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Abstract

We consider two minimal models of active fluid droplets that exhibit complex dynamics including
steady motion, deformation, rotation and oscillating motion. First we consider a droplet with a
concentration of active contractile matter adsorbed to its boundary. We analytically predict activity
driven instabilities in the concentration profile, and compare them to the dynamics we find from
simulations. Secondly, we consider a droplet of active polar fluid of constant concentration. In this
system we predict, motion and deformation of the droplets in certain activity ranges due to instabilities
in the polarisation field. Both these systems show spontaneous transitions to motility and deformation
which resemble dynamics of the cell cytoskeleton in animal cells.

1. Introduction

In animal cells, motility and morphology are strongly coupled and are largely due to the activity of the cell
cytoskeleton. Research into these areas is broad and has many applications, from studying metastatic cancer cells
to wound healing. In order to mimic aspects of these systems we model, both analytically and numerically,
examples of active cytoskeletal material confined to droplets. An active material is defined as driven out-of-
equilibrium by the internal energy of its constituent particles [1]. We use the hydrodynamic model of an active
polar fluid outlined in [2—4] to model the behaviour of such a material at long length and time scales.

Opver the past decade there have been a number of calculations of instabilities and non-equilibrium steady
states in active liquid crystals; thin or 2D flat films [2, 5-9], thin cortical layers [10—13], confined in emulsion
droplets or vesicles [14—21], and simplified models of animal and plant cells [22—27]. In this paper we model
deforming active droplets immersed in a passive fluid using linear perturbation theory. By making justified
assumptions, we are able to predict non-equilibrium phase transitions in both of the systems we consider, and
predict how the droplet deformation couples to these. These analytical calculations are presented for the three-
dimensional case and also repeated for the two-dimensional analogue where we find qualitatively similar results.
Numerical simulations use the two-dimensional Immersed Boundary method used in [28] and are directly
compared to the two-dimensional analytical calculation.

The models presented here are relevant to active systems in vitro (constructed using techniques in [29-31]) as
well mimicking aspects of cell dynamics. The two cases we consider correspond to two limits of active
cytoskeletal behaviour (see figure 1) that represent the minimum degrees of freedom required to observe
interesting out-of-equilibrium dynamics. In both cases we consider a 1-component model used originally in [2],
which allows us to investigate the coupling with droplet shape dynamics analytically. The linear stability analyses
are restricted by assumptions which enable an analytical understanding of the mechanisms involved in
producing the observed behaviour in numerical simulations.

Firstly, we consider an isotropic layer of contractile active material confined to an interface between two
fluids, which has physical similarities to the actomyosin cortex in cells. The stresses generated are confined to the
plane of the interface giving rise to flows in the surrounding fluid and deformation of the interface itself.
Interestingly, diffusion of the active particles through the bulk can result in a change in which mode of the
perturbation has lowest critical activity, from a single peak instability driving droplet motion to higher modes

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. 2D schematic of (a) active fluid interface: active concentration c on the droplet interface coupled to the internal
concentration p. (b) Active polar droplet: constant density of active filaments with local average polarisation p (red arrows). Blue
arrows indicate active contractile force dipoles.

which produce symmetric deformation. Furthermore, simulations show that advection through the bulk can
stabilise such modes. This suggests that droplets with an active interface could spontaneously deform and
possibly divide due to the feedback from the fluid flow.

Secondly, we consider a highly ordered active polar liquid crystal confined inside a fluid droplet. In this case
the polarisation gradients direct the internal stresses giving rise to fluid flow. A polar anchoring condition at the
interface means that the deformation of the droplet and polarisation field are strongly coupled. We find in this
case there is a separation of swimming and stationary deforming modes, such that extensile activity destabilises
the defect position and results in a swimming drop, whereas a contractile activity stabilises the centred defect
position and gives rise to deformations of the interface.

2. Active fluid interface

In this section we consider a fluid droplet coated by active particles on its interface that are isotropically ordered.
Such systems have been found to self-organise in in vitro experiments using reconstituted active cytoskeletal
material contained in vesicles or droplets [32, 33]. These experimental systems are a useful tool for
understanding the more complex dynamics of cells. The model in this section makes predictions of interesting
active phenomena including symmetry breaking, and droplet deformation, that are relevant to the field of cell
mechanics.

