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Highlights 

 
 First detailed inorganic and organic arsenic speciation data for ground water in Pakistan 

(As+5, As+3, MMA, DMA and AsB) with the highest level of total arsenic up to 3090 µg L-1. 

 As+5 found to be the major species in groundwater while As+3 was dominant at a small 

number (13) of sources only. 

 Mean ratio of As+3 to total arsenic slightly higher than found in Bangladesh.  

 Highest average daily dose of 236.51 µg kg−1 day−1 for total arsenic through drinking 

water ingestion.  

 Average daily dose of 15.63 µg kg−1 day−1 (children) and 15.07 µg kg−1 day−1 (adults) for 

As+5 and, 0.09 µg kg−1 day−1 and 0.26 µg kg−1 day−1 for As+3. 

 

 

 

 

 

 

 

 

 

mailto:gyhj@leeds.ac.uk
mailto:p.kay@leeds.ac.uk
mailto:r.slack@leeds.ac.uk
mailto:Y.Gong@leeds.ac.uk
mailto:annie@brooksapplied.com


2 
 

Abstract 

Understanding arsenic speciation in water is important for managing the potential 

health risks associated with chronic arsenic exposure. Most arsenic monitoring 

studies to date have only measured total arsenic, with few looking at arsenic 

species. This study assessed 228 ground water sources in six unstudied villages in 

Pakistan for total, inorganic and organic arsenic species using ion chromatography 

inductively coupled plasma collision reaction cell mass spectrometry. The 

concentration levels approached 3090 ȝg L−1 (95% CI, 130.31, 253.06) for total 

arsenic with a median of 57.55 µg L-1,  3430 ȝg L−1 (median=52) for arsenate (As+5) 

and 100 ȝg L−1 (median=0.37) for arsenite (As+3). Exceedance of the WHO 

provisional guideline value for arsenic in drinking water (10 ȝg L−1) occurred in 89% 

of water sources. Arsenic was present mainly as arsenate (As+5). Average daily 

intake of total arsenic for 398 residents living in the sampled houses was found up to 

236.51 µg kg−1 day−1. This exposure estimate has indicated that 63% of rural 

residents exceeded the World Health Organization’s provisional tolerable daily intake 

(PTDI) of 2.1 µg kg−1 day−1 body weight. Average daily intake of As+5 was found to 

be 15.63 µg kg−1 day−1 (95% CI, 5.53, 25.73) for children ≤ 16 and 15.07 µg kg−1 

day−1 (95% CI, 10.33, 18.02) for adults. A mean daily intake of 0.09 µg kg−1 day−1 

was determined for As+3 for children and 0.26 µg kg−1 day−1 for adults. Organic 

arsenic species such as monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) 

and Arsenobetaine (AsB) were found to be below their method detection limits 

(MDLs). 

 

 
 
Keywords: Arsenate; arsenite; monomethylarsonic acid (MMA), dimethylarsinic acid 

(DMA); arsenical pesticides; provisional tolerable daily intake (PTDI).  
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1. Introduction 
 
The natural occurrence of arsenic in ground and surface water poses a health risk 

for approximately 200 million people globally (Naujokas et al., 2013). Epidemiological 

studies have indicated an association between chronic exposure to inorganic arsenic 

via drinking water and cancer of the skin, liver, lung, kidney, prostate and bladder 

(ATSDR, 2007a). The toxicity and carcinogenicity of arsenic is strongly associated 

with its oxidation states and chemical forms. Arsenic species in water consist of 

inorganic species such as arsenate (H2AsO4
- or As+5), arsenite (H3AsO3 or As+3) and 

organic species like monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and 

arsenobetaine (AsB). As+3 was found to be 10 times more toxic than As+5 and 70 

times more toxic than MMA+5 and DMA+5 (Squibb and Fowler,1983). Higher 

exposure to inorganic arsenic species is reported to be linked with various toxicities 

including cardiovascular disorders due to oxidative stress (Singh et al. 2011). 

Organic arsenic species in the trivalent oxidation state (MMA+3 and DMA+3) may 

induce higher cytotoxic and genotoxic effects than pentavalent species (MMA+5 and 

DMA+5) and inorganic arsenicals due to their higher membrane permeability. This 

has been exemplified in Chinese hamster ovary cells (Dopp et al. 2004). 

Metabolism of inorganic arsenic to trivalent methylated arsenic species plays an 

important role in increasing the toxic effects as MMA+3 has shown higher toxicities 

than As+3 (Petrick et al. 2001; Petrick et al. 2000). Based on these studies, the 

International Agency for Research on Cancer considers DMA and MMA as possible 

carcinogens to humans (IARC, 2012). Despite this, there is no definitive 

understanding of the mechanism for carcinogenic effects of arsenic species. It is 

important to measure their concentrations in the environment and biological systems 

after ingestion to help understand their roles in the development of cancer (Hughes, 

2009).  

Organic forms of arsenic such as DMA have been used as ingredients in some 

pesticides such as monosodium methanearsonate (MSMA) or disodium 

methanearsonate (Ahuja, 2008; Hughes et al., 2011). Following the identification of 

organic arsenic species in surface waters or aquifers and associated carcinogenic 

effects, policy has been developed to limit exposure. For example, the US EPA 

produced the organic arsenical product cancellation order (USEPA, 2009) and EU 

pesticide legislation was developed i.e. Commission Directive 2003/3/EC: Regulation 

http://www.ncbi.nlm.nih.gov/books/NBK304380/
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(EC) No 304/2003 (Official Journal of the European Union, 2003). Nevertheless, few 

studies, particularly in arsenic affected regions, exist on inorganic arsenic speciation 

in water (Chen et al., 1994; Bhattacharya et al., 2006). In such regions, exposure 

assessments of inorganic and organic arsenic species may assist in identifying the 

likely sources associated with cancer clusters. These may include arsenic 

contaminated ground water used for drinking, food preparation, cooking and 

irrigation purpose. Previous studies undertaken in Pakistan have only determined 

inorganic arsenic using commercial field testing kits (Mahar et al., 2015; Uqaili et al., 

2012; Ahmed et al., 2004) or validated a small percentage of samples in the 

laboratory for inorganic arsenic (Haque et al., 2008; Farooqi et al., 2007). Whereas, 

arsenic speciation studies (Zahir et al., 2015; Brahman et al., 2013 and Baig et al., 

2016) have only analysed As+3 using simple spectrophotometry or Graphite Furnace 

Atomic Absorption Spectrometery (GFAAS). As+5 has been determined only as the 

difference between total inorganic arsenic and As+3, whilst organic arsenic species 

(DMA, MMA and AsB) have not been analysed in water.  

Considering the unknown extent of arsenic species in ground water and 

uncertainties regarding the species dependent arsenic toxicity, the aim of this study 

was to conduct an exposure assessment for different arsenic species in the 

groundwater of six previously unexplored rural settings. The specific objectives were 

to; 1) assess the spatial distribution of total arsenic, inorganic (As+3 and As+5) and 

organic arsenic species (DMA, MMA and AsB) in ground water aquifers; 2) 

determine the magnitude of arsenic exposure from domestic ground water and 

associated health implications. 

 

2. Methodology 
 

2.1   Sampling design and study area characteristics 
 
This study uses a population based probability design within four districts of Pakistan 

(Kasur, Sahiwal, Bahawalpur and Rahim Yar Khan). Six villages within these four 

districts were selected for sampling, where at least one groundwater source was 

found to contain arsenic concentrations >50 µg L-1. The prevalence of arsenic 

associated health symptoms among the native residents of at least 1% of houses 

was also used. Ground water (obtained from hand pumps and dug wells) is the 

major water source in the study villages in the alluvial plain of the south-flowing 
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Indus river and its five major tributaries (Pakistan paedia, 2008). These consisted of 

1776 households, with a population of 15647 (51% men; 49% women) and an 

average of 7 family members per house (Pakistan Bureau of Statistics, 2014). The 

detailed sampling design is published elsewhere (Rasheed et al., 2016b). A sample 

size of 223 households was selected, derived from a formula for estimating sample 

proportions (Collet, 2003). Accordingly, a 95% confidence level and standard error of 

0.05 assumes a statistically significant sample size. Ground water sampling for this 

study was conducted randomly depending on the willingness of 223 households 

simultaneously with data collection on daily water intake rate, body weight, and age 

from 398 residents of such houses. Five additional households were willing to 

participate only in water sampling; hence a total of 228 water samples were collected.   

