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Scattering diagrams, Hall algebras

and stability conditions

Tom Bridgeland

In memory of Kentaro Nagao

Abstract

With any quiver with relations, we associate a consistent scattering diagram taking
values in the motivic Hall algebra of its category of representations. We show that the
chamber structure of this scattering diagram coincides with the natural chamber struc-
ture in an open subset of the space of stability conditions on the associated triangulated
category. In the three-dimensional Calabi–Yau situation, when the relations arise from
a potential, we can apply an integration map to give a consistent scattering diagram
taking values in a tropical vertex group.

1. Introduction

The concept of a scattering diagram has emerged from the work of Kontsevich and Soibel-
man [KS06], and Gross and Siebert [GS11], on the Strominger–Yau–Zaslow approach to mirror
symmetry. Scattering diagrams, and the associated combinatorics of broken lines, have been
used recently by Gross, Hacking, Keel and Kontsevich [GHKK14] to settle several important
conjectures about cluster algebras. The aim of this paper is to explain some very general connec-
tions between spaces of stability conditions and scattering diagrams. In particular, we explain
the relationship between the scattering diagram associated with an acyclic quiver Q, and the
wall-and-chamber structure of the space of stability conditions on the associated CY3 (three-
dimensional Calabi–Yau) triangulated category. Our longer-term goal is to better understand
the geometrical relationship between cluster varieties and spaces of stability conditions.

It turns out that to give a categorical description of the scattering diagram, one does not
need to use triangulated categories. In fact, for the most part, we work in the abelian category
of representations of a fixed quiver with relations (Q, I) and use King’s notion of θ-stability. Our
starting point is the observation that the walls in the scattering diagram correspond precisely to
the values of the weight vector θ for which there exist non-zero θ-semistable representations.

To fully specify the scattering diagram, we must first fix a graded Lie algebra. For the most
general and abstract form of our result, this is defined using the motivic Hall algebra [Bri12,
Joy07, JS12, KS08] of the category of representations of (Q, I). In the Calabi–Yau threefold
case, when the relations arise from a potential, we can then apply an integration map to produce
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T. Bridgeland

a scattering diagram taking values in a much simpler Lie algebra spanned as a vector space by
the dimension vectors of non-zero representations of Q. We feel that the story becomes clearer by
working first in the Hall algebra and using the CY3 assumption only when absolutely necessary.

Much of what we do here builds on earlier work of Reineke [Rei10], Gross and Pandharipan-
de [GP10], Kontsevich and Soibelman [KS06, KS08], Nagao [Nag13], Keller [Kel11] and Gross,
Hacking, Keel and Kontsevich [GHKK14]. The main novelties in our approach are the introduc-
tion of the Hall algebra scattering diagram associated with an arbitrary quiver with relations,
and the link with spaces of stability conditions on triangulated categories explained in Section 7.
Although simple, this second point is likely to be crucial in unravelling the connection between
spaces of stability conditions and cluster varieties. The rest of the introduction contains a more
detailed description of our results. For simplicity, we will only consider here the scattering di-
agrams associated with quivers with potential taking values in the Lie algebra of functions on
a Poisson torus, leaving the more general construction of Hall algebra scattering diagrams to the
body of the paper.

1.1 Scattering diagrams

We begin by giving a rough idea of the notion of a scattering diagram; for further details, the
reader is referred to Section 2. Fix a finitely generated free abelian group N and set

M = HomZ(N,Z) .

Let us also fix a Z-basis (e1, . . . , ek) of N and define N+ ⊂ N to be the cone consisting of
non-zero elements of N which can be written as non-negative integral combinations of the basis
elements. Consider a graded Lie algebra g =

⊕

n∈N+ gn and the pro-nilpotent Lie algebra

ĝ =
∏

n∈N+

gn

obtained by completing g with respect to the grading. There is an associated pro-unipotent
algebraic group Ĝ with a bijective exponential map

exp: ĝ → Ĝ

defined formally by the Baker–Campbell–Hausdorff formula.

Given this data, a scattering diagram D consists of a collection of codimension one closed
subsets

d ⊂ MR = M ⊗Z R

known as walls, together with associated elements ΦD(d) ∈ Ĝ. Each wall is a convex cone in the
hyperplane n⊥ ⊂ MR defined by some primitive vector n ∈ N+, and the corresponding element
ΦD(d) ∈ Ĝ is then required to lie in the subgroup

exp

(

⊕

k>0

gkn

)

⊂ Ĝ .

The support supp(D) ⊂ MR of a scattering diagram D is defined to be the union of its walls.

A scattering diagram D is called consistent if for any sufficiently general path γ : [0, 1] → MR,
the ordered product

ΦD(γ) =
∏

ΦD(di)
±1 ∈ Ĝ

corresponding to the sequence of walls di crossed by γ depends only on the endpoints of γ.
Two scattering diagrams D1 and D2 taking values in the same graded Lie algebra g are called
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Scattering diagrams and stability conditions

equivalent if one has

ΦD1(γ) = ΦD2(γ)

for any sufficiently general path γ : [0, 1] → MR. An important fact proved by Kontsevich and
Soibelman [KS06] is that equivalence classes of consistent scattering diagrams are in bijection
with elements of the group Ĝ. We explain the proof of this in Section 3.

1.2 Stability scattering diagram

Let Q be a quiver without vertex loops or oriented 2-cycles. We call such quivers 2-acyclic.
Let V (Q) denote the set of vertices of Q. We set N = ZV (Q) and denote the canonical basis by
(ei)i∈V (Q) ⊂ N . We write N+ ⊂ N for the corresponding positive cone as above and also set
N⊕ = N ∪ {0}.

The negative of the skew-symmetrized adjacency matrix of Q defines a skew-symmetric form

〈−,−〉 : N ×N → Z .

The monoid algebra C[N⊕] then becomes a Poisson algebra with bracket
{

xn1 , xn2
}

= 〈n1, n2〉 · x
n1+n2 .

We define the Lie algebra g to be the subspace C[N+] equipped with this Poisson bracket.

Now, suppose that our quiver Q is equipped with a finite potential W ∈ CQ. By definition,
W is a finite linear combination of cycles in Q. Let J(Q,W ) be the corresponding Jacobi algebra,
and let

A = mod J(Q,W )

be its category of finite-dimensional left modules. Any object E ∈ A has an associated dimen-
sion vector d(E) ∈ N⊕. Given a vector θ ∈ MR, we always write θ(E) in place of the more
cumbersome θ(d(E)). An object E ∈ A is said to be θ-semistable if

(a) θ(E) = 0,

(b) every subobject A ⊂ E satisfies θ(A) 6 0.

King [Kin94] proved that there is a quasi-projective moduli scheme M(d, θ) parameterizing
θ-stable representations of J(Q,W ) of dimension vector d. Joyce [Joy08] showed how to define
associated rational numbers J(d, θ) ∈ Q which we call Joyce invariants. We will explain how
to define these invariants in Section 11: they are uniquely determined by their wall-crossing
properties, together with the formula

J(d, θ) = e(M(d, θ)) ∈ Z ,

which holds when d ∈ N⊕ is primitive and θ ∈ d⊥ is general. Here e(X) denotes the Euler
number of a complex variety X equipped with the classical topology.

Theorem 1.1. LetQ be a 2-acyclic quiver with finite potentialW . There is a consistent scattering

diagram D taking values in the Lie algebra g such that

(a) the support of D consists of those maps θ ∈ MR for which there exist non-zero θ-semistable

objects in A,

(b) the wall-crossing automorphism at a general point of the support of D is

ΦD(d) = exp

(

∑

d∈θ⊥

J(d, θ) · xd
)

∈ Ĝ .
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We refer to the scattering diagram of Theorem 1.1 as the stability scattering diagram for the
pair (Q,W ). It is unique up to equivalence.

1.3 Examples: Kronecker quivers

As an illustration, let us consider the case of a generalized Kronecker quiver Q with two vertices
V (Q) = {1, 2} and p > 1 arrows, all going from vertex 1 to vertex 2. We necessarily have W = 0,
and the category A is just the usual category of finite-dimensional representations of Q. The
resulting stability scattering diagrams are of course well known (see for example [GP10]).

The lattice N = Z⊕2 has a basis e1, e2 indexed by the vertices of Q. Taking dimension
vectors gives an identification d : K0(A) → N , under which the class [Si] ∈ K0(A) of the simple
representation at the vertex i is mapped to the basis vector ei. The stability scattering diagram
then lives in MR = R2 with coordinates yi = θ(Si). For 1 6 p 6 3, this scattering diagram is
illustrated in Figure p.

Φ(0,1)Φ(0,1)

Φ(1,0)

Φ(1,0)

Φ(1,1)

Figure 1. The scattering diagram for the A2 quiver: there are three walls corresponding to the
three indecomposable representations.

Φ(1,0)

Φ(0,1)

..
..

Figure 2. The scattering diagram for the Kronecker quiver: the walls correspond to the dimen-
sion vectors of the indecomposable representations.

The Lie algebra g is the ideal (x1, x2) ⊂ C[x1, x2] equipped with the restriction of the Poisson
bracket

〈x1, x2〉 = −kx1x2 .

Similarly, ĝ = (x1, x2) ⊂ C[[x1, x2]]. Given a vector d ∈ N , define an automorphism of C[[x1, x2]]
preserving the ideal ĝ by the formula

Φd(x
n) = xn ·

(

1 + xd
)〈d,n〉

.
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Φ(1,0)

Φ(0,1)

..
..

Figure 3. The scattering diagram for a generalized Kronecker quiver with three arrows: there
is a region in which the walls are dense.

Consider first the case p = 1 when Q is the A2-quiver. This has finite representation type,
and the category A has three indecomposable objects: S1, S2 and an extension

0 −→ S2 −→ E −→ S1 −→ 0 .

The scattering diagram has a wall for each of these objects. The object S1 is θ-stable precisely
if y1 = θ(S1) = 0: this is the vertical axis on the diagram. Similarly, the object S2 is θ-stable on
the horizontal axis y2 = 0. The object E is θ-stable precisely if θ(E) = 0 and θ(S2) < 0: this is
the wall y1 + y2 = 0 and y2 < 0. The diagram is consistent because of the pentagon identity

Φ(0,1) ◦ Φ(1,0) = Φ(1,0) ◦ Φ(1,1) ◦ Φ(0,1) .

The case p = 2 is the original Kronecker quiver. This is of tame representation type and
has infinitely many indecomposable representations: unique indecomposable representations of
dimension vector (n, n − 1) and (n − 1, n) for each n > 1 and a P1-family of indecomposable
representations for each dimension vector (n, n). Each of these dimension vectors defines a wall
of the scattering diagram. The basic relation in this case is

Φ(0,1) ◦ Φ(1,0) = Φ(1,0) ◦ Φ(2,1) ◦ Φ(3,2) ◦ · · ·Φ
−2
(1,1) ◦ · · · ◦ Φ(2,3) ◦ Φ(1,2) ◦ Φ(0,1) .

Note that the right-hand side makes perfect sense as an automorphism of C[[x1, x2]] because for
any k > 0, only finitely many terms act non-trivially on the quotient C[x1, x2]/(x1, x2)

k.

For p > 3, the quiver Q is of wild representation type and the picture becomes much more
complicated. In particular, there is a region of the scattering diagram in which the walls are dense.

1.4 Stability conditions and walls of type II

The scattering diagram we associate with a quiver with potential is closely related to the wall-
and-chamber structure on the space of stability conditions of the corresponding CY3 triangulated
category.

Let (Q,W ) be a 2-acyclic quiver with finite potential. For simplicity, we shall assume that
the Jacobi algebra J(Q,W ) is finite-dimensional. Let D denote the bounded derived category of
the Ginzburg algebra of the pair (Q,W ). It is a CY3 triangulated category with a distinguished
bounded t-structure whose heart is equivalent to the abelian category A = mod J(Q,W ).

We let Stab(D) denote the space of stability conditions on D satisfying the support property.
It is a complex manifold. The forgetful map

Z : Stab(D) → MC
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sending a stability condition (Z,P) to its central charge Z : N → C is a local homeomorphism.
There is a wall-and-chamber structure (although, in general, the walls are dense) such that the
heart of the stability condition is constant in a given chamber. These walls are usually known as
walls of type II to distinguish them from walls where objects of a given fixed class can become
stable or unstable.

We consider the open subset C(A) ⊂ Stab(D) of nearby stability conditions: by definition,
these are stability conditions for which all Harder–Narasimhan factors of objects of A have phases
in the open interval (−1, 1).

Theorem 1.2. The map ImZ : C(A) → MR is surjective. Moreover,

(a) stability conditions in the same fibre of ImZ have the same heart;

(b) the support of the stability scattering diagram is precisely the image of the union of all type

II walls in C(A) under the map ImZ.