2.1.Model

We consider a fluid droplet described by an interfacial surface 3 separating the contained fluid domain €2y and
external fluid domain €, with viscosities 7, and 7, respectively. We define a concentration of active matter
c(9, ¢, t) onthe interface 3, which alters the droplet surface tension ysuch that v = ~, — (. ¢ — Bc?/2. v, is
the bare surface tension, ¢_ is the activity (. < 0 for contractile) and Bis a passive repulsion force. This higher
order repulsive term represents passive pressure, similar to that in [12], which parametrises the compressibility
of the active fluid on the interface. We denote the effective surface tension 'yg = — (.0 — Beg / 2,whichis
the value of yin the stationary state.

The force density on the droplet interface is then: F = xyf + (V) £, where fi = # (0, ¢, t)is the outward
surface normal, £; = #;(0, ¢, t)arethe orthogonal surface tangent vectors, x = V - fiis thelocal curvature,
and V, = (¢ - V) is the surface gradient. It is useful to define the effective activity ¢ = ¢, + Bcywhich defines
the scale of the force F for small deviations of the concentration ¢ from c. Thus, the interface has net
contractility for ¢ < 0.

The only forces acting on the system originate at the droplet surface >, with position R = R (6, ¢, t)é,
assuming this is single-valued with respect to the angular coordinates (6, ¢). Thus, the resulting force density in
the fluidis f&(r, 0, ¢, t) = F5[r — R(6, ¢, t)]. Weignore inertia taking the low Reynolds’ number limit,
Re = 0, thus the incompressible fluid flow (V - v = 0) is described by Stokes’ equation
7, Vv + f&t — VP = 0,wheren = 0, 1 denotes the domain Qg or O, v = v(r, 0, ¢, t)is the fluid velocity,
f&t = f(r, 0, ¢, t)denotes any external force densitiesand P = P (r, 0, ¢, t)is the hydrostatic pressure.
We take the limit of a zero-thickness interface and assume flow and stress continuity between the two fluids €2,
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and €. This means the active particles act as an active surfactant, rather than a thin viscous layer (asin [8, 11—
13, 26, 271), which allows us to study the dynamics of deformation in a 3D viscous environment analytically.
The evolution of the surface concentration ¢ with respect to time ¢ is:

¢ ==V, (evp) + DVic — kofic + konpps (1)

where ¢ = dc/0t, v, = v(r = R, 0, ¢, t)istheinterface flow velocity, D is the diffusion constant for the active
particles on 3, and ko, o are binding and unbinding rates of the particles to the interface. The concentration of
unbound particles in the bulk of the drop is denoted p = p(r, 0, ¢, t). Binding occurs at the interface where we
denote the concentration of unbound prticles p, = p(r = R, 0, ¢, t). Note that k, has units of velocity, as it
contains the adsorption depth parameter. We assume that the active particles are insoluble in the external fluid,
and so the evolution of the bulk concentration p is given by:

p=—-w-V)p+ D, V% @)

with the boundary condition D, (n - V)p = konp — kofrc atr = R, to ensure conservation of mass. The
parameter D, is the bulk diffusion constant of the active particles. Here we assume that the active particles only
generate stresses at the interface, so the bulk concentration acts as a buffer to recycle the surface concentration.

2.2. Linear stability analysis

In this section we present the results of a linear perturbation to the stationary ground state of the droplet. The
system is in a stationary (velocity v = 0) steady state when the interface is spherical (fixed radius R = Ry) witha
homogeneous concentration of active particles (¢ = ¢;). Then the bulk concentration is p, = ko co/kon inside
the drop, and the hydrostatic pressure inside is P = P + (2, — Cco) / Ry where P, is the stationary state
pressure in the external fluid. We perform alinear stability analysis by applying a small perturbation to the
variables defined at the interface Rand cof the form: § = g, + >°;2 12;,:,, 0g,, () Y]" (0, ¢), where Y" are the
spherical harmonic functions and 6g;,, < g,. To first order, the resulting flow is given by Lamb’s solutions for
flow around a sphere, which can be expressed as vector spherical harmonics [46]. Solving the Stokes equation
with flow and stress continuity conditions at the droplet interface gives expressions for 6v,? (as defined in [34]
and supplementary information appendix A) in terms of dcj,,, and 6R,,,. The perturbation on the interface is also
coupled to a perturbation of the internal concentration p such that