 
2.2  Samples collection procedure  
 
Groundwater samples were collected from hand-pumps and dug wells at depths of 

10 to 31 m following typical practice of purging for 5 to 10 minutes to obtain fresh 

groundwater. The groundwater samples were collected in duplicate in high 

density polyethylene (HDPE) bottles (125 mL each). One water sample was filtered 

and acidified on-site by adding 2 to 3 drops of concentrated nitric acid (HNO3) to 

stabilize arsenic and reduce precipitation (USEPA method 200.8-modified; US 

Environmental Protection Agency, 1994). The acidified water samples were used to 

analyse total arsenic. For arsenic speciation, the second sample was filtered and 

preserved with 0.125 M ethylenediaminetetraacetic acid (EDTA) (Garbarino et al. 

2002). Samples were kept in an insulated cooler containing ice and transported to 

the local laboratory for storage at 4 °C. They were then transferred to Brooks Applied 

Laboratory (BAL), USA by FedEx courier with dry ice under strict quarantine 

regulations and stored at 4 °C prior to analyses. 

 

2.3   Samples processing for total arsenic and speciation 
 
The pH of water samples was measured in the field using a pH meter (Model 350, 

Jenway). Total arsenic concentrations were obtained using an inductively coupled 

plasma mass spectrometer with Dynamic Reaction Cell (DRC™) technology 

(USEPA method 200.8, modified). Arsenic speciation data were obtained by analysis 

of samples using ion chromatography inductively coupled plasma collision reaction 
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cell mass spectrometry (IC-ICP-CRC-MS). Peak integration was performed by 

automated integration. Chromatographic peaks were integrated using the ICP-MS 

plasma lab software.  

 

  
2.4  Quality Assurance 
 
The quality of analytical work was checked by the analysis of NIST (National Institute 

of Standards and Technology) traceable standard reference materials (SRMs-

1640A, trace elements in natural water), blanks and duplicates (Tables 1). Data 

quality in terms of precision, accuracy, method detection limits (MDLs), and 

completeness met the criteria established in the BAL’s quality assurance project plan 

(QAPP), i.e., relative percent difference (RPD) of <25%, percent recovery of 75 to 

125% and completeness of 80%. 
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Table-1: Summary of Quality Control Data of six analytical batches  
 

Parameter 

Method Detection Limits 
(MDLs) 

Calibration 
Standard (CAL) 

Initial 
Calibration 
Verification 

(ICV) 

Duplicate 
(DUP) 

Matrix Spike 
(MS) 

Certified 
Reference 
Material 

(CRMs) NIST 
1640a 

Laboratory Fortified  
Blank (BS) 

% 
Rec. 

Results SD % Rec. SD 
% 

Rec. 
SD 

% 
Rec. 

SD 
% 

Rec. 
SD 

% 
Rec. 

SD % Rec. Results SD 

Total As 84 0.31 0.28 100 3.16 98 8.01 117 2.46 98 10.57 96 6.91 86% 0.62 0.56 

As
+3

 97 0.36 0.05 104 7.28 108 4.08 106 3.83 103 4.89  - -  89% 0.78 0.37 

As
+5

 109 0.12 0.03 101 9.5 98 1.63 102 7.66 107 7.72  - -  98% 1.07 0.16 

MMA 90 0.18 0.04 97 7.21 75 14.29 109 4.4 109 7.35  - -  97% 1.24 0.21 

DMA 96 0.27 0.04 103 6.47 113 1.63 106 4.69 106 6.93  -  - 97% 1.1 0.17 

AsB 100 0.37 0.03  - -  107 8.57 -  -  -  -   - -  99% 1.08 0.09 

Expected percent recovery: 75-125% 
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2.5   Arsenic Exposure Assessment 

 
The average daily dose (ADD) of total arsenic and arsenic species was calculated 

using Eq. (1) (USEPA, 1997).   

ൌ      ܦܦܣ  ܥ      ൈ ൈ ܴܫ ൈ ܨܧ  ൈ ܶܣܦܧ ܹܤ      (1) 

 
Where ADD is average daily dose (as µg kg−1 day−1), C represents the arsenic 

concentration in ground water (in µg L-1), IR is the drinking water intake rate (L day-

1), EF is the exposure frequency (365 days year-1); and ED is the exposure duration 

(years of using the ground water source). BW is the body weight (kg), and AT is the 

averaging time and is equal to (ED x 365 days/year). For children (≤16 years), the 

specific age class is considered as the ED.  

The chronic daily intake and health risk was assessed for the study population by 

comparing the individual exposure to the reference level i.e. (RfD) and provisional 

tolerable daily intake (PTDI) via a ratio known as the "hazard quotient (HQ)". In this 

study, the HQ is quantified for total arsenic and inorganic arsenic species for each 

study participant (Rasheed et al. 2016b) using Eq. (2) (USEPA, 1997).  

 
ൌ     ܳܪ   (2)   ܦ݂ܴܦܦܣ       

Where;  
HQ Hazard quotient 
ADD Average daily dose of arsenic from the oral ingestion (µg kg−1 day−1) 
RfD Reference dose: 0.0003 mg kg−1 day−1 (USEPA, 1992) for total inorganic 

arsenic 
 

ADD values were compared with the World Health Organization’s (WHO) provisional 

tolerable daily intake (PTDI) of 2.1 µg kg−1 day−1 (WHO 1985). If the calculated HQ is 

equal to or less than 1, the human health effect is assumed to be negligible, while a 

HQ greater than 1 suggests that there may be health concerns (USEPA, 2011). To 

provide a conservative estimate of health risk for this study, the ratio between ADD 

and the oral RfD set by USEPA and between ADD and PTDI for total arsenic 

(JECFA/WHO guidelines) were considered. Considering the absence of RfDs for 

arsenic species, it was assumed that inorganic arsenic is primarily As+5, hence the 

RfD of 0.0003 mg kg−1 day is also used for As+5. Based on 1.5 orders of magnitude 
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of higher toxicity of As3+ than As+5 , an estimated RfD of 0.000006 mg kg−1 day−1  is 

used for As3+ (Markley et al. 2009). 

  
2.6   Statistical analysis 

 
Arsenic data distributions for total arsenic, As+5 and As+3 was found to be positively 

skewed in this study, hence the data set was normalized by log transformation prior 

to statistical analysis. Following the log-normal distribution, arithmetic mean (AM), 

geometric mean (GM), median, upper confidence limit (UCL), upper baseline 

concentration (UBC) were then calculated. Median and the geometric mean (GM) 

were expected to better represent the natural level of arsenic in ground water by 

minimizing. Microsoft Excel and SPSS 17.0 (IBM, New York, NY, USA) were used 

for generating descriptive statistics and Pearson partial correlation analysis. 

Nonparametric Pearson’s correlation coefficients were used to assess the 

relationship between concentrations of total arsenic and arsenic species. Statistical 

significance was two-tailed and set at Į = 0.05. 

 
3. Results and Discussion  
 
3.1  Total arsenic and arsenic species  
 
Statistical observations across the six villages imply non-uniform distribution of total 

arsenic, As+5 and As+3 in groundwater. This observation is supported by large 

differences among mean and median followed by positive skewness of the original 

data (skewness: total arsenic (4.04), As+5 (4.12) and As+3 (4.11). Log-transformation 

of arsenic concentrations significantly reduced the skewness as 0.34, 0.29 and 1.86 

for total arsenic, As+5 and As+3 respectively. The distribution of total arsenic 

examined graphically is given in Supplementary Information (Figures SI-1a and SI-

1b, Table SI-1).  

Village-wise summary statistics of total arsenic and inorganic arsenic species has 

shown the median values closer to the central tendency. The highest median 

concentration for total arsenic was found to be 1670 µg L-1 (95% CI, 1013.91, 

2016.67) in groundwater of village Badarpur (n= 16) followed by 154 µg L-1  (95% CI, 

159.26, 361.16) in village Chak-48 (n=45) and 65.30 µg L-1 (95% CI, 53.82, 74.68) in 

village Chak-46 (n=57) as shown in Table-2. Median total arsenic across all samples 
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(n=228) of study area was found to be 57.55 µg L-1 (95% CI, 130.31, 253.06) and a 

range of 0.48 to 3090 µg L-1 as given below in Table-2.  