Thus, in each connected component of the complement of the closure of the support of the
stability scattering diagram, there is a well-defined heart in D. This heart is easily seen to be of
finite length, and the classes of its simple objects form a basis of N = K0(D). Viewed in terms
of the original basis (ei), these are precisely the c-vectors of cluster theory. As pointed out by
Nagao [Nag13], from this point of view, the sign-coherence condition of c-vectors is immediate.

1.5 Framed quiver moduli

Instead of using the Joyce invariants J(d, θ), we can also describe the stability scattering dia-
gram using Euler numbers of moduli spaces of framed quiver representations. These spaces are
generalizations of those studied by Engel and Reineke [ER09].

Fix a class m ∈ M+, and form a new quiver Q⋆ extending Q by adjoining a new vertex ⋆
and adding m(ei) arrows from vertex ⋆ to vertex i. The potential W induces a potential on Q⋆

in the obvious way. We let

N⋆ = ZV (Q⋆) = ZV (Q) ⊕ Z = N ⊕ Z , M⋆ = HomZ(N
⋆,Z) = M ⊕ Z .

Given a dimension vector d ∈ N , we define d⋆ = (d, 1) ∈ N⋆. Given θ ∈ MR and d ∈ N , there is
a unique lift θ⋆ ∈ M⋆

R such that θ⋆(d⋆) = 0.

There is a coarse moduli scheme M ss(d⋆, θ⋆) for θ⋆-semistable representations of the Jacobi
algebra J(Q⋆,W ⋆). This moduli scheme is fine providing that θ does not lie on one of the finitely
many hyperplanes n⊥ for dimension vectors n ∈ N+ of total dimension smaller than d. For
arbitrary θ ∈ MR, we set

F (d,m, θ) := M ss(d⋆, (θ − ǫδ)⋆) , 0 < ǫ ≪ 1 .

When W = 0 and θ(d) = 0, this moduli space coincides with the smooth quiver moduli space
of [ER09]. We denote its Euler characteristic by K(d,m, θ).

Theorem 1.3. Let (Q,W ) be a 2-acyclic quiver with finite potential and D the corresponding

stability scattering diagram. Then the adjoint action of ΦD(d) ∈ G at a general point of the

support of D is

xn 7→ xn ·
∏

i∈V (Q)

(

∑

d∈θ⊥

K(d, e∗i , θ) · x
d

)〈ei,n〉

,

where (e∗i )i∈V (Q) ⊂ M denotes the basis dual to (ei)i∈V (Q) ⊂ N .
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Scattering diagrams and stability conditions

In the case when Q is acyclic (and hence W = 0), we can use Theorem 1.5 below to identify
the stability scattering diagram with a purely combinatorial object called the cluster scattering
diagram. Theorem 1.3 then essentially coincides with Reineke’s result [Rei10, Theorem 2.1] as
stated in [GHKK14, Proposition 8.28].

1.6 Theta functions

The theta functions defined by a scattering diagram are of crucial importance in the applications
to cluster varieties described in [GHKK14]. They are defined abstractly in terms of the wall-
crossing automorphisms of the scattering diagram, but can also be interpreted in terms of counts
of combinatorial objects called broken lines.

In general, theta functions are indexed by a lattice element m ∈ M . In this paper, we only
consider the functions ϑm(−) for elements lying in the positive cone

M+ =
{

m ∈ M : m(n) > 0 for all n ∈ N+
}

.

To define these functions, consider the commutative Poisson algebra

B = C
[

N⊕
]

⊗C C[M ] = C[x1, . . . , xn]
[

z±11 , . . . , z±1n

]

,
{

xn1 , xn2
}

= 〈n1, n2〉 · x
n1+n2 ,

{

xn, zm
}

= m(n) · xnzm ,
{

zm1 , zm2
}

= 0 .

The Lie algebra g = C[N ] is a Lie subalgebra of B, so acts on it by derivations. Completing
everything with respect to the N⊕-grading and exponentiating, we get an action of the group Ĝ
by algebra automorphisms of

B̂ = C[[x1, . . . , xn]]
[

z±11 , · · · z±1n

]

.

Given a consistent scattering diagram D as above, we can define for each m ∈ M+ a theta
function

ϑm : MR \ supp(D) → B̂ , ϑm(θ) = ΦD(γ)(z
m) ,

where γ : [0, 1] → MR is any sufficiently general path from an arbitrary point θ+ ∈ M+
R to

the point θ. The following result is closely related to Nagao’s proof of the Caldero–Chapoton
formula, although we do not explain the precise link here. More on this has appeared in Man-Wai
Cheung’s thesis [Che16].

Theorem 1.4. Let (Q,W ) be a 2-acyclic quiver with finite potential and D the corresponding

stability scattering diagram. Then for m ∈ M+ and θ ∈ MR \ supp(D), there is an identity

ϑm(θ) = zm ·
∑

d∈N⊕

K(d,m, θ) · xd .

We leave for future research the problem of finding a similar moduli-theoretic description of
the theta function ϑm(−) for general m ∈ M .

1.7 Cluster scattering diagram

Let Q be a 2-acyclic quiver, and consider the Lie algebra g = C[N+] as above. Assume that the
form 〈−,−〉 is non-degenerate. Let D be an arbitrary scattering diagram taking values in g. Any
wall d of D is contained in a hyperplace n⊥ for a unique primitive element n ∈ N+. We say that
d is incoming if it contains the vector θn = 〈−, n〉 ∈ M . Kontsevich and Soibelman proved that
a consistent scattering diagram taking values in g is uniquely specified up to equivalence by its
set of incoming walls and their associated wall-crossing automorphisms.
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Consider the consistent scattering diagram in g whose only incoming walls are the hyperplanes
di = e⊥i with associated elements

ΦD(di) = exp

(

∑

n>1

xnei

n2

)

∈ Ĝ .

It is this scattering diagram which plays a key role in [GHKK14]. We call it the cluster scattering
diagram of Q, since the adjoint action of ΦD(di) is given by the cluster transformation

xn 7→ xn ·
(

1 + xei
)〈ei,n〉 .

It seems an interesting question to determine for which quivers the cluster scattering diagram
can be realised as a stability scattering diagram for some appropriate choice of potential W . One
result we have along these lines is the following.

Theorem 1.5. If Q is acyclic (and hence W = 0), then the stability scattering diagram for

(Q,W ) is equivalent to the cluster scattering diagram associated with Q.

2. Scattering diagrams

In this section, we introduce basic definitions concerning scattering diagrams. We have to use
a slightly different framework to that of [GHKK14] because the assumption that the group
associated with a wall is abelian need not hold in the general context in which we shall be
working. Assertions concerning convex rational polyhedral cones given here without proof can
be found in [Ful93, Section 1.2].

2.1. Let N ∼= Z⊕n be a free abelian group of finite rank. Set M = HomZ(N,Z) and MR =
M ⊗Z R. Fix a basis (e1, . . . , en) for N , and set

N⊕ =

{ n
∑

i=1

λiei : λi ∈ Z>0

}

, N+ = N⊕ \ {0} .

Then N+ is closed under addition, and N⊕ is a monoid. We also consider the dual cone

M+
R =

{

θ ∈ MR : θ(n) > 0 for all n ∈ N+
}

and introduce the notation

M+ = M+
R ∩M , M⊕ = M+ ∪ {0} , M−R := −M+

R .

2.2. We fix an N+-graded Lie algebra

g =
⊕

n∈N+

gn , [gn1 , gn2 ] ⊂ gn1+n2 . (2.1)

We shall often consider the case when the Lie algebra g is nilpotent. There is then a corresponding
algebraic group G with a bijective map

exp: g → G . (2.2)

If we use this map to identify G with g, then the product on G is given by the Baker–Campbell–
Hausdorff formula.
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2.3. By a cone in MR, we shall always mean a convex, rational, polyhedral cone, that is, a
subset of the form

σ =

{ p
∑

i=1

λimi : λi ∈ R>0

}

, m1, . . . ,mp ∈ M .

Any such cone has a dual description as an intersection of half-spaces:

σ =
{

θ ∈ MR : θ(ni) > 0 for 1 6 i 6 q
}

, n1, . . . , nq ∈ N .

The codimension of a cone is the codimension of the subspace of MR it spans. We refer to
codimension one cones as walls and denote them by the symbol d.

A face of a cone σ is a subset of the form

σ ∩ n⊥ = {θ ∈ σ : θ(n) = 0} ,

where n ∈ N satisfies θ(n) > 0 for all θ ∈ σ. Any face of a cone is itself a cone. Any intersection
of faces of a given cone is also a face.

2.4. A cone complex in MR is a finite collection S = {σi : i ∈ I} of cones such that

(a) any face of a cone in S is also a cone in S,

(b) the intersection of any two cones in S is a face of each.

The support of a cone complex is the closed subset

supp(S) =
⋃

σ∈S

σ ⊂ MR .

2.5. Example. Fix a finite subset P ⊂ N+ and consider partitions P = P+ ⊔ P0 ⊔ P− into
disjoint subsets, with P0 non-empty. For each such partition, there is a cone

σ(P+, P0, P−) =
{

θ ∈ MR : θ(n) = 0 for n ∈ P0 and ± θ(n) > 0 for n ∈ P±
}

⊂ MR .

The set of cones obtained from all such partitions of P is a cone complex S(P ) in MR.

2.6. If σ ⊂ MR is a cone, then we define a Lie subalgebra

g(σ) =
⊕

n∈N+∩σ⊥

gn ⊂ g ,

where σ⊥ ⊂ N is the set of elements orthogonal to all elements of σ. Of course, g(σ) depends
only on the subspace of MR spanned by σ.

Definition 2.1. A g-complex D = (S, φ) is a cone complex S in MR equipped with a choice
φ(d) ∈ g(d) for each wall d ∈ S.

The essential support of a g-complex D = (S, φ) is the subset

suppess(D) =
⋃

d∈S:φ(d) 6=0

d ⊂ supp(S) .

2.7. Let D = (S, φ) be a g-complex. We say that a smooth path γ : [0, 1] → MR is D-generic if

(a) the endpoints γ(0) and γ(1) do not lie in the essential support of D,
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(b) γ does not meet any cones of S of codimension greater than one,

(c) all intersections of γ with walls of S are transversal.

It follows that there is a finite set of points 0 < t1 < · · · < tk < 1 for which γ(ti) lies in the
essential support of D, and at each of these points ti there is a unique wall di ∈ S such that
γ(ti) ∈ di.

2.8. Assume that the Lie algebra g is nilpotent. Given a g-complex D = (S, φ) and a wall
d ∈ S, we can define the element

ΦD(d) = expφ(d) ∈ G .

Given any D-generic path γ : [0, 1] → MR, we can form the product

ΦD(γ) = ΦD(dk)
ǫk · ΦD(dk−1)

ǫk−1 · · ·ΦD(d2)
ǫ2 · ΦD(d1)

ǫ1 ∈ G ,

where ǫi ∈ {±1} is the negative of the sign of the derivative of γ(t)(n) at t = ti.

Definition 2.2. (a) We call two g-complexes D1 and D2 equivalent if, for any path γ : [0, 1] →
MR which is both D1-generic and D2-generic, we have ΦD1(γ) = ΦD2(γ).

(b) A g-complexD is called consistent if for any twoD-generic paths γi with the same endpoints,
we have ΦD(γ1) = ΦD(γ2).

2.9. Now, return to the case of an arbitrary N+-graded Lie algebra g. For each k > 0, there
exist an ideal

g>k =
⊕

δ(n)>k

gn

and a nilpotent N+-graded Lie algebra g6k = g/g>k. We denote the corresponding unipotent
algebraic group by G6k. For i < j, there are canonical homomorphisms

πji : g6j → g6i , πji : G6j → G6i . (2.3)

We also consider the pro-nilpotent Lie algebra and the corresponding pro-unipotent algebraic
group

ĝ = lim
←−

g6k , Ĝ = lim
←−

G6k .

Taking the limits of the maps (2.2) gives a bijection exp: ĝ → Ĝ.

2.10. In general, if f : g → h is a homomorphism of N+-graded Lie algebras and D = (S, φ) is
a g-complex, then there is an induced h-complex

f∗(D) = (S, f ◦ φ) .

Applying this to the maps (2.3), we can make the following definition.

Definition 2.3. A ĝ-complex D is a sequence of g6k-complexes Dk for k > 1 such that for any
i < j, the g6i complexes πji

∗ (Dj) and Di are equivalent.

Let D = (Dk)k>1 be a ĝ-complex. We set

supp(D) =
⋃

k>1

supp(Dk) , suppess(D) =
⋃

k>1

suppess(Dk) .
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We say that D is consistent if each g6k-complex Dk is consistent. We say that D is equivalent to
another ĝ-complex D′ = (D′k)k>1 if for all k > 1, the g6k-complexes Dk and D′k are equivalent.