k oo

= [ﬂ + >3 bp(r, Y.
kOH I=1m=-1

We obtain analytical solutions for the stability by assuming a quasistatic solution for ép (taking p = 0). This

assumption corresponds to a fast relaxation of the bulk concentration p compared to the timescale of evolution

of the surface concentration c. At linear order, the solution for §p simply satisfies the diffusion equation with a

flux condition at the boundary:
koffRO(SC ( r )I
op=—7—0—-—]1.
Dyl + konRo\ Ry

This solution enables us to predict the effect of the feedback by diffusion through the bulk analytically. The full
solutions to the coupled linear equations are solved exactly with Bessel functions asin [11], however these
solutions do not permit an analytical calculation of the stability condition, hence we do not consider them here,
but instead compare our approximate analytical solutions directly with the full dynamical simulations.

Finally, we evaluate the coupled system of dynamic equations for the concentration (equation (1) in
section 2.1) and radius R = v,, . #i (the normal velocity at the interface) to first order in the perturbations. We
find instabilities by looking for positive eigenvalues of the stability matrix that relates ¢ and R to 6c and 6R to
first order in the perturbations (see supplementary information appendix A for further details of this
calculation). From this analysis we find an instability threshold for the effective activity { < oy where

7 D, Rk,
a,:_z_n(21+1)(2+ ) Rokot ]

o Ry (I + DDyl + konRo) )
where 7 = (1, + 1,)/2 is the mean viscosity of the internal and external fluid. We see that oy is independent of
the effective surface tension 78 which shows that the coupled droplet deformation does not contribute to the
symmetry breaking threshold. However, the corresponding maximum eigenvalue of the stability matrix does
weakly depend on the effective surface tension 76 for I > 1. This weak positive relation suggests that the
instability should evolve more quickly in large surface tension drops when I > 1. In this linear limit there is no
contribution from the advection term in (2) and the second term in (3) (proportional to the binding rates) always
increases the threshold. This is because the binding terms allows the concentration on the interface to be recycled
by unbinding and diffusing into the bulk of the drop.

3
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Figure 2. Maximum mode number /., plotted against activity in normalised units for increasing values of the droplet radius. Dashed
lines show numerical solution and solid lines show analytical approximation using R = 0. Parameters used: ¢ = 1, Y% =1L

D = 0.05, 1, = 1, = land ko = 0. Insets show flow (blue arrows) and active concentration ¢ (colour gradient from purple (low) to
yellow (high)) to linear order on the perturbed interface fora (i) | = 1 mode and (ii) I = 2 mode respectively. Deformation of the
interface in (ii) is calculated by solving R = 0 for ¢R given the form of éc, and is exaggerated for visibility using small Y-

The stability analysis shows how the droplet will initially deform. This deformation is characterised at short
times by the maximally unstable mode /;,.x , which can be found exactly when binding is not included (see
figure 2 and supplementary information appendix A). At linear order the instability is independent of the
spherical harmonic parameter m. Generically, [« predicts that as contractile activity is increased, the more
concentration peaks will be initially formed on the droplet surface (figure 2). The total droplet activity scales with
droplet size, and so [y is more sensitive to the activity parameter ( in larger droplets. Thus it is easier to observe
modes with small /in smaller droplets, where the dynamics are less sensitive to small changes in the activity. Note
thatonly the! = 1 mode (k = 1in 2D) produces net propulsion of the droplet (i.e. fE RAdS = 0), so the first
unstable mode corresponds to front-back symmetry breaking of the droplet profile.

As shown in supplementary information appendix A, one can approximate the maximally unstable mode
Imax analytically by solving R = 0 for 6Ry,,. This approximation imposes that R always assumes the steady state
shape for a given fixed concentration perturbation ¢, (plotted in figure 2). Physically, this assumes that the
shape dynamics are much faster than the concentration dynamics, and so can be taken to be quasistatic.
Interestingly, while this assumption does not represent the full coupled dynamics of dc;,,, and 6R;,,, it does
reproduce the critical activity threshold, and also approximates the mode structure well.

