC1 revealed that expression 

decreased upon treatment with RA in NTERA2, but not in 2102Ep (Figure 4). The measured 

ΔΔCT was −3.9 and −3.0 between 0 and 7 days of RA treatment for RCC1-ABHD12B and 

RCC1-HENMT1 respectively. Additionally, expression of the ETV6 transcript involving the 

alternative promoter was silenced after 7 days of RA treatment (CT > 35; ΔΔCT of −6.8). 

Expression of the CLEC6A-CLEC4D read-through did not change significantly upon RA 

treatment in NTERA2. The expression of all fusion transcripts remained unchanged in the 

2102Ep cell line upon treatment with RA (Figure 4), in line with this cell line’ s previously 

reported nonresponsiveness to RA treatment.

Linkage assays by ddPCR to identify coupling of fusion genes on the DNA-level

Because the two fusion transcripts involving RCC1 were recurrently expressed, and the two 

partner genes were not located close to RCC1, the possibility of genome-level 

rearrangements as a mechanism resulting in gene fusion was tested by ddPCR linkage 

analysis. For another two fusion genes EPT1-GUCY1A3 and PPP6R3-DPP3, expressed in 

the 833KE and NTERA2 cell lines respectively, DNA copy number data indicated a shift in 

the vicinity of all four genetic loci (data not shown).

To establish the integrity of DNA to be included in the linkage analyses, and as proof of 

concept, we performed a ddPCR milepost experiment. Here, multiplexed fluorescent 

TaqMan assays measured linkage 1 kb, 10 kb, 50 kb and 100 kb apart. DNA isolated by the 

AllPrep method from the NTERA2 cell line showed highest integrity, with 90 % linkage at 1 

kb, 52 % at 10 kb and 11 % at 50 kb (Supplementary Figure S2). No evidence of linkage 

was seen at 100 kb. DNA from the 833KE cell line and DNA isolated by phenol-chloroform 

from NTERA2 showed slightly lower linkage scores, indicating more highly degraded DNA 

(Supplementary Figure S2). After DNA fragmentation with the NspI restriction 

endonuclease, all linkage was substantially reduced, but some background levels remained 

(0 – 3.5 %; Supplementary Figure S2). Fusion gene linkage analysis of VTI1A-TCF7L2, 

previously reported to be caused by a deletion in the NCI-H508 cell line, showed that 

18.5 % of molecules are linked and contain both fusion partner targets (Figure 5). The 

interchromosomal fusion EPT1-GUCY1A3 and the intrachromosomal fusion PPP6R3-DPP3 
showed evidence of DNA-level linkage, with 15 and 18 % linkage rates respectively (Figure 
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5). However, we found no evidence for DNA-level linkage for the recurrently expressed 

fusions RCC1-ABHD12B and RCC1-HENMT (Figure 5). As a control experiment, we 

found that the DNA-level linkage in all tested samples was lost upon digesting the DNA 

with the restriction enzyme NspI.

Discussion

In this study, we have identified the presence of fusion genes and transcripts in TGCT. Nine 

novel fusion genes and transcripts are reported, of which RCC1-HENMT1, RCC1-
ABHD12B, CLEC6A-CLEC4D and alternative promoter usage of ETV6 are recurrently 

expressed in a significant number of clinical TGCT samples. Whereas these were detected 

only on the transcript level, two DNA-level fusions were identified, EPT1-GUCY1A3 and 

PPP6R3-DPP3, although these were privately expressed by individual EC cell lines.

The non-synonymous mutation rate in TGCTs has recently been found to be low, on a scale 

similar to pediatric cancers (14–16). The fact that few genes are recurrently mutated 

indicates that other molecular mechanisms are responsible for the development of TGCT. 

The genomes of TGCTs are generally aneuploid, with several recurrent gains and losses of 

chromosomal material (10,28). Structural rearrangements in these aneuploid tumors are 

known from cytogenetic banding analyses, and i(12p) is found in the majority of TGCT 

(9,29,30). Cases without i(12p) often have gain of parts of 12p material, and/or extra copies 

of the whole of chromosome 12 (31). Gain or loss of chromosomal material not only leads to 

increase or loss of gene copies and subsequent expression changes, but can also introduce 

genomic rearrangements that form fusion genes. The nine novel fusion genes and transcripts 

found in this study, all consisting of intact ORFs which potentially encode full-length or N-

terminally truncated proteins, suggest that fusion genes play an important role, and may be 

drivers for the malignant development of TGCTs. CLEC6A and CLEC4D, found to be 

involved in a read-through expressed in a high number of clinical TGCT samples, and ETV6 
with a novel alternative promoter, are all located on chromosome arm 12p. In addition, all 

genes involved in the CD9-ANO2, TSPAN9-FOXJ2 and TSPAN9-GUCY2C fusion 

transcripts, expressed in the 2102Ep EC cell line, are located on 12p. These findings indicate 

that 12p is a dynamic region in TGCTs, and that gain of 12p material may be associated with 

expression of recurrent fusion transcripts and transcript variants.