2.11. Scattering diagrams are defined in [GHKK14] under the assumption that for any n ∈ N+,
the sub-Lie algebra

g〈n〉 =
⊕

k>0

gkn ⊂ g

is abelian. In the next section, we shall prove that when this assumption holds, there is a nat-
ural bijection between equivalence classes of scattering diagrams in the sense of [GHKK14] and
equivalence classes of ĝ-complexes as defined above. In the rest of the paper, we shall therefore
use the terms ĝ-complex and scattering diagram interchangeably.

3. Reconstruction result

In this section, we reproduce Kontsevich and Soibelman’s proof that scattering diagrams in g

up to equivalence correspond to elements of the group G. Although our framework is slightly
different to that of [KS08] or [GHKK14], there is nothing new here, and all non-trivial statements
(and their proofs) are due to Kontsevich and Soibelman.

3.1. Continuing with the notation of the last section, let us suppose for the moment that the
Lie algebra g is nilpotent. Suppose that D = (S, φ) is a consistent g-complex. If θ1, θ2 ∈ MR lie
outside the essential support of D, then there is a well-defined element

ΦD(θ1, θ2) ∈ G

obtained as ΦD(γ) for any path γ from θ1 to θ2. Note that we always have

suppess(D) ∩M±R = ∅ .

Indeed, if d ∈ S is a wall, then φ(d) 6= 0 implies that d ⊂ n⊥ for some n ∈ N+, but then
M±R ∩ d = ∅. Thus, any g-complex D has a well-defined element

ΦD = ΦD(θ+, θ−) ∈ G

obtained as ΦD(γ) for a D-generic path γ from a point θ+ ∈ M+
R to a point θ− ∈ M−R .

3.2. Given θ ∈ MR, we can define Lie subalgebras of g

g±(θ) =
⊕

n∈N+:±θ(n)>0

gn and g0(θ) =
⊕

n∈N+:θ(n)=0

gn .

There is then a decomposition

g = g−(θ)⊕ g0(θ)⊕ g+(θ) . (3.1)

In the case that g is nilpotent, we can consider the corresponding unipotent group G and sub-
groups

G⋆(θ) := exp g⋆(θ) ⊂ G , ⋆ ∈ {+,−, 0} .

The decomposition (3.1) implies that every element g ∈ G has a unique decomposition

g = g+ · g0 · g− with g± ∈ G±(θ) and g0 ∈ G0(θ) . (3.2)

This defines projection maps (not group homomorphisms) Πθ
⋆ : G → G⋆(θ).
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3.3. The following result shows that we can reconstruct all the wall-crossing automorphisms of
a g-complex from the single element ΦD.

Lemma 3.1. Assume that g is nilpotent, and let D = (S, φ) be a g-complex. Then for any wall

d ∈ S and any θ in the relative interior of d, we have the relation

ΦD(d) = Πθ
0 (ΦD) .

Proof. We can find an S-generic straight-line path γ : [0, 1] → MR connecting M+
R to M−R and

intersecting d. Let 0 < t1 < · · · < tk < 1 be the points for which θi = γ(ti) lies on some wall
di. In particular, d = dp for some unique 1 6 p 6 k. We set θ = θp ∈ d. The definition of the
path-ordered product gives

ΦD = ΦD(dk) · · ·ΦD(dp) · · ·ΦD(d1) .

For each wall di, there is a unique primitive element ni ∈ N+ such that di ⊂ n⊥i . For i > p, the
value of θ(ni) lies between γ(0)(ni) > 0 and θi(ni) = 0, and hence g(di) ⊂ g+(θ). Similarly, when
i < p, we have g(di) ⊂ g−(θ). Thus, we conclude that

ΦD(di) ∈











G+(θ) if i > p ,

G0(θ) if i = p ,

G−(θ) if i < p .

The claim then follows from the uniqueness of the decomposition (3.2).

Note that it follows that the equivalence class of a g-complex D is determined by the element
ΦD ∈ G.

3.4. Let us assume that there is a finite subset P ⊂ N+ such that

g =
⊕

n∈P

gn . (3.3)

This implies, in particular, that g is nilpotent. Consider the corresponding cone complex S =
S(P ) described in Section 2.5. If d ∈ S is a wall, then for any point θ in the relative interior of
d, the decomposition (3.1) is constant and, moreover, satisfies g0(θ) = g(d). Given an element
g ∈ G, we can therefore define a g-complex D(g) = (S, φ) by taking

ΦD(g)(d) = Πθ
0(g) ,

where θ ∈ d is any point in the relative interior of d.

Lemma 3.2. The g-complex D(g) is consistent and satisfies ΦD(g) = g.

Proof. The claim follows immediately from the statement that if γ : [0, 1] → MR is any D(g)-
generic path from θ1 to θ2, then

ΦD(g)(γ) = Πθ2
+ (g)−1 ·Πθ1

+ (g) = Πθ2
− (g) ·Π

θ1
− (g)

−1 .

To prove this, note that it is enough to check it for a path crossing a single wall d. On the wall,
we have a decomposition g = g+ · g0 · g− as in (3.2) with

g0 = ΦD(g)(d) = ΦD(g)(γ) .

On the two sides of the wall, g0 becomes an element of either G+(θ) or G−(θ). Thus, the
decompositions (3.2) on the two sides of the wall have just two terms and are (g+ · g0) · g−
and g+ · (g0 · g−), respectively. Comparing these gives the result.
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3.5. The results of the last two sections together give the following.

Proposition 3.3. Suppose that g has a finite decomposition (3.3). Then the map D 7→ ΦD

defines a bijection between equivalence classes of consistent g-complexes and elements of the

group G.

Now, consider a general N+-graded Lie algebra g, and let D = (Dk)k>1 be a ĝ-complex.
Given two points θ1, θ2 ∈ MR lying outside the essential support of D, the associated elements
ΦDk

(θ1, θ2) ∈ G6k are easily checked to be compatible with the group homomorphisms πi,j .
Taking the limit therefore gives an associated element

ΦD(θ1, θ2) ∈ Ĝ .

In particular, taking θ1 ∈ M+
R and θ2 ∈ M−R , we get a well-defined element ΦD ∈ Ĝ. Since an

equivalence class of ĝ-complexes is nothing but a compatible sequence of equivalence classes of
G6k-complexes, we immediately have the following result.

Proposition 3.4. The mapD 7→ ΦD defines a bijection between equivalence classes of consistent

ĝ-complexes and elements of the group Ĝ.

It follows that ĝ-complexes up to equivalence coincide with scattering diagrams up to equiv-
alence as defined in [GHKK14].

4. Representations of quivers

This section contains basic definitions and results concerning representations of quivers with
relations. These are all of course well known, but it is not so easy to find good references for the
material on moduli stacks.

4.1. A quiver is a finite oriented graph specified by sets (V (Q), A(Q)) of vertices and arrows,
respectively, and source and target maps s, t : A(Q) → V (Q). We write CQ for the path algebra
of Q and CQ>k ⊂ CQ for the subspace spanned by paths of length at least k. For our purposes,
a quiver with relations is a pair (Q, I), where Q is a quiver and I ⊂ CQ>2 is a two-sided ideal
spanned by linear combinations of paths of length at least 2. We denote by

A = rep(Q, I) = modCQ/I

the abelian category of finite-dimensional representations of the pair (Q, I) or, equivalently,
finite-dimensional left modules for the quotient algebra CQ/I. There is a group homomorphism

d : K0(A) → ZV (Q)

sending a representation to its dimension vector. We set

N = ZV (Q) , M = HomZ(N,Z) .

We denote by (ei)i∈V (Q) ⊂ N the canonical basis indexed by the vertices of Q. The corresponding
positive cone N+ ⊂ N consists of dimension vectors of non-zero objects of A. We define δ ∈ M to
be the element for which δ(E) = dimC(E) for any representation E ∈ A. We use the notationM+,
MR, N

⊕ etc. as in Section 2.1.

4.2. There is an algebraic stack M parameterizing all objects of the category A. It is defined
formally as a fibred category over the category of schemes as follows. The objects of M over a
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scheme S are pairs (E , ρ), where E is a locally free OS-module of finite rank and

ρ : CQ/I → EndS(E)

is an algebra homomorphism. If (E ′, ρ′) is another object of M lying over a scheme S′, then a
morphism

(E ′, ρ′) → (E , ρ)

in M lying over a morphism of schemes f : S′ → S is an isomorphism of OS-modules θ : f∗(E) →
E ′ which intertwines the maps ρ and ρ′. Here we have taken the usual step of choosing, for each
morphism of schemes, a pullback of every coherent sheaf on its target. The intertwining condition
is that for any a ∈ CQ/I, there is a commuting diagram

f∗(E)
f∗(ρ(a))
−−−−−→ f∗(E)

θ





y
θ





y

E ′
ρ′(a)

−−−−→ E ′ .

The stack axioms follow easily from the corresponding statements for the stack of locally free
sheaves. We prove that M is algebraic in the next subsection.

4.3. The following statement is extremely well known, but one does not often find a treatment
in the language of stacks, so we briefly indicate a proof.

Lemma 4.1. The stack M splits as a disjoint union

M =
∐

d∈N⊕

Md (4.1)

of open and closed substacksMd parameterizing representations of a fixed dimension vector. Each

of these substacks can be presented as a quotient of an affine variety by an affine algebraic group.

Proof. The usual equivalence of categories between modules for the algebra CQ/I and repre-
sentations of (Q, I) extends to show that the groupoid M(S) can be equivalently described in
terms of representations of Q in locally free OS-modules. Thus, an S-valued point of M can
be taken to consist of locally free OS-modules Vi for each vertex i ∈ V (Q) and morphisms
ρ(a) : Vs(a) → Vt(a) for each arrow a ∈ A(Q), such that the relations in I are satisfied. The first
statement then follows from the fact that the rank of each sheaf Vi is locally constant on S.

Let us now fix a dimension vector d ∈ N⊕ and define the algebraic group

GL(d) =
∏

i∈V (Q)

GL(di) .

Consider an S-valued point of the substack Md. Taking the frame bundles associated with the
vector bundles Vi defines a principal GL(d) bundle π : P (S) → S. If we pull back the repre-
sentation (Vi, ρa) to P (S), the bundles Vi become canonically trivialised and the representation
corresponds to a map from P (S) to the closed subvariety

Rep(d) ⊂
∏

a∈A(Q)

HomC

(

Cds(a) ,Cdt(a)
)

cut out by the given relations. In this way, one sees that

Md
∼= [Rep(d)/GL(d)] ,

536



Scattering diagrams and stability conditions

where GL(d) acts on Rep(d) by gauge transformations

(gi)i∈V (Q) · (φa)a∈A(Q) =
(

g−1t(a) · φa · gs(a)
)

a∈A(Q)
.

We leave it to the reader to fill in the details of this argument.

It follows, in particular, from this that M is an Artin stack, locally of finite type over C and
with affine diagonal.

4.4. We shall also need the stack M(2) of short exact sequences in A. The objects of M(2) over
a scheme S consist of objects (Ei, ρi) of M(S) for i = 1, 2, 3, together with morphisms α and β
of OS-modules which intertwine the maps ρi and form a short exact sequence

0 −→ E1
α

−→ E2
β

−→ E3 −→ 0 (4.2)

of OS-modules. Given another such object defined by objects (E ′i, ρ
′
i) of M(S′) and morphisms

α′ and β′, a morphism between them lying over f : S′ → S is given by a commuting diagram of
morphisms of OS′-modules

0 −−−−→ f∗(E1)
f∗(α)
−−−−→ f∗(E2)

f∗(β)
−−−−→ f∗(E3) −−−−→ 0

θ1





y
θ2





y
θ3





y

0 −−−−→ E ′1
α′

−−−−→ E ′2
β′

−−−−→ E ′3 −−−−→ 0

in which vertical arrows are isomorphisms intertwining the actions of ρi and ρ′i, as before. The
stack axioms follow easily from those for M.

4.5. There is a diagram of morphisms of stacks

M(2) b
−−−−→ M

(a1,a2)





y

M×M ,

(4.3)

where a1, a2 and b send a short exact sequence (4.2) to the objects E1, E3 and E2 respectively.

Lemma 4.2. (a) The morphism (a1, a2) is of finite type.

(b) The morphism b is representable and proper.

Proof. We prove part (b) first. Suppose that f : S → M is a morphism with S a scheme. It
corresponds to a pair (E , ρ) as before. The objects of the fibre product stack S ×MM(2) over a
scheme f : T → S are short exact sequences of locally free OT -modules

0 −→ E1 −→ f∗(E) −→ E3 −→ 0

such that f∗(ρ(a))(E1) ⊂ E1 for all a ∈ CQ/I. This is represented by a closed subset of the
relative Grassmannian of the sheaf E over S. To prove part (a), note that

(a1, a2)
−1(Md1 ×Md2) = b−1(Md1+d2) .