When binding is included (kg = 0) the dispersion relation changes, and as we see from (3) the active
threshold is nonlinear in [, and hence higher (non-swimming) modes can have lower activity thresholds than the
I = 1 (swimming) mode.

Within the assumptions made here, the binding and unbinding dynamics always increase the activity
threshold. We see that if the binding is fast ko, > D,, the critical activity takes the same form as the 1D model
considered in [11] where the active threshold is always minimal for | = 1 and is proportional to the effective
diffusion parameter D = (Dkon + D, kofr)/kon. However, for fast bulk diffusion, geometrical effects become
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Figure 3. Phase diagram of 2D simulation results for an active isotropic interface, each dot represents a single simulation run. Insets
show steady state flow (blue arrows) and concentration fields (colour density, black to yellow) for the different phases. Low values of
ko transition from stationary (black squares) to motile (red circles) with a single peak in concentration (shown in (a)). Feedback from
the internal concentration produces intermediate oscillatory states (magenta stars) and a stationary 2-peak state (blue triangles). Solid
lines of increasing gradient show predicted activity threshold for modes k = 1,2 (red, blue). Simulation parameters: ¢o = 1, Ry = 1,
% =1,D=005D,=057n,=n =1

important. A single peak in the interfacial concentration gives rise to a concentration gradient in the bulk driving
diffusion away from it. As the number of peaks on the interface increases the concentration gradients are more
localised to the surface, and diffusion has a smaller effect. In this regime, the minimum critical activity can
correspond to multi-peak modes (I > 1) when the contribution from bulk diffusion is significant. This is
analogous to the findings in [8] for a one-dimensional active fluid consisting of two-components.

The droplet shape instability is enslaved to the concentration (as ¢ is independent of ), so we can estimate
how the shape will deform due to certain concentration distributions on the interface by solving R = 0 for 6R
(for I > 1). Plotted in figure 2 is an example of these deformations and the associated flow to linear order. In
order to calculate the resulting steady state dynamics we require numerical simulation.

2.3. Results and comparison with simulations

We test these analytical results against the 2D simulations developed in [28]. These use an Immersed Boundary
method [35, 36] to represent the active interface explicitly as a Lagrangian mesh which is coupled to the
Cartesian mesh for the 2D fluid via a numerical Dirac delta function.

Repeating the stability analysis in 2D, we now take perturbations of the form g = g, + >3, *’. The
calculation reveals that surface tension gradients do not deform the drop in 2D (as found in [37]) however the
concentration dynamics remain very similar. We compare our predictions in 2D to the results of the Immersed
Boundary simulations in figure 3. We run simulations varying the activity, binding rate (taking ko = kon) and
diffusion parameters. At zero binding we observe two steady phases, a stationary state and a steady moving state
3(a) separated by the threshold oy ,p which agrees well with the expected analytical result

,4ﬁ D_k Dy Rokost

0%l | (4)
Co RO (Dpk + konRO)

Q12D =

This moving steady state due to a surface tension gradient is also observed for the the self-propelled droplets
studied in [37, 38]. The equations of motion we use (see Model section) are similar to those for the self-propelled
droplets studied in [37, 38] and hence some of the same dynamical behaviour is observed. However, our model
predicts new stable states and instabilities corresponding to pure deformation and division as discussed below.
This arises due to the advection and diffusion of active particles through the bulk of the drop. Unlike in [37, 38]
the model here conserves the active particles within the drop making it more relevant to cell cortex dynamics.