Table-2 Summary statistics of total arsenic and inorganic arsenic species (µg 
L-1) in groundwater samples (n = 228) 
 

Analyte Statistics 
Chak-
46/12-L 

Chak-
48/12-I 

Chak 
49/12-l 

Basti 
Balochan 

Badarpur 
Basti 
Kotla 
Arab 

Overall 

No of 
samples 

n 57 45 50 31 16 29 228 

As (Total) 

AM 64.25 260.21 57.73 25.16 1515.29 14.52 191.68 

SD 39.30 336.01 26.42 8.35 940.92 13.23 470.31 

GM 49.76 145.29 49.10 23.25 1075.29 9.21 55.33 

Median 65.30 154.00 61.450 25.90 1670.00 11.40 57.55 

95% CI LB 53.82 159.26 50.22 22.19 1013.91 9.49 130.31 

95% CI UB 74.68 361.16 65.24 27.84 2016.67 19.56 253.06 

Minimum 3.56 8.50 7.11 8.25 43.60 0.48 0.48 

Maximum 228.00 1401.05 95.60 37.70 3090.00 51.40 3090.00 

As
+5

 

AM 64.52 250.11 46.54 20.72 1690.18 16.48 199.22 

SD 38.99 361.88 29.15 7.32 1051.33 15.57 523.95 

GM 127.18 49.49 34.60 18.88 1198.53 9.59 49.08 

Median 64.00 124.00 46.20 21.20 1855.00 12.60 52.00 

95% CI LB 54.18 141.39 38.25 17.98 1129.97 10.56 130.85 

95% CI UB 74.87 358.83 54.82 22.92 2250.40 22.40 267.60 

Minimum 2.40 7.67 3.01 5.05 47.90 0.11 0.11 

Maximum 222.00 1440.00 106.00 29.60 3430.00 62.50 3430.00 

As
+3

 

AM 0.39 3.79 19.22 1.24 0.91 0.62 5.37 

SD 0.08 11.41 30.05 1.21 0.78 0.51 16.61 

GM 0.38 0.81 3.87 0.83 0.70 0.51 0.88 

Median 0.37 0.37 2.73 0.61 0.60 0.37 0.37 

95% CI LB 0.36 0.36 10.68 0.76 0.49 0.43 3.20 

95% CI UB 0.41 7.22 27.76 1.68 1.32 0.82 7.54 

Minimum 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

Maximum 0.96 57.50 100.00 4.82 3.26 2.27 100.00 

n: Number of samples; AM: Arithmetic mean; SD: Arithmetic standard deviation; GM: Geometric mean; GSD: Geometric standard 
deviation; 95% CI: Confidence Interval, LB: Lower bound; UB : Upper bound; 

 

The maximum level of total arsenic in ground water determined in this study is found 

to be higher than previous arsenic monitoring studies undertaken in Pakistan i.e. 0.2 

to 2580 µg L-1  (Khattak  et al., 2016; Rasool et al., 2015; Mahar et al., 2015; Shakoor 

et al. 2015; Zahir et al. 2015; Brahaman et al., 2013; Farooqi et al., 2007; Haque et 

al., 2008; Nickson et al., 2005). The highest level of inorganic arsenic discovered in 

this study is of the same order of magnitude as reported in other studies of arsenic 

rich zones of the world e.g. Bengal Basin, Argentina, Mexico, northern China, 
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Taiwan and Hungary, where arsenic in ground water was found up to 5000 µg L-1 

(Smedley and Kinniburgh, 2002).  

The percentage of total arsenic exceedance above the WHO provisional guideline 

value for arsenic in drinking water (10 µg L-1) was found to be highest for the 

samples collected from the villages of Badarpur and Basti Balochan (100%) followed 

by Chak-48 (98%), Chak-49 (96%), Chak-46 (91%) and Kotla Arab (54%). 126 

sources (56%) were also found to have total arsenic above Pakistan’s water quality 

standard for arsenic (50 µg L-1; PSQCA, 2010) as depicted in Figures 1a to 1c.  

 
 

Figure 1a: Spatial distribution of total arsenic in villages Chak-46/12-L (n=57),  
Chak-48/12-I (n=45) in district Sahiwal 
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Figure 1b: Spatial distribution of total arsenic in villages Chak 49/12-l (n=50)  
and Badarpur (n=16) in Sahiwal and Kasur districts  

 

 
Figure 1c: Spatial distribution of total arsenic in villages Basti Kotla Arab (n=29)   

and Basti Balochan (n=31) in districts RYK and Bahawalpur  

 

Inorganic arsenic speciation results have shown the median As+5 concentration to be 

1855.00 µg L-1 in Badarpur followed by 124.00 µg L-1 and 64.00 µg L-1 in Chak-48 

and Chak-46 respectively. As+5 concentration across all samples ranged between 
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0.11 and 3430.00 µg L-1 with median value being 52.00 µg L-1 (95% CI, 130.85, 

267.60). As+5 was the most dominant inorganic arsenic species and a strong 

relationship existed between total arsenic and As+5 (Pearson’s r = 0.964, n = 228, 

95% CI, 0.929, 0.999).  

Following As+5, the second most prevalent inorganic species was As+3 (Table-2). 

Village-wise comparison of  As+3  showed a highest median concentration of 2.73  µg 

L-1  in village Chak-49 with an overall range of 0.37 to 100 µg L-1 (Table-2).  The 

overall median of As+3  was found to be 0.37 µg L-1 (95% CI, 3.20, 7.54). There were 

only 21 water sources discovered with co-existence of As+3 and As+5 and out of 

these, As+3 was dominant in only 13 sources (Figure 2). 

 

 
Figure-2: Pre-dominance of As

+3
 (µg L

-1
) in some groundwater samples (n = 13) indicated  by 

concentration levels of total arsenic, As
+3

 and As
+5

  

 

Other organic arsenic species (MMA, DMA and AsB) were found to be below or 

close to the method detection limits (MDLs) as shown below in Table-3 

Table 3  Organic arsenic species (µg L
-1

) in groundwater samples (n = 228) 
 

Parameters Statistics 

District Sahiwal 
district 

Bahawalpur 
Kasur 

districts 
district 

RYK 
Overall 

Chak-46/12-L 
Chak-48/12-

I 
Chak 
49/12-l Basti Balochan Badarpur 

Basti Kotla 
Arab 

n=57 n=45 n=50 n=31 n=16 n=29 n=228 

AsB 

Min 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

Max 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

Mean±SD 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.02 
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DMAs 

Min 0.28 0.28 0.28 0.28 0.28 0.28 0.28 

Max 0.28 1.80 0.70 0.28 0.40 0.28 1.80 

Mean±SD 0.28 ± 0.00 0.31 ± 0.23 0.29 ± 0.06 0.28 ± 0.00 0.29 ± 0.03 0.28 ± 0.00 0.29 ± 0.11 

MMAs 
Min 0.20 0.20 0.14 0.20 0.20 0.20 0.14 
Max 0.20 0.20 0.14 0.20 0.20 0.20 0.20 

Mean±SD 0.20 ± 0.00 0.20 ± 0.00 0.14 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.19 ± 0.02 
SD: Standard Deviation  
 
 

3.2  Geological impact on relationship between arsenic species 

The co-existence of As+3 and As+5 possibly associated with variations in aquifer’s 

redox conditions was also evidenced by past studies (Bhattacharya et al., 2006; 

Smedley and Kinniburgh, 2002). However, contrary to the dominance of As+5 in this 

study, As+3 (462 µg L-1) has been found as the principal species in the water sources 

in Taiwan (Chen et al. 1995; Ko et al. 1997). In West Bengal India, 60% to 90% of 

total arsenic existed as As+3 (6.8 to 462 µg L-1) and 20% to 60% as As+5 (7 to 185 µg 

L-1) (Shraim et al.,2002). A mixed reduction-oxidation process associated with 

localized geology was concluded to be responsible for such variations in these past 

studies. A mean ratio of As+3 to total arsenic was found to be within the range 0.1 to 

1.1. This is slightly higher than typically found in Bangladesh i.e. 0.5 to 0.6 

(DPHE/BGS/MML, 1999) and closer to that found (0.7 to 0.9) in reducing 

groundwater of Inner Mongolia (Smedley et al., 2000).  