This stack is of finite type since both the stack Md1+d2 and the morphism b are. It follows that
the morphism (a1, a2) is also of finite type.
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Lemma 4.2(b) implies that M(2) is an algebraic stack, since pulling back an atlas for M
gives an atlas for M(2). Note also that the morphism (a1, a2) is not representable. The fibre over
a point of M×M corresponding to a pair of representations (E1, E3) is the quotient stack

[

Ext1(E3, E1)/Hom(E3, E1)
]

,

with the action of the vector space HomA(E3, E1) being the trivial one. See [Bri12, Proposi-
tion 6.2] for a proof of this fact (which we shall not explicitly use in what follows).

5. Motivic Hall algebras

To construct a suitable Lie algebra for our scattering diagram, we consider motivic Hall algebras
as introduced by Joyce [Joy07]. The construction we need is reviewed in detail in [Bri12] in
the case of categories of coherent sheaves on smooth projective varieties, and only very minor
modifications are required for the case of categories of representations of quivers with relations.
Motivic Hall algebras of quiver representations were also used by Nagao [Nag13].

5.1. Let M be an Artin stack, locally of finite type over C and with affine stabilizers. There is a
2-category of algebraic stacks overM. Let St/M denote the full subcategory consisting of objects

f : X → M (5.1)

for which X is of finite type over C and has affine stabilizers.

Definition 5.1. Let K(St/M) be the free abelian group with basis given by isomorphism classes
of objects of St/M, modulo the subgroup spanned by the following relations:

(a) for every object (5.1) and every closed substack Y ⊂ X with complementary open substack
U = X \ Y ⊂ M, a relation

[

X
f

−→ M
]

=
[

Y
f |Y
−→ M

]

+
[

U
f |U
−→ M

]

(b) for every object (5.1) and every pair of morphisms

h1 : Y1 → X , h2 : Y2 → X

which are locally trivial fibrations in the Zariski topology with the same fibres, a relation

[

Y1
g◦h1
−→ M

]

=
[

Y2
g◦h2
−→ M

]

For part (b), we recall that a morphism of stacks is said to be a locally trivial fibration in the
Zariski topology if it is representable and if any pullback to a scheme is a locally trivial fibration
of schemes in the Zariski topology.

5.2. We shall frequently use the following simple observation. Suppose that we have a commu-
tative diagram

X1

f1
��

g
// X2

f2
��

M

with X1 and X2 algebraic stacks of finite type over C with affine stabilizers as above. Suppose
also that the morphism of stacks g induces an equivalence at the level of C-valued points. Then
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we have an equality
[

X1
f1
−→ M

]

=
[

X2
f2
−→ M

]

in the group K(St /M). See [Bri12, Sections 2 and 3] for more details. The basic point is that
given any such morphism g, one can stratify the stacks Xi by locally closed substacks so that g
becomes an isomorphism on each substack.

5.3. The group K(St/M) has the structure of a K(St/C)-module, defined by setting

[X] · [Y
f

−→ M] =
[

X × Y
f◦π2
−−−→ M

]

and extending linearly. There is a unique ring homomorphism

Υ: K(St/C) −→ C(t)

which takes the class of a smooth projective variety over C (considered as a representable stack)
to the Poincaré polynomial

Υ([X]) =
2d
∑

i=0

dimCH i(Xan,C) · t
i ∈ C[q] .

Here Xan denotes X considered as a compact complex manifold, and H i(Xan,C) denotes singular
cohomology. We can therefore consider

KΥ(St /M) = K(St /M)⊗K(St /C) C(t) . (5.2)

More concretely, this is the C(t)-vector space with basis the isomorphism classes of objects (5.1)
as above, modulo the relations (a) and (b) of Definition 5.1 and the extra relations

[

X × Y
f◦π2
−→ M

]

= Υ([X]) ·
[

Y
f

−→ M
]

.

The resulting vector space is what Joyce [Joy07, Section 4.3] denotes SF(M,Υ,C(t)).

5.4. The abelian group K(St /M) becomes a ring when equipped with the convolution product
coming from the diagram (4.3). Explicitly, this product is given by the rule

[

X1
f1
−→ M

]

∗
[

X2
f2
−→ M

]

=
[

Z
b◦h
−→ M

]

,

where h is defined by the following Cartesian square:

Z
h

−−−−→ M(2) b
−−−−→ M





y





y

(a1,a2)

X1 ×X2
f1×f2
−−−−→ M×M .

We refer the reader to [Bri12, Section 4] for more details. The convolution product is easily
seen to be K(St /C)-linear and so also defines an algebra structure on the C(t)-vector space
KΥ(St /M). We denote the resulting C(t)-algebra by H(Q, I).

5.5. Let us consider the general situation of a graded algebra

A =
⊕

n∈N⊕

An , An1 ·An2 ⊂ An1+n2 .
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For each k > 1, we can consider the ideal A>k = ⊕δ(n)>kAn and the corresponding quotient
A6k = A/A>k. Taking the limit of the obvious maps gives the algebra

Â = lim
←−

A6k .

The subspace g = A>0 ⊂ A is a Lie algebra under the commutator bracket. The corresponding
completion ĝ = Â>0 is a pro-nilpotent Lie algebra under the commutator bracket. As usual, we
denote the corresponding pro-unipotent group by Ĝ.

5.6. Continuing with the notation from Section 5.5, we recall the following standard facts.

(a) There is an embedding φ : Ĝ →֒ Â which sends an element exp(x) ∈ Ĝ to the element of Â
obtained by taking the exponential of x ∈ ĝ inside the algebra Â. The Baker–Campbell–Hausdorff
formula ensures that

φ(g1 · g2) = φ(g1) · φ(g2) .

Thus, we can identify Ĝ with the subset 1+ Â>0 ⊂ Â.

(b) Exponentiating the adjoint action of ĝ on Â gives an action of Ĝ by algebra automorphisms
on Â. Under the embedding φ, this corresponds to conjugation:

exp(x)(a) := exp[x,−](a) = φ(x) · a · φ(x)−1 .

We now apply these general ideas to the Hall algebra H(Q, I).

5.7. The decomposition (4.1) induces a grading

H(Q, I) =
⊕

d∈N⊕

H(Q, I)d , (5.3)

where H(Q, I)d = KΥ(St /Md). We define the Lie subalgebra

gHall := H(Q, I)>0 .

Note that M0 = Spec(C) is a point, and the identity of the algebra H(Q, I) is represented
by the symbol

1 =
[

M0 ⊂ M
]

.

Applying the general statements of the last two subsections gives a completed algebra Ĥ(Q, I)
with a Lie subalgebra

ĝHall := Ĥ(Q, I)>0 ⊂ Ĥ(Q, I)

and a corresponding pro-unipotent group ĜHall, with an identification

ĜHall
∼= 1+ Ĥ(Q, I)>0 ⊂ Ĥ(Q, I) . (5.4)

5.8. Suppose given a morphism of stacks

f : X → M

such that X has affine stabilizers but is not necessarily of finite type over C. Suppose instead
that for any d ∈ N⊕, the closed and open substack Xd := f−1(Md) is of finite type. Then the
induced morphisms

f6k :
⋃

δ(d)6k

Xd −→ M
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define compatible elements of the truncations H(Q, I)6k, and so we obtain an element of the
completed Hall algebra, which we abusively denote by

[

X
f

−→ M
]

∈ Ĥ(Q, I) .

This element can be identified via (5.4) with an element of the group ĜHall precisely if the map
f0 : X0 → M0 is an isomorphism.

5.9. Recall that H(Q, I) is an algebra over the field C(t). Define a subalgebra

Creg(t) = C
[

t, t−1
][(

1 + t2 + · · ·+ t2k
)−1

: k > 1
]

⊂ C(t) .

Thus, we invert the Poincaré polynomials of the affine line A1 and all projective spaces Pk. Let

Hreg(Q, I) ⊂ H(Q, I) (5.5)

denote the Creg(t)-submodule generated by symbols (5.1) with X a variety. Note that by defini-
tion, Hreg(Q, I) is a free Creg(t)-module.

Theorem 5.2. The subset (5.5) is closed under the convolution product on H(Q, I) and is

therefore a Creg(t)-algebra. Moreover, the quotient

Hsc(Q, I) = Hreg(Q, I)
/(

t2 − 1
)

Hreg(Q, I)

is commutative.

Proof. This is proved exactly as in [Bri12, Theorem 5.1]. Note that the Poincaré polynomial of
the affine line is Υ(L) = t2.

This result has two closely related consequences:

(a) The Poisson bracket on H(Q, I) defined by

{a, b} =
(

t2 − 1
)−1

· [a, b] (5.6)

induces a Poisson bracket on the subring Hreg(Q, I).

(b) The subspace

greg :=
(

t2 − 1
)−1

·Hreg(Q, I)>0 ⊂ gHall = H(Q, I)>0 (5.7)

is a Lie subalgebra.

Note that Hreg(Q, I)>0 viewed as a Lie algebra via its Poisson bracket is isomorphic to the
Lie algebra greg via the map x 7→ (t2 − 1)−1 · x.

5.10. Continuing with the notation of the last section, we can pass to completions and define
a Lie algebra

ĝreg :=
(

t2 − 1
)−1

· Ĥreg(Q, I)>0 ⊂ Ĥ(Q, I)>0 .

The corresponding pro-unipotent group Ĝreg ⊂ ĜHall has an identification

Ĝreg = exp
((

t2 − 1
)−1

· Ĥreg(Q, I)>0

)

⊂ 1+ Ĥ(Q, I)>0 . (5.8)

In Section 11, we shall make use of the following deep theorem of Joyce.

Theorem 5.3 (Joyce). For any θ ∈ MR, the element of Ĝ ⊂ Ĥ(Q, I) defined by the inclusion of

the open substack of θ-semistable objects Mss(θ) ⊂ M corresponds via the identification (5.8)
to an element 1ss(θ) ∈ Ĝreg.
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The reader can consult [Bri11, Section 6.3] for precise references for this result.

6. The Hall algebra scattering diagram

In this section, we construct a canonical scattering diagram associated with the category of
finite-dimensional representations of a quiver with relations. It takes values in the Lie algebra
gHall defined in the last section. The walls correspond to choices of weights θ ∈ MR for which
there exist non-zero θ-semistable representations.

6.1. Let (Q, I) be a quiver with relations as in Section 4.1, and take the notation as defined
there. The following definition is due to King [Kin94].1

Definition 6.1. Given θ ∈ MR, an object E ∈ A is said to be θ-semistable if

(a) θ(E) = 0,

(b) every subobject A ⊂ E satisfies θ(A) 6 0.

For k > 1, we define A6k ⊂ A to be the full subcategory consisting of representations of total
dimension at most k. We define a subset

Wk =
{

θ ∈ MR : there exist θ-semistable objects 0 6= E ∈ A6k

}

⊂ MR .

The following result implies, in particular, that Wk ⊂ MR is closed.

Lemma 6.2. There is a cone complex Sk in MR such that Wk = supp(Sk).

Proof. First, consider the finite subset

P = {n ∈ N+ : δ(n) 6 k} ⊂ N+

and the corresponding cone complex S(P ) of Example 2.5. Note that in the relative interior of
each cone of S(P ), the question of the semistability of any given object of A6k is constant. Thus,
we can define a subcomplex consisting of those cones which support non-zero semistable objects
in A6k. The support of this subcomplex is precisely Wk.

6.2. Given θ ∈ MR, we define a stability function Z : K0(A) → C by the formula

Z(E) = −θ(E) + iδ(E) .

Note that if 0 6= E ∈ A, then Z(E) ∈ H lies in the upper half-plane, and we can define the phase
of E by

φ(E) = (1/π) argZ(E) .

We then define an object 0 6= E ∈ A to be Z-semistable if every non-zero subobject A ⊂ E
satisfies φ(A) 6 φ(E). The usual argument shows that if E1, E2 ∈ A are Z-semistable with
phases φ1, φ2, respectively, then

φ1 > φ2 =⇒ HomA(E1, E2) = 0 . (6.1)

Note that a non-zero object E ∈ A is θ-semistable precisely if it is Z-semistable with phase 1/2.

1Note, however, that King takes the inequality of Definition 6.1(b) to be θ(A) > 0. In the present context, our
convention seems to be preferable since it avoids the introduction of an extra sign in Section 7.4.
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It is an elementary fact that every non-zero object E ∈ A has a unique Harder–Narasimhan
filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em−1 ⊂ Em = E

whose factors Fi = Ei/Ei−1 are Z-semistable with descending phase:

φ(F1) > φ(F2) > · · · > φ(Fm) .