10P Publishing

NewJ. Phys. 18 (2016) 123016 C A Whitfield and R ] Hawkins

We next calculate the maximum mode number k., (see supplementary information appendix A). In the
regime where we predict kmax = 2, our simulations show initial formation of 2 peaks in droplet concentration.
Without binding, these peaks are unstable and always coalesce to form one (as predicted for a flat active viscous
layer in [8]). In this case, the droplet swims persistently and steadily with the concentration peak at its rear. A
decomposition of the Fourier modes of this steady state shows that the far field flow is puller like, i.e. its dipole
moment is such that it pulls the surrounding fluid inward and pushes it outward along the axis perpendicular to
its motion. The activity threshold predicted compares well to that in the simulations for small values of the
binding. Atlarger binding rate, the interior dynamics is not completely diffusion dominated, and the critical
activity is underestimated due to the approximation of ) = 0. As we increase ko and { we see that eventually
the droplet becomes immobile with 2 stable peaks in the concentration (see figure 3). In the intermediate regime
the droplet undergoes a ‘wandering’ motion as the concentration profile oscillates between a single peak and two
peaks. Equation (4) predicts a non-trivial k dependence of the active threshold as binding terms become
important. For the parameters used in figure 3, this can be seen by the crossing of the lines for the k = 1and
k = 2 modes, meaning that the minimum critical activity is not necessarily for the lowest k mode (k = 1). Note
this is very similar to the prediction in 3D in (3).

The simulation results in figure 3 demonstrate that as the binding rate increases, advection of the
concentration through the droplet bulk becomes more important. The advection can stabilise the two peaks at
diametrically opposite points on the circle, resulting in a stationary droplet. However, we see that in 2D the drop
does not deform, as the radial forces from the activity gradients are always cancelled by the hydrostatic pressure
P. This is not the case for the full 3D system where we expect concentration gradients to deform the droplets as
shown in figure 2. Nonetheless, the 2D simulations show that advection can stabilise the 2 peak configuration,
which in 3D would result in symmetric deformation and potentially division of the droplet. Such a 3D
simulation is beyond the scope of this work, but would be useful for quantifying the full 3D morphology. Recent
work has shown that non-adherent cells exhibit a swimming state similar to the motion described here, and so it
would be of interest to test in future work whether the steady state shape in 3D for the model here resembles the
‘pear shape’ observed in [27, 39].

3. Active polar fluid droplet

In this section, we consider a droplet filled with an active polar liquid crystal of constant density everywhere.
Realising this system experimentally in droplet systems requires high concentrations of active material so that
the polar to isotropic phase transition is localised to the droplet centre. This has been achieved in vitro for
microtubule based active nematics but only in thin films thus far [30, 31]. In these systems the measured order
parameter is approximately constant everywhere except in the vicinity of topological defects. Thus we consider
the limit where the active fluid is strongly polarised and restrict the analysis to only the orientational degrees of
freedom of the active liquid crystal, and do not consider the density or polarisation magnitude degrees of
freedom.

3.1. Model
We utilise the model of an active polar fluid developed by Kruse et al in [2—4] which has similarities to other
continuum models of the cytoskeleton on surfaces (such as [40, 41]). We consider the case where the active fluid
has strong local ordering and is far from the isotropic phase so that | p| = 1 everywhere (except at defects where
p is undefined). This approximation is commonly used to model active and passive liquid crystal systems
analytically.

In the Re = 0 limit the total stress in the active polar fluid, a“’t ‘”SC + O'd‘St + JZ“, has viscous, distortion
and active contributions respectively where:

VlSC

— 277n”l] = 7’]01(81/] + aVl))
d‘Stf—(pIh + phi) + (pihj = pihi) + o
act_i Cpll)]

The viscous stress is the response to flow assuming a Newtonian fluid. The distortion stress is that of a passive
polar liquid crystal due to deviations in filament alignment, where the perpendicular part of the molecular field
h; = —6F /6p,(6; — p;p;) acts to minimise the free energy functional F = fQ oy d&rf with respect to p, given
|pl = 1. The Ericksenstress, oj; = f0; — [9f /(0(9;p,))1(6j — p,P;) OiPy- is a generalisation of the hydrostatic
pressure for complex fluids. Fmally, the active stress represents the active dipolar force and thus is second order

in p.
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The free energy functional F gives the equilibrium properties of the system. Here for simplicity we use the
one constant approximation of the Frank free energy:

K
F= fq = Op) + fz dsf, )

where K is the elastic constantand | p| = 1. Since we are modelling a finite droplet, the surface terms are
important. We consider normal anchoring of the filaments to the interface, with surface distortion free energy
density f, = W (p - i — 1)%. This form of the surface free energy includes the spontaneous splay term which is
allowed in polar liquid crystals [42].