This study data showed that arsenic in ground water aquifers appeared to increase 

in concentration from the southern region (district Bahwalpur) towards the central 

region (district Kasur) of Punjab province. This study area is located within the Indus 

plain having geogenic presence of quaternary alluvial-deltaic sediments derived from 

sedimentary rocks (Rasheed et al., 2016a; Nickson et al., 2005). Sedimentary rocks 

due to the slow formation over centuries allows for aggregation of iron with greater 

capacities for arsenic retention. Under oxidizing conditions (i.e. oxidation-reduction 

potential >0 millivolts), As+5 is generally found to be the dominant form, whereas, 

higher concentration of more toxic As+3 in ground water is expected under reducing 

conditions (i.e. oxidation-reduction potential <0 millivolts) (Sorge et al.,2014). 

Excessive iron causes the onset of reducing conditions in alluvium (anoxic 

conditions) resulting in higher mobility of As+3 (Smedley, 2008). Indeed, there was a 

strong relationship between iron and As+3 where detected in the current study 

(Pearson’s r=0.954, n=21, 95% CI, 0.755, 1.1533).  

Consumption of ground water with an elevated As+3 concentration could make a 

significant contribution to the intake of toxic inorganic arsenic species, with possible 

long-term adverse effects on the human health. However, the WHO provisional 
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guideline value for arsenic in drinking water (10 µg L-1) and any of international or 

national enforceable regulations do not differentiate among arsenic species.  

Arsenic contamination has also been reported to be associated with shallow wells 

(Mahar et al., 2015; Brahman et al., 2013; Welch et al. 2000; Ahmed et al., 2004). 

This agrees with the current study with presence of arsenic at a depth of 10 to 31 

meters. To remediate shallow well contamination, the strategy of development of 

deeper wells has been the most recommended option for arsenic affected areas. 

However, the presence of more toxic As+3 has been reported in wells deeper than 

170 metres in Taiwan (Tseng et al, 1968; Chen et al.,1994; Guo et al., 1994), 

Bangladesh (Roychowdhury, 2010) and the Mekong Delta in Vietnam (Erban et al., 

2013). Other studies did not find any correlation between arsenic concentration and 

wells depth (Boyle et al.1998; Nimick, 1998). The presence of As+3 in 21 shallow 

wells in this study suggests, nevertheless, that this contamination is not just 

associated with deeper wells. The transport of arsenic in groundwater is also 

reported to be influenced by pH (Lovley and Phillips, 1988). However, the pH of 

ground water in this study was determined to be between 6.50 and 8.10 and there 

was no significant relationship between inorganic arsenic species and pH                       

(Pearson's correlation coefficient (r) as = -0.14 (total arsenic), 0.008 (As+3) and -0.16 

(As+5). 

 

3.3   Arsenic exposure assessment 

Given the high levels of total arsenic in drinking water supplies than WHO provisional 

drinking water guideline value of 10 µg L-1, an exposure assessment was carried out 

for the six villages. The principal factors that have been taken into account in the 

exposure assessment calculations are presented in Table 4. 

The daily intake of total arsenic as an average daily dose (ADD) for 398 persons 

residing within the 223 houses was found to be 15.12 µg kg−1 day−1 (95% CI, 5.59, 

24.66) and 14.18 µg kg−1 day−1 (95% CI, 10.33, 18.02) for age groups of ≤ 16 and 

>16 years respectively. Similar mean values were found for As+5 whereas, for As+3, a 

very low average daily dose is shown in Table-4. Compared with the provisional 

tolerable daily intake (PTDI) value of 2.1 µg day-1 kg-1 body weight (World Health 

Organization, 1989) of inorganic arsenic, 51 of 66 children of age ≤ 16 were found to 

have an average daily dose (ADD) for total arsenic above this limit. 201 of 332 adults 

(>16 years) exceeded the daily intake of 2.1 µg day-1 kg-1 body weight. As the 
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provisional tolerable daily intake (PTDI) value of 2.1 µg day-1 kg-1 body weight (World 

Health Organization, 1989) is set on the basis of total inorganic arsenic no species 

based assessments can be made.  
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Table-4: Average daily dose (ADD) of total arsenic and arsenic species from drinking water 

Age groups n 
Overall 

statistical 
parameters 

Body 
weight 

(Kg) 

*Total 
daily 
water 
intake  

ED (years) 

Average daily dose (µg kg
−1

 day
−1

)  (mean ± SD) 
Population > 2.1 µg kg

−1
 

bw day
−1

 of total 
arsenic  

Total 
arsenic  

As
+5

 As
+3

 MMA DMA AsB count %age 

Age 3-6 5 - 12 ± 3 1.94 5 8.12 ± 5.86 8.37 ± 6.044 0.06 ± 0.02 0.026 ± 0.0056 0.04 ± 0.011 0.06±0.014 5 8 

Age 6-16 61 - 26 ± 8 2.92 12 15.70 ± 41.06 16.22 ± 43.485 0.09 ± 0.15 0.023 ± 0.0063 0.03 ± 0.009 0.04±0.012 46 70 

Age ≤ 16 

66 - 25 ± 8 2.85 12 15.12 ± 39.53 15.63 ± 41.858 0.09 ± 0.14 0.023 ± 0.0063 0.03 ± 0.010 0.04 ± 0.013 51 78 

-  95% CI, LB - - - 5.59 5.53 0.05 0.02 0.03 0.04 -  -  

 - 95% CI, UB - - - 24.66 25.73 0.12 0.03 0.04 0.05  -  - 

-  Minimum 9 - - 0.065 0.01 0.02 0.01 0.02 0.02 -  -  

 - Maximum 44 - - 195.88 226.59 1.05 0.04 0.06 0.08  -  - 

Male >16 206 - 68 ± 14 3.86 20 14.05 ± 33.65 14.73 ± 37.430 0.32 ± 1.01 0.011 ± 0.0045 0.02 ± 0.008 0.02 ± 0.008 144 43 

Female >16 126 - 55 ± 13 3.18 20 14.40 ± 39.05 15.64 ± 44.022 0.17 ± 0.67 0.012 ± 0.0035 0.02 ± 0.005 0.02±0.006 57 17 

Age>16 

332 - 63 ± 15 3.6 20 14.18 ± 35.74 15.07 ± 39.997 0.26 ± 0.90 0.011 ± 0.0042 0.02 ± 0.007 0.02 ± 0.007 201 61 

-  95% CI, UB - - - 10.33 10.77 0.17 0.01 0.02 0.01 -  -  

 - 95% CI, LB - - - 18.02 19.38 0.36 0.02 0.03 0.02  -  - 

-  Minimum 29 - - 0.02 0.005 0.01 0.01 0.01 0.01 -  -  

 - Maximum 105 - - 236.51 262.54 7.57 0.03 0.09 0.06  -  - 

bw: body weight 
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Consumption of water with a total inorganic arsenic level below the WHO value (10 

µg L-1) has indicated a total daily intake of 0.37 ± 0.26 µg day-1 kg-1 for total arsenic 

which did not exceed the PTDI of 2.1 µg day-1 kg-1 body weight. However, at a 

concentration level of 10 to 50 µg L-1, the average daily dose was found to be 2.01 ± 

1.32 µg day-1 kg-1. While, at an arsenic concentration of 50 to 100 µg L-1, intake was 

found to be 5.09 ± 2.90 µg day-1 kg-1 and a higher intake of 59.62 ± 63.32 µg day-1 kg-

1 was found at arsenic concentration levels above 100 µg L-1. These findings have 

revealed that 63% (n=252) of the household members consuming arsenic 

contaminated water >10 µg L-1 also exceeded the PTDI of 2.1 µg day-1 kg-1 body 

weight. These results suggest that countries, including Pakistan, currently following a 

drinking water standard for arsenic of 50 µg L-1 would place many people at risk of 

developing adverse health effects in rural areas.  

The maximum average daily dose of total arsenic in this study was found to be  

236.51 µg kg−1 day−1 (for age group >16) which is higher  than reported in all of the 

earlier studies of Pakistan i.e. 0 to 5.56 x 10-4 µg kg−1day−1 (Muhammad et al., 2010), 

0.11 to 3.7 µg kg−1day−1 (Farooqi et al., 2007), 0.29 to 1.43 µg kg−1day−1 (Memon et 

al., 2016), 0.036 to 5.6 µg kg−1day−1 (Shakoor et al., 2015), 0.5 to 23 µg kg−1day−1 

(Rasool et al., 2015). This highest average daily dose of total arsenic is attributed to 

the higher geogenic arsenic concentration detected in the ground water sources. 