For any interval I ⊂ (0, 1), we define P(I) ⊂ A to be the full additive subcategory consisting of
objects all of whose Harder–Narasimhan factors Fi have phases in I. In particular, if φ ∈ (0, 1),
then P(φ) = P({φ}) denotes the subcategory of Z-semistable objects of phase φ.

6.3. Fix an element θ ∈ MR, and consider the stability function Z as in the last section.

Lemma 6.3. For any interval I ⊂ (0, 1), there is an open substack MI(θ) ⊂ M parameterising

representations of (Q, I) lying in the full subcategory P(I) ⊂ A.

Proof. It is enough to prove the same statement for the stack Md parameterising representations
of a fixed dimension vector d ∈ N⊕. There are then only finitely many elements n ∈ N⊕ occurring
as possible dimension vectors of subobjects. Thus, it is enough to know that for any n ∈ N⊕,
there is an open substack of Md parameterizing representations having no subobject of type n.
Consider the diagram (4.3) and the closed substack a−11 (Mn). The result then follows from the
properness of the morphism b.

Note that the zero object ofA lies in the category P(I) for any interval I. Thus,MI(θ)∩M0 =
M0. As in Section 5.8, the substack of Lemma 6.3 defines an element

1I(θ) = [MI(θ) ⊂ M] ∈ ĜHall ⊂ Ĥ(Q, I) .

A particular case of this corresponding to the interval I = {1
2} is

1ss(θ) = [Mss(θ) ⊂ M] ∈ ĜHall .

In the case of the interval I = (0, 1), we use the notation

1A = 1(0,1) = [M
id
−→ M] ∈ ĜHall .

This should not be confused with the identity element 1 = [M0 ⊂ M].

6.4. The existence and uniqueness of the Harder–Narasimhan filtration gives rise to an im-
portant identity in the Hall algebra H(Q, I). It is this identity that is responsible for the link
between stability conditions and scattering diagrams.

Proposition 6.4. Fix θ ∈ MR and take an interval I ⊂ (0, 1) which is a disjoint union of

intervals I1 and I2. Suppose I1 > I2 in the obvious sense. Then there is an identity

1I(θ) = 1I1(θ) ∗ 1I2(θ) ∈ ĜHall .

Proof. The result follows immediately from the statement that for any interval I ⊂ (0, 1), there
is an identity

1I(θ) =
∏

φ∈I

1φ(θ) ∈ Ĥ(Q, I) , (6.2)

where the product over phases is taken in descending order. Note that the right-hand side of (6.2)
makes good sense because for a fixed k > 1, there are only finitely many φ ∈ I for which there
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exists a non-zero semistable object in A6k of phase φ. Thus, when projected to H(Q, I)6k, all
but finitely many factors are the identity.

To prove (6.2), let us indeed project it to H(Q, I)6k, where it takes the form

1I(θ) = 1φ1(θ) ∗ 1φ2(θ) ∗ · · · ∗ 1φr
(θ) , (6.3)

for some finite sequence of possible phases φ1 > φ2 > · · · > φr. Recall that the r-fold product in
the Hall algebra is given by convolution using the stack M(r) parameterizing objects of rep(Q, I)
equipped with an r-step filtration (see [Bri12, Lemma 4.4]). The right-hand side of (6.3) is
therefore represented by the open substack N ⊂ M(r) consisting of filtered objects which, when
pulled back to any C-valued point, give a filtration by semistable objects of the given phases φi.
Since any object in P(I) ∩ A6k has a unique such filtration (the Harder–Narasimhan filtration
extended to length r by inserting zero factors), it follows that the obvious map of stacks

N ∩ b−1(M6k) → MI(θ) ∩M6k

forgetting the filtrations induces an equivalence on C-valued points. The identity then follows
from the remark of Section 5.2.

6.5. The following result gives the fundamental link between stability conditions and scattering
diagrams.

Theorem 6.5. There is a consistent scattering diagram D in MR taking values in gHall and with

the following properties:

(a) The support consists of those elements θ ∈ MR for which there exist non-zero θ-semistable

objects in A.

(b) The wall-crossing automorphism at a general point θ ∈ d ⊂ supp(D) is

ΦD(d) = 1ss(θ) ∈ ĜHall .

Proof. Lemma 6.4 shows that for any θ ∈ (0, 1) we have a relation in ĜHall

1A = 1(1
2 ,1

)(θ) ∗ 1ss(θ) ∗ 1(
0,
1
2

)(θ) . (6.4)

Let us fix k > 1 and consider the nilpotent Lie algebra g = gHall,6k and the corresponding
unipotent group G = GHall,6k. It is easy to see that, using the notation of Section 3.1, for any
phase φ ∈ (0, 1) we have

π6k(1ss(φ)) ∈











G+(θ) if φ > 1
2 ,

G0(θ) if φ = 1
2 ,

G−(θ) if φ < 1
2 .

Equation (6.4) therefore gives identities

Πθ
+(1A) = 1(1

2 ,1
)(θ) , Πθ

0(1A) = 1ss(θ) , Πθ
−(1A) = 1(

0,
1
2

)(θ) . (6.5)

The general construction of Section 3 then gives a consistent scattering diagram satisfying prop-
erty (b). Passing to a subcomplex as in the proof of Lemma 6.2, we can ensure that it also
satisfies property (a).

The scattering diagram of Theorem 6.5 is clearly unique up to equivalence. We call it the
Hall algebra scattering diagram of (Q, I). By construction, the corresponding element of Propo-
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sition 3.4 is

ΦD = 1A ∈ ĜHall .

Note that Joyce’s result Theorem 5.3 is precisely the statement that the stability scattering
diagram takes values in the Lie subalgebra greg ⊂ gHall.

6.6. It is interesting and useful to relate our Hall algebra scattering diagram to a certain torsion
pair in A defined by an element θ ∈ MR.

Lemma 6.6. For each θ ∈ MR, there is a torsion pair (T (θ),F(θ)) ⊂ A defined by setting

T (θ) = P(12 , 1) = {E ∈ A : any quotient object E ։ Q satisfies θ(Q) > 0} ,

F(θ) = P(0, 12 ] = {E ∈ A : any subobject A ⊂ E satisfies θ(A) 6 0} .

Proof. Recall that a torsion pair is a pair of full subcategories T ,F ⊂ A such that

(a) if T ∈ T and F ∈ F , then HomA(T, F ) = 0;

(b) for any E ∈ A, there is a short exact sequence

0 −→ T −→ E −→ F −→ 0

with T ∈ T and F ∈ F .

These properties both follow immediately from the existence of Harder–Narasimhan filtrations
and the identity (6.1) above.

Note that if we are only interested in representations of total dimension at most k, then
the subcategories T (θ) and F(θ) are constant in MR \ Wk. Moreover, at a point of Wk, these
categories remain unchanged if we fall off the wall in the −δ direction:

T (θ − ǫδ) ∩ A6k = T (θ) ∩ A6k , F(θ − ǫδ) ∩ A6k = F(θ) ∩ A6k , 0 < ǫ ≪ 1 . (6.6)

We shall use the obvious notation

1T (θ) = 1(1
2 ,1

)(θ) ∈ ĜHall , 1F (θ) = 1(
0,
1
2

](θ) ∈ ĜHall .

It follows from (6.5) and the proof of Lemma 3.2 that if θ1, θ2 ∈ MR both lie outside the essential
support of D, then

ΦD(θ1, θ2) = 1T (θ2)
−1 ∗ 1T (θ1) = 1F (θ2) ∗ 1F (θ1)

−1 ∈ ĜHall . (6.7)

Further connections between the Hall algebra scattering diagram and the above torsion pair will
appear in Section 8.

7. Nearby stability conditions

Let (Q, I) be a quiver with relations and A = rep(Q, I) its category of representations. In this
section, we explain the relationship between the walls of the Hall algebra scattering diagram
described in Section 6 and the walls of the second kind in the space of stability conditions on
any triangulated category D in which A occurs as the heart of a bounded t-structure. Readers
unfamiliar with triangulated categories can safely skip this section, together with Sections 8.4
below. The material of this section is very much inspired by the work of Nagao [Nag13, Section 4].

For simplicity, we assume throughout that the algebra CQ/I is finite-dimensional: this is to
avoid having to distinguish nilpotent representations from finite-dimensional ones. We fix the
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notation as in Section 4.1. In particular, A is the abelian category of representations of a quiver
with relations (Q, I).

7.1. Let us fix a triangulated category D equipped with a bounded t-structure whose heart is
equivalent to A. The most obvious choice is to take the standard t-structure on the bounded
derived category Db(A), but it may be useful to allow other possibilities. As with any bounded
t-structure, the inclusion functor gives an identification

N = K0(A) = K0(D) .

In particular, any object E ∈ D has a well-defined dimension vector d(E) ∈ N .

Given θ ∈ MR, we define a new bounded t-structure by tilting A with respect to the torsion
pair of Lemma 6.6. Explicitly, its heart

A(θ) = 〈F(θ)[1], T (θ)〉 ⊂ D

consists of objects E ∈ D such that

H−1A (E) ∈ F(θ) , H0
A(E) ∈ T (θ) and H i

A(E) = 0 for i 6= −1, 0 .

The inclusion functor again gives a canonical identification

K0(A(θ)) = K0(D) = N . (7.1)

Recall that the support of the Hall algebra scattering diagram is the subset

W =
⋃

k>1

Wk = {θ ∈ MR : there exist non-zero θ-semistable objects E ∈ A} ⊂ MR .

We denote its closure by W̄ ⊂ MR.

7.2. We refer to the connected components of the complement MR \ W̄ as chambers.

Lemma 7.1. Suppose that C ⊂ MR \ W̄ is a chamber. Then

(a) the heart A(θ) ⊂ D is independent of θ ∈ C and has finite length;

(b) the subcategory A(θ) has finitely many simple objects Ti up to isomorphism, and their

classes form a basis of N ;

(c) for each i, there is a sign ǫ(i) ∈ {±1} such that ǫ(i) · [Ti] ∈ N+.

Proof. Suppose that θ lies in the interior of MR \ W . The torsion pair (T (θ),F(θ)) is constant
in MR \ W, so we can find a φ ∈ MQ with A(φ) = A(θ). Clearing denominators, this means
that we can find a φ ∈ M which is strictly positive on all non-zero elements of A(θ). It follows
that there can be no infinite descending or ascending chains, and so A(θ) has finite length. This
proves part (a).

The classes of a complete set of non-isomorphic simple objects Ti ∈ A(θ) trivially form a basis
for K0(A(θ)). Under the identification (7.1) this corresponds to a basis of N , so in particular
there are only finitely many Ti. This gives part (b).

For part (c), note that the heart A ⊂ D is the tilt of the heart A(θ) ⊂ D with respect to the
torsion pair (F(θ)[1], T (θ)). Since Ti ∈ A(θ) is simple, it must be either torsion or torsion free.
Thus, we have either Ti ∈ T (θ) or Ti[−1] ∈ F(θ). Taking ǫ(i) = +1 or −1, respectively, it follows
that ǫ(i) · [Ti] ∈ N+.
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In the context of quivers with potential and cluster theory, the classes [Ti] ∈ N ∼= ZV (Q) of
part (b) are known as the c-vectors corresponding to the chamber C; the statement of part (c)
then goes under the name of sign coherence.

7.3. We shall now consider stability conditions on the triangulated category D. We always
impose the support condition: there should exist an K > 0 such that for all semistable objects
there is an inequality

|Z(E)| > K · ‖d(E)‖ ,

where ‖ · ‖ is some fixed norm on NR. It follows from general theory that the set of such stability
conditions forms a complex manifold Stab(D) and that the forgetful map

Stab(D) → MC

sending a stability condition (Z,P) to its central charge Z : N → C is a local homeomorphism.

Let us fix a stability condition σ ∈ Stab(D). Any non-zero object E ∈ D then has a uniquely-
defined collection of Harder–Narasimhan factors E1, . . . , Em with respect to σ. These are semi-
stable objects in σ with descending phases φ1 > · · · > φm. We set φ+(E) = φ1 and φ−(E) = φm.
The object E is semistable in σ precisely if m = 1 and hence φ+(E) = φ−(E). For a fixed
non-zero object E ∈ D, the functions

φ±(E) : Stab(D) → R

are continuous. Given an interval I ⊂ R, we write P(I) ⊂ D for the full subcategory consisting
of objects which are either 0 or which have the property that all the phases φi of their Harder–
Narasimhan factors lie in I. In particular, for any φ ∈ R, the subcategory P({φ}) = P(φ) consists
of the semistable objects of phase φ.