The polarisation flux is

. h
p=—(v-V)p—g-P—Vg-p+F, (6)

where wjj = (0;vj — 9;v;)/2 and I is the rotational viscosity.

3.2. Linear stability analysis

We contrast the model of an active interface to that of a droplet of active polar fluid of constant density. In this
case, rather than the concentration of active particles, the important degree of freedom is the polarisation vector
p denoting the average direction of the contractile filaments in the fluid.

We calculate the linear stability of the droplet in the limit of strong anchoring W — oo in order to study the
effects between the coupling of droplet morphology and polarisation. This equates to the boundary condition
p = fiatr = R.Inthe case of weak or no anchoring, instabilities can occur for both extensile (( > 0) and
contractile (( < 0)active polar drops as shown analytically in [43] and in simulations [15]. The condition of
fixed polarisation at the interface inhibits certain deformations of the polarisation field at low activities and so
the preferred deformation modes are those which can couple to the droplet deformation. This was
demonstrated in 2D simulations of active nematic drops in [ 18]. Here we explain this mechanism analytically in
a 3D fluid drop by linear stability analysis. The polar nature of the anchoring produces a ‘radial hedgehog’
topological defect at the droplet centre (or aradial defect with +1 winding number in 2D), giving a simple
analytical description of the stationary state. Thus we are able to make analytical predictions about spontaneous
symmetry breaking in these systems even in the general 3D case.

Unlike the case of an active interface, the active fluid here fills the drop, and hence active and passive stresses
are generated in the bulk. The stationary steady state is given by the polarisation p = #, R = Ryf,and v = 0.

To perform a general linear stability analysis, one would need to consider generic perturbations to both the
polarisation field and interface and study the coupled equations for their evolution, this is not analytically
tractable in this case. However, we can perform restricted perturbations that we expect to be representative of the
dynamics in a particular limit. We consider the case where the polarisation field is enslaved everywhere to the
shape of the boundary by the anchoring condition. This corresponds to the limit where bulk instabilities in the
droplet are suppressed by its size (i.e. small droplets). In larger droplets, (or equivalently for smaller K') the
dynamics of the polarisation field becomes more independent of the anchoring condition, and we expect this
approximation to break down.

Due to the symmetry of the stationary state, we first need to consider the special case of the translational
mode of perturbation, corresponding to the I = 1 spherical harmonic mode. Without loss of generality we
consider a perturbation along the z-direction (m = 0). This mode implies a translation of the hedgehog defect
away from the droplet centre. If we assume that the defect has some fixed finite core radius R, then we can treat
theliquid crystal as contained between two boundary conditions, one at the defect r = R, and one at the droplet
interface r = Ry — 6z cos(6), where 6z is a small displacement of the defect position from the droplet centre
along the z-direction. The calculation is done in the reference frame of the defect so that it coincides with the
origin of our coordinate system. In the equilibrium case ({ = 0), we can write a polarisation field to first order
that minimises the bulk free energy in (5) by solving h = 0 for these boundary conditions:

r— R,
P, =€ — bz—————
r(Ro — Ro)

sin(0) eg. ™)
This method equates the defect to a small colloid with (polar) homeotropic anchoring, and in the strong
anchoring case we expect the free energy minimum to correspond to the defect being positioned at the droplet
centre as we observe in simulations, and is reported in [44, 45]. Using the polarisation in equation (7) we can
estimate what the bulk free energy increase will be for such a deformation (details in supplementary information
appendix B)
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Figure 4. Active part of the flow field (blue arrows) to linear order in the perturbations for: (a) defect position (inner sphere) displaced
in the vertical direction with ¢ > 0 (extensile activity); (b) I = 2 mode perturbation of the interface assuming strong anchoring of the
polarisation field with ¢ < 0 (contractile activity). The perturbations are made artificially large for visibility here.

2 2
AFpuk = %[4 —3e— €2+ 4delog(e)] + O(62°) ~ %, 8)
where € = R.y/R, is assumed small in the final approximation of the equation. This AF is positive for all ¢,
suggesting that the free energy minimum corresponds to the defect being positioned at the droplet centre. Note
that this polarisation field is only valid to first order in 6z and so higher order terms could affect the form of the
quadratic term here.