Both fusion transcripts that involved RCC1 and the alternative promoter usage of ETV6 are 

overrepresented in undifferentiated histological subtypes of TGCT, and show substantially 

reduced expression in the NTERA2 EC cell line upon RA-induced differentiation in vitro. 

This indicates that they are all associated with the pluripotent phenotype. ETV6 (ets variant 

6) encodes a transcription factor of the ETS family, a family of transcription factors that are 

frequently involved as fusion gene partners in cancer. ETV6 itself has repeatedly been 

reported as a fusion gene partner in hematological malignancies (32). In fact, a chromosomal 

rearrangement (4;12)(q11-q12;p13) found in cases of acute myeloid leukemia fuses CHIC2 
(exon 1-3) and ETV6 (exon 2-8) using the same breakpoint of ETV6 as the one identified 

here connected to the newly identified alternative promoter sequence (33,34). RCC1 
(Regulator of chromosome condensation 1) has important functions in the cell cycle and acts 

as a guanine nucleotide exchange factor (GEF) for the RAS homologue RAN (35). However, 
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the fusion transcripts involving RCC1 only includes the two first non-coding exons in the 5ᓉ 
UTR of RCC1 connected to either HENMT1 or ABHD12B located 80 Mb downstream on 

chromosome 1 and on chromosome 14, respectively. The long genomic distance between the 

partner genes suggests that these fusion transcripts are not expressed as a result of a read-

through mechanism (36). To investigate if the fusion transcripts involving RCC1 were 

caused by genomic rearrangements, we applied linkage analysis using multiplexed 

fluorescent PCR assays with ddPCR. To our knowledge, this approach has not been used 

previously to detect rearrangements of genes resulting in fusion genes. However, linkage 

analysis with ddPCR has been proven successful in showing the arrangement of the Killer-

cell immunoglobulin-like receptor gene complex and in chromosomal phasing (37,38). We 

found no indication of DNA-level linkage for the partner genes of the RCC1 fusion 

transcripts. However, the partner genes of EPT1-GUCY1A3 and PPP6R3-DPP3, which also 

had indications of chromosomal breakpoints from DNA copy number data, were found to be 

linked at the DNA-level, indicating bona-fide genomic rearrangements in their respective 

cell lines, 833KE and NTERA2. The absence of linked partner genes of the RCC1 fusions, 

implies that these fusion transcripts are expressed as the result of post-transcriptional 

mechanisms, such as trans-splicing (39). However, we cannot rule out chromosomal 

rearrangements as an underlying cause of the RCC1 fusion transcripts, since only a 

proportion of the input DNA in our assay consisted of DNA fragments longer than 50 kb, 

and none more than 100 kb in length. A chromosomal rearrangement resulting in a fusion 

gene may include intronic regions that are longer than these DNA fragments. Such 

rearrangements will be missed by ddPCR linkage analysis. For optimal sensitivity, linkage 

analysis should be carried out on DNA samples isolated by protocols that maintain long 

DNA molecules intact.

Expression of the interchromosomal RCC1-ABHD12B fusion transcript and transcripts 

involving the alternative promoter of ETV6 was not detected in normal testis or other normal 

tissue samples from 20 different human organs. Also, expression of CLEC6A-CLEC4D was 

only observed in normal tissue from the placenta, indicating that it may be specifically 

expressed in adult male TGCT. These molecules are therefore highly specific for TGCTs in 

a stemness setting, and could prove to have important roles for TGCT malignant 

transformation, as well as biomarkers for TGCT disease. Diagnosis of TGCT through 

sensitive detection of these molecules in excreted body fluids such as seminal fluid or serum 

could have clinical potential (40).

In conclusion, to our knowledge, we present here the first fusion genes to be described in 

TGCT, including recurrent expression of RCC1 involving fusions and alternative promoter 

usage of the ETV6 gene, both associated with the pluripotency phenotype. These transcript 

variants may be important drivers of malignancy, and could potentially serve as diagnostic 

markers in the clinic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Filtering pipeline of nominated fusion transcripts
The identified fusion transcripts were filtered in a successive manner, resulting in nine final 

fusion transcripts that were experimentally validated.
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Figure 2. TGCT fusion transcripts identified by RNA-sequencing
All the nine novel transcripts have fusion breakpoints at intact exon-exon boundaries, except 

for the ETV6 gene, where a new alternative promoter (exon 1A) was connected to exon 2. 

The breakpoint boundaries are indicated between upstream partner gene (blue) and 

downstream partner gene (orange). Full height of boxes of solid color represent predicted 

coding regions of original partner genes. Arrows mark the start codons of fusion transcript 

ORFs identified by the ORF finder at the National Centre for Biotechnology Information. 