Exposure data from this study is also expected to be higher than those reported for 

other areas of the world such as 2.1 to 4.3 µg kg−1day−1 (Nguyen et al., 2009) and 1 

µg kg−1day−1 (Bui et al., 2014) in Vietnam; 0.023 to 0.0521 µg kg−1day−1 in Turkey 

(Caylak, 2012); 4.5 µg kg−1day−1 (Valberg et al.,1997), 2.2 to 3.3 µg kg−1day−1 

(Meacher et al., 2002) and 177 µg kg−1day−1 (Steinmaus et al., 2003) in USA; 73.9 

µg kg−1day−1 in India (Mazumder et al.,1998); 1.97 to 2.44 µg kg−1day−1 in rural 

Bangladesh (Khan et al., 2009). Most of these studies have used the USEPA default 

body weight of 70 Kg and water intake of 2 litres per day (USEPA, 1989). Average 

daily dose determined in this study was found to be lower than those reported in 

Bangladesh as 50 to 500 µg kg−1day−1 (Karim, 2000) with a body weight of 44 to 55 

kg and a water intake of 2.37 to 3.89 litres per day, daily arsenic intake of 1060 µg 

kg−1day−1 (Pokkamthanam et al., 2011) in India with 4 litres per day water intake. 

Arsenic occurrence in the ground water of Bangladesh i.e. 4227 µg L-1 (Chakraborti 

et al., 2010) was reported far above the Bangladesh drinking water standard of 50 µg 

L-1. In addition to such an excessive levels of arsenic in water sources, water intake 
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values may also have influenced the higher average daily dose as explained in 

Rasheed et al. (2016b).  

There are no set regulatory limits and reference dose (RfD) of organic arsenic 

species to compare the results, however, a very low concentration of organic arsenic 

species (below MDLs) have also resulted in very low average daily doses of MMA, 

DMA and AsB (Table-4). Comparing these findings with minimal risk levels (MRLs) 

defined by the Agency for Toxic Substances and Disease Registry (ATSDR, 2007b) 

has indicated the lower daily intake dose of MMA and DMA.  

 

3.4    Ratio between average daily dose (ADD) and reference dose 

The reference dose (RfD) is the daily chemical dose that results in no long-term 

harmful health effects from prolonged exposure (Lee et al., 2005). For water, the 

regulatory limits are set on the basis of total inorganic arsenic (i.e. RfD: 0.0003 

mg/kg/day) rather than individual arsenic species. The ratio of average daily dose 

(ADD) to USEPA reference dose (RfD) has resulted in higher chronic non-cancer 

risk compared to the ratio between ADD and PTDI also set as HQ for total arsenic as 

given in Table-5. 

HQ calculations for As+5 have indicated results closer to total arsenic due to the 

existence of total arsenic mainly as As+5 and using a similar level of estimated RfD. A 

HQ for As+3 was determined using the RfD for total arsenic (0.0003 mg kg−1day−1) 

and was found to be less than 1 for most of the study participants. However, with an 

estimated RfD (0.000006 mg kg−1day−1) based on reported relative toxicity 

magnitude, a higher level of HQ was depicted (Table-5). 

 

Table-5: Mean Hazard Quotient (HQ) calculated using standard and estimated 
reference doses at 95% CI 
 

Age groups 

Mean Hazard Quotient (HQ) at 95% CI 

Total arsenic As
+5

 As
+3

 

ADD/RfD ADD/PTDI ADD/RfD ADD/RfD ADD/est. RfD 
RfD for total arsenic:  
0.0003 (mg kg

−1
day

−1
) 

PTDI: 2.1 (µg day
-1

 kg
-1

 
body weight) 

RfD equivalent to total 
arsenic: 0.0003 (mg 

kg
−1

day
−1

) 

RfD for total arsenic:  
0.0003 (mg kg

−1
day

−1
) 

est. RfD 0.000006 (mg 
kg

−1
day

−1
) 

Age 3-6 27.07 (9.95, 44.18) 3.87 (1.42, 6.31) 27.89 (10.23, 45.55) 0.20 (0.14, 0.27) 10.07 (6.85, 13.28) 
Age 6-16 52.33 (17.98, 86.68) 7.48 (2.57, 12.38) 54.07 (17.70, 90.45) 0.29 (0.17, 0.42) 14.69 (8.55, 20.83) 
Age ≤ 16 50.42 (18.62, 82.20) 7.20 (2.66, 11.74) 52.09 (18.43, 85.75) 0.29 (0.17, 0.40) 14.34 (8.66, 20.03) 
Male >16 47.98 (31.50, 62.14) 6.69 (4.50, 8.88) 49.08 (32.05, 66.12) 1.08 (0.62, 1.54) 53.85 (30.88, 76.82) 
Female >16 47.26 (25.25, 70.72) 6.85 (3.61, 10.10) 52.15 (26.53, 77.77) 0.56 (0.17, 0.95) 28.09 (8.71, 47.47) 
Age>16 47.26 (34.45, 60.08) 6.75 (4.92, 8.58) 50.25 (35.91, 64.59) 0.88 (0.56, 1.20) 44.08 (28.00, 60.15) 

 The difference of possible health risks estimation subjected to daily reference dose 

or estimated reference doses presses the need to set the regulatory limits for daily 
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intake level of total arsenic and arsenic species. This has also been shown in the 

Food Standards Australia New Zealand (FSANZ, 2002), where PTDI of 0.003 mg 

kg−1day−1bw has been recommended and it is higher by 50% than the JECFA/WHO 

PTDI of 2.1 µg day-1 kg-1 body weight for inorganic arsenic. Various levels of HQ as 

shown below in Table-6 have indicated that 95% of 398 persons living in surveyed 

houses are at risk of a chronic daily intake of arsenic, whereas this intake is 

expected mainly in the form of As+5 (92% of residents with HQ>1) as shown below in 

Table-6.  

Table-6: Results for the chronic exposure assessment 

Arsenic 
species 

RfD Unit 

HQ<1  HQ 1-10  HQ >10  Overall HQ >1  

(No effect) (Effect) 
(Significant 

effect) 
(Effect) 

n % n % n % n % 

Total arsenic  
0.0003 mg kg

−1
day

−1
 20 5  181 45  197 49  378 95  

2.1(PTDI)  
µg day

-1
 kg

-1
 body 

weight 
146 37 210 53 42 11 252 63 

As
+5

 0.0003 mg kg
−1

day
−1

 30 8 185 47 183 46 368 92 

As
+3

 0.0003 mg kg
−1

day
−1

 362 91 25 6 11 3 36 9 

0.000006 mg kg
−1

day
−1

 0 0 291 73 107 27 398 100 

 

The average daily intake of arsenic from drinking local domestic ground water in the 

study area is considerably higher than the levels reported to cause adverse health 

effects in the scientific literature. Chronic and acute health threats to the exposed 

rural communities are likely based on the dataset collected here. This is indicated as 

chronic and acute health complications such as black foot disease at a daily intake of 

10 to 50 µg kg−1day−1 bw (ATSDR, 1991), skin lesions, cardiac or kidney diseases, 

skin, lung, bladder, respiratory and other types of cancer at dose range of 10 to 40 

µg kg−1day−1 bw (Lasky et al., 2004; Lubin et al., 2000; Kurttio et al., 1999; Chiou et 

al., 1995; Hsueh et al., 1995;). Furthermore, the latency time between the 

onset of exposure and the appearance of chronic disease endpoints like cancer is 

reported to be 15 to 30 years depending on daily arsenic intake dose (ATSDR, 

2007a). As such, the study area seems to be a high risk area where household 

ground water sources (hand pumps and wells) have never been tested for detailed 

arsenic species. There were general observations of arsenic associated skin 

problems in the villages Badarpur, Basti Balochan, Chak-46, Chak-48 and Chak-49 

observed by the field sampling team with support of medical staff of basic health 

units. The skin manifestations like hyperpigmentation or hyperkeratosis probably 

associated with the chronic intake of As+5 by the local residents were identified 

following the guidelines of the UNICEF clinical diagnostic manual (Sun et al. 2004). 
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Very high arsenic concentrations found in groundwater might lead to other arsenic 

related health implications in the near future, if villagers continued to consume 

arsenic contaminated water and remedial measures are not taken. To provide the 

rural communities with arsenic free water for drinking and food preparation requires 

identification of alternative safe water sources and/or selection of arsenic treatment 

options capable of removing all the arsenic species. Arsenic free sources include 

surface water and rain water. Arsenic removal options based on oxidation, 

sedimentation, coagulation, flocculation, sorption and membrane filtration have been 

developed and adopted in several arsenic affected regions including Pakistan. 