We now introduce a small activity ¢, such that equation (7) remains a valid approximation for the form of
the polarisation field, then we see that this gives rise to active forces in the drop. We solve the force balance
equations (omitting passive contributions, see supplementary information appendix B) to find the active
contribution to the flow. We then integrate to find the active contribution to the velocity of the defect core v. and
droplet vy,op. The relative velocity of the defect is then:

2 —
AV = Y — Vgrop (52( Mo+ m) — €y + ) e )

214 (31, + 2my)
We see that extensile activity ({ > 0) always results in a relative defect velocity that is in the same direction as the
initial defect displacement (along €, ), as shown by figure 4. This implies that extensile activity will destabilise the
defect from the centre and give rise to motion of the droplet as a whole (which to linear order is also along é,).
Conversely, we expect contractile activity to stabilise the defect at the droplet centre, as the flows resulting from
contractile activity (( < 0) actto restore the defect back to its stationary position at the droplet centre.

Thus, within the assumptions made above, one can predict that the active polar droplet will break
translational symmetry spontaneously above some finite activity. This mode of symmetry breaking is
independent of surface deformations at linear order, and so its critical activity threshold should not depend on
the droplet surface tension. Hence the critical activity threshold will only depend on the increase in the passive
free energy (equation (8)), which goes to a finite value in the limit of a point defect and scales as the inverse of the
droplet size. In general, the parameter e is difficult to define, which is a consequence of the assumption of
|p| = 1, which breaks down around the defect. This can be avoided by using a Landau-De Gennes type free
energy description for the passive part of the dynamics such that there is an polar-to-nematic phase transition at
the centre of the droplet. However, such an approach is not analytically tractable, as it requires solving nonlinear
partial differential equations for the radial dependence of p. Qualitatively though, the predictions here are
consistent with what is observed in the simulations.

For perturbation modes [ > 1 the flow at the origin will always be zero, and so one can assume that in the
strong anchoring limit the defect will remain centred at the origin. We again require an assumption for the r-
dependence of the polarisation perturbation. Taking Ry — 0, we can write a general form as p o r" for
arbitrary n > 0.Importantly, for all n, the active flows always give rise to an instability for { < 0 (contractile).
Considering only active flows, the maximally unstable perturbation is for n = 0. Thus, below we consider only
the results of this mode, which allows us to consider the dynamics in the limit where the filament polarisation at
the interface and in the droplet are strongly coupled. However it comes at the cost of reducing the quantitative
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Relative splay

Figure 5. Spatial change in splay induced by boundary pertubation. Dotted line indiciates R and solid line the perturbed interface R.
Increased splay in regions of higher curvature drive outward flows, coupling to further increase in boundary curvature. The black
arrows indicate polarisation direction while the colour gradient indicates the splay magnitude |V - p| relative to its value in the
stationary state.

power of our predictions, and is an important restriction to the dynamics considered. Note, in two-dimensions,
the assumption n = 0 gives rise to an infinite passive contribution to the dynamics (proportional to K ) and so
weusen = 1, which appears consistent with what is observed in simultions.

In the strong anchoring limit, the polarisation has to match the perturbed interface normal at r = Rto first
order, such that

=r-y > (VY["(0, ¢>>]. (10)

m=—1

[5Rzm(r>
R

0

We calculate the resulting flows to first order in ¢R. Since p is enslaved to the deformation we then only need to
consider the radius dynamics given by R (for details see supplementary information appendix B).

In this strong anchoring limit we find that the droplet is unstableif { < ap < 0, i.e. the activity threshold,
owp, is always contractile. The threshold ap increases linearly with yand K. Repeating the linear stability analysis
calculation in 2D shows the same qualitative prediction, where this time we take 6p o< r as this is the leading
order contribution allowed. The analytical expressions for the activity threshold are given in supplementary
information appendix B and a full discussion of the eigenvalues of the general stability matrix (for weak
anchoring) can be found in [43].

The result of this analysis is somewhat surprising, in this strong anchoring limit we expect the I = 1 mode to
be unstable to extensile activity, whereas the higher modes of deformation are unstable for contractile activity.
This suggests that, when our assumptions hold, we should see translational symmetry breaking with the defect
moving to the droplet front for an extensile drop and symmetric modes of deformation for a contractile drop
(see figure 4). This active threshold scales linearly with K'and +y,, demonstrating the importance of the coupling
of the morphology to the polarisation field. Contrast this to the case of the active interface where the shape does
not affect the threshold for a phase transition.