Hoff et al. Page 15

Cancer Res. Author manuscript; available in PMC 2016 July 01.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



Red lines mark the stop codons of upstream partner gene ORFs. The genomic coordinates 

indicate the exact coordinate of the fusion breakpoint in the specific partner gene.
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Figure 3. Fusion transcripts and alternative promoter usage of ETV6 recurrently expressed in 
TGCT
Quantitative RT-PCR of recurrent fusion transcripts reported in CT values normalized to 

median CT values of endogenous controls, with higher expression corresponding to lower 

CT values. Transcripts were considered absent for CT > 35. Samples are grouped together 

according to histological subtype and ordered with increasing expression A. The read-

through CLEC6A-CLEC4D was expressed in all subtypes of TGCTs and also in the pre-

malignant IGCN samples, but not in tissue from normal testis. From normal tissue samples 
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from 20 different human organs only placenta expressed CLEC6A-CLEC4D. B. The ETV6 
transcript with an alternative exon 1 was expressed mainly in undifferentiated EC tumor 

samples and cell lines. It was also found to be expressed in the ES cell lines, in 1/6 

seminomas, 1 choriocarcinoma and 2/3 YSTs. None of the samples from normal testis or 

normal human organs expressed this novel transcript. C. The intrachromosomal fusion 

transcript RCC1-HENMT1 was expressed in all IGCN and TGCT samples, except for 1 

YST. Also, the fusion transcript was detected in 3/3 ES cell lines and in 5/20 samples from 

normal human tissue. D. The interchromosomal fusion transcript RCC1-ABHD12B was 

expressed in 4/6 IGCN samples, undifferentiated subtypes of TGCTs including 5/6 

seminomas, and all EC cell lines and samples. Also, 1/3 ES cell lines and 1/4 teratomas 

expressed the fusion transcript. None of the normal testis samples or normal human tissues 

expressed the fusion transcript.
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Figure 4. Fusions involving RCC1 and the ETV6 alternative promoter transcripts are down-
regulated upon treatment with RA
Quantitative RT-PCR results for the fusion transcripts involving RCC1, the ETV6 alternative 

promoter and CLEC6A-CLEC4D, in 2102Ep and NTERA2 cells treated with RA for 0, 3 

and 7 days. Expression is reported as CT values normalized to median CT values of 

endogenous controls. The lighter to darker color gradient represents an in vitro 
undifferentiated to differentiated state. No clear patterns of expression are seen in the 

2102Ep cell line, except for a general lower level of expression at 3 days of RA treatment. 

NTERA2 has reduced expression of RCC1-HENMT1, RCC1-ABHD12B and ETV6 
alternative promoter after 3 and 7 days.
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Figure 5. EPT1-GUCY1A3 and PPP6R3-DPP3 are chromosomally rearranged
DNA-level linkage of fusion partner genes, reported in percent linkage from ddPCR 

analysis, confirmed a genomic rearrangement underlying the known VTI1A-TCF7L2 fusion. 

The fusions EPT1-GUCY1A3 and PPP6R3-DPP3 were shown to be linked on the DNA-

level in 833KE and NTERA2, respectively. No DNA-level linkage was detected for the 

partner genes involved in the RCC1 fusion transcripts. Linkage was undetected after 

fragmentation of DNA with the NspI endonuclease.
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Table 1
Nominated breakpoints from deFuse analysis of RNA-sequencing data

Nine breakpoints remained after heuristic filtering steps of initial candidates. Of these, CLEC6A-CLEC4D 
was nominated in all three EC cell lines. Breakpoints are listed according to the cell lines in which they were 

identified and with ascending genomic distance between the two partner genes. Presence of ORFs was 

determined using the ORF finder at the National Centre for Biotechnology Information (NCBI).

Cell line Gene A Gene B Chromosome bands Distance (kb) defuse score ORF

CLEC6A CLEC4D 12p13.31 12p13.31 31 0.99 Y

CD9 ANO2 12p13.31 12p13.31 253 0.97 Y

TSPAN9 FOXJ2 12p13.33-p13.32 12p13.31 4,790 0.97 Y

2102Ep TSPAN9 GUCY2C 12p13.33-p13.32 12p13.1-p12.3 11,370 0.94 Y

CLEC6A CLEC4D 12p13.31 12p13.31 31 0.99 Y

RCC1 HENMT1 1p35.3 1p13.3 80,325 0.92 Y

833KE EPT1 GUCY1A3 2p23.3 4q32.1 0.97 Y

CLEC6A CLEC4D 12p13.31 12p13.31 31 0.83 Y

ETV6 RP11-434C1.1* 12p13.2 12p13.2 59 0.81 Y

PPP6R3 DPP3 11q13.2-13.3 11q13.2 1,951 0.82 Y

NTERA2 RCC1 ABHD12B 1p35.3 14q22.1 0.98 Y

*
RP11-434C1.1 was nominated as a partner to ETV6, located 85kb downstream. However, visual inspection revealed that the breakpoint localized 

to non-coding regions between these two genes and reflects an alternative promoter of ETV6.
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