Considering the economics, scalability and sustainability aspects, an overview of 

such technologies (Supplementay information: Table-SI-2) has revealed that most of 

these options can remove As+5 (Ahmed et al. 2006) but As+3 is comparatively more 

difficult to remove. As+3, when present can be oxidized to As+5 for efficient removal in 

household or community level technologies as reported by Lan, 2013; Litter et al. 

2010; Ramos et al. 2009; Garrido et al. 2007; Clifford and Ghurye, 2001; and, Pal, 

2001. Studying arsenic speciation in drinking water sources is critical to 

understanding potential health risks and geochemical control is needed as an 

efficient water treatment solution. Understanding the contribution of individual 

arsenic sources to overall arsenic burden is important in developing the most 

appropriate risk management strategies. 

 

4. Conclusions 
 
Most studies evaluating human exposure to arsenic have focused on total arsenic 

and the role of individual arsenic species is still a pressing research need. Thus, this 

is the first study in Pakistan to characterise both the inorganic and organic arsenic 

species using ion chromatography inductively coupled plasma collision reaction cell 

mass spectrometry. The highest level of total arsenic in groundwater was found to be 

3090 ȝg L−1 and is likely to be the most common pathway for long-term arsenic 

exposure. As+5 was the dominant inorganic arsenic species in 94% of samples 

across all the villages studied. Nevertheless, As+3 was identified in one village as the 

dominant pollutant, indicative of a reducing environment in the aquifer, and is 

considered the most toxic species as well as being difficult to remove using most of 

the arsenic remediation technologies. Organic arsenic species such as 
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monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine 

(AsB) were below detection limits, confirming that contamination of aquifers by 

human impacts (e.g. by use of arsenical pesticides and fertilizer) is low and the 

predominant source is geological arsenic release. An average daily intake of arsenic 

up to 236.51 µg kg−1 day−1 was determined which is the highest of all reported levels 

in Pakistan and of several other arsenic affected countries, other than Bangladesh 

and India. This level of arsenic intake is likely to be associated with potential health 

risks among exposed rural communities consuming ground water with arsenic above 

10 µg L-1. These results may prove useful for risk assessment and for regulatory 

agencies to reconsider the maximum contaminant level of arsenic in drinking water 

and define the regulatory limits for arsenic species. Further research efforts are 

needed to understand the spatial variation of arsenic species in various geological 

settings and their long term exposure assessment. The study findings also demand 

the adoption of efficient and sustainable remediation approaches to address the 

treatment of arsenite (As+3) for the supply of arsenic free water to rural households.   
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Supplementary Information 

 
Figure SI-1a. Distribution frequency of total arsenic 

(original data) concentrations in ground water 
 

 
Figure SI-1b. Distribution frequency of total arsenic  

(log transformed data) concentrations in ground water 
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Table-SI-1 Summary statistics of log transformed total arsenic and inorganic arsenic species 
(µg L

-1
) in groundwater samples (n = 228) 

 

Analyte Statistics 
Chak-

46/12-L 
Chak-
48/12-I 

Chak 
49/12-l 

Basti 
Balochan 

Badarpur 
Basti 
Kotla 
Arab 

Overall 

No of 
samples 

n 57 45 50 31 16 29 228 

As (Total) 

AM 3.91 4.98 3.89 3.16 6.98 2.22 4.01 

SD 0.86 1.06 0.66 0.37 1.10 1.1 1.44 

GM 4.85 4.85 3.83 3.11 6.88 * * 

GSD 2.35 2.97 1.93 1.58 2.98 3.02 4.24 

95% CI LB 3.68 4.65 3.71 3.02 6.40 1.80 3.82 

95% CI UB 4.13 5.31 4.08 3.31 7.56 2.64 4.20 

Log-
Median 

4.18 5.04 4.12 3.25 7.42 2.43 4.05 

Minimum 1.27 2.14 1.96 2.11 3.78 0.73 0.73 

Maximum 5.43 7.24 4.56 3.63 8.04 3.94 8.04 

As
+5

 

AM 3.90 3.95 3.54 2.95 7.09 2.26 3.89 

SD 0.89 1.15 0.9 0.42 1.09 1.1 1.53 

GM 3.75 4.7 3.4 2.88 6.99 * * 

GSD 2.429 3.159 2.449 1.651 2.984 3.717 4.617 

95% CI LB 3.67 4.5 3.29 2.78 6.51 1.76 3.69 

95% CI UB 4.14 5.19 3.8 3.12 7.67 2.76 4.09 

Log-
Median 

4.16 4.16 3.83 3.05 7.53 2.53 3.95 

Minimum 0.88 2.04 1.1 1.62 3.87 -2.21 -2.21 

Maximum 5.4 7.27 4.66 3.39 8.14 4.14 8.14 

As
+3

 

AM -0.96 -0.21 1.35 -0.18 -0.36 -0.68 -0.12 

SD 0.14 1.34 2.00 0.86 0.7 0.58 1.45 

GM * * * * * * * 

95% CI LB -1.00 -0.61 0.79 -0.52 -0.73 -0.90 -0.31 

95% CI UB -0.92 0.19 1.92 0.16 0.02 -0.46 0.07 

Log-
Median 

-0.99 -0.99 0.99 -0.49 -0.51 -0.99 -0.99 

Minimum -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 

Maximum -0.04 4.05 4.61 1.57 1.18 0.82 4.61 

n: Number of samples; AM: Arithmetic mean; SD: Arithmetic standard deviation; GM: Geometric mean; GSD: Geometric standard deviation; 95% 
CI: Confidence Interval, LB: Lower bound; UB : Upper bound; BDL: Below Detection Limit 
Limit of detection (LODs): total arsenic (0.01 µg L

-1
), As

+5
 (0.11 µg L

-1
) and As

+3
 (0.37 µg L

-1
)
   

 
* Negative values due to very low log-transformed arsenic concentration, hence their GM and GSD could not be calculated.  
Where negative values are given, it should be noted that they are in log and in actual represent low concentrations of arsenic.   
 

  



31 
 

Table-SI-2: An overview of household and community level arsenic removal technologies (ARTs) 
ART name Process/Removal mechanism Year  Type Removal 

efficiency 
Region of 
Application 

Cost (unit & yearly 
operation and 
maintenance (O&M) 

Claimed life Advantages Drawbacks Reference 

Two Bucket Treatment 
Unit (2BTU) 
 

Coagulation by addition of alum as a 
coagulant,   potassium permanganate, added 
as an oxidizer, bind arsenic to the flocs, 
which are filtered out by sand layer at the 
bottom bucket. 

1998 hh 60% Bangladesh Capital cost: USD 10 
chemicals cost/year: 
USD15-20 

.n.r  75% of the installed units 
removed arsenic to below 
50 µg L

-1
. 

 
 production from locally 

available material  

issues in user’s 
acceptability due to 
chemicals addition 
 

Robinson (2000) 

Three Kolshi Filter Unit 
(Adsorption and filtration) 
 
  
 

Three traditional water filters or clay pitchers, 
stacked vertically in a frame.  
Top kolshi: contained a layer of iron filings 
and a layer of coarse sand,  
Middle kolshi: contains a layer of charcoal 
and a layer of fine sand,  
Bottom kolshi for the filtered water.  

2000 hh 97% Bangladesh USD 40-50 capital cost unit 
replacement 
after 3-5 years 

 low cost and short term 
solution up for about 3-4 
months  

 produced from locally 
available material. 

 

 Solid lump formation 
after two weeks of 
usage and difficult to 
clean. 

 
 arsenic exceeds  above 

50 µg L
-1

before 6 
months 

Munir et al. (2001);    
CAWST (2009) 
 
 

Rama Krishna Mission 
(RKM) Filter Unit  
 
(Coagulation and 
filtration) 

Powdered Ferric Alum is used as coagulant in 
combination with bleaching powder solution 
as an oxidant. Tripura candle filter is used to 
filter Arsenic flocs.  