The subcategory P(0, 1] ⊂ D is called the heart of the stability condition. It is the heart of
a bounded t-structure, and in particular is an abelian category. A wall of type II in Stab(D)
is defined to be the locus where a fixed non-zero object E ∈ D lies in the subcategory P(0).
Note that in the complement of the closure of the union of these walls, the heart P(0, 1] is
locally constant, since the condition that a given non-zero object E ∈ D lies in the heart is that
0 < φ−(E) 6 φ+(E) 6 1, and these are simultaneously open and closed conditions.

Definition 7.2. A stability condition σ = (Z,P) ∈ Stab(D) is said to be nearby A if the
condition A ⊂ P(−1, 1) holds.

This terminology is due to Keller [Kel11]. We write C(A) ⊂ Stab(D) for the subset of stability
conditions nearby A.

Lemma 7.3. The subset C(A) ⊂ Stab(D) is open.

Proof. The condition is just that each of the simple objects Si ∈ A satisfies −1 < φ−(Si) 6

φ+(Si) < 1. Since the functions φ±(E) are continuous on Stab(D) and there are only finitely
many Si, this is an open condition.

7.4. Consider the continuous map

F : C(A) → MR , F (Z,P) = ImZ

sending a stability condition to the imaginary part of its central charge.

Proposition 7.4. The following statements hold:
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(a) The map F is surjective.

(b) If σ ∈ C(A) satisfies F (σ) = θ ∈ MR, then σ has heart A(θ) ⊂ D. In particular, stability

conditions in a given fibre of F all have the same heart.

(c) If σ ∈ C(A) satisfies F (σ) = θ ∈ MR, then P(0) ⊂ D is the subcategory of θ-semistable

objects in A. In particular, the subset W ⊂ MR is the image of the union of the walls of type II

in C(A) under the map F .

Proof. To prove surjectivity, we use the action of the universal cover G̃L+(2,R) of the group
GL+(2,R) on the space of stability conditions [Bri07, Section 8]. This group can be thought of
as the set of pairs (T, f), where f : R → R is an increasing map with f(φ + 1) = f(φ) + 1 and
T : C → C is an orientation-preserving R-linear isomorphism such that the induced maps on

S1 = R/2Z = C∗/R>0

are the same. There is a right action of this group on Stab(D) in which a pair (T, f) maps a
stability condition σ = (Z,P) to the stability condition σ′ = (Z ′,P ′), where Z ′ = T ◦ Z and
P ′(f(φ)) = P(φ). Consider the element

T =

(

1 0
−1 1

)

∈ GL+(2,R) .

It lifts uniquely to an element (T, f) ∈ G̃L+(2,R) such that f(0, 1) ⊂ (−1
2 , 1). For any θ ∈ MR,

there is a stability condition σ on D with heart A and central charge Z = (δ − θ) + iδ. Indeed,
since A has finite length and δ(E) > 0 for every non-zero object E ∈ A, this follows from
the basic existence result [Bri07, Proposition 5.3]. Applying the element (T, f) gives a stability
condition σ′ = (Z ′,P ′) such that A = P(0, 1) ⊂ P(−1

2 , 1) and Im(Z ′) = θ. This proves part (a).

To prove part (b), take a nearby stability condition σ = (Z,P) ∈ C(A). There is a torsion
pair (T ,F) ⊂ A given by

T = A ∩ P(0, 1) , F = A ∩ P(−1, 0] .

It is a tautology that B = P(0, 1] is the tilt of A with respect to this torsion pair. Indeed,
F [1] ⊂ B and T ⊂ B, so the tilted heart is contained in B and hence, by a standard argument,
is equal to it. Let θ = ImZ = F (σ). We claim that T = T (θ) and F = F(θ). Indeed, any object
E ∈ T lies in P(0, 1), so satisfies θ(E) > 0. Similarly, any E ∈ F lies in P(−1, 0], so satisfies
θ(E) 6 0. Since T and F are closed under quotient and subobjects, respectively (this is true for
any torsion pair), this implies T ⊂ T (θ) and F ⊂ F(θ). It follows easily that these inclusions
are equalities, which proves part (b).

To prove part (c) we take the notation as in the last paragraph and prove that an object
E ∈ D lies in P(0) precisely if it lies in A and is θ-semistable. First, suppose that E ∈ P(0).
Since E[1] ∈ B = P(0, 1], there is a short exact sequence

0 −→ X[1]
f

−→ E[1]
g

−→ Y −→ 0

in B with X ∈ F and Y ∈ T . But then Y ∈ P(0, 1), which implies g = 0. Hence E = X ∈ F ⊂ A.
Since F = F(θ) and θ(E) = 0, it follows that E is θ-semistable. Conversely, if E ∈ A is θ-
semistable, then E ∈ F(θ), so that E ∈ B[−1] = P(−1, 0], and θ(E) = 0 implies E ∈ P(0).
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8. Framed representations

In this section, we consider representations of quivers equipped with framings, that is, maps
from a fixed projective module. In particular, we introduce certain fine moduli schemes which
are generalizations of the moduli spaces studied by Engel and Reineke [ER09] and will be used
in Section 10 to describe theta functions associated with the stability scattering diagrams of
Section 6.

8.1. Let (Q, I) be a quiver with relations. We take the notation as in Section 4.1. Associated
with each vertex i ∈ V (Q) is a projective module Pi. In terms of the idempotent ǫi ∈ CQ
corresponding to the vertex i, it can be written Pi = (CQ/I)ǫi. For each class m ∈ M⊕, there is
therefore a finitely generated projective module

P (m) =
⊕

i∈V (Q)

P
m(ei)
i .

Take P = P (m) of this form. We consider the category repP (Q, I) of P -framed representations
of (Q, I). The objects are defined to be representations E ∈ rep(Q, I) equipped with a framing
map ν : P → E. A morphism between two such P -framed representations is a morphism of the
underlying representations which intertwines the framing maps.

We can give another description of the category repP (Q, I) as follows. Form a new quiver Q⋆

containing Q as a subquiver by adjoining a new vertex ⋆ and, for each i ∈ V (Q), adding m(ei)
arrows from vertex ⋆ to vertex i. The two-sided ideal of relations I ⊂ CQ generates a two-sided
ideal I⋆ ⊂ CQ⋆. Let

rep(Q⋆, I⋆)1 ⊂ rep(Q⋆, I⋆) (8.1)

be the subcategory whose objects are representations having the one-dimensional vector space C
at the vertex ⋆ and whose morphisms are morphisms of representations which have the identity
map id: C → C at the vertex ⋆.

Lemma 8.1. There is an equivalence of categories

repP (Q, I) ∼= rep(Q⋆, I⋆)1 .

In particular, isomorphism classes of repP (Q, I) are in bijection with isomorphism classes of

rep(Q⋆, I⋆) having a one-dimensional vector space at the extending vertex.

Proof. Take E ∈ rep(Q, I), and let Ei be the vector space at vertex i ∈ V (Q). There is a
canonical isomorphism

HomCQ/I(Pi, E) ∼= Ei ,

where Pi = P (e∗i ) is the projective module corresponding to vertex i. Choosing an identification
P = P (m), we obtain a canonical isomorphism

HomCQ/I(P,E) ∼=
⊕

i∈V (Q)

E
⊕m(ei)
i .

The vector space on the right parameterizes precisely the data required to extend E to a repre-
sentation of (Q⋆, I⋆) with C at the extending vertex.

The important point for us will be that framed representations of (Q, I) can be viewed as
representations of the extended quiver (Q⋆, I⋆). But when it comes to considering moduli stacks
we must be careful: the subcategory (8.1) is not full, and a framed representation may not have
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any non-trivial automorphisms (this happens, for example, if the framing map ν is surjective),
whereas a representation of (Q⋆, I⋆) always has at least a C∗-group of automorphisms.

8.2. Fix a class m ∈ M⊕ and consider again the corresponding extended quiver with relations
(Q⋆, I⋆). We let

N⋆ := ZV (Q⋆) = ZV (Q) ⊕ Z = N ⊕ Z , M⋆ := HomZ(N
⋆,Z) = M ⊕ Z .

For any dimension vector d ∈ N , we define d⋆ = (d, 1) ∈ N⋆. Given θ ∈ MR and d ∈ N , there is
a unique lift θ⋆ ∈ M⋆

R such that θ⋆(d⋆) = 0. Explicitly, we have

θ⋆ = (θ,−θ(d)) ∈ M ⊕ Z .

We denote by M ss(d⋆, θ⋆) the coarse moduli scheme of θ∗-semistable representations of (Q⋆, I⋆)
of dimension vector d⋆.

Lemma 8.2. The moduli scheme M ss(d⋆, θ⋆) is fine providing that θ does not lie in the subset

Wk ⊂ MR of Section 6.1, where k = δ(d) is the total dimension of d.

Proof. Since the dimension vector d⋆ ∈ N⋆ is clearly primitive, the moduli space will be fine
providing that there are no strictly θ⋆-semistable objects [Kin94, Proposition 5.3]. Suppose that

0 −→ A −→ E −→ B −→ 0

is a short exact sequence in rep(Q⋆, I⋆) such that E has dimension vector d⋆ = (d, 1). Then either
A or B has dimension vector of the form (d′, 0). Thus if E is strictly θ⋆-semistable, it must have
a θ⋆-stable factor S of dimension vector (d′, 0). Then S is a non-zero θ-stable representation of
(Q, I) and hence θ ∈ Wk.

The proof of Lemma 8.2 shows that M ss(d⋆, θ⋆) is constant as θ varies in MR \ Wk. For
a general point of θ ∈ MR we set

F (d,m, θ) = M ss(d⋆, (θ − ǫδ)⋆) , 0 < ǫ ≪ 1 .

Since δ does not lie in Wk, this is always a fine moduli scheme. We set

F (m, θ) =
⊔

d∈N⊕

F (d,m, θ) .

There is an obvious morphism r : F (m, θ) → M sending a semistable representation of (Q⋆, I⋆)
to the representation of (Q, I) obtained by restriction.

8.3. Let P = P (m) be the projective representation of (Q, I) corresponding to a class m ∈ M⊕,
and also fix a class θ ∈ MR. The following result shows that the moduli scheme F (m, θ) can be
viewed as parameterizing P -framed representations of (Q, I) of a particular type.

Lemma 8.3. Under the correspondence of Lemma 8.1, a framed representation ν : P → E of

dimension vector d ∈ N⊕ corresponds to a point of F (d,m, θ) precisely if

(a) E ∈ F(θ),

(b) coker(ν) ∈ T (θ).

Proof. The definition of F (d,m, θ) together with (6.6) shows that we can assume that θ does
not lie in Wk ⊂ MR, where k = δ(d). It remains to show that a (Q⋆, I⋆)-representation E⋆

of dimension vector d⋆ is θ⋆-semistable precisely if the corresponding framed representation
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(E, ν) of (Q, I) satisfies E ∈ F(θ) and coker(ν) ∈ T (θ). Consider a short exact sequence of
representations of (Q⋆, I⋆)

0 −→ A⋆ −→ E⋆ −→ B⋆ −→ 0 .

There are two possibilities: either A⋆ or B⋆ has dimension vector (n, 0) for some n ∈ N and
hence is a representation of (Q, I) extended by zero.

In the first case, A⋆ is a representation A of (Q, I) extended by zero. Moreover, A is a (Q, I)-
subrepresentation of E. Conversely, any subrepresentation A ⊂ E can be extended by zero to
give a subrepresentation A⋆ ⊂ E⋆. Then A⋆ destabilizes E⋆ precisely if θ(A) > 0. Since θ /∈ Wk,
this in fact implies θ(A) > 0. But the existence of such a subrepresentation A ⊂ E is precisely
the condition E /∈ F(θ).

In the second case, B⋆ is a representation B of (Q, I) extended by zero. We therefore obtain
a surjective map of (Q, I)-representations g : E → B. But the fact that this extends to a map
E⋆ → B⋆ forces the composite g ◦ ν to be zero. Conversely, any map g for which g ◦ ν = 0
extends uniquely to g⋆ : E⋆ → B⋆. We conclude that quotients E⋆ ։ B⋆ of dimension vector
(0, n) correspond to quotients B of coker(ν) of dimension vector n. We can destabilize E⋆ in this
way precisely if we can find such a B with θ(B) 6 0. This is equivalent to the condition that
coker(ν) /∈ T (θ).

8.4. We finish this section by giving yet another interpretation of the framed quiver moduli
spaces F (d,m, θ), this time in terms of the tilted hearts of Section 7. This result will not be used
later and can be safely skipped. For simplicity, we shall assume that CQ/I is finite-dimensional,
so that all finitely generated projective representations lie in the category A = rep(Q, I).

Given θ ∈ MR, we can consider the corresponding torsion sequence

0 −→ R(m, θ) −→ P (m) −→ U(m, θ) −→ 0

with R(m, θ) ∈ T (θ) and U(m, θ) ∈ F(θ). We also introduce the shifted heart

B(θ) = A(θ)[−1] = 〈F(θ), T (θ)[−1]〉 ⊂ D .