This contractile instability can be understood physically by considering the splay in the drop due to
perturbations in the interface curvature. High curvature couples to increased splay which couples to outward
flow, further increasing the curvature of the interface and hence the splay. A sketch of this is given in figure 5.

3.3. Results and comparison with simulations
In the 2D simulations (see figure 6) we see symmetry breaking corresponding to the k = 1 mode for extensile
activity resulting in a steady motile state, as predicted by the stability analysis. This is characterised by the defect
centre moving to the front of the drop and is independent of the boundary deformation (and hence ). Due to
the extensile nature of the activity this droplet is a pusher, pushing fluid out along its axis of motion and thus
elongating parallel to its motion.

Conversely contractile activity stabilises the defect at the droplet centre and we observea k = 2 mode
instability characterised by deformation of the droplet into a ‘dumbbell’ shape. It is also observed that this phase
behaviour breaks down as the value of K /R is reduced. In this limit the distortions in the droplet bulk are not
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Surface Tension y

Figure 6. Active polar drop stability diagram. Stationary state (white, square dots), spontaneous symmetric deformation (blue,
triangular dots) and spontaneous motility (red, round dots) are observed. Dashed line shows analytical prediction from linear stability
analysis. Insets show the polarisation field p (black arrows) inside the droplet following symmetry breaking with defects labelled by
blue dots. Note that due to the simulation method, the polarisation field in the simulations changes continuously from |p| = 1inside
the drop to | p| = 0 outside, hence the polarisation is defined everywhere in (i) and (ii). Parameters used: K = 0.1, Ry = 1,
Ny=mn=1I=1LW=50andv = 1.1.

strongly coupled to those at the interface and so more complex distortions can occur without significant droplet
deformation. Our analytical calculations do not predict this as we assume a form for the r-dependence of the
polarisation such that it is strongly coupled to the curvature. This behaviour goes beyond the scope of the
analytical work here as this corresponds to a transition to an ‘active turbulence’ state, as numerically simulated
in[28].

Finally, we also observe rotational steady states in the simulations (for extensile activity when using
v = —1.1) which can be characterised exactly by rotationally invariant distortions of the polarisation field [2, 3],
but these are not predicted for the parameter range used in figure 6.

4. Discussion

We have used analytical linear stability analysis and numerical simulation to characterise instabilities in active
droplets and their resulting non-equilibrium steady states. Recent advances in experimental techniques mean
that active gels of cytoskeletal material can be produced in vitro. The predictions of our active interface model
could be tested by adsorbing an isotropic actin gel onto the interface of an emulsion drop containing myosin and
ATP[32, 33]. We predict an activity threshold for spontaneous motion, and a further continuous transition to a
stable symmetric state mediated by advection of motors through the droplet bulk. We predict that in 3D this
symmetric configuration will be coupled to deformation of the drop, however this cannot be observed in the 2D
model.

The active polar drop model we use only predicts some of the dynamics of a real active polar drop system as it
ignores the density and ordering magnitude degrees of freedom. However, this model system gives us an insight
into the intrinsic instabilities when droplet deformation and filament polarisation direction are strongly
coupled. In particular, there is a contractile activity threshold that is linearly dependent on surface tension, above
which the droplet spontaneously deforms into a characteristic dumbbell shape. We also see persistent motility in
the case of extensile activity such that the droplet acts as a pusher, compared to the puller type motion exhibited
in the active isotropic interface model. This is consistent with previous active droplet models that show
contractile activity resulting in droplets which are pullers and extensile activity resulting in pushers
[13,15,18,20,21]. An interesting future extension of this work would be to consider coupling between both of
the active phases studied here within a single drop.
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The finite active systems we study improve our understanding of how confinement and deformation affect
steady state dynamics. Additionally, we see the importance of feedback, driven by advection through the droplet
or the internal orientational order, resulting in more complex dynamics. These results should prove useful in
characterising future experiments on in vitro cytoskeletal networks and be useful in developing more complex
models of multicomponent active systems in nature.
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