1999 hh Initially 
removes 
arsenic to 
below 0.05 
mg L

-1
 

West Bengal 
 

USD 40-58 n.r easy to use and low cost     poor arsenic removal 
due to issues with 
continuous supply of 
high-grade chemicals,  

Robinson (2000) 

Amal Domestic Water 
Purifier 
 
(Adsorption) 

Composed of conventional two-chamber 
domestic candle filter body, with a layer of 
Aluminum oxide in the top chamber.  
 

1998 hh n.r West Bengal USD 40-58 Two years 
(claimed life of 
activated 
alumina)  

adsorbing media can be 
regenerated by flushing with 
sodium hydroxide and acid.  
 

 media saturation and 
clogging in less than 6 
months  

Robinson (2000) 

Kanchan Arsenic Filter 
(Adsorption) 

Arsenic adsorbed on the rust of the iron nails. 
The rust and Arsenic flake off the nails, and 
are caught in the sand filter and retained 

n.r hh 85-95% Bangladesh 
and India 

USD12-40 More than 10 
years 

maintenance required at 
reduced flow rate  

 Filter must be used 
almost every day to 
maintain the biological 
layer (maximum pause 
period is 48 hours). 

 Sand and iron nail 
selection and 
preparation are critical 
to ensure flow rate and 
treatment 

CAWST (2009) 

Passive Sedimentation 
(Aeration) 

Aeration of water for 12 hours and then 
leaving to settle for 12 hrs. 

n.r hh 30-50%  Bangladesh USD 5 n.r easy to use and short term 
household solution   
 

long storage duration 
increases chances of 
faecal contamination    

CAWST                    
(2009) 

Tablet Reagents (Co-
precipitation) 

Handmade black coloured tablets made of 
ferric salt and activated charcoal 
 
 

2000 hh 50% Bangladesh USD 2.00/year supply 
of tablets 

n.r higher arsenic removal 
efficiency of 95-100% in the lab 
with shelf life of 15 months 

lower arsenic removal 
efficiency in the field  

Das et al. (2000) 

Sub-surface aerated 
water injection  
 

Pumping the aerated water into the saturated 
zone of an aquifer, either through an 
abstraction point or an adjacent purpose-built 
well.  
 

n.r Comm not efficient 
to remove 
arsenic below 
10ug/L 

Bangladesh n.r n.r double-well designs have the 
advantage to use alternatively 
for arsenic removal 

arsenic removal 
dependent on the 
groundwater properties 
such as; arsenic/iron 
ratio, effect of varying pH 
and interference by 
phosphorous.  

Matthews (2014) 
 
Halem et al. (2010) 

Alufloc  
 

Household-level coagulant made of  
aluminium sulphite and ferric chloride 

n.r hh 98% with 
100  µg/L 

Bangladesh  USD 0.15 per bucket 
treated 

n.r effective in reducing arsenic 
content to safe levels 

arsenic removal efficiency 
decreases with higher 
dissolved arsenic 

Bedolla et al. (1999) 

Stevens Institute 
technology (Coagulation, 
Sedimentation and 
Filtration) 

Two buckets system: one for mixing the 
packet of iron coagulant and hypochlorite, 
the other one with sand bed to filter the flocs. 
Treated water is collected through a plastic 
pipe fitted with an outlet covered with a cloth 
filter to prevent sand 

2001 hh <50 ug/L Bangladesh n.r n.r enhanced coagulation and co-
precipitation (ferrous sulphate) 
and less dependent on 
groundwater Iron 

excessive bicarbonates 
may reduce the efficiency  

Sutherland et al. 
(2001) 
 
 



32 
 

Safe water treatment unit 
(Coagulation and 
filtration) 

300 litres upper reaction vessel filled with 
contaminated water and BAT solution, after 
30 minutes of reaction time allowed to pass 
through sand filter to store into lower storage 
vessel 

2004 Semi-
comm 

>95% Pakistan USD 400  4 years  no longer contact time 
required 

 arsenic removal from 
1000 µg L

-1 
to <10 µg L

-1
 

regular backwashing 
required 

Kahlown et al. 
(2005) 

Fill and draw treatment 
unit (Flocculation and 
filtration) 

600 litres reaction vessel filled with water and 
the required quantity of oxidant and 
coagulant, stirred for 30 seconds and left 
overnight for sedimentation, filtered through 
sand bed and collected through vessel tap.  

n.r Semi-
commu
nity 
type 

 
n.r 

installed in 
schools/colleg
es/communitie
s in 
Bangladesh 

USD 265/ unit n.r semi-community level option longer contact time Ahmed (2006) 

Tube well-attached 
arsenic treatment unit 
(coagulation, 
sedimentation, and 
filtration) 

Unit attached to hand pump-operated tube 
well, involved addition of sodium hypochlorite   
and alum in diluted form followed by mixing, 
flocculation, sedimentation, and up flow 
filtration in a compact unit 

2000 commu
nity 

90% West Bengal, 
India 

n.r n.r effective in removing 90% of 
the arsenic from tube well 
water 

operation of the system 
depends on regular 
washing of the filter bed. 

Ahmed and 
Rahman (2000) 

Iron-arsenic treatment 
unit (precipitation and 
adsorption) 

natural iron in water precipitated to remove 
arsenic by oxidizing As

+3
 to As

+5 
  and finally 

by adsorption.  

1998 both 50-80% Bangladesh n.r n.r reduction in arsenic from half 
to one-fifth of the original 
concentration. 
 

community ownership 
created issues with 
regular washing of the 
filter bed  

Ahmed (2006) 

Combination of  
aeration, sedimentation & 
rapid sand filtration 
 
 

medium-scale iron-arsenic removal plants n.r comm. 40-80% for 
arsenic level 
of  100 µg/L 

Bangladesh variable according to 
size 

n.r arsenic removal by co-
precipitation and adsorption on 
natural iron flocs has good 
potential for arsenic content up 
to about 100 µg/L 

higher water requirement 
for washing the filter beds  

Ahmed (2006) 

Arsenic removal by 
softening 

Calcium carbonate formation by lime in water 
used to adsorb arsenic. 
arsenic removal through sorption of arsenic 
onto magnesium hydroxide solids that form 
during softening.  

n.r both 40-70% Multiple 
regions 

n.r n.r efficient to treat water with high 
hardness, especially at 
pH >10.5. 

large lime doses (800–
1,200 mg L

-1
) result in 

large volume of sludge. 
pH adjustment  of treated 
water required,  
relatively low removal 
efficiencies  

McNeill and Edward 
(1997)  

Activated alumina filters 
(BUET activated alumina,  
Alcan enhanced activated 
alumina and  Apyron 
Arsenic treatment units) 

Adsorption of arsenic on active surface of the 
media  

n.r hh to 
sem-
commu
nity 
level 

moderate 
efficiency 

Bangladesh 
and India 

n. r  
 

6 months  no chemicals required 

 highly selective towards 
As

+5
 

 effective with water with 
high total dissolved solids 
(TDS) 

 with exhaustive 
sorptive sites media 
cannot remove arsenic 

 interference by iron 
and phosphate 

 5–10% of the alumina 
is lost during removal 
process and the 
capacity of the 
regenerated medium is 
reduced by 30–40%.  

 replacement of 
activated alumina after 
3–4 regenerations. 

Ahmed (2006) 

Activated aluminium 
hydroxide hydrogel 

Hydrogel produced from hydrated aluminum 
sulfate, powdered calcium hypochlorite, 
ammonium hydroxide and demineralized 
water. 

1994 n.r >90% Tucuman 
province 
(Argentina) 

n.r n.r arsenic reduction (40–800 µg 
L

-1
) to below 10 µg L

-1
 

not found Litter et al. (2012) 

Granular iron oxide 
(Bayoxide

®
, GFO)  

contains less than 70% of Fe2O3 1999 comm 95% Multiple 
regions 

n.r n.r viable product with arsenic 
removal efficiency 

interferences of other ions 
during arsenic adsorption  

Dennis. (2016) 

Granulated ferric 
hydroxide 
e.g. 
granular ferric hydroxide 
GFH

®
 or (AdsorpAs®) 

Arsenic removal by activated alumina 
controlled by the pH and arsenic level of 
water, Arsenic removal is optimum in the 
narrow pH range from 5.5 to 6.0 when the 
surface is positively charged.  

n.r both >90% India and 
Bangladesh 

USD 4,300 for 
community 
 

>3,600 litres of 
arsenic free 
water per day 
for 100 families 

 highly effective adsorbent 
for As

+5
 and As

+3
 

 
 adsorption capacity of 45 

g/kg for arsenic on a dry 
weight basis 

 requires aeration for 
oxidation of water and 
pre-filtration for 
removal of iron flocs 
before filtration 
through active media 

 
 regeneration of 

saturated alumina 
results in high-arsenic-
contaminated caustic 
waste water. 