Note that U(m, θ) ∈ B(θ).

Proposition 8.4. There is a natural bijection between points of the scheme F (d,m; θ) and

isomorphism classes of pairs (E, µ) where

(a) E ∈ B(θ) is an object of class [E] = d ∈ N ,

(b) µ : U(m, θ) → E is a surjection in B(θ).

Proof. This follows easily from Lemma 8.3. Given a pair (E, µ) as in the statement, we can form
a short exact sequence in B(θ)

0 −→ K −→ U(m, θ) −→ E −→ 0 .

Now, take the associated long exact sequence in cohomology with respect to the t-structure
with heart A. This shows that E = H0

A(E) and hence that E ∈ F(θ). Moreover, the cokernel
of µ, viewed as a map in A, is the object H1

A(K) ∈ T (θ). Composing with the surjection
P (m) → U(m, θ), we get a map ν : P (m) → E in the category A whose cokernel lies in T (θ).

For the converse, suppose given a map ν : P (m) → E in A such that E ∈ F(θ) and whose
cokernel lies in T (θ). Since R(m, θ) ∈ T (θ), this map factors via P (m) ։ U(m, θ) and hence
induces a map µ : U(m, θ) → E. If µ is not surjective in B(θ), we can find a surjection q : E ։ Q
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such that q ◦ µ = 0. The long exact sequence in A-cohomology as above then implies Q ∈ F(θ).
This then contradicts coker(ν) ∈ T (θ).

It can often happen that the category B(θ) is equivalent to a category of the form rep(Q′, I ′)
for some new quiver (Q′, I ′). In that case, the proof of Proposition 8.4 can easily be extended to
show that the scheme F (d,m, θ) is a quiver Grassmannian.

9. Stacks of framed representations

In this section, we consider stacks parameterizing framed representations of the various kinds
considered in Section 1.5. We then prove some important identities relating the corresponding
elements of the motivic Hall algebra. Throughout, (Q, I) is a fixed quiver with relations and
P = P (m) is a finitely generated projective module for CQ/I corresponding to a class m ∈ M⊕.

9.1. We begin by introducing the stack MP of P -framed representations of (Q, I). The reader
is advised to first recall the definition of the stack M from Section 4.2. For each scheme S over
C, we first consider the quasi-coherent OS-module

PS := P ⊗C OS

with the induced action of CQ/I. This is just the pullback of the representation P via the
projection S → Spec(C), exactly as in the definition of the stack M, except that since P may
be infinite-dimensional in general, the resulting locally free sheaf may have infinite rank.

The objects of the stack MP over a scheme S consist of an object (E , ρ) of M(S) together
with a morphism of quasi-coherent sheaves ν : PS → E which intertwines the actions of CQ/I
on PS and E . Given another object (E ′, ρ′, ν ′) lying over a scheme S′, a morphism in MP

(E ′, ρ′, ν ′) → (E , ρ, ν)

lying over a morphism f : S′ → S is defined to be an isomorphism of OS-modules θ : f∗(E) → E ′

intertwining the maps ρ and ρ′ as in the definition of the stack M, with the further condition
that this isomorphism commutes with the OS-module maps ν and ν ′ in the obvious way.

We leave it to the reader to check the stack conditions, which follow easily from those for M.
There is an obvious morphism of stacks q : MP → M obtained by forgetting the framings.

Lemma 9.1. Restricted to the open and closed subset Md ⊂ M, the map q is a vector bundle

of rank m(d).

Proof. Let S be a scheme and f : S → Md an S-valued point corresponding to a representation
(E , ρ) of (Q, I) over S. Pulling the morphism q back to S gives a stack SP → S whose T -valued
points consist of a morphism g : T → S and a framing of g∗(E , ρ). Now, by the argument of
Lemma 8.1, the set of such framings coincides with the set of sections of the sheaf g∗(V) on T ,
where

V =
⊕

i∈V (Q)

E
⊕m(i)
i .

Note that V is a locally free sheaf on T of rank m(d). It follows that the stack SP is represented
by the total space of the associated vector bundle, which proves the result.

9.2. Globalising Lemma 8.3, we would like to identify the scheme F (m, θ) with an open substack
of MP . There are two slightly tricky issues to understand first.
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(a) Let M⋆
1 denote the stack of representations of the extended quiver (Q⋆, I⋆) having a one-

dimensional representation at the extending vertex. A family version of Lemma 8.1 (see also
the proof of Lemma 9.1) gives a morphism of stacks MP → M⋆

1. However, because of the
discrepancy in automorphism groups referred to in Section 8.1, this is not an isomorphism but
rather a C∗-bundle.

(b) We wish to define an open substack of MP whose points parameterize framed objects
ν : P → E for which E ∈ F(θ) and coker(ν) ∈ T (θ). However, when working with objects of MP

over a general scheme S, there is no reason to expect the cokernel of the framing map ν : PS → E
to be locally free and hence define an object of M(S). So the definition of such a substack is
problematic.

The first issue does not in fact cause a problem, since the scheme F (m, θ) is also a C∗-bundle
over the corresponding open substack of M⋆

1 for the usual reason that moduli stacks of stable
objects are C∗-gerbes over the corresponding moduli schemes.

To deal with the second issue, we define a new stackM′
P in the same way asMP but imposing

the condition that the cokernel of the framing map ν should be locally free. This is indeed a
substack because forming cokernels commutes with restriction to open subsets and the condition
that a sheaf be locally free can be checked locally. The inclusion morphism M′

P → MP is then
an equivalence on C-valued points, so that from the point of view of the motivic Hall algebra,
the two stacks are interchangeable.

9.3. The stack M′
P has two obvious morphisms

p : M′
P → M , q : M′

P → M .

The first morphism p takes a framed representation ν : PS → E to the finite-rank locally free
sheaf coker(ν), with the obvious induced action of CQ/I. The second morphism q forgets the
framings as before: it takes ν : PS → E to the locally free sheaf E with its given action of CQ/I.
Given θ ∈ MR, we define an open substack

M′
P (F(θ)) = M′

P ∩ q−1(F(θ)) , M′
P (T (θ),F(θ)) = M′

P (F(θ)) ∩ p−1(T (θ)) .

The following is a moduli-theoretic version of Lemma 8.3.

Lemma 9.2. There is a morphism of stacks M′
P (T (θ),F(θ)) −→ F (m, θ) , which induces an

equivalence on C-valued points.

Proof. We have morphisms of stacks M′
P → MP → M⋆

1. So given an S-valued point of the stack
M′

P (T (θ),F(θ)), we obtain a family of (Q⋆, I⋆)-representations over S. Lemma 8.3 shows that
these in fact define a family of stable representations, and thus give rise to a map S → F (m, θ).
This defines the required morphism. Lemma 8.3 again shows that it is an equivalence on C-valued
points.

9.4. Let us again fix an element θ ∈ MR. Using the remark of Section 5.8, we obtain elements

1PF (θ) =
[

M′
P (F(θ))

q
−→ M

]

, F (m, θ) =
[

F (m, θ)
r

−→ M
]

,

in the completed Hall algebra Ĥ(Q, I).

Lemma 9.3. In the algebra Ĥ(Q, I), there is an identity 1PF (θ) = F (m, θ) ∗ 1F (θ).
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Proof. By Lemma 9.2, we can replace F (m, θ) by the stack M′
P (T (θ),F(θ)). The product on

the right of the identity is then represented by a stack X whose objects over a scheme S consist
of short exact sequences

0 −→ E1
α

−→ E2
β

−→ E3 −→ 0

of families of quiver representations over S, together with a framing ν : PS → E1 whose cokernel
is locally free. We also insist that restricted to any C-valued point, all representations lie in F(θ),
and the cokernel of ν lies in T (θ). Sending such an object to the family E2 equipped with the
framing α ◦ ν defines a morphism of stacks

h : X → M′
P (F(θ)) .

The identity will follow if we show that h induces an equivalence on C-valued points. To prove
this, note that given an element E ∈ F(θ) and a framing ν : P → E, there is a unique short
exact sequence

0 −→ A
f

−→ E
g

−→ B −→ 0 (9.1)

such that A,B ∈ F(θ), the composite g ◦ ν is 0, and the induced map ν : P → A has cokernel
in T (θ). Indeed, the quotient B is obtained uniquely as the torsion-free part of coker(ν).

Let us introduce further elements of Ĥ(Q, I) as follows:

1Pss(θ) =
[

M′
P ∩ q−1(Mss(θ))

q
−→ M

]

, Fss(m, θ) =
[

F (m, θ) ∩ r−1(Mss(θ))
r

−→ M
]

.

We now give an easy consequence of Lemma 9.3.

Lemma 9.4. In the algebra Ĥ(Q, I), there is an identity 1Pss(θ) = Fss(m; θ) ∗ 1ss(θ).

Proof. Note that if E ∈ F(θ), then E is θ-semistable precisely if θ(E) = 0. Thus, given a short
exact sequence (9.1) with all objects in F(θ),

θ(E) = 0 ⇐⇒ θ(A) = θ(B) = 0 .

The identity then follows in the same way as Lemma 9.3 or by simply restricting the identity of
Lemma 9.3 to the substack of representations whose dimension vectors are orthogonal to θ.

10. Theta functions

The theta functions defined by a scattering diagram are of crucial importance in the applications
to cluster varieties described in [GHKK14]. In the case of the stability scattering diagram, we can
describe some of these theta functions in terms of generating functions for Euler characteristics
of the framed quiver moduli introduced in Section 8. The general case is left for future research.

10.1. We begin by considering the following abstract set-up. Take a finite-rank free abelian
group N with a positive cone N+ ⊂ N as in Section 2.1, and use the notation as defined there.
Now, take A to be an N⊕-graded Poisson algebra

A =
⊕

n∈N⊕

An , An1 ·An2 ⊂ An1+n2 , {An1 , An2} ⊂ An1+n2 .

For each k > 1, we can consider the Poisson ideal A>k = ⊕δ(n)>kAn and the corresponding
quotient A6k = A/A>k. Taking the limit of the obvious maps gives a Poisson algebra

Â = lim
←−

A6k .
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The subspace g = A>0 ⊂ A is a Lie algebra under the Poisson bracket. The corresponding
completion ĝ = Â>0 is a pro-nilpotent Lie algebra. As usual, we denote the corresponding pro-
unipotent group by Ĝ.

10.2. We shall also need to equip the vector space B = A ⊗C C[M ] with the structure of an
N⊕-graded Poisson algebra in such a way that the inclusions

A →֒ B , a 7→ a⊗ 1 ; C[M ] →֒ B , zm 7→ 1⊗ zm

are maps of graded Poisson algebras (we equip the algebra C[M ] with the trivial Poisson bracket
and consider all elements to have degree zero). The same completion process then gives a Poisson
algebra

B̂ = Â⊗C C[M ] .

Since Â as a subalgebra of B̂, closed under the Poisson bracket, the Lie algebra ĝ = Â>0 acts
on B by derivations via a(b) = {a, b}. Exponentiating gives an action of the group Ĝ by Poisson
algebra automorphisms of B̂:

exp(x)(b) = exp{x,−}(b) . (10.1)

This is the action we will use to define our theta functions.

10.3. Example. Let N be a finite-rank free abelian group with a skew-symmetric form

〈−,−〉 : N ×N → Z .

Also fix a basis (e1, . . . , en), and let N+ ⊂ N be the positive cone spanned by the ei. Let A be
the monoid algebra

C
[

N⊕
]

=
⊕

n∈N⊕

C · xn ,

and equip it with the Poisson bracket
{

xn1 , xn2
}

= 〈n1, n2〉 · x
n1+n2 .

We take B to be the commutative tensor product algebra B = C[N⊕]⊗C C[M ] with
{

xn, zm
}

= m(n) · xn · zm ,
{

zm1 , zm2
}

= 0 .

Writing xi = xei and zi = ze
∗
i , we have

A = C[x1, . . . , xn] , B = C[x1, . . . , xn]
[

z±11 , . . . , z±1n

]

.

Completing with respect to the N⊕-grading gives Poisson algebras

Â = C[[x1, . . . , xn]] , B̂ = C[[x1, . . . , xn]]
[

z±11 , . . . , z±1n

]

.

This is the relevant context for the stability and cluster scattering diagrams described in the
introduction.

10.4. Example. Take a quiver with potential (Q, I), and take A to be the Hall algebra

A = H(Q, I) =
⊕

d∈N⊕

H(Q, I)d

over C(t). We define an algebra structure on B = A⊗CC[M ] extending that on the subalgebras A
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and C[M ] by setting

ad ∗ z
m = t2m(d) · zm ∗ ad , ad ∈ H(Q, I)d .