Pal (2001) 
 
Matthews (2014) 
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Electro-Chemical Arsenic 
Remediation (ECAR)  
 
(electro-coagulation) 
 

Uses a small electrical charge through an iron 
electrode to produce ferric hydroxides, oxy-
hydroxides, and oxides, a form of rust. The 
rust reacts with the arsenic in the water to be 
filtered or allowed to settle out of the water.  

n.r both >90%. Argentina 
Bangladesh 

n.r n.r  does not require continuous 
chemical supplies  

 electrode cleaning by 
reverse current once a day.    

electricity dependent 
option 
 

Matthews (2014) 
 
 

The Shapla Arsenic Filter 
(Adsorption) 

Iron-coated brick chips manufactured by 
treating brick chips with ferrous sulphate 
solution used as adsorption media 

n.r hh 80-90% Bangladesh. capital cost: USD10 
media replacement 
cost/year: USD10-15 

media lifespan 
of 3-6 months) 

used filter media is non-toxic 
and can be disposed of safely  

n.r CAWST (2009) 

READ-F Arsenic filter 
(Ion-exchange resins) 

the READ-F is ethylene-vinyl alcohol co-
polymer-borne hydrous cerium oxide (an 
adsorbent) 
 

n.r hh >95% Bangladesh 
and 
Japan 

USD 50-70 3 years  effective adsorption of As
+5

 
and As

+3
 

 
 regeneration by adding 

sodium hydroxide and then 
Sodium hypochloride and 
finally washing with water 

pre-treatment of iron by 
sand filtration to avoid 
clogging of the resin bed. 
 

Matthews (2014) 
 

SORAS (solar oxidation 
and removal of Arsenic) 

Based on principle of SODIS but lemon juice 
is added and kept under sunlight as a source 
of UV to cause oxidation of As

+3
 to As

+5
. The 

As(V)/Fe(OH)
3
 co-precipitate and settles at 

bottom. 

n.r hh 75- 90%  South East 
Asia, Latin 
America 

minimal na reactive oxidants are produced 
photo chemically with sunlight 

low scalability CAWST (2009) 

SAFI filter (adsorption & 
filtration) 

Removes arsenic by filtration and adsorption 
through porous material of filter.  
 

n.r both >73% Bangladesh 46 USD n.r user friendly and readily 
available 

reduced flow rate of water 
with the passage of time  

Rahman et al. 
(2005) 

Memstill® technology combines multistage flash and multi-effect 
distillation modes into one membrane 
module 

2007 hh  n.r Bangladesh 
and India 

 n.r  n.r  arsenic free water at cost 
lower than for reverse 
osmosis (RO) and 
distillation 

 Small scale applications 
using solar heat 

improper cleaning of 
membrane may results in 
expiry of membrane 

Feenstra et al. 
(2007) 

Cerium oxide CeO2 nanoparticles firmly fixed on the walls 
of silica monoliths(SCO) and  demonstrated 
a superior dynamic arsenic removal 
performance 

2012 both 87% Multiple 
regions 

n.r n.r SCO composite easily 
desorped/regenerated for re-
use 

n.r Shimoto (2007)  

Magnetic micro-sorbents the high saturation magnetization of 
Fe3O4@TiO2nanoparticles (45.56 emu/g) 
facilitates their separation from aqueous 
solutions by use of a moderate magnetic field 
and cause Arsenic adsorption 

2003 both n.r n.r n.r n.r faster adsorption of As
+3

 
 

tremendous application in 
water industry and no 
drawbacks found in 
literature 

Lan (2013) 

Nano-particulate 
ZVI(NZVI)  
 
(Adsorption) 

rapid removal of As
+3

 and As
+5 

 from 
subsurface environment 

2005 both 99.9%  Multiple 
regions 

n.r variable formation of arsenic neutral 
after reaction of As

+5
 and As

+3  

on the nano-particle surface.  

efficiency decreases by 
increasing pH and arsenic 
concentration in solution 

Ramos et al. (2009) 

Ion exchange media Resin made of cross-linked polymer skeleton 
having attached the charged functional 
groups through covalent bonding.  Following 
pre-oxidation of As

+3
 to As

+5 
 is removed is 

removed using the ion exchange process.  

n.r both >90% Multiple 
regions 

USD 2,000. variable  effective technology even at 
higher flow rates of tube 
well water. 

 

 As
+5

 removal is relatively 
independent of pH and 
influent concentration. 

   excess oxidant may 
damage the resin and 
thus needs to be 
removed.  

 
   Interference by 

competing anions to 
affect run length. 

 

   clogging by suspended 
solids and precipitated 
iron  

Clifford (1999) 
 
 

Nano-filtration Separation of ionic species by nano-filtration 
membrane is dependent 
on membrane charge and pore size 
 

n.r both 95% of As
+5

 
and >75% of 
As

+3
 

Multiple 
regions 

variable n.r high pressure, high pH and low 
temperature favor more 
efficient arsenic removal. 
 

 fouling or scaling of 
membrane by iron or 
manganese 

 

 backwashing cannot 
recover membrane 
fouling 

 

Sato et al.          
(2002) 
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 As
+3

 cannot be 
removed 

Reverse Osmosis (RO) high-pressure membranes of RO (75–
250 PSI or higher) causes reversal of natural 
osmotic flow resulting in rejection of 
polyvalent ions including arsenic oxy-anions 
 

n.r both 
hh and 
comm 
 

40-99% Argentina, e.g. 
in the 
provinces of 
Santa Fe, 
Córdoba and 
La Pampa 
 

variable with size n.r  simple operation and 
maintenance (O&M) as no 
chemical addition 

 periodic membrane cleaning 
required 

 effective for community and 
household application 

 effective for treating water 
with high total dissolved 
solids (TDS) water 

 

 water recovery rates of 
only 10–20%   

 higher electric power 
consumption 

  higher capital and 
operating costs  

 higher risk of membrane 
fouling 

 suitable for lower levels 
of arsenic  

 disposal of arsenic 
containing rejected brine 
water/sludge is a 
concern 

 poor removal of As
+3

 as 
oxidation to As

+5
 is 

difficult and  may cause 
membrane damage  

 pre-treatment required  

Clifford (1999)  
Litter et al. (2010) 
Robert (2002) 

Capacitive Deionization 
(CI) 

unit consists of low-cost filter of coal 
electrodes causes deionization by flow 
through a capacitor with electrostatic load 
 

n.r both 98.51% 
 

Mexico n.r n.r  system cleaning with 
smaller amount of chemical 
reagents  

 removal of As
+5

  and As
+3

  

 rejection of  3-4% of treated 
water  

 lower operation and 
maintenance (O&M) cost 

suitable for water with 
total dissolved solids 
(TDS) <3000 mg L

-1
 

Litter et al. (2010) 
Garrido et al.(2008) 

Electrodialysis  Electrodialysis is a membrane process, 
during which ions are transported through 
semi permeable membrane, under the 
influence of an electric potential 
 
 

n.r comm 80% Multiple 
regions 

n.r n.r  equally effective like RO in 
treating high total dissolved 
solids (TDS) water   

 reduced scaling  

 very high costs 
 
 pre-treatment  required 

 

Litter et al. (2010) 
 

In-situ remediation: 
Permeable Reactive 
Barriers(PRB) 
 

Appropriate reactive material based on 
based on sorption, precipitation, chemical 
reaction and/or biogenic reactions, is able to 
induce physicochemical and/or biological 
processes to remediate groundwater 
contamination 

1999 comm n.r Multiple 
regions 

n.r n.r  significant cost benefits  

 low operational costs 

 low-cost local materials can 
be used 

 efficiency affected by 
microbiological and 
geochemical 
processes  

 corrosion of materials. 
 diminished 

permeability by 
precipitation of 
sulfides, oxides, 
hydroxides and 
carbonates. 

Litter et al. (2010) 
 

hh: household, comm: community, USD: US Dollar, n.r: not reported 
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