We equip the algebras A and B with the scaled commutator bracket

{a, b} =
(

t2 − 1
)−1

· [a, b]

as in (5.6). In particular, we have

{

ad, z
m
}

=
t2m(d) − 1

t2 − 1
· ad ∗ z

m ,
{

zm1 , zm2
}

= 0 .

This is the context relevant to the stability scattering diagram.

Note that as in Section 5.9, the subspace g = A>0 viewed as a Lie algebra via its Pois-
son bracket is isomorphic to the Lie algebra gHall via the map x 7→ (t2 − 1)−1 · x. Thus the
corresponding group Ĝ can be identified with ĜHall.

10.5. Returning to the general context of Sections 10.1 and 10.2, let D = (Dk)k>1 be a scat-
tering diagram in g = A>0. Recall the associated elements ΦD(θ1, θ2) ∈ Ĝ from Section 3.1. For
each m ∈ M , we define2 a theta function

ϑm : MR \ supp(D) −→ B̂

by using the action of the group Ĝ on the algebra B̂ and writing

ϑm(θ) = ΦD(θ+, θ)
(

zm
)

for an arbitrary element θ+ ∈ M+
R .

Consider composing ϑm with the projection π : B̂ → B6k. The result extends to a function

ϑm : MR \ supp(Dk) −→ B6k ,

which is constant on each connected component of the domain. On crossing a generic point
of a wall d ∈ Dk in the positive direction, the theta function changes by the action of the
corresponding wall-crossing automorphism:

ϑm(θ) 7→ ΦDk
(d)

(

ϑm(θ)
)

∈ B6k .

Note also that by definition, ϑm(θ) = zm for all θ ∈ M+
R .

10.6. Consider the case of the Hall algebra scattering diagram of Theorem 6.5. Thus, we take
A = H(Q, I) equipped with the Poisson bracket (5.6) and consider the extended algebra B =
A⊗C C[M ] as in Section 10.4.

Theorem 10.1. LetD be the Hall algebra scattering diagram for the pair (Q, I), and fixm ∈ M⊕.
Then, there is an identity ϑm(θ) = zm · F (m, θ) ∈ B̂.

Proof. Take an elementm ∈ M⊕. Note that by (6.7), the Hall algebra scattering diagram satisfies

ϑm(θ) = ΦD(θ+, θ)
(

zm
)

= 1F (θ)
(

zm
)

∈ B̂ .

The Lie algebra of the group ĜHall can be identified with A>0 equipped with the Poisson bracket
of Section 10.4. Alternatively, it can be identified with A>0 equipped with the commutator

2Theta functions can also be defined for more general classes m ∈ M [GHKK14, Section 3], but we shall not
consider those here since we are unable to provide a moduli-theoretic description for them.
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bracket. These two identifications differ by a factor of (t2 − 1). Using the second identification,
we see that as in Section 5.6, the action of the element 1F (θ) ∈ ĜHall on B̂ is by conjugation.
But Lemmas 9.1 and 9.3 show that there is an identity in B̂,

1F (θ) · z
m = zm · 1PF (θ) = zm · F (m, θ) ∗ 1F (θ) .

This proves the result.

A very similar proof gives an alternative description of the wall-crossing automorphisms of
the Hall algebra scattering diagram.

Theorem 10.2. Let D be the Hall algebra scattering diagram for the pair (Q, I). Then the

action of ΦD(d) on B̂ at a general point of the support of D satisfies

zm 7→ zm ·

[

∐

θ(d)=0

F (d,m, θ) → M

]

.

Proof. Apply the proof of Theorem 10.1, replacing Lemma 9.3 with Lemma 9.4.

11. Quivers with potential: the CY3 case

In this section, we consider the three-dimensional Calabi–Yau situation, when Q is a 2-acyclic
quiver with finite potential W . We apply a homomorphism of Lie algebras to the Hall algebra
scattering diagram of Section 6 to obtain a more concrete scattering diagram which we call the
stability scattering diagram of the pair (Q,W ).

There is another scattering diagram associated with Q, which we call the cluster scattering
diagram associated with Q. It was first introduced by Kontsevich and Soibelmnan and plays
a vital role in the recent work of Gross, Hacking, Keel and Kontsevich [GHKK14]. We show that
when Q is acyclic, this scattering diagram coincides with the stability scattering diagram.

11.1. Let (Q, I) be a quiver with relations as in Section 4.1. We now assume that the relations
I ⊂ CQ are defined by a polynomial potential

I = (∂aW : a ∈ A(Q)) ⊂ CQ .

We always assume that Q is 2-acyclic, which implies that the potential W ∈ CQ>3 is a finite
sum of cycles of length at least 3. The quotient algebra CQ/I is called the Jacobi algebra of the
pair (Q,W ). Define a skew-symmetric form

〈−,−〉 : N ×N → Z

by setting 〈ei, ej〉 = aji − aij , where aij is the number of arrows in Q from vertex i to vertex j.
In the case that the category A = rep(Q, I) is CY3 , this will coincide with the Euler form on
N = K0(A), but it is not necessary to assume this.

Exactly as in Section 10.3, we define a Poisson bracket on A = C[N⊕] by setting
{

xn1 , xn2
}

= 〈n1, n2〉 · x
n1+n2 .

The following crucial result allows us to transport statements in the Hall algebra into state-
ments in the much simpler algebra C[N⊕].

Theorem 11.1. There is a homomorphism of N⊕-graded Poisson algebras

I : Hreg(Q,W ) → C
[

N⊕
]

, I([f : X → Md]) = e(X) · xd ,

557



T. Bridgeland

where e(X) denotes the Euler characteristic of the finite-type complex scheme X equipped with

the analytic topology.

Proof. The version of this statement for Hall algebras of coherent sheaves on Calabi–Yau three-
folds is the special case of [Bri12, Theorem 5.1] corresponding to the constant constructible
function 1 : M → Z. Exactly the same proof works in the case of Hall algebras of quiver rep-
resentations. The important point to note is that for any pair of objects E,F ∈ A, the dif-
ference

(

dimCHomA(E,F )− dimC Ext1A(E,F )
)

−
(

dimCHomA(F,E)− dimC Ext1A(F,E)
)

is given by the form 〈[E], [F ]〉. This is because we can consider A as the heart of a bounded t-
structure in a CY3 triangulated category, namely the bounded derived category of the Ginzburg
algebra, and the above expression is the Euler form of this category.

11.2. As usual, the subspace A>0 = C[N+] is a Lie algebra g under the Poisson bracket. The
homomorphism I of Theorem 11.1 immediately induces homomorphisms

I : ĝreg → ĝ , I : Ĝreg → Ĝ

of the corresponding pro-nilpotent Lie algebras and pro-unipotent groups. We remarked in Sec-
tion 6.5 that the Hall algebra scattering diagram takes values in the Lie subalgebra greg ⊂ gHall.
Applying the Lie algebra homomorphism I therefore gives a scattering diagram in g.

Theorem 1.1 now follows immediately from Theorem 6.5. Recall that according to Theo-
rem 5.3, the substack of θ-semistable objects of A defines an element 1ss(θ) ∈ Ĝreg ⊂ ĜHall.
Applying the group homomorphism I gives a corresponding element of Ĝ. Explicitly, this takes
the form

I(1ss(θ)) = exp

(

∑

d∈N+

J(d, θ) · xd
)

,

where the numbers J(d, θ) ∈ Q are what we referred to in the introduction as Joyce invariants.
They are defined to be the Euler characteristics of the elements ǫ(d, θ) ∈ Hreg(Q, I)d appearing
in the decomposition

1ss(θ) = exp

(

(

t2 − 1
)−1

·
∑

d∈N+

ǫ(d, θ)

)

corresponding to the identification (5.4).

11.3. We now introduce extended Poisson algebras

Breg = Hreg(Q, I)⊗C C[M ] , B = C
[

N⊕
]

⊗C C[M ] ,

exactly as in Sections 10.3 and 10.4. Comparing the products and Poisson brackets and noting
that the map I sends t to 1, it is clear that I extends to give a Poisson algebra map I : Breg → B
and a similar map on completions. Applying this to Theorem 10.1 gives Theorem 1.3.

Applying the map I to Theorem 10.2 shows that the action of ΦD(d) on B̂ at a general point
of a wall d ⊂ D satisfies

zm 7→ zm ·
∑

θ(d)=0

K(d,m, θ) · xd . (11.1)
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A trivial but important observation is that for any n ∈ N , the element

xn ·
∏

i∈V (Q)

z
〈n,ei〉
i ∈ B

is invariant under the action of Ĝ because for any d ∈ N ,

〈d, n〉+
∑

i∈V (Q)

e∗i (d) · 〈n, ei〉 = 〈d, n〉+ 〈n, d〉 = 0 .

It follows that the action of an element of Ĝ on B̂ is determined by its action on the elements zi.
Applying this observation to (11.1) gives Theorem 10.2.

11.4. Let Q be a 2-acyclic quiver, and take the notation as above. Assume that the form 〈−,−〉
is non-degenerate. Let D be an arbitrary scattering diagram taking values in g. Any wall d of
D is contained in a hyperplane n⊥ for a unique primitive element n ∈ N+. We say that d is
incoming if it contains the vector

θn = 〈−, n〉 ∈ M .

Kontsevich and Soibelman proved that a consistent scattering diagram taking values in g is
uniquely specified up to equivalence by its set of incoming walls and their associated wall-crossing
automorphisms. A particular case of this is the following.

Theorem 11.2 (Kontsevich–Soibelman). There is a consistent scattering diagram D taking

values in g such that the only incoming walls are the hyperplanes di = e⊥i , with associated

wall-crossing automorphisms

ΦD(di) = exp

(

∑

n>1

xnei

n2

)

∈ Ĝ .

This scattering diagram is unique up to equivalence.

A simple calculation shows that ΦD(di) acts on B̂ via the cluster transformation

zm 7→ zm ·
(

1 + xei
)m(ei) . (11.2)

We call this scattering diagram the cluster scattering diagram associated with the quiver Q.

11.5. To prove Theorem 1.5, we must give a categorical description of incoming walls.

Definition 11.3. We say that an object E ∈ A is self-stable if it is θ-stable for the weight

θ = 〈−, E〉 ∈ M .

An equivalent condition is that for every non-trivial short exact sequence

0 −→ A −→ E −→ B −→ 0 ,

the inequality 〈A,B〉 < 0 holds.

We will call a quiver with potential (Q,W ) genteel if the only self-stable objects in A are of
the form Si for some vertex i ∈ V (Q).

Lemma 11.4. If (Q,W ) is genteel, then the stability scattering diagram is equivalent to the

cluster scattering diagram.
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Proof. For any quiver with potential, let us use (11.1) to compute the wall-crossing automorphism
in the stability scattering diagram at a generic point of the wall e⊥i . Fixm ∈ M⊕ and set d = k·ei.
The extended quiver Q⋆ corresponding to m has mi = m(ei) extra arrows from the extended
vertex ⋆ to the vertex i. At a general point θ ∈ e⊥i it is then easy to see that the framed
moduli space F (d,m, θ) is isomorphic to the Grassmannian of d-dimensional quotients of an
mi-dimensional space. Thus we have

Φdi

(

zm
)

= zm ·
∑

k>0

e(Grk,mi
)xkei = zm ·

mi
∑

k=0

(

mi

k

)

xkei = zm ·
(

1 + xei
)mi ,

exactly as in (11.2). If (Q,W ) is genteel, then by definition there are no other incoming walls.

11.6. The proof of Theorem 1.5 is completed by the following simple lemma.

Lemma 11.5. Suppose that Q is acyclic and hence W = 0. Then (Q,W ) is genteel.

Proof. The acyclic assumption means that we can label the vertices of Q in such a way that

i < j =⇒ aji = dimC Ext1A(Sj , Si) = 0 .

In particular, this means that if i < j, then 〈ei, ej〉 = aji − aij < 0. Consider a stability
function Z such that φ(Si) < φ(Sj) whenever i < j. Then, it is easy to see by induction on the
total dimension that the only semistable objects are of the form S⊕mi .

Clearly, any simple object is self-stable since it has no proper subobjects. Suppose that a
non-zero object E ∈ A is indecomposable but not simple. Then E has a non-trivial Harder–
Narasimhan filtration with respect to the stability function Z, which means that we can find
1 6 k < n and a short exact sequence

0 −→ A −→ E −→ B −→ 0

such that the stable factors of A are a subset of the simple objects Sk+1, . . . , Sn, and the stable
factors of B are a subset of the simple objects S1, . . . , Sk. This implies 〈B,A〉 < 0, and hence E
is not self-stable.

It seems an interesting question to determine which quivers have genteel potentials. One can
check, for example, that the triangular quiver with potential W = abc is genteel. Note, though,
that this is mutation-equivalent to an acyclic quiver